JP4899722B2 - Rolling bearing unit with state quantity measuring device - Google Patents

Rolling bearing unit with state quantity measuring device Download PDF

Info

Publication number
JP4899722B2
JP4899722B2 JP2006228585A JP2006228585A JP4899722B2 JP 4899722 B2 JP4899722 B2 JP 4899722B2 JP 2006228585 A JP2006228585 A JP 2006228585A JP 2006228585 A JP2006228585 A JP 2006228585A JP 4899722 B2 JP4899722 B2 JP 4899722B2
Authority
JP
Japan
Prior art keywords
degrees
detected surface
encoder
sensor
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006228585A
Other languages
Japanese (ja)
Other versions
JP2008051669A (en
Inventor
永生 土肥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006228585A priority Critical patent/JP4899722B2/en
Publication of JP2008051669A publication Critical patent/JP2008051669A/en
Application granted granted Critical
Publication of JP4899722B2 publication Critical patent/JP4899722B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a structure for satisfactory measurement accuracy of a state quantity in which gaps &delta;<SB>0</SB>, &delta;<SB>180</SB>between a surface to be detected of an encoder 4a and detection parts of respective sensors 6a<SB>1</SB>, 6c<SB>2</SB>in a neutral state are not uselessly large, respectively. <P>SOLUTION: The gaps &delta;<SB>0</SB>, &delta;<SB>180</SB>are not made into the same dimension but the gaps &delta;<SB>0</SB>, &delta;<SB>180</SB>are provided with mutual dimensional relationship of &delta;<SB>0</SB>&lt;&delta;<SB>180</SB>corresponding to the amounts of decrease in the gaps &delta;<SB>0</SB>, &delta;<SB>180</SB>during operation. By adopting such a structure, the above problem is solved. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明に係る状態量測定装置付転がり軸受ユニットは、例えば、自動車等の車両の車輪を懸架装置に対して回転自在に支持すると共に、この車輪に加わる外力の大きさを測定して、車両の安定運行の確保に利用する。   A rolling bearing unit with a state quantity measuring device according to the present invention supports, for example, a wheel of a vehicle such as an automobile so as to be rotatable with respect to a suspension device, and measures the magnitude of an external force applied to the wheel, Use to ensure stable operation.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えば非特許文献1に記載されている様な、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、電子制御式ビークルスタビリティコントロールシステム(ESC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等を表す信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる外力(例えばラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are rotatably supported by a suspension device by a double-row angular type rolling bearing unit. In order to ensure the running stability of the automobile, for example, as described in Non-Patent Document 1, an antilock brake system (ABS), a traction control system (TCS), and an electronically controlled vehicle stability A vehicle travel stabilization device such as a control system (ESC) is used. In order to control such various vehicle running stabilization devices, signals representing the rotational speed of the wheels, acceleration in each direction applied to the vehicle body, and the like are required. In order to perform higher-level control, it may be preferable to know the magnitude of an external force (for example, one or both of a radial load and an axial load) applied to the rolling bearing unit via a wheel.

この様な事情に鑑みて、特許文献1には、特殊なエンコーダを使用して転がり軸受ユニットに加わる外力の大きさを測定する発明が記載されている。図6〜8は、この特許文献1に記載された構造ではないが、この特許文献1に記載された構造と同じ外力の測定原理を採用している、状態量測定装置付転がり軸受ユニットに関する先発明の構造の第1例を示している。この先発明の構造の第1例は、使用時にも回転しない静止側軌道輪である外輪1の内径側に、使用時に車輪を支持固定した状態でこの車輪と共に回転する、回転側軌道輪であるハブ2を、複数個の転動体3、3を介して、回転自在に支持している。これら各転動体3、3には、互いに逆向きの(図示の場合には背面組み合わせ型の)接触角と共に、予圧を付与している。尚、図示の例では、上記各転動体3、3として玉を使用しているが、重量が嵩む自動車用の軸受ユニットの場合には、玉に代えて円すいころを使用する場合もある。   In view of such circumstances, Patent Document 1 describes an invention for measuring the magnitude of an external force applied to a rolling bearing unit using a special encoder. FIGS. 6 to 8 are not related to the structure described in Patent Document 1, but are related to a rolling bearing unit with a state quantity measuring device that employs the same external force measurement principle as the structure described in Patent Document 1. 1 shows a first example of the structure of the invention. The first example of the structure of the prior invention is a hub that is a rotating side race ring that rotates together with the wheel while being supported and fixed to the inner diameter side of the outer race 1 that is a stationary side race ring that does not rotate during use. 2 is rotatably supported via a plurality of rolling elements 3 and 3. A preload is applied to each of the rolling elements 3 and 3 together with contact angles that are opposite to each other (in the illustrated case, a rear combination type). In the illustrated example, balls are used as the rolling elements 3 and 3. However, in the case of an automobile bearing unit that is heavy in weight, a tapered roller may be used instead of the ball.

又、上記ハブ2の内端部(軸方向に関して「内」とは、自動車への組み付け状態で車両の幅方向中央側を言い、図6、9、15、16の右側。反対に、自動車への組み付け状態で車両の幅方向外側となる図6、9、15、16の左側を、軸方向に関して「外」と言う。本明細書及び特許請求の範囲の全体で同じ。)には、円筒状のエンコーダ4を、上記ハブ2と同心に支持固定している。又、上記外輪1の内端開口を塞ぐ有底円筒状のカバー5の内側に、1対のセンサ6a1 、6a2 を支持すると共に、これら両センサ6a1 、6a2 の検出部を、上記エンコーダ4の被検出面である外周面に近接対向させている。 Also, the inner end of the hub 2 ("inner" in the axial direction means the center side in the width direction of the vehicle when assembled to the automobile, and is the right side of FIGS. 6, 9, 15 and 16. On the contrary, to the automobile. 6, 15, 16, which is the outer side in the width direction of the vehicle in the assembled state, is referred to as “outside” with respect to the axial direction. The encoder 4 is supported and fixed concentrically with the hub 2. In addition, a pair of sensors 6a 1 and 6a 2 are supported inside the bottomed cylindrical cover 5 that closes the inner end opening of the outer ring 1, and the detection portions of both the sensors 6a 1 and 6a 2 are provided as described above. The encoder 4 is placed in close proximity to the outer peripheral surface, which is the detected surface.

このうちのエンコーダ4は、磁性金属板製である。被検出面である、このエンコーダ4の外周面の先半部(軸方向内半部)には、透孔7、7(第一特性部)と柱部8、8(第二特性部)とを、円周方向に関して交互に且つ等間隔で配置している。これら各透孔7、7と各柱部8、8との境界は、上記エンコーダ4の軸方向に対し同じ角度だけ傾斜させると共に、この軸方向に対する傾斜方向を、上記エンコーダ4の軸方向中間部を境に互いに逆方向としている。従って、上記各透孔7、7と上記各柱部8、8とは、軸方向中間部が円周方向に関して最も突出した「へ」字形(又は「く」字形)となっている。そして、上記境界の傾斜方向が互いに異なる、上記被検出面の軸方向両半部のうち、軸方向外半部を第一の特性変化部9とし、軸方向内半部を第二の特性変化部10としている。尚、これら両特性変化部9、10を構成する各透孔は、図示の様に互いに連続した状態で形成しても良いし、後述する図11、13に示す様に、互いに独立させて形成しても良い。又、検出精度は劣るが、上記両特性変化部9、10のうちの何れか一方の特性変化部の境界のみを軸方向に対し傾斜させ、他方の特性変化部の境界を軸方向と平行にする事もできる。   Of these, the encoder 4 is made of a magnetic metal plate. In the first half (axially inner half) of the outer peripheral surface of the encoder 4, which is a detected surface, through holes 7 and 7 (first characteristic part) and column parts 8 and 8 (second characteristic part) Are arranged alternately and at equal intervals in the circumferential direction. The boundaries between the through holes 7 and 7 and the pillars 8 and 8 are inclined at the same angle with respect to the axial direction of the encoder 4, and the inclined direction with respect to the axial direction is set to the intermediate portion in the axial direction of the encoder 4. The directions are opposite to each other. Accordingly, each of the through holes 7 and 7 and each of the column portions 8 and 8 has a “h” shape (or “k” shape) in which an intermediate portion in the axial direction protrudes most in the circumferential direction. Of the two halves in the axial direction of the surface to be detected, the inclination directions of the boundaries are different from each other, the outer half in the axial direction is the first characteristic change portion 9, and the inner half in the axial direction is the second characteristic change. Part 10 is used. Each of the through holes constituting both the characteristic changing portions 9 and 10 may be formed in a continuous state as shown in the figure, or may be formed independently from each other as shown in FIGS. You may do it. Further, although the detection accuracy is inferior, only the boundary of one of the characteristic change parts 9 and 10 is inclined with respect to the axial direction, and the boundary of the other characteristic change part is parallel to the axial direction. You can also do it.

又、上記1対のセンサ6a1 、6a2 はそれぞれ、永久磁石と、検出部を構成するホールIC、ホール素子、MR素子、GMR素子等の磁気検知素子とから成る。これら両センサ6a1 、6a2 は、上記カバー5の内側に支持固定した状態で、一方のセンサ6a1 の検出部を上記第一の特性変化部9に、他方のセンサ6a2 の検出部を上記第二の特性変化部10に、それぞれ近接対向させている。これら両センサ6a1 、6a2 の検出部が上記両特性変化部9、10に対向する位置は、上記エンコーダ4の円周方向に関して同じ位置としている。又、上記外輪1とハブ2との間にアキシアル荷重が作用しない状態で、上記各透孔7、7及び柱部8、8の軸方向中間部で円周方向に関して最も突出した部分(境界の傾斜方向が変化する部分)が、上記両センサ6a1 、6a2 の検出部同士の間の丁度中央位置に存在する様に、各部材の設置位置を規制している。 Each of the pair of sensors 6a 1 and 6a 2 includes a permanent magnet and a magnetic detection element such as a Hall IC, a Hall element, an MR element, and a GMR element that constitute a detection unit. These two sensors 6a 1 and 6a 2 are supported and fixed inside the cover 5, and the detection part of one sensor 6a 1 is used as the first characteristic changing part 9 and the detection part of the other sensor 6a 2 is used. The second characteristic changing section 10 is made to face and face each other. The positions where the detection parts of these sensors 6a 1 and 6a 2 face both the characteristic change parts 9 and 10 are the same in the circumferential direction of the encoder 4. Further, in the state where an axial load does not act between the outer ring 1 and the hub 2, the portion that protrudes most in the circumferential direction in the axial direction intermediate portion of each of the through holes 7 and 7 and the column portions 8 and 8 (boundary boundary). The position where each member is installed is regulated so that the portion where the inclination direction changes) is just at the center position between the detection parts of the sensors 6a 1 and 6a 2 .

上述の様に構成する状態量測定装置付転がり軸受ユニットの場合、上記外輪1とハブ2との間にアキシアル荷重が作用(これら外輪1とハブ2とがアキシアル方向に相対変位)すると、上記両センサ6a1 、6a2 の出力信号が変化する位相がずれる。即ち、上記外輪1とハブ2との間にアキシアル荷重が作用していない、中立状態では、上記両センサ6a1 、6a2 の検出部は、図8の(A)の実線イ、イ上、即ち、上記最も突出した部分から軸方向に同じだけずれた部分に対向する。従って、上記両センサ6a1 、6a2 の出力信号の位相は、同図の(C)に示す様に一致する。 In the case of a rolling bearing unit with a state quantity measuring device configured as described above, when an axial load acts between the outer ring 1 and the hub 2 (the outer ring 1 and the hub 2 are relatively displaced in the axial direction), The phase in which the output signals of the sensors 6a 1 and 6a 2 change is shifted. That is, in the neutral state in which an axial load is not applied between the outer ring 1 and the hub 2, the detecting portions of the sensors 6a 1 and 6a 2 are shown as solid lines A and B in FIG. That is, it faces a portion that is shifted from the most protruding portion by the same amount in the axial direction. Therefore, the phases of the output signals of the two sensors 6a 1 and 6a 2 coincide as shown in FIG.

これに対して、上記エンコーダ4を固定したハブ2に、図8の(A)で下向きのアキシアル荷重が作用した場合には、上記両センサ6a1 、6a2 の検出部は、図8の(A)の破線ロ、ロ上、即ち、上記最も突出した部分からの軸方向に関するずれが互いに異なる部分に対向する。この状態では上記両センサ6a1 、6a2 の出力信号の位相は、同図の(B)に示す様にずれる。更に、上記エンコーダ4を固定したハブ2に、図8の(A)で上向きのアキシアル荷重が作用した場合には、上記両センサ6a1 、6a2 の検出部は、図8の(A)の鎖線ハ、ハ上、即ち、上記最も突出した部分からの軸方向に関するずれが、逆方向に互いに異なる部分に対向する。この状態では上記両センサ6a1 、6a2 の出力信号の位相は、同図の(D)に示す様にずれる。 On the other hand, when a downward axial load acts on the hub 2 to which the encoder 4 is fixed as shown in FIG. 8A, the detecting portions of the sensors 6a 1 and 6a 2 are shown in FIG. A) is opposed to the broken lines B and B, that is, the portions that are different from each other in the axial direction from the most protruding portion. In this state, the phases of the output signals of the sensors 6a 1 and 6a 2 are shifted as shown in FIG. Further, when an upward axial load is applied to the hub 2 to which the encoder 4 is fixed as shown in FIG. 8A, the detecting portions of the sensors 6a 1 and 6a 2 are shown in FIG. Deviations in the axial direction from the chain lines C and C, that is, from the most projecting portion are opposed to different portions in the opposite direction. In this state, the phases of the output signals of the two sensors 6a 1 and 6a 2 are shifted as shown in FIG.

上述の様に、先発明の構造の第1例の場合には、上記両センサ6a1 、6a2 の出力信号の位相が、上記外輪1とハブ2との間に加わるアキシアル荷重の作用方向に応じた向きにずれる。又、このアキシアル荷重により上記両センサ6a1 、6a2 の出力信号の位相がずれる程度は、このアキシアル荷重が大きくなる程大きくなる。従って、上記両センサ6a1 、6a2 の出力信号の位相ずれの有無、ずれが存在する場合にはその向き及び大きさに基づいて、上記外輪1とハブ2との間に作用しているアキシアル荷重の向き及び大きさを求められる。尚、上記両センサ6a1 、6a2 の出力信号の位相差に基づいて上記アキシアル荷重を算出する処理は、図示しない演算器により行なう。この為、この演算器には、予め理論計算や実験により調べておいた上記位相差と上記アキシアル荷重との関係を、計算式やマップ等の形式で組み込んでおく。 As described above, in the case of the first example of the structure of the prior invention, the phases of the output signals of the sensors 6a 1 and 6a 2 are in the direction of the action of the axial load applied between the outer ring 1 and the hub 2. The direction is shifted. Further, the degree to which the phase of the output signals of the two sensors 6a 1 and 6a 2 is shifted due to the axial load increases as the axial load increases. Therefore, the axial acting between the outer ring 1 and the hub 2 based on the presence and absence of the phase shift of the output signals of the sensors 6a 1 and 6a 2 and the direction and magnitude of the shift, if any. The direction and magnitude of the load can be determined. The processing for calculating the axial load based on the phase difference between the output signals of the two sensors 6a 1 and 6a 2 is performed by a calculator (not shown). For this reason, in this computing unit, the relationship between the phase difference and the axial load, which have been examined in advance by theoretical calculation or experiment, is incorporated in the form of a calculation formula or a map.

次に、図9〜10は、特願2005−256752に開示された、状態量測定装置付転がり軸受ユニットに関する、先発明の構造の第2例を示している。この先発明の構造の第2例の場合も、ハブ2の内端部に外嵌固定した、磁性金属板製のエンコーダ4aの外周面(被検出面)に、透孔7a、7aと柱部8a、8aとを、円周方向に関して交互に且つ等間隔に配置している。但し、これら各透孔7a、7aと各柱部8a、8aとの境界を、それぞれ軸方向に対し同方向に同角度だけ傾斜した直線状としている。又、使用時に於ける、上記被検出面の下端部の位置を、この被検出面の円周方向に関するθ=0度の位置とした場合に、この被検出面のθ=0度の位置(下端部)とθ=180度の位置(上端部)とに、1対のセンサ6a1 、6a2 の検出部を近接対向させている。そして、この状態で、これら両センサ6a1 、6a2 を、外輪1の内端部に結合固定したカバー5の内周面に支持固定している。 Next, FIGS. 9 to 10 show a second example of the structure of the prior invention relating to a rolling bearing unit with a state quantity measuring device disclosed in Japanese Patent Application No. 2005-267552. Also in the case of the second example of the structure of the prior invention, the through holes 7a and 7a and the column portion 8a are formed on the outer peripheral surface (detected surface) of the encoder 4a made of a magnetic metal plate, which is fitted and fixed to the inner end portion of the hub 2. , 8a are alternately arranged at equal intervals in the circumferential direction. However, the boundary between each of the through holes 7a and 7a and each of the column portions 8a and 8a is a straight line inclined at the same angle in the same direction with respect to the axial direction. In addition, when the position of the lower end portion of the detected surface in use is a position of θ = 0 degrees with respect to the circumferential direction of the detected surface, a position of θ = 0 degrees on the detected surface ( The detection portions of the pair of sensors 6a 1 and 6a 2 are placed in close proximity to each other at the lower end portion and a position at θ = 180 degrees (upper end portion). In this state, the sensors 6a 1 and 6a 2 are supported and fixed on the inner peripheral surface of the cover 5 that is coupled and fixed to the inner end of the outer ring 1.

自動車の車輪支持用転がり軸受ユニットの場合、上記外輪1とハブ2との間に加わるアキシアル荷重Fyは、このハブ2に結合固定した車輪(タイヤ)の外周面と路面との接地面から入力される。この接地面は、上記外輪1及びハブ2の回転中心よりも径方向外方に存在する為、上記アキシアル荷重Fyはこれら外輪1とハブ2との間に、純アキシアル荷重としてではなく、これら外輪1及びハブ2の中心軸と上記接地面の中心とを含む(鉛直方向の)仮想平面内での、モーメントを伴って加わる。そして、このモーメントの大きさは、上記接地面から入力されるアキシアル荷重Fyの大きさに比例する。そこで、このモーメントを求めれば、このアキシアル荷重Fyを求められる事になる。一方、上記ハブ2にモーメントが加わると、上記エンコーダ4aの上端部が、軸方向に関して何れかの方向に、同じく下端部がこれと逆方向に、それぞれ変位する。この結果、上記エンコーダ4aの外周面の上下両端部にそれぞれの検出部を近接対向させた、上記両センサ6a1 、6a2 の検出信号の位相が、それぞれ中立位置に対して、逆方向にずれる。そこで、これら両センサ6a1 、6a2 の検出信号の位相のずれの向き及び大きさに基づいて、上記アキシアル荷重Fyの向き及び大きさを求められる。 In the case of a rolling bearing unit for supporting a wheel of an automobile, the axial load Fy applied between the outer ring 1 and the hub 2 is input from the ground contact surface between the outer peripheral surface of the wheel (tire) coupled and fixed to the hub 2 and the road surface. The Since this ground contact surface exists radially outward from the rotation center of the outer ring 1 and the hub 2, the axial load Fy is not between the outer ring 1 and the hub 2 but as a pure axial load. 1 and the center axis of the hub 2 and the center of the grounding surface are applied with a moment in a virtual plane (in the vertical direction). The magnitude of this moment is proportional to the magnitude of the axial load Fy input from the ground plane. Therefore, if this moment is obtained, this axial load Fy can be obtained. On the other hand, when a moment is applied to the hub 2, the upper end portion of the encoder 4a is displaced in any direction with respect to the axial direction, and the lower end portion is similarly displaced in the opposite direction. As a result, the phases of the detection signals of the sensors 6a 1 and 6a 2 in which the respective detection units are closely opposed to the upper and lower ends of the outer peripheral surface of the encoder 4a are shifted in opposite directions with respect to the neutral positions. . Therefore, the direction and magnitude of the axial load Fy can be obtained based on the direction and magnitude of the phase shift of the detection signals of both the sensors 6a 1 and 6a 2 .

次に、図11〜14は、特願2005−125029に開示された、状態量測定装置付転がり軸受ユニットに関する、先発明の構造の第3〜4例を示している。これら先発明の構造の第3〜4例で使用するエンコーダ4bも、前述した先発明の構造の第1例で使用するエンコーダ4の場合と同様、被検出面である外周面の軸方向両半部に、第一、第二の特性変化部9、10を有する。但し、これら先発明の構造の第3〜4例で使用するエンコーダ4bの場合には、上記第一の特性変化部9を構成する透孔7a、7aと、上記第二の特性変化部10を構成する透孔7b、7bとを、互いに独立させて形成している。そして、これら先発明の構造の第3〜4例の場合には何れも、使用時に於ける、上記エンコーダ4bの被検出面の下端部の位置を、この被検出面の円周方向に関するθ=0度の位置とした場合に、上記第一、第二の特性変化部9、10のθ=0度の位置に、第一、第二のセンサ6a1 、6a2 の検出部を、上記第二の特性変化部10のθ=270度(θ=−90度)の位置に、第三のセンサ6a3 の検出部を、それぞれ近接対向させている。更に、図13〜14に示した先発明の構造の第4例の場合には、上記第二の特性変化部10のθ=90度の位置に、第四のセンサ6a4 の検出部を近接対向させている。詳しい説明は省略するが、この様な先発明の構造の第3〜4例によれば、上記各センサ6a1 〜6a4 を支持した外輪1(図6参照)と、上記エンコーダ4bを支持したハブ2(図6参照)との相対変位により生じる、上記各センサ6a1 〜6a4 の出力信号同士の間の位相差に基づいて、アキシアル方向の変位及び荷重Fyだけでなく、ラジアル方向の変位及び荷重Fzも求められる。 Next, FIGS. 11 to 14 show third to fourth examples of the structure of the prior invention relating to a rolling bearing unit with a state quantity measuring device disclosed in Japanese Patent Application No. 2005-125029. The encoders 4b used in the third to fourth examples of the structure of the prior invention also have axial halves on the outer peripheral surface that is the detected surface, as in the case of the encoder 4 used in the first example of the structure of the previous invention. This section includes first and second characteristic change sections 9 and 10. However, in the case of the encoder 4b used in the third to fourth examples of the structure of the previous invention, the through holes 7a and 7a constituting the first characteristic changing unit 9 and the second characteristic changing unit 10 are provided. The through-holes 7b and 7b to be formed are formed independently of each other. In any of the third to fourth examples of the structure of the prior invention, the position of the lower end portion of the detected surface of the encoder 4b at the time of use is expressed as θ = circumferential direction of the detected surface. When the position is 0 degree, the first and second sensors 6a 1 and 6a 2 are placed at the position of θ = 0 degrees of the first and second characteristic changing parts 9 and 10, and the first and second sensors 6a 1 and 6a 2 are At the position of θ = 270 degrees (θ = −90 degrees) of the second characteristic change section 10, the detection sections of the third sensor 6 a 3 are respectively placed close to each other. Further, in the case of the fourth example of the structure of the prior invention shown in FIGS. 13 to 14, the detection part of the fourth sensor 6a 4 is brought close to the position of θ = 90 degrees of the second characteristic change part 10. They are facing each other. Although detailed description is omitted, according to the third to fourth examples of the structure of the prior invention, the outer ring 1 (see FIG. 6) supporting the sensors 6a 1 to 6a 4 and the encoder 4b are supported. Based on the phase difference between the output signals of the sensors 6a 1 to 6a 4 caused by the relative displacement with the hub 2 (see FIG. 6), not only the axial displacement and the load Fy, but also the radial displacement. And the load Fz are also obtained.

次に、図15〜17は、特願2006−214194に開示された、状態量測定装置付転がり軸受ユニットに関する、先発明の構造の第5例を示している。この先発明の第5例の場合には、使用時に於ける、エンコーダ4の被検出面の下端部の位置を、この被検出面の円周方向に関するθ=0度の位置とした場合に、この被検出面の軸方向両半部に設けた第一、第二の両特性変化部9、10のθ=0度の位置と、θ=120度の位置と、θ=240度の位置とに、それぞれ1対ずつ、合計6個のセンサ(6a1 、6a2 )、(6a3 、6a4 )、(6a5 、6a6 )の検出部を近接対向させている。詳しい説明は省略するが、この様な先発明の構造の第5例によれば、外輪1とハブ2との相対変位により生じる、上記6個のセンサ6a1 〜6a6 の出力信号同士の間の位相差に基づいて、アキシアル方向(y方向)の変位及び荷重、並びに、ラジアル方向(x方向、z方向等)の変位及び荷重だけでなく、傾斜角度(φx 、φz 等)及びモーメント(Mx 、Mz 等)も求められる。 Next, FIGS. 15 to 17 show a fifth example of the structure of the prior invention relating to the rolling bearing unit with a state quantity measuring device disclosed in Japanese Patent Application No. 2006-214194. In the case of the fifth example of the present invention, when the position of the lower end portion of the detected surface of the encoder 4 at the time of use is set to a position of θ = 0 degrees with respect to the circumferential direction of the detected surface, The first and second characteristic changing portions 9 and 10 provided on both axial halves of the detected surface are positioned at θ = 0 °, at θ = 120 °, and at θ = 240 °. The detection units of a total of six sensors (6a 1 , 6a 2 ), (6a 3 , 6a 4 ), (6a 5 , 6a 6 ) are placed in close proximity to each other. Although detailed explanation is omitted, according to the fifth example of the structure of the prior invention, the output signals of the six sensors 6a 1 to 6a 6 generated by the relative displacement between the outer ring 1 and the hub 2 are not detected. In addition to displacement and load in the axial direction (y direction) and displacement and load in the radial direction (x direction, z direction, etc.), tilt angle (φ x , φ z etc.) and moment ( Mx , Mz, etc.) are also required.

次に、図18〜19は、特願2006−017091に開示された、状態量測定装置付転がり軸受ユニットに関する、先発明の構造の第6例を示している。この先発明の構造の第6例の場合、磁性金属板製のエンコーダ4cとして、被検出面である外周面に設けた各透孔7c、7cと各柱部8c、8cとの境界が、軸方向に対して平行であるものを使用している。そして、使用時に於ける、上記エンコーダ4cの被検出面の下端部の位置を、この被検出面の円周方向に関するθ=0度の位置とした場合に、この被検出面のθ=0度の位置と、θ=90度の位置と、θ=180度の位置と、θ=270度の位置とに、それぞれ1個ずつ、合計4個のセンサ6a1 〜6a4 の検出部を近接対向させている。この様な先発明の構造の第6例によれば、上記各センサ6a1 〜6a4 を支持した外輪1(図6参照)と、上記エンコーダ4cを支持したハブ2(図6参照)との相対変位により生じる、上記θ=0度の位置と上記θ=180度の位置とに配置した1対のセンサ6a1 、6a3 の出力信号同士の間の位相差と、上記θ=90度の位置と上記θ=270度の位置とに配置した1対のセンサ6a2 、6a4 の出力信号同士の間の位相差とに基づいて、ラジアル変位及びラジアル荷重の向き及び大きさを求められる。 Next, FIGS. 18 to 19 show a sixth example of the structure of the prior invention relating to the rolling bearing unit with a state quantity measuring device disclosed in Japanese Patent Application No. 2006-017091. In the case of the sixth example of the structure of the prior invention, the boundary between each through hole 7c, 7c and each column portion 8c, 8c provided on the outer peripheral surface, which is a detection surface, as the encoder 4c made of a magnetic metal plate is in the axial direction. The one that is parallel to is used. When the position of the lower end portion of the detected surface of the encoder 4c at the time of use is set to θ = 0 degrees with respect to the circumferential direction of the detected surface, θ = 0 degrees of the detected surface , The position of θ = 90 degrees, the position of θ = 180 degrees, and the position of θ = 270 degrees, respectively, and the detection units of four sensors 6a 1 to 6a 4 in total face each other. I am letting. According to the sixth example of the structure of the prior invention, the outer ring 1 (see FIG. 6) supporting the sensors 6a 1 to 6a 4 and the hub 2 (see FIG. 6) supporting the encoder 4c. The phase difference between the output signals of the pair of sensors 6a 1 and 6a 3 arranged at the position of θ = 0 ° and the position of θ = 180 °, which is caused by relative displacement, and the θ = 90 ° Based on the position and the phase difference between the output signals of the pair of sensors 6a 2 and 6a 4 arranged at the position of θ = 270 °, the direction and magnitude of the radial displacement and the radial load can be obtained.

尚、上述した各先発明の構造の場合、自動車の運転時には、外輪1とハブ2との間に外力が作用する(これら外輪1とハブ2とが各部の弾性変形により相対変位する)事に伴い、エンコーダ4(4a、4b、4c)の被検出面とセンサ6a1 (6a2 〜6a6 )の検出部とが、この被検出面の幅方向に関して相対変位する他、互いに遠近動する方向にも相対変位する。この為、この様な互いに遠近動する方向の相対変位が生じた場合にも、上記被検出面と上記検出部とが干渉しない様にすべく、上記外輪1とハブ2との間に外力が作用していない中立状態で、上記被検出面と上記検出部との間に、十分な間隔をあけておく必要がある。但し、上述した各先発明の構造の場合には、この様な要求に応えるのと同時に、状態量(変位、荷重等)の測定精度が悪化するのを防止すべく、中立状態での上記被検出面と上記検出部との間隔を、極力狭くする必要がある。この理由に就いて、図20〜21を参照しつつ説明する。 In the case of the structure of each of the above-described prior inventions, an external force acts between the outer ring 1 and the hub 2 during driving of the automobile (the outer ring 1 and the hub 2 are relatively displaced by elastic deformation of each part). Accordingly, the detected surface of the encoder 4 (4a, 4b, 4c) and the detecting portion of the sensor 6a 1 (6a 2 to 6a 6 ) are displaced relative to each other in the width direction of the detected surface, and the directions of moving relative to each other. Also relative displacement. For this reason, even when such relative displacement in the direction of moving in the direction of each other occurs, an external force is applied between the outer ring 1 and the hub 2 so that the detection surface and the detection unit do not interfere with each other. It is necessary to leave a sufficient space between the detected surface and the detection unit in a neutral state where the sensor is not acting. However, in the case of the structure of each of the above-described prior inventions, the above-described covering in the neutral state is performed in order to prevent the measurement accuracy of the state quantity (displacement, load, etc.) from being deteriorated at the same time as satisfying such a request. It is necessary to narrow the distance between the detection surface and the detection unit as much as possible. The reason for this will be described with reference to FIGS.

図20〜21の(A)の実線α1 (及び鎖線β1 )は、上記エンコーダ4(4a、4b、4c)の回転時に、上記センサ6a1 (6a2 〜6a6 )の検出部を通過する磁束の密度(磁束密度)を示している。この磁束密度α1 (及びβ1 )の振幅は、上記被検出面と上記検出部との間隔が狭くなる程、図20の(A)に示す様に大きくなり、この間隔が広くなる程、図21の(A)に示す様に小さくなる。一方、図20〜21の(B)の実線α2 (及び鎖線β2 )は、上記センサ6a1 (6a2 〜6a6 )の出力信号を示している。この出力信号α2 (及びβ2 )は、スレッシュレベルSに所定のヒステリシス幅Wを設けたシュミットトリガ回路により、上記磁束密度α1 (及びβ1 )を、高電位、低電位の2値信号に変換して成るものである。尚、上記ヒステリシス幅Wは、上記磁束密度α1 (及びβ1 )の誤検出を防止する為に設けられている。 The solid line α 1 (and the chain line β 1 ) in FIGS. 20 to 21 passes through the detection unit of the sensor 6a 1 (6a 2 to 6a 6 ) when the encoder 4 (4a, 4b, 4c) rotates. The magnetic flux density (magnetic flux density) is shown. The amplitude of the magnetic flux density α 1 (and β 1 ) increases as the distance between the detected surface and the detection unit becomes narrower as shown in FIG. 20A. It becomes smaller as shown in FIG. On the other hand, a solid line α 2 (and a chain line β 2 ) in FIGS. 20 to 21 indicates the output signal of the sensor 6a 1 (6a 2 to 6a 6 ). The output signal α 2 (and β 2 ) is converted from the magnetic flux density α 1 (and β 1 ) to a binary signal having a high potential and a low potential by a Schmitt trigger circuit having a predetermined hysteresis width W in the threshold level S. It is formed by converting into The hysteresis width W is provided to prevent erroneous detection of the magnetic flux density α 1 (and β 1 ).

又、上述した各先発明の構造の場合、自動車の運転時に、上記被検出面と上記検出部とが互いに遠近動する方向に相対変位する事に伴い、図20〜21に示す様に、磁束密度の振幅がα1 →β1 に(又はβ1 →α1 に)変化し、これに伴って出力信号がα2 →β2 に(又はβ2 →α2 に)変化する。この際に、上述した図20の場合には、上記両出力信号α2 、β2 同士の間で、位相のずれが殆ど生じない。この理由は、上述した図20の場合、上記両磁束密度α1 、β1 の振幅が大きい為、これら両磁束密度α1 、β1 同士の間に多少の振幅差が生じても、これら両磁束密度α1 、β1 を表す曲線が、上記ヒステリシス幅W部分で殆ど一致した状態になる(曲線がヒステリシス幅W部分を横切る角度が直角に近くなる)為である。これに対し、上述した図21の場合には、上記両出力信号α2 、β2 同士の間で、若干の位相のずれ(誤差)が生じる。この理由は、上述した図21の場合、上記両磁束密度α1 、β1 の振幅が小さい為、これら両磁束密度α1 、β1 同士の間に多少でも振幅差が生じると、これら両磁束密度α1 、β1 を表す曲線同士の間に、上記ヒステリシス幅W部分で若干のずれが生じる為である。 Further, in the case of the structure of each of the above-described prior inventions, as shown in FIGS. 20 to 21, as the detected surface and the detecting unit are relatively displaced in the direction of moving relative to each other during driving of the automobile, as shown in FIGS. density amplitude in alpha 1 → beta 1 (or the β 1 → α 1) changes (or the beta 2 → alpha 2) the second output signal is alpha 2 → beta Along with this change. At this time, in the case of FIG. 20 described above, there is almost no phase shift between the output signals α 2 and β 2 . The reason for this is that, in the case of FIG. 20 described above, the amplitudes of both the magnetic flux densities α 1 and β 1 are large, so even if there is a slight amplitude difference between the two magnetic flux densities α 1 and β 1 , This is because the curves representing the magnetic flux densities α 1 and β 1 are almost coincident with each other in the hysteresis width W portion (the angle at which the curve crosses the hysteresis width W portion is close to a right angle). On the other hand, in the case of FIG. 21 described above, a slight phase shift (error) occurs between the output signals α 2 and β 2 . The reason for this is that, in the case of FIG. 21 described above, since the amplitudes of both the magnetic flux densities α 1 and β 1 are small, if there is a slight amplitude difference between the two magnetic flux densities α 1 and β 1 , This is because a slight shift occurs in the hysteresis width W portion between the curves representing the densities α 1 and β 1 .

又、上述した各先発明の構造の場合、上記被検出面と上記検出部とが、この被検出面の幅方向に関して相対変位する場合にのみ、上記センサ6a1 (6a2 〜6a6 )の出力信号の位相がずれる事を前提として、上記状態量の算出を行なっている。この為、上記被検出面と上記検出部とが互いに遠近動する方向に相対変位した場合にも、上記図21に示す様に出力信号の位相のずれ(誤差)が生じると、その分だけ、上記状態量の測定精度が悪化する。従って、この様な理由で状態量の測定精度が悪化するのを防止する為には、上記被検出面と上記検出部とが互いに遠近動する方向に相対変位した場合にも、上記図20に示す様に出力信号の位相のずれが生じない様にすべく、中立状態での上記被検出面と上記検出部との間隔を(各センサの検出部とエンコーダの被検出面とが干渉しない範囲で)極力小さくする必要がある。 Further, in the case of the structure of each of the above-described prior inventions, the sensor 6a 1 (6a 2 to 6a 6 ) is used only when the detected surface and the detecting portion are relatively displaced in the width direction of the detected surface. The state quantity is calculated on the assumption that the phase of the output signal is shifted. For this reason, even when the detected surface and the detection unit are relatively displaced in the direction in which they move relative to each other, if a phase shift (error) of the output signal occurs as shown in FIG. Measurement accuracy of the state quantity is deteriorated. Therefore, in order to prevent the measurement accuracy of the state quantity from deteriorating due to such a reason, even when the detected surface and the detection unit are relatively displaced in the direction in which they move relative to each other, FIG. As shown in the figure, in order to prevent the output signal from shifting in phase, the distance between the detected surface and the detecting portion in the neutral state (the range where the detecting portion of each sensor and the detected surface of the encoder do not interfere) It is necessary to make it as small as possible.

一方、上述した各先発明の構造の様に、エンコーダ4(4a、4b、4c)の被検出面に複数個のセンサ6a1 〜6a6 の検出部を対向させる構造の場合には、通常、中立状態で、これら各検出部を、上記被検出面と同心の円周上に配置する。即ち、これら各検出部をこの被検出面に対し、それぞれ等しい間隔で対向させる。ところが、この様な構成を採用すると、次の様な改善すべき問題が生じる。 On the other hand, in the case of a structure in which the detection portions of the plurality of sensors 6a 1 to 6a 6 are opposed to the detection surface of the encoder 4 (4a, 4b, 4c) as in the structure of each of the above-described prior inventions, In the neutral state, these detection units are arranged on a circumference concentric with the detected surface. That is, each of these detection units is made to face the detected surface at equal intervals. However, when such a configuration is adopted, the following problems to be improved arise.

即ち、上述した各先発明の構造を構成する、自動車の車輪支持用転がり軸受ユニットの場合、自動車の運転時に、外輪1とハブ2との間に作用する外力の大きさ(これら外輪1とハブ2との相対変位量)は、全方向で均一にならずに、ばらつく。この為、上記ハブ2の内端部に支持固定したエンコーダ4(4a、4b、4c)の径方向に関する変位量{このエンコーダ4(4a、4b、4c)の被検出面と上記各センサ6a1 〜6a6 の検出部との間隔の減少量}も、全方向で(これら全間隔で)均一にはならずに、ばらつく。従って、中立状態で、上記各検出部を上記被検出面に対し、それぞれ等しい間隔で対向させると、この間隔の減少量の少ないセンサ部分で、この間隔が無駄に(センサとエンコーダとの干渉防止の為に必要とする以上に)広くなり、その分だけ、状態量の測定精度が低くなる。 That is, in the case of a rolling bearing unit for supporting a wheel of an automobile that constitutes the structure of each of the above-described prior inventions, the magnitude of an external force acting between the outer ring 1 and the hub 2 during operation of the automobile (the outer ring 1 and the hub). 2) is not uniform in all directions but varies. Therefore, the displacement amount in the radial direction of the encoder 4 (4a, 4b, 4c) supported and fixed to the inner end portion of the hub 2 {the detected surface of the encoder 4 (4a, 4b, 4c) and each sensor 6a 1 The amount of decrease in the interval with the detection unit of ˜6a 6 is not uniform in all directions (in all these intervals) but varies. Therefore, when the detection units are opposed to the detection surface at equal intervals in the neutral state, the intervals are wasted (in order to prevent interference between the sensor and the encoder) in the sensor portion where the decrease in the interval is small. Therefore, the measurement accuracy of the state quantity is lowered accordingly.

特開2006−113017号公報JP 2006-1113017 A 青山元男著、「レッドバッジスーパー図解シリーズ/クルマの最新メカがわかる本」、p.138−139、p.146−149、株式会社三推社/株式会社講談社、平成13年12月20日Motoo Aoyama, “Red Badge Super Illustrated Series / A book that shows the latest mechanics of cars”, p. 138-139, p. 146-149, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001

本発明の状態量測定装置付転がり軸受ユニットは、上述の様な事情に鑑みて、エンコーダの被検出面のうち互いに異なる部分に、複数個のセンサの検出部を対向させる構造を対象として、状態量の測定精度の向上を図れる構造を実現すべく発明したものである。   The rolling bearing unit with a state quantity measuring device according to the present invention is in a state where a detection unit of a plurality of sensors is opposed to different portions of a detection surface of an encoder in view of the above-described circumstances. It was invented to realize a structure capable of improving the measurement accuracy of quantity.

本発明の状態量測定装置付転がり軸受ユニットは、転がり軸受ユニットと、状態量測定装置とを備える。
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用状態でも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用状態で回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備える。
又、上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されると共に、周面に上記回転側軌道輪と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に変化させたものである。
又、上記センサ装置は、使用時にも回転しない部分に支持されると共に、複数個のセンサを備える。そして、これら各センサはそれぞれ、検出部を上記被検出面のうち互いに異なる部分に対向させており、且つ、この被検出面の特性変化に対応して出力信号を変化させる。
又、上記演算器は、上記各センサの出力信号に関する情報に基づいて、上記転がり軸受ユニットの状態量を算出する機能を有する。
特に、本発明の状態量測定装置付転がり軸受ユニットに於いては、上記静止側軌道輪と上記回転側軌道輪との間に荷重が作用していない(これら両軌道輪が相対変位していない)、中立状態での、上記被検出面と上記各検出部との間隔を均一にする事なく、これら各間隔同士の間に、使用時のこれら各間隔の減少量に対応した大小関係を与えている。そして、この大小関係を設定する事により、上記各センサの検出部と上記エンコーダの被検出面とが最も近付いた状態での、上記間隔が、上記各センサ毎にほぼ一致する様にしている。
The rolling bearing unit with a state quantity measuring device of the present invention includes a rolling bearing unit and a state quantity measuring device.
Of these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface and does not rotate even in use, and a stationary side raceway that has a rotation side raceway on the rotation side circumferential surface and rotates in the usage state. A track ring, and a plurality of rolling elements provided so as to be freely rollable between the stationary side track and the rotation side track.
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Among these, the encoder is supported and fixed directly on a part of the rotation side raceway or through another member, and has a detection surface concentric with the rotation side raceway on the peripheral surface. The surface characteristics are alternately changed in the circumferential direction.
The sensor device is supported by a portion that does not rotate during use, and includes a plurality of sensors. Each of these sensors has a detection unit opposed to a different portion of the detected surface, and changes an output signal in response to a change in characteristics of the detected surface.
Further, the arithmetic unit has a function of calculating a state quantity of the rolling bearing unit based on information relating to output signals of the sensors.
In particular, in the rolling bearing unit with a state quantity measuring device of the present invention, no load is applied between the stationary bearing ring and the rotating bearing ring (the two bearing rings are not relatively displaced). ) In a neutral state, without making the distance between the detected surface and each detection unit uniform, a size relationship corresponding to the reduction amount of each distance during use is given between these intervals. ing. By setting this magnitude relationship, the distance between the detection units of the sensors and the detected surface of the encoder closest to each other is made to substantially match each sensor.

この様な本発明の状態量測定装置付転がり軸受ユニットを実施する場合には、例えば請求項2に記載した構成を採用する事ができる。この請求項2に記載した構成を採用する場合には、エンコーダとして、被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相若しくはピッチを、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させたものを使用する。これと共に、演算器として、センサ装置を構成する各センサの出力信号に関する情報に基づいて、静止側軌道輪と回転側軌道輪との相対変位量と、これら静止側軌道輪と回転側軌道輪との間に作用する外力とのうちの、少なくとも一方の状態量を算出する機能を有するものを使用する。   When implementing such a rolling bearing unit with a state quantity measuring device of the present invention, for example, the configuration described in claim 2 can be adopted. In the case of adopting the configuration described in claim 2, as an encoder, the characteristics of the detected surface are alternately changed with respect to the circumferential direction, and the phase or pitch at which the characteristics of the detected surface changes with respect to the circumferential direction. At least part of the detected surface in the width direction is used which is continuously changed in the width direction. At the same time, as a computing unit, based on the information about the output signal of each sensor constituting the sensor device, the relative displacement amount between the stationary side raceway and the rotation side raceway, and the stationary side raceway and the rotation side raceway, Among these, an external force acting between the two has a function of calculating at least one state quantity.

又、この様な請求項2に記載した発明を実施する場合には、例えば請求項3に記載した構成を採用する事ができる。この請求項3に記載した構成を採用する場合には、エンコーダとして、被検出面のうち、この被検出面の幅方向に関して互いに外れた2個所位置に第一、第二の特性変化部を有し、これら両特性変化部の特性を円周方向に関して交互に且つ互いに同じピッチで変化させると共に、これら両特性変化部のうちの少なくとも一方の特性変化部の特性変化の位相を上記幅方向に関し、他方の特性変化部と異なる状態で漸次変化させたものを使用する。又、センサ装置として、少なくとも、それぞれの検出部を上記両特性変化部に対向させた1対のセンサを備えたものを使用する。更に、演算器として、センサ装置を構成する各センサの出力信号に関する情報として、少なくとも上記1対のセンサの出力信号同士の間の位相差を利用して、状態量を算出するものを使用する。   Further, when the invention described in claim 2 is implemented, for example, the configuration described in claim 3 can be adopted. When the configuration described in claim 3 is adopted, the encoder has first and second characteristic change portions at two positions out of the detected surface with respect to the width direction of the detected surface. Then, the characteristics of these two characteristic changing portions are alternately changed at the same pitch with respect to the circumferential direction, and the phase of the characteristic change of at least one of the two characteristic changing portions is related to the width direction. What is gradually changed in a state different from the other characteristic changing portion is used. Further, as the sensor device, at least one having a pair of sensors in which the respective detection units are opposed to the both characteristic change units is used. Further, as the computing unit, information that calculates a state quantity using at least the phase difference between the output signals of the pair of sensors is used as information about the output signals of the sensors constituting the sensor device.

又、上述の様な請求項2に記載した発明を実施する場合には、例えば請求項4に記載した構成を採用する事もできる。この請求項4に記載した構成を実施する場合には、エンコーダとして、被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化するピッチを、この被検出面の幅方向に関して連続的に変化させたものを使用する。又、演算器として、センサ装置を構成する各センサの出力信号に関する情報として、少なくとも1個のセンサの出力信号のデューティ比を利用し、状態量を算出するものを使用する。   Further, when carrying out the invention described in claim 2 as described above, for example, the configuration described in claim 4 can be adopted. When implementing the configuration described in claim 4, as an encoder, the characteristics of the surface to be detected are alternately changed in the circumferential direction, and the pitch at which the characteristics of the surface to be detected changes in the circumferential direction is What is continuously changed in the width direction of the detected surface is used. Further, as the computing unit, information that calculates the state quantity using the duty ratio of the output signal of at least one sensor is used as information regarding the output signal of each sensor constituting the sensor device.

又、上述の様な請求項1〜4に記載した発明を実施する場合に、好ましくは、請求項5〜9に記載した構成を採用する。これら請求項5〜9に記載した構成を採用する場合には、エンコーダの被検出面を、このエンコーダの外周面に設ける。そして、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とする。
そして、上記請求項5〜9のうち、請求項5に記載した構成を採用する場合には、センサ装置として、上記被検出面のθ=0度の位置と、θ=180度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させる。そして、上記中立状態での上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=180度の位置でδ180 とした場合に、δ0 <δ180 とする。
Moreover, when the invention described in claims 1 to 4 as described above is carried out, the configuration described in claims 5 to 9 is preferably adopted. When the configurations described in claims 5 to 9 are employed, the detected surface of the encoder is provided on the outer peripheral surface of the encoder. An angle about the central axis of the detected surface is defined as θ, and the position of the lower end portion of the detected surface at the time of use is defined as θ = 0 degrees.
When the configuration described in claim 5 is adopted among the above claims 5 to 9, the sensor device has a position of θ = 0 degrees and a position of θ = 180 degrees of the detected surface. Each of the detection parts of at least one sensor is opposed to each other. Then, when the distance between the detected surface and each detection unit in the neutral state is δ 0 at the position θ = 0 ° and δ 180 at the position θ = 180 degrees, δ 0180 .

又、同じく上記請求項6に記載した構成を採用する場合には、センサ装置として、上記被検出面のθ=0度の位置と、同じくθ=90度の位置とθ=270度の位置とのうちの少なくとも一方の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させる。そして、上記中立状態での上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=90度の位置でδ90とし、上記θ=270度の位置でδ270 とした場合に、δ90=δ270 <δ0 とする。
又、同じく上記請求項7に記載した構成を採用する場合には、センサ装置として、上記被検出面のθ=0度の位置と、θ=120度の位置と、θ=240度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させる。そして、上記中立状態での上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=120度の位置でδ120 とし、上記θ=240度の位置でδ240 とした場合に、δ0 <δ120 =δ240 とする。
Similarly, when the configuration described in claim 6 is adopted, the sensor device has a position of θ = 0 degrees, a position of θ = 90 degrees, a position of θ = 270 degrees, The detection part of at least one sensor is opposed to at least one of the positions. Then, the distance between the detected surface and each detection unit in the neutral state is δ 0 at the position of θ = 0 degrees, δ 90 at the position of θ = 90 degrees, and θ = 270 degrees. Where δ 270 at the position of δ 90 = δ 2700 .
Similarly, when the configuration described in claim 7 is adopted, the sensor device has a position of θ = 0 degrees, a position of θ = 120 degrees, a position of θ = 240 degrees on the detected surface. In addition, the detection units of at least one sensor are opposed to each other. Then, the distance between the detected surface and the detection units in the neutral state is δ 0 at the position of θ = 0 degrees, δ 120 at the position of θ = 120 degrees, and θ = 240 degrees. When δ 240 is set at the position δ 0120 = δ 240 .

又、同じく上記請求項8に記載した構成を採用する場合には、センサ装置として、上記被検出面のθ=60度の位置と、θ=180度の位置と、θ=300度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させる。そして、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=60度の位置でδ60とし、上記θ=180度の位置でδ180 とし、上記θ=300度の位置でδ300 とした場合に、δ60=δ300 <δ180 とする。
又、同じく上記請求項9に記載した構成を採用する場合には、センサ装置として、上記被検出面のθ=0度の位置と、θ=90度の位置と、θ=180度の位置と、θ=270度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させる。そして、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=90度の位置でδ90とし、上記θ=180度の位置でδ180 とし、上記θ=270度の位置でδ270 とした場合に、δ90=δ270 <δ0 <δ180 とする。
Similarly, when the configuration described in claim 8 is employed, the sensor device has a position of θ = 60 degrees, a position of θ = 180 degrees, a position of θ = 300 degrees, In addition, the detection units of at least one sensor are opposed to each other. Then, the distance between the detected surface and each of the detection units in a neutral state where no external force is acting between the stationary side raceway and the rotation side raceway is expressed as δ 60 at the position of θ = 60 degrees. And δ 180 at the position of θ = 180 degrees and δ 300 at the position of θ = 300 degrees, δ 60 = δ 300180 .
Similarly, when the configuration described in claim 9 is adopted, the sensor device has a position of θ = 0 degrees, a position of θ = 90 degrees, a position of θ = 180 degrees on the detected surface. , Θ = 270 degrees, and the detection unit of at least one sensor is made to face each other. Then, in the neutral state where no external force is applied between the stationary-side raceway and the rotation-side raceway, the distance between the detected surface and each of the detection units is δ 0 at the position of θ = 0 °. And δ 90 at the position of θ = 90 degrees, δ 180 at the position of θ = 180 degrees, and δ 270 at the position of θ = 270 degrees, δ 90 = δ 2700 < Let δ 180 .

又、上述の請求項1〜9に記載した発明を実施する場合に、好ましくは、請求項10に記載した様に、転がり軸受ユニットを、自動車の車輪支持用ハブユニットとする。そして、使用状態で静止側軌道輪を自動車の懸架装置に支持し、回転側軌道輪であるハブに車輪を結合固定する。更に、エンコーダを、このハブの軸方向内端部に支持固定する。   In carrying out the inventions described in the first to ninth aspects, preferably, as described in the tenth aspect, the rolling bearing unit is a hub unit for supporting a wheel of an automobile. Then, in use, the stationary side race is supported by the suspension device of the automobile, and the wheel is coupled and fixed to the hub that is the rotation side race. Further, the encoder is supported and fixed to the inner end of the hub in the axial direction.

上述の様に構成する本発明の状態量測定装置付転がり軸受ユニットの場合には、中立状態での、エンコーダの被検出面と各センサの検出部との間隔が、それぞれ過度に広くなる事を防止できる。即ち、これら各間隔を、それぞれ十分に狭くできる。この為、これら各センサの出力信号の振幅を十分に大きくできる。従って、運転時に静止側軌道輪と回転側軌道輪とが相対変位する事に伴い、上記各間隔が多少変化した場合にも、上記各センサの出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。   In the case of the rolling bearing unit with a state quantity measuring device of the present invention configured as described above, the distance between the detected surface of the encoder and the detecting portion of each sensor in the neutral state is excessively wide. Can be prevented. That is, each of these intervals can be sufficiently narrowed. For this reason, the amplitude of the output signal of each sensor can be sufficiently increased. Accordingly, it is possible to effectively prevent the phase of the output signals of the sensors from being shifted even when the intervals change slightly due to relative displacement between the stationary side raceway and the rotation side raceway during operation. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

[実施の形態の第1例]
図1は、請求項1、2、3、5、10に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、中立状態での、エンコーダ4aの被検出面(外周面)と各センサ6a1 、6a2 の検出部との間隔を、それぞれ所定の条件に基づいて規制する点にある。その他の部分の構造及び作用は、前述の図9に示した先発明の構造の第2例の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1, 2, 3, 5 and 10. The feature of this example is that the distance between the detected surface (outer peripheral surface) of the encoder 4a and the detecting portions of the sensors 6a 1 and 6a 2 in the neutral state is regulated based on predetermined conditions. is there. Since the structure and operation of the other parts are the same as in the case of the second example of the structure of the prior invention shown in FIG. 9 described above, overlapping illustrations and explanations are omitted or simplified. The explanation will be focused on.

前述した様に、本例の状態量測定装置付転がり軸受ユニットを構成する、自動車の車輪支持用転がり軸受ユニットの場合、自動車の運転時に、外輪1とハブ2(図9参照)との間に外力が作用する程度(これら外輪1とハブ2との相対変位量)は、全方向で均一にならずに、ばらつく(外力の作用方向により、この外力の大きさが異なる)。この為、このハブ2の内端部に支持固定した上記エンコーダ4aの径方向変位量も、全方向で均一にならずに、ばらつく(周方向に関して、径方向に関する最大変位量が異なる)。下記の表1は、このばらつきの傾向を調べる為に、本発明者が、一般的な乗用車用の車輪支持用転がり軸受ユニットを対象として行なった、シミュレーションの結果を示している。尚、この表1中、Fyは、上記ハブ1に作用するアキシアル荷重(y軸方向荷重)を、Fzは、同じく上下方向のラジアル荷重(z軸方向荷重)を、Fxは、同じく前後方向のラジアル荷重(x軸方向荷重)を、zは、中立状態での位置を基準とする、上記エンコーダ4aの上下方向変位を、xは、同じく前後方向変位を、それぞれ示している。

Figure 0004899722
この表1に示す様に、自動車の運転時に、上記エンコーダ4aの上下方向変位zは、−0.063mm〜+0.209mmの範囲で変化し、同じく前後方向変位xは、−0.020mm〜+0.020mmの範囲で変化する。 As described above, in the case of the rolling bearing unit for supporting a wheel of an automobile that constitutes the rolling bearing unit with a state quantity measuring device of this example, during the operation of the automobile, the outer ring 1 and the hub 2 (see FIG. 9) The extent to which an external force acts (the relative displacement between the outer ring 1 and the hub 2) is not uniform in all directions but varies (the magnitude of the external force varies depending on the direction of the external force). For this reason, the radial displacement amount of the encoder 4a supported and fixed to the inner end portion of the hub 2 is not uniform in all directions but varies (the maximum displacement amount in the radial direction differs in the circumferential direction). Table 1 below shows the results of a simulation performed by the present inventor on a general rolling bearing unit for supporting a wheel for a passenger car in order to examine the tendency of variation. In Table 1, Fy is an axial load (y-axis direction load) acting on the hub 1, Fz is also a vertical radial load (z-axis direction load), and Fx is also a front-rear direction. Radial load (x-axis direction load), z indicates the vertical displacement of the encoder 4a with respect to the position in the neutral state, and x similarly indicates the longitudinal displacement.
Figure 0004899722
As shown in Table 1, during the driving of the automobile, the vertical displacement z of the encoder 4a varies in the range of -0.063 mm to +0.209 mm. Similarly, the longitudinal displacement x is -0.020 mm to +0. .Varies within the range of 020 mm.

これらの結果を分析すると、先ず、上記上下方向変位z(−0.063mm〜+0.209mm)は、上記前後方向変位x(−0.020mm〜+0.020mm)に比べて、より広い範囲で変化する。この理由は、次の通りである。即ち、自動車の運転時に、上記ハブ2には、上記アキシアル荷重Fy及びラジアル荷重Fzに起因する、x軸周りのモーメントMxが作用する。このモーメントMxは、上記ハブ2の中心軸を上記外輪1の中心軸に対し、上記上下方向変位zを生じさせる向きに傾斜させる。又、自動車の運転時に、上記ハブ2には、上記ラジアル荷重Fxに起因する、z軸周りのモーメントMzも作用する。このモーメントMzは、上記ハブ2の中心軸を上記外輪1の中心軸に対し、上記前後方向変位xを生じさせる向き傾斜させる。一方、自動車の運転時に、上記上下方向変位zを生じさせるモーメントMxは、上記前後方向変位xを生じさせるモーメントMzよりも大きくなる。この為、上記上下方向変位z(−0.063mm〜+0.209mm)は、上記前後方向変位x(−0.020mm〜+0.020mm)に比べて、より広い範囲で変化する。   Analyzing these results, first, the vertical displacement z (−0.063 mm to +0.209 mm) varies in a wider range than the longitudinal displacement x (−0.020 mm to +0.020 mm). To do. The reason for this is as follows. That is, during operation of the automobile, a moment Mx around the x axis due to the axial load Fy and the radial load Fz acts on the hub 2. The moment Mx causes the central axis of the hub 2 to be inclined with respect to the central axis of the outer ring 1 in a direction that causes the vertical displacement z. Further, during operation of the automobile, a moment Mz around the z-axis caused by the radial load Fx also acts on the hub 2. The moment Mz causes the central axis of the hub 2 to be inclined with respect to the central axis of the outer ring 1 in a direction that causes the longitudinal displacement x. On the other hand, the moment Mx causing the vertical displacement z during driving of the automobile is larger than the moment Mz causing the longitudinal displacement x. For this reason, the vertical displacement z (−0.063 mm to +0.209 mm) varies in a wider range than the longitudinal displacement x (−0.020 mm to +0.020 mm).

又、上記結果を更に分析すると、上記上下方向変位z(−0.063mm〜+0.209mm)は、上向き(+z方向)の上下方向変位z(0.209mm)の方が、下向き(−z方向)の上下方向変位z(0.063mm)よりも大きくなる。この理由は、次の通りである。即ち、上記上下方向変位zの向き及び大きさは、上記モーメントMxの向き及び大きさの影響を受けて変化するが、このモーメントMxの向き及び大きさは、上記アキシアル荷重Fyの向き及び大きさの影響を受けて変化する。この為、上記上下方向変位zの向き及び大きさは、上記アキシアル荷重Fyの向き及び大きさの影響を受けて変化する。具体的には、+y方向のアキシアル荷重Fyは、上向きの上下方向変位zを生じさせるべく作用し、−y方向のアキシアル荷重Fyは、下向きの上下方向変位zを生じさせるべく作用する。又、+y方向のアキシアル荷重Fyは、自動車の旋回走行時に、旋回外側車輪を支持するハブ2に作用し、−y方向のアキシアル荷重Fyは、同じく、旋回内側車輪を支持するハブ2に作用する。但し、この場合に、旋回外側車輪の路面反力(∝+y方向のアキシアル荷重Fy)は、旋回内側車輪の路面反力(∝−y方向のアキシアル荷重Fy)に比べて大きくなる為、+y方向のアキシアル荷重Fyは、−y方向のアキシアル荷重Fyに比べて大きくなる。従って、上記上下方向変位z(−0.063mm〜+0.209mm)は、上向きの上下方向変位z(0.209mm)の方が、下向きの上下方向変位z(0.063mm)よりも大きくなる。   Further analysis of the above results shows that the vertical displacement z (−0.063 mm to +0.209 mm) is upward (+ z direction) and the vertical displacement z (0.209 mm) is downward (−z direction). ) In the vertical direction displacement z (0.063 mm). The reason for this is as follows. That is, the direction and magnitude of the vertical displacement z changes under the influence of the direction and magnitude of the moment Mx, and the direction and magnitude of the moment Mx depends on the direction and magnitude of the axial load Fy. Changes under the influence of. For this reason, the direction and magnitude of the vertical displacement z changes under the influence of the direction and magnitude of the axial load Fy. Specifically, the + y-direction axial load Fy acts to generate an upward vertical displacement z, and the -y-direction axial load Fy acts to generate a downward vertical displacement z. Further, the axial load Fy in the + y direction acts on the hub 2 that supports the turning outer wheel when the vehicle is turning, and the axial load Fy in the −y direction similarly acts on the hub 2 that supports the turning inner wheel. . However, in this case, since the road surface reaction force (axial load Fy in the ∝ + y direction) of the turning outer wheel becomes larger than the road surface reaction force (axial load Fy in the 方向 -y direction) of the turning inner wheel, the + y direction The axial load Fy is larger than the axial load Fy in the -y direction. Accordingly, the vertical displacement z (−0.063 mm to +0.209 mm) is larger in the upward vertical displacement z (0.209 mm) than in the downward vertical displacement z (0.063 mm).

又、本例の場合、中立状態での、上記エンコーダ4aの被検出面とθ=0度の位置のセンサ6a1 の検出部との間隔をδ0 とすると、上記下向きの上下方向変位z(0.063mm)は、運転時に於ける、上記間隔δ0 の減少量となる。又、中立状態での、上記被検出面とθ=180度の位置のセンサ6a2 の検出部との間隔をδ180 とすると、上記上向きの上下方向変位z(0.209mm)は、運転時に於ける、上記間隔δ180 の減少量となる。従って、本例の場合、運転時に於ける、この間隔δ180 の減少量(0.209mm)は、上記間隔δ0 の減少量(0.063mm)よりも大きくなる。そこで、本例の場合には、これら各間隔δ0 、δ180 同士の間に、これら各間隔δ0 、δ180 の減少量(0.063mm、0.209mm)に対応した大小関係δ0 <δ180 を与えている。そして、各センサ6a1 、6a2 の検出部と上記エンコーダ4aの被検出面とが最も接近した状態での間隔が、上記各センサ6a1 、6a2 同士の間でほぼ等しくなる様にしている。 In the case of this example, if the distance between the detected surface of the encoder 4a and the detecting portion of the sensor 6a 1 at the position of θ = 0 ° is δ 0 in the neutral state, the downward vertical displacement z ( 0.063 mm) is a reduction amount of the interval δ 0 during operation. When the distance between the detected surface and the detecting portion of the sensor 6a 2 at the position θ = 180 degrees in the neutral state is δ 180 , the upward vertical displacement z (0.209 mm) is In this case, the amount of decrease is the interval δ 180 . Therefore, in this example, the reduction amount (0.209 mm) of the interval δ 180 during operation is larger than the reduction amount (0.063 mm) of the interval δ 0 . Therefore, in the case of this example, each of these intervals [delta] 0, between [delta] 180 between, reduction of the distance δ 0, δ 180 (0.063mm, 0.209mm) size relationship [delta] 0 corresponding to < δ 180 is given. The distance between the detection units of the sensors 6a 1 and 6a 2 and the detected surface of the encoder 4a is the same between the sensors 6a 1 and 6a 2 . .

この為に具体的には、上記各間隔δ0 、δ180 を、これら各間隔δ0 、δ180 の減少量(0.063mm、0.209mm)よりもそれぞれ同量(Xmm)だけ大きい値{δ0 =(0.063+X)mm、δ180 =(0.209+X)mm}にしている。或は、結果は同じになるが、先ず、上述した実験結果に基づき、運転時に於ける、上記エンコーダ4aの被検出面の径方向の変位範囲を求めた後、この変位範囲の外周縁よりも一回り大きい(この外周縁の法線方向の幅にして上記Xmmだけ大きい)相似形の閉曲線Cを設定し、この閉曲線C上に、それぞれ上記各センサ6a1 、6a2 の検出部を配置している。尚、本例を実施する場合、上記Xmmは、運転時に於ける上記被検出面と上記各検出部との干渉防止(安全面)を考慮しつつ、極力小さい値(例えば、0.数mm〜数mm程度)にする。 For this purpose, specifically, the intervals δ 0 and δ 180 are set to values that are larger by the same amount (Xmm) than the reduction amounts (0.063 mm and 0.209 mm) of the intervals δ 0 and δ 180 { δ 0 = (0.063 + X) mm, δ 180 = (0.209 + X) mm}. Alternatively, the results are the same, but first, based on the experimental results described above, after obtaining the radial displacement range of the detected surface of the encoder 4a during operation, it is more than the outer periphery of this displacement range. A similar closed curve C is set that is slightly larger (the width of the outer peripheral edge in the normal direction is larger by the above-mentioned X mm), and the detection units of the sensors 6a 1 and 6a 2 are arranged on the closed curve C, respectively. ing. In the case of carrying out this example, Xmm is as small as possible (for example, from several millimeters to several millimeters) while taking into consideration the prevention of interference (safety aspect) between the detected surface and each of the detection units during operation. A few mm).

上述の様に構成する本例の状態量測定装置付転がり軸受ユニットの場合には、中立状態での、エンコーダ4aの被検出面と各センサ6a1 、6a2 の検出部との間隔δ0 、δ180 が、それぞれ無駄に(これら被検出面と検出部との干渉防止の為に必要以上に)広くなる事を防止できる。即ち、これら各間隔δ0 、δ180 を、それぞれ十分に狭くできる。この為、これら各センサ6a1 、6a2 の出力信号の振幅を十分に大きくできる。従って、運転時に外輪1とハブ2とが相対変位する事に伴い、上記各間隔δ0 、δ180 が変化した場合にも、上記各センサ6a1 、6a2 の出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。 In the case of the rolling bearing unit with the state quantity measuring device of the present example configured as described above, the distance δ 0 between the detected surface of the encoder 4a and the detecting portions of the sensors 6a 1 and 6a 2 in the neutral state, It is possible to prevent δ 180 from becoming unnecessarily wide (unnecessary for preventing interference between the detected surface and the detection unit). That is, the intervals δ 0 and δ 180 can be sufficiently narrowed. For this reason, the amplitudes of the output signals of these sensors 6a 1 and 6a 2 can be sufficiently increased. Accordingly, the phase of the output signals of the sensors 6a 1 and 6a 2 is shifted even when the distances δ 0 and δ 180 change as the outer ring 1 and the hub 2 are relatively displaced during operation. It can be effectively prevented. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

[実施の形態の第2例]
次に、図2は、請求項1、2、3、6、10に対応する、本発明の実施の形態の第2例を示している。尚、本例の特徴は、中立状態での、エンコーダ4bの被検出面(外周面)と各センサ6a1 〜6a4 の検出部との間隔を、それぞれ所定の条件に基づいて規制する点にある。その他の部分の構造及び作用は、前述の図13に示した先発明の構造の第4例の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Second Example of Embodiment]
Next, FIG. 2 shows a second example of an embodiment of the present invention corresponding to claims 1, 2, 3, 6, and 10. The feature of this example is that the distance between the detected surface (outer peripheral surface) of the encoder 4b and the detection portions of the sensors 6a 1 to 6a 4 in the neutral state is regulated based on predetermined conditions. is there. Since the structure and operation of the other parts are the same as in the case of the fourth example of the structure of the prior invention shown in FIG. 13 described above, overlapping illustrations and explanations are omitted or simplified. The explanation will be focused on.

本例の場合も、上述した実施の形態の第1例の場合と同様の手法で、中立状態での、上記被検出面とθ=0度の位置に存在する各センサ6a1 、6a2 の検出部との間隔δ0 と、この被検出面とθ=90度の位置に存在するセンサ6a4 の検出部との間隔δ90と、この被検出面とθ=270度の位置に存在するセンサ6a3 の検出部との間隔δ270 との間に、運転時に於ける、これら各間隔δ0 、δ90、δ270 の減少量に対応した、大小関係δ90=δ270 <δ0 を与えている(上記各検出部を、それぞれ閉曲線C上に配置している)。 Also in the case of this example, the sensors 6a 1 and 6a 2 existing at the position of θ = 0 degrees with respect to the detected surface in the neutral state in the same manner as in the case of the first example of the embodiment described above. An interval δ 0 from the detection unit, an interval δ 90 between the detection surface and the detection unit of the sensor 6a 4 existing at a position of θ = 90 degrees, and a position of θ = 270 degrees from the detection surface. The magnitude relationship δ 90 = δ 2700 corresponding to the reduction amount of each of these intervals δ 0 , δ 90 , δ 270 during operation is between the interval δ 270 and the detection unit of the sensor 6a 3. (Each of the detection units is arranged on a closed curve C).

この様に構成する本例の状態量測定装置付転がり軸受ユニットの場合も、中立状態での、エンコーダ4bの被検出面と各センサ6a1 〜6a4 の検出部との間隔δ0 、δ90、δ270 が、それぞれ無駄に広くなる事を防止できる。即ち、これら各間隔δ0 、δ90、δ270 を、それぞれ十分に狭くできる。この為、これら各センサ6a1 〜6a4 の出力信号の振幅を十分に大きくできる。従って、運転時に外輪1とハブ2とが相対変位する事に伴い、上記各間隔δ0 、δ90、δ270 が変化した場合にも、上記各センサ6a1 〜6a4 の出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。 Also in this embodiment the state quantity measuring rolling bearing unit of constituting in this way, in the neutral state, the interval [delta] 0 of the detection portion of the detection surface and the sensors 6a 1 ~6a 4 encoder 4b, [delta] 90 , Δ 270 can be prevented from becoming unnecessarily wide. That is, these intervals δ 0 , δ 90 and δ 270 can be sufficiently narrowed. For this reason, the amplitude of the output signals of these sensors 6a 1 to 6a 4 can be sufficiently increased. Accordingly, even when the intervals δ 0 , δ 90 , δ 270 change as the outer ring 1 and the hub 2 are relatively displaced during operation, the phases of the output signals of the sensors 6a 1 to 6a 4 change. It is possible to effectively prevent the shift. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

[実施の形態の第3例]
次に、図3は、請求項1、2、3、7、10に対応する、本発明の実施の形態の第3例を示している。尚、本例の特徴は、中立状態での、エンコーダ4の被検出面(外周面)と各センサ6a1 〜6a6 の検出部との間隔を、それぞれ所定の条件に基づいて規制する点にある。その他の部分の構造及び作用は、前述の図15〜16に示した先発明の構造の第5例の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Third example of embodiment]
Next, FIG. 3 shows a third example of an embodiment of the present invention corresponding to claims 1, 2, 3, 7, and 10. The feature of this example is that the distance between the detected surface (outer peripheral surface) of the encoder 4 and the detection portions of the sensors 6a 1 to 6a 6 in the neutral state is regulated based on predetermined conditions. is there. Since the structure and operation of the other parts are the same as in the case of the fifth example of the structure of the prior invention shown in FIGS. 15 to 16, the overlapping illustrations and explanations are omitted or simplified. The description will focus on the characteristic part.

本例の場合も、前述の図1に示した実施の形態の第1例の場合と同様の手法で、中立状態での、上記被検出面とθ=0度の位置に存在する各センサ6a1 、6a2 の検出部との間隔δ0 と、この被検出面とθ=120度の位置に存在する各センサ6a3 、6a4 の検出部との間隔δ120 と、この被検出面とθ=240度の位置に存在する各センサ6a5 、6a6 の検出部との間隔δ240 との間に、運転時に於ける、これら各間隔δ0 、δ120 、δ240 の減少量に対応した、大小関係δ0 <δ120 =δ240 を与えている(上記各検出部を、それぞれ閉曲線C上に配置している)。 Also in the case of this example, each sensor 6a existing at a position of θ = 0 degrees with respect to the detected surface in the neutral state by the same method as in the case of the first example of the embodiment shown in FIG. 1 , 6a 2 , the distance δ 0 between the detection part, the distance δ 120 between the detected surface and the detection part of each sensor 6a 3 , 6a 4 at a position of θ = 120 degrees, and the detected surface Corresponding to the reduction amount of each of these intervals δ 0 , δ 120 , and δ 240 during operation between the sensors 6a 5 and 6a 6 at the position θ = 240 degrees and the interval δ 240 between the sensors 6a 5 and 6a 6. The magnitude relation δ 0120 = δ 240 is given (each of the detection units is arranged on the closed curve C).

この様に構成する本例の状態量測定装置付転がり軸受ユニットの場合も、中立状態での、エンコーダ4の被検出面と各センサ6a1 〜6a6 の検出部との間隔δ0 、δ120 、δ240 が、それぞれ無駄に広くなる事を防止できる。即ち、これら各間隔δ0 、δ120 、δ240 を、それぞれ十分に狭くできる。この為、これら各センサ6a1 〜6a6 の出力信号の振幅を十分に大きくできる。従って、運転時に外輪1とハブ2とが相対変位する事に伴い、上記各間隔δ0 、δ120 、δ240 が変化した場合にも、上記各センサ6a1 〜6a6 の出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。 Also in the case of the rolling bearing unit with the state quantity measuring device of this example configured in this way, the distances δ 0 , δ 120 between the detected surface of the encoder 4 and the detecting portions of the sensors 6a 1 to 6a 6 in the neutral state. , Δ 240 can be prevented from becoming unnecessarily wide. That is, the intervals δ 0 , δ 120 , and δ 240 can be sufficiently narrowed. For this reason, the amplitudes of the output signals of these sensors 6a 1 to 6a 6 can be sufficiently increased. Thus, with the possible and the outer ring 1 and the hub 2 are relatively displaced during operation, each interval [delta] 0, [delta] 120, even when [delta] 240 is changed, the output signals of the sensors 6a 1 ~6a 6 phase It is possible to effectively prevent the shift. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

[実施の形態の第4例]
次に、図4は、請求項1、2、3、8、10に対応する、本発明の実施の形態の第4例を示している。尚、本例の特徴は、中立状態での、エンコーダ4の被検出面(外周面)と各センサ6a1 〜6a6 の検出部との間隔を、それぞれ所定の条件に基づいて規制する点にある。その他の部分の構造及び作用は、それぞれが1対のセンサ(6a1 、6a2 )、(6a1 、6a2 )、(6a1 、6a2 )から成る、3つのセンサ組の使用状態での配置個所を、θ=60度、180度、300度の3個所に変更した点以外、前述の図15〜16に示した先発明の構造の第5例の場合と同様である。この為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Fourth Example of Embodiment]
Next, FIG. 4 shows a fourth example of an embodiment of the present invention corresponding to claims 1, 2, 3, 8, and 10. The feature of this example is that the distance between the detected surface (outer peripheral surface) of the encoder 4 and the detection portions of the sensors 6a 1 to 6a 6 in the neutral state is regulated based on predetermined conditions. is there. The structure and operation of the other parts are as follows in the state of use of the three sensor sets, each consisting of a pair of sensors (6a 1 , 6a 2 ), (6a 1 , 6a 2 ), (6a 1 , 6a 2 ). Except for the fact that the arrangement location is changed to three locations of θ = 60 degrees, 180 degrees, and 300 degrees, it is the same as in the case of the fifth example of the structure of the prior invention shown in FIGS. For this reason, overlapping illustrations and descriptions will be omitted or simplified, and the following description will focus on the features of this example.

本例の場合も、前述の図1に示した実施の形態の第1例の場合と同様の手法で、中立状態での、上記被検出面とθ=60度の位置に存在する各センサ6a1 、6a2 の検出部との間隔δ60と、この被検出面とθ=180度の位置に存在する各センサ6a3 、6a4 の検出部との間隔δ180 と、この被検出面とθ=300度の位置に存在する各センサ6a5 、6a6 の検出部との間隔δ300 との間に、運転時に於ける、これら各間隔δ60、δ180 、δ300 の減少量に対応した、大小関係δ60=δ300 <δ180 を与えている(上記各検出部を、それぞれ閉曲線C上に配置している)。 Also in the case of this example, each sensor 6a existing at a position of θ = 60 degrees with respect to the detected surface in the neutral state in the same manner as in the case of the first example of the embodiment shown in FIG. 1 , 6a 2 , the interval δ 60 with respect to the detection unit, the interval δ 180 between the detection surface and the detection unit of each sensor 6a 3 , 6a 4 at the position of θ = 180 degrees, and the detection surface Corresponding to the reduction amount of each of these intervals δ 60 , δ 180 , and δ 300 during operation between the interval δ 300 and the detection unit of each sensor 6a 5 , 6a 6 existing at a position of θ = 300 degrees. The magnitude relation δ 60 = δ 300180 is given (each of the detection units is arranged on the closed curve C).

この様に構成する本例の状態量測定装置付転がり軸受ユニットの場合も、中立状態での、エンコーダ4の被検出面と各センサ6a1 〜6a6 の検出部との間隔δ60、δ180 、δ300 が、それぞれ無駄に広くなる事を防止できる。即ち、これら各間隔δ60、δ180 、δ300 を、それぞれ十分に狭くできる。この為、これら各センサ6a1 〜6a6 の出力信号の振幅を十分に大きくできる。従って、運転時に外輪1とハブ2とが相対変位する事に伴い、上記各間隔δ60、δ180 、δ300 が変化した場合にも、上記各センサ6a1 〜6a6 の出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。 Also in the case of the rolling bearing unit with the state quantity measuring device of this example configured as described above, the distances δ 60 , δ 180 between the detected surface of the encoder 4 and the detecting portions of the sensors 6a 1 to 6a 6 in the neutral state . , Δ 300 can be prevented from becoming unnecessarily wide. That is, the intervals δ 60 , δ 180 , and δ 300 can be sufficiently narrowed. For this reason, the amplitudes of the output signals of these sensors 6a 1 to 6a 6 can be sufficiently increased. Thus, with the possible and the outer ring 1 and the hub 2 are relatively displaced during operation, each interval [delta] 60, [delta] 180, even when [delta] 300 is changed, the output signals of the sensors 6a 1 ~6a 6 phase It is possible to effectively prevent the shift. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

[実施の形態の第5例]
次に、図5は、請求項1、2、3、9、10に対応する、本発明の実施の形態の第5例を示している。尚、本例の特徴は、中立状態での、エンコーダ4cの被検出面(外周面)と各センサ6a1 〜6a4 の検出部との間隔を、それぞれ所定の条件に基づいて規制する点にある。その他の部分の構造及び作用は、前述の図18に示した先発明の構造の第6例の場合と同様である為、重複する図示並びに説明は省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[Fifth Example of Embodiment]
Next, FIG. 5 shows a fifth example of an embodiment of the present invention corresponding to claims 1, 2, 3, 9 and 10. The feature of this example is that the distance between the detected surface (outer peripheral surface) of the encoder 4c and the detection portions of the sensors 6a 1 to 6a 4 in the neutral state is regulated based on predetermined conditions. is there. Since the structure and operation of other parts are the same as in the case of the sixth example of the structure of the prior invention shown in FIG. 18 described above, overlapping illustrations and explanations are omitted or simplified. The explanation will be focused on.

本例の場合も、前述の図1に示した実施の形態の第1例の場合と同様の手法で、中立状態での、上記被検出面とθ=0度の位置に存在するセンサ6a1 の検出部との間隔δ0 と、この被検出面とθ=90度の位置に存在する各センサ6a2 の検出部との間隔δ90と、この被検出面とθ=180度の位置に存在する各センサ6a3 の検出部との間隔δ180 と、この被検出面とθ=270度の位置に存在する各センサ6a4 の検出部との間隔δ270 との間に、運転時に於ける、これら各間隔δ0 、δ90、δ180 、δ270 の減少量に対応した、大小関係δ90=δ270 <δ0 <δ180 を与えている(上記各検出部を、それぞれ閉曲線C上に配置している)。 Also in the case of this example, the sensor 6a 1 existing at a position of θ = 0 degrees with respect to the detected surface in the neutral state by the same method as in the case of the first example of the embodiment shown in FIG. The distance δ 0 between the detection surface and the detection surface of each sensor 6a 2 existing at a position of θ = 90 degrees and the detection surface δ 90, and the position of the detection surface with θ = 180 degrees. an interval [delta] 180 and the detection portion of the sensor 6a 3 present, between the interval [delta] 270 and the detection portion of the sensor 6a 4 at the position of the detected face and theta = 270 degrees, at the time of operation The magnitude relation δ 90 = δ 2700180 corresponding to the amount of decrease in each of these intervals δ 0 , δ 90 , δ 180 , δ 270 is given (each of the detection units is a closed curve C, respectively). Placed on top).

この様に構成する本例の状態量測定装置付転がり軸受ユニットの場合も、中立状態での、エンコーダ4の被検出面と各センサ6a1 〜6a4 の検出部との間隔δ0 、δ90、δ180 、δ270 が、それぞれ無駄に広くなる事を防止できる。即ち、これら各間隔δ0 、δ90、δ180 、δ270 を、それぞれ十分に狭くできる。この為、これら各センサ6a1 〜6a4 の出力信号の振幅を十分に大きくできる。従って、運転時に外輪1とハブ2とが相対変位する事に伴い、上記各間隔δ0 、δ90、δ180 、δ270 が変化した場合にも、上記各センサ6a1 〜6a4 の出力信号の位相がずれる事を有効に防止できる。この結果、状態量の測定精度が悪化する事を防止できる。 Also in this embodiment the state quantity measuring rolling bearing unit of constituting in this way, in the neutral state, the interval [delta] 0 of the detection portion of the detection surface and the sensors 6a 1 ~6a 4 encoder 4, [delta] 90 , Δ 180 , and δ 270 can be prevented from becoming unnecessarily wide. That is, these intervals δ 0 , δ 90 , δ 180 , δ 270 can be sufficiently narrowed. For this reason, the amplitude of the output signals of these sensors 6a 1 to 6a 4 can be sufficiently increased. Accordingly, even when the intervals δ 0 , δ 90 , δ 180 , and δ 270 change as the outer ring 1 and the hub 2 are relatively displaced during operation, the output signals of the sensors 6a 1 to 6a 4 are also changed. It can be effectively prevented that the phase of the phase shifts. As a result, it is possible to prevent the state quantity measurement accuracy from deteriorating.

尚、本発明は、運転時に於ける、エンコーダの被検出面と各センサの検出部との間隔の減少量を把握できれば、対象となる構造に含まれるセンサの個数や、これら各センサの配置個所θが、上述した各実施の形態の場合と異なっていても、適宜実施可能である。   In the present invention, the number of sensors included in the target structure and the locations of these sensors can be determined if the amount of decrease in the distance between the detected surface of the encoder and the detecting portion of each sensor can be grasped during operation. Even if θ is different from the case of each of the above-described embodiments, it can be appropriately implemented.

本発明の実施の形態の第1例を示す、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state which shows the 1st example of embodiment of this invention. 同第2例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 2nd example. 同第3例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 3rd example. 同第4例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the 4th example. 同第5例を示す、図1と同様の図。The figure similar to FIG. 1 which shows the same 5th example. 先発明の構造の第1例を示す断面図。Sectional drawing which shows the 1st example of the structure of a prior invention. この第1例に組み込むエンコーダの被検出面の一部を径方向外方から見た図。The figure which looked at a part of to-be-detected surface of the encoder incorporated in this 1st example from the radial direction outer side. アキシアル荷重に基づいて1対のセンサの出力信号が変化する状態を説明する為の線図。The diagram for demonstrating the state from which the output signal of a pair of sensor changes based on an axial load. 先発明の構造の第2例を示す断面図。Sectional drawing which shows the 2nd example of the structure of a prior invention. この第2例の、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state of this 2nd example. 先発明の構造の第3例を示す、エンコーダ及びセンサの斜視図。The perspective view of the encoder and sensor which shows the 3rd example of the structure of a prior invention. この第3例の、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state of this 3rd example. 先発明の構造の第4例を示す、エンコーダ及びセンサの斜視図。The perspective view of the encoder and sensor which shows the 4th example of the structure of a prior invention. この第4例の、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state of this 4th example. 先発明の構造の第5例を示す断面図。Sectional drawing which shows the 5th example of the structure of a prior invention. この第5例を示す模式図。The schematic diagram which shows this 5th example. この第5例の、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state of this 5th example. 先発明の構造の第6例を示す、エンコーダ及びセンサの部分断面図。The fragmentary sectional view of an encoder and a sensor which shows the 6th example of the structure of a prior invention. この第6例の、中立状態でのエンコーダとセンサとの位置関係を示す模式図。The schematic diagram which shows the positional relationship of the encoder and sensor in a neutral state of this 6th example. エンコーダの被検出面とセンサの検出部との間隔が比較的狭い場合に於ける、このセンサの検出部を通過する磁束の密度(磁束密度)と、このセンサの出力信号との関係を示す図。The figure which shows the relationship between the density (magnetic flux density) of the magnetic flux which passes the detection part of this sensor, and the output signal of this sensor when the space | interval of the to-be-detected surface of an encoder and the detection part of a sensor is comparatively narrow . エンコーダの被検出面とセンサの検出部との間隔が比較的広い場合に於ける、このセンサの検出部を通過する磁束の密度(磁束密度)と、このセンサの出力信号との関係を示す図。The figure which shows the relationship between the density (magnetic flux density) of the magnetic flux which passes the detection part of this sensor, and the output signal of this sensor when the space | interval of the to-be-detected surface of an encoder and the detection part of a sensor is comparatively wide .

符号の説明Explanation of symbols

1 外輪
2 ハブ
3 転動体
4、4a〜4c エンコーダ
5 カバー
6a1 〜6a6 センサ
7、7a〜7c 透孔
8、8a〜8c 柱部
9 第一の特性変化部
10 第二の特性変化部
1 the outer ring 2 hub 3 rolling element 4,4a~4c encoder 5 cover 6a 1 ~6a 6 sensor 7,7a~7c hole 8,8a~8c pillar portion 9 first characteristic change portion 10 second characteristic change portion

Claims (10)

転がり軸受ユニットと、状態量測定装置とを備え、
このうちの転がり軸受ユニットは、静止側周面に静止側軌道を有し、使用状態でも回転しない静止側軌道輪と、回転側周面に回転側軌道を有し、使用状態で回転する回転側軌道輪と、上記静止側軌道と上記回転側軌道との間に転動自在に設けられた複数個の転動体とを備えたものであり、
上記状態量測定装置は、エンコーダと、センサ装置と、演算器とを備え、
このうちのエンコーダは、上記回転側軌道輪の一部に直接又は他の部材を介して支持固定されると共に、周面に上記回転側軌道輪と同心の被検出面を有し、この被検出面の特性を円周方向に関して交互に変化させたものであり、
上記センサ装置は、使用時にも回転しない部分に支持されると共に、複数個のセンサを備え、これら各センサはそれぞれ、検出部を上記被検出面のうち互いに異なる部分に対向させており、且つ、この被検出面の特性変化に対応して出力信号を変化させるものであり、
上記演算器は、上記各センサの出力信号に関する情報に基づいて、上記転がり軸受ユニットの状態量を算出する機能を有するものである、
状態量測定装置付転がり軸受ユニットに於いて、
上記静止側軌道輪と上記回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を均一にする事なく、これら各間隔同士の間に、使用時のこれら各間隔の減少量に対応した大小関係を与えた事を特徴とする状態量測定装置付転がり軸受ユニット。
A rolling bearing unit and a state quantity measuring device;
Of these, the rolling bearing unit has a stationary side raceway on the stationary side circumferential surface and does not rotate even in use, and a stationary side raceway that has a rotation side raceway on the rotation side circumferential surface and rotates in the usage state. A bearing ring, and a plurality of rolling elements provided between the stationary side raceway and the rotation side raceway so as to roll freely,
The state quantity measuring device includes an encoder, a sensor device, and a calculator.
Among these, the encoder is supported and fixed directly on a part of the rotation side raceway or through another member, and has a detection surface concentric with the rotation side raceway on the peripheral surface. The surface characteristics are alternately changed in the circumferential direction.
The sensor device is supported by a portion that does not rotate during use, and includes a plurality of sensors, each of which has a detection portion facing a different portion of the detected surface, and The output signal is changed in response to the change in the characteristics of the detected surface,
The arithmetic unit has a function of calculating a state quantity of the rolling bearing unit based on information on output signals of the sensors.
In rolling bearing unit with state quantity measuring device,
Without neutralizing the distance between the detected surface and each of the detection sections in a neutral state where no external force is acting between the stationary side ring and the rotation side ring, A rolling bearing unit with a state quantity measuring device characterized in that a magnitude relation corresponding to the amount of decrease in each interval during use is given.
エンコーダが、被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化する位相若しくはピッチを、少なくともこの被検出面の幅方向一部分で、この幅方向に関して連続的に変化させたものであり、
演算器が、センサ装置を構成する各センサの出力信号に関する情報に基づいて、静止側軌道輪と回転側軌道輪との相対変位量と、これら静止側軌道輪と回転側軌道輪との間に作用する外力とのうちの、少なくとも一方の状態量を算出する機能を有するものである、請求項1に記載した状態量測定装置付転がり軸受ユニット。
The encoder alternately changes the characteristics of the detected surface with respect to the circumferential direction, and sets the phase or pitch at which the characteristics of the detected surface change with respect to the circumferential direction to at least a part of the width of the detected surface in the width direction. Is a continuous change in direction,
Based on the information about the output signal of each sensor that constitutes the sensor device, the calculator calculates the relative displacement between the stationary side raceway and the rotation side raceway and between the stationary side raceway and the rotation side raceway. The rolling bearing unit with a state quantity measuring device according to claim 1, which has a function of calculating at least one of the acting external forces.
エンコーダが、被検出面のうち、この被検出面の幅方向に関して互いに外れた2個所位置に第一、第二の特性変化部を有し、これら両特性変化部の特性を円周方向に関して交互に且つ互いに同じピッチで変化させると共に、これら両特性変化部のうちの少なくとも一方の特性変化部の特性変化の位相を上記幅方向に関し、他方の特性変化部と異なる状態で漸次変化させたものであり、
センサ装置は、少なくとも、それぞれの検出部を上記両特性変化部に対向させた1対のセンサを備えており、
演算器は、センサ装置を構成する各センサの出力信号に関する情報として、少なくとも上記1対のセンサの出力信号同士の間の位相差を利用して、状態量を算出する、請求項2に記載した状態量測定装置付転がり軸受ユニット。
The encoder has first and second characteristic changing portions at two positions out of the detected surface with respect to the width direction of the detected surface, and the characteristics of these two characteristic changing portions are alternately set in the circumferential direction. And the phase of the characteristic change of at least one of these characteristic change parts is gradually changed in a state different from the other characteristic change part with respect to the width direction. Yes,
The sensor device includes at least a pair of sensors in which the respective detection units are opposed to the both characteristic change units,
The computing unit calculates a state quantity using at least a phase difference between the output signals of the pair of sensors as information on the output signals of the sensors constituting the sensor device. Rolling bearing unit with state quantity measuring device.
エンコーダが、被検出面の特性を円周方向に関して交互に変化させると共に、この被検出面の特性が円周方向に関して変化するピッチを、この被検出面の幅方向に関して連続的に変化させたものであり、
演算器は、センサ装置を構成する各センサの出力信号に関する情報として、少なくとも1個のセンサの出力信号のデューティ比を利用して、状態量を算出する、請求項2に記載した状態量測定装置付転がり軸受ユニット。
The encoder alternately changes the characteristics of the surface to be detected in the circumferential direction, and the pitch at which the characteristics of the surface to be detected changes in the circumferential direction is continuously changed in the width direction of the surface to be detected. And
The state quantity measuring device according to claim 2, wherein the computing unit calculates a state quantity by using a duty ratio of an output signal of at least one sensor as information on an output signal of each sensor constituting the sensor device. Rolling bearing unit.
エンコーダの被検出面がこのエンコーダの外周面に設けられており、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とした場合に、センサ装置は、この被検出面のθ=0度の位置と、θ=180度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させており、且つ、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=180度の位置でδ180 とした場合に、δ0 <δ180 としている、請求項1〜4のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。 The detected surface of the encoder is provided on the outer peripheral surface of the encoder. The angle about the central axis of the detected surface is θ, and the position of the lower end portion of the detected surface in use is θ = In the case of the 0 degree position, the sensor device has at least one sensor detection portion facing the θ = 0 degree position and the θ = 180 degree position of the detected surface. In addition, the distance between the detected surface and each of the detection units in a neutral state where no external force is applied between the stationary side raceway and the rotation side raceway is expressed as δ 0 at the position of θ = 0 °. The rolling bearing unit with a state quantity measuring device according to any one of claims 1 to 4, wherein δ 0180 when δ 180 at the position of θ = 180 degrees. エンコーダの被検出面がこのエンコーダの外周面に設けられており、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とした場合に、センサ装置は、この被検出面のθ=0度の位置と、同じくθ=90度の位置とθ=270度の位置とのうちの少なくとも一方の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させており、且つ、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=90度の位置でδ90とし、上記θ=270度の位置でδ270 とした場合に、δ90=δ270 <δ0 としている、請求項1〜4のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。 The detected surface of the encoder is provided on the outer peripheral surface of the encoder. The angle about the central axis of the detected surface is θ, and the position of the lower end portion of the detected surface in use is θ = In the case of the 0 degree position, the sensor device has a position of θ = 0 degrees on the detected surface, and at least one of the position of θ = 90 degrees and the position of θ = 270 degrees. The detection surface and each of the detections in a neutral state where the detection portions of at least one sensor are opposed to each other and no external force is applied between the stationary-side raceway and the rotation-side raceway. When the distance from the portion is δ 0 at the position of θ = 0 degrees, δ 90 at the position of θ = 90 degrees, and δ 270 at the position of θ = 270 degrees, δ 90 = δ 270 <[delta] 0 and to have, a rolling bearing with a state quantity measuring device according to any one of claims 1 to 4 Uni Door. エンコーダの被検出面がこのエンコーダの外周面に設けられており、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とした場合に、センサ装置は、この被検出面のθ=0度の位置と、θ=120度の位置と、θ=240度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させており、且つ、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=120度の位置でδ120 とし、上記θ=240度の位置でδ240 とした場合に、δ0 <δ120 =δ240 としている、請求項1〜4のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。 The detected surface of the encoder is provided on the outer peripheral surface of the encoder. The angle about the central axis of the detected surface is θ, and the position of the lower end portion of the detected surface in use is θ = When the position is 0 degree, the sensor device has at least one sensor at the position of θ = 0 degrees, the position of θ = 120 degrees, and the position of θ = 240 degrees on the detected surface. The distance between the detected surface and each of the detection units in a neutral state where the detection units are opposed to each other and no external force is applied between the stationary-side raceway and the rotation-side raceway is defined as θ Δ 0 at a position of 0 degrees, δ 120 at a position of θ = 120 degrees, and δ 240 at a position of θ = 240 degrees, δ 0120 = δ 240 The rolling bearing unit with a state quantity measuring device described in any one of 1-4. エンコーダの被検出面がこのエンコーダの外周面に設けられており、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とした場合に、センサ装置は、この被検出面のθ=60度の位置と、θ=180度の位置と、θ=300度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させており、且つ、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=60度の位置でδ60とし、上記θ=180度の位置でδ180 とし、上記θ=300度の位置でδ300 とした場合に、δ60=δ300 <δ180 としている、請求項1〜4のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。 The detected surface of the encoder is provided on the outer peripheral surface of the encoder. The angle about the central axis of the detected surface is θ, and the position of the lower end portion of the detected surface in use is θ = In the case of the 0 degree position, the sensor device has at least one sensor at a position of θ = 60 degrees, a position of θ = 180 degrees, and a position of θ = 300 degrees on the detected surface. The distance between the detected surface and each of the detection units in a neutral state where the detection units are opposed to each other and no external force is applied between the stationary-side raceway and the rotation-side raceway is defined as θ Δ 60 at the position of 60 degrees, δ 180 at the position of θ = 180 degrees, and δ 300 at the position of θ = 300 degrees, δ 60 = δ 300180 The rolling bearing unit with a state quantity measuring device described in any one of 1-4. エンコーダの被検出面がこのエンコーダの外周面に設けられており、この被検出面の中心軸を中心とする角度をθとすると共に、使用時のこの被検出面の下端部の位置をθ=0度の位置とした場合に、センサ装置は、この被検出面のθ=0度の位置と、θ=90度の位置と、θ=180度の位置と、θ=270度の位置とに、それぞれ少なくとも1個のセンサの検出部を対向させており、且つ、静止側軌道輪と回転側軌道輪との間に外力が作用していない中立状態での、上記被検出面と上記各検出部との間隔を、上記θ=0度の位置でδ0 とし、上記θ=90度の位置でδ90とし、上記θ=180度の位置でδ180 とし、上記θ=270度の位置でδ270 とした場合に、δ90=δ270 <δ0 <δ180 としている、請求項1〜4のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。 The detected surface of the encoder is provided on the outer peripheral surface of the encoder. The angle about the central axis of the detected surface is θ, and the position of the lower end portion of the detected surface in use is θ = In the case of the 0 degree position, the sensor device has a position of θ = 0 degrees, a position of θ = 90 degrees, a position of θ = 180 degrees, and a position of θ = 270 degrees on the detected surface. The detection surface and each of the detections in a neutral state where the detection portions of at least one sensor are opposed to each other and no external force is applied between the stationary-side raceway and the rotation-side raceway. The distance from the portion is δ 0 at the position of θ = 0 degrees, δ 90 at the position of θ = 90 degrees, δ 180 at the position of θ = 180 degrees, and the position of θ = 270 degrees. when the [delta] 270, is set to δ 90 = δ 270 <δ 0 <δ 180, like that described in any one of claims 1 to 4 Rolling bearing unit with amount measurement device. 転がり軸受ユニットが、自動車の車輪支持用ハブユニットであって、使用状態で静止側軌道輪が自動車の懸架装置に支持され、回転側軌道輪であるハブに車輪が結合固定されるものであり、エンコーダが、このハブの軸方向内端部に支持固定されている、請求項1〜9のうちの何れか1項に記載した状態量測定装置付転がり軸受ユニット。   The rolling bearing unit is a hub unit for supporting a wheel of an automobile, and the stationary side bearing ring is supported by the suspension system of the automobile in use, and the wheel is coupled and fixed to the hub that is the rotating side bearing ring. The rolling bearing unit with a state quantity measuring device according to any one of claims 1 to 9, wherein an encoder is supported and fixed to an inner end portion in the axial direction of the hub.
JP2006228585A 2006-08-25 2006-08-25 Rolling bearing unit with state quantity measuring device Expired - Fee Related JP4899722B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006228585A JP4899722B2 (en) 2006-08-25 2006-08-25 Rolling bearing unit with state quantity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006228585A JP4899722B2 (en) 2006-08-25 2006-08-25 Rolling bearing unit with state quantity measuring device

Publications (2)

Publication Number Publication Date
JP2008051669A JP2008051669A (en) 2008-03-06
JP4899722B2 true JP4899722B2 (en) 2012-03-21

Family

ID=39235859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006228585A Expired - Fee Related JP4899722B2 (en) 2006-08-25 2006-08-25 Rolling bearing unit with state quantity measuring device

Country Status (1)

Country Link
JP (1) JP4899722B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489929B2 (en) * 2010-09-10 2014-05-14 Ntn株式会社 Wheel bearing with sensor
WO2012033018A1 (en) * 2010-09-10 2012-03-15 Ntn株式会社 Sensor-equipped bearing for wheel
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
FR3047802B1 (en) * 2016-02-12 2018-03-23 Ntn-Snr Roulements METHOD FOR DETECTING A TANGENTIAL DISPLACEMENT OF A MECHANICAL ASSEMBLY COMPRISING A ROTATING ORGAN

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269674B2 (en) * 2002-12-18 2009-05-27 日本精工株式会社 Load measuring device for rolling bearing units
JP2006090511A (en) * 2004-09-27 2006-04-06 Jtekt Corp Rolling bearing device with sensor
JP2006113017A (en) * 2004-10-18 2006-04-27 Nsk Ltd Encoder, rolling bearing unit with the encoder, and rolling bearing unit with load-measuring instrument

Also Published As

Publication number Publication date
JP2008051669A (en) 2008-03-06

Similar Documents

Publication Publication Date Title
JP4543643B2 (en) Load measuring device for rolling bearing units
JP2007093580A (en) Rolling bearing unit with displacement measuring device, and the rolling bearing unit with load measuring device
JP4899722B2 (en) Rolling bearing unit with state quantity measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006242241A (en) Ball bearing unit
JP2007210491A (en) Arithmetic unit and arithmetic network system for peripheral device of wheel
JP4887816B2 (en) Load measuring device for rolling bearing units
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP2008039155A (en) Rolling bearing unit with state quantity measuring device and assembling method
JP2007085742A (en) Rolling bearing unit with load measuring device
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP4894277B2 (en) Load measuring device for rolling bearing units
JP2007057342A (en) Rolling bearing unit with load measuring device
JP4899612B2 (en) Load measuring device for rolling bearing units
JP4735526B2 (en) State quantity measuring device for rolling bearing units
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP5135741B2 (en) Left and right wheel support unit for vehicles
JP2007199040A (en) Rolling bearing unit with load-measuring device joint-fixed with wheel
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP2008224397A (en) Load measuring device for roller bearing unit
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit
JP4962027B2 (en) Load measuring device for rolling bearing units
JP2007171102A (en) Roller bearing unit with load-measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090803

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111219

R150 Certificate of patent or registration of utility model

Ref document number: 4899722

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees