JP4897034B2 - BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE - Google Patents

BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE Download PDF

Info

Publication number
JP4897034B2
JP4897034B2 JP2009275460A JP2009275460A JP4897034B2 JP 4897034 B2 JP4897034 B2 JP 4897034B2 JP 2009275460 A JP2009275460 A JP 2009275460A JP 2009275460 A JP2009275460 A JP 2009275460A JP 4897034 B2 JP4897034 B2 JP 4897034B2
Authority
JP
Japan
Prior art keywords
light emitting
rod
shaped structure
semiconductor core
structure light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009275460A
Other languages
Japanese (ja)
Other versions
JP2011119449A (en
Inventor
敏 森下
哲 根岸
健治 小宮
晃秀 柴田
浩 岩田
明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2009275460A priority Critical patent/JP4897034B2/en
Priority to KR1020100099883A priority patent/KR101178468B1/en
Priority to US12/904,773 priority patent/US8872214B2/en
Priority to CN201010516174.5A priority patent/CN102074631B/en
Publication of JP2011119449A publication Critical patent/JP2011119449A/en
Application granted granted Critical
Publication of JP4897034B2 publication Critical patent/JP4897034B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Description

この発明は、棒状構造発光素子、発光装置、発光装置の製造方法、バックライト、照明装置および表示装置に関する。   The present invention relates to a rod-shaped structure light emitting element, a light emitting device, a method for manufacturing the light emitting device, a backlight, a lighting device, and a display device.

従来、棒状構造の発光素子としては、化合物半導体からなる棒状のコア部と、そのコア部を囲む化合物半導体からなる筒状のシェル部でヘテロ構造を形成したナノオーダーサイズのものがある(例えば、特開2008−235443号公報(特許文献1)参照)。この発光素子は、コア部自体が活性層となり、外周面から注入された電子および正孔がコア部内で再結合して発光する。   Conventionally, as a light emitting element having a rod-shaped structure, there is a nano-order size light-emitting element in which a heterostructure is formed by a rod-shaped core portion made of a compound semiconductor and a cylindrical shell portion made of a compound semiconductor surrounding the core portion (for example, JP, 2008-235443, A (patent documents 1) reference). In this light emitting device, the core part itself becomes an active layer, and electrons and holes injected from the outer peripheral surface recombine in the core part to emit light.

上記発光素子と同様の製造方法を用いて、n型半導体からなるコア部とp型半導体からなるシェル部とを有し、コア部の外周面とシェル部の内周面とのpn接合部で電子および正孔が再結合して発光する棒状構造発光素子を製造した場合、コア部が両端面しか露出していないため、コア部と電極との接続が困難であるという問題がある。   Using a manufacturing method similar to that of the light-emitting element, a pn junction between the outer peripheral surface of the core portion and the inner peripheral surface of the shell portion has a core portion made of an n-type semiconductor and a shell portion made of a p-type semiconductor. In the case of manufacturing a rod-shaped structure light emitting device that emits light by recombination of electrons and holes, there is a problem that it is difficult to connect the core portion and the electrode because only the both end surfaces are exposed.

特開2008−235443号公報JP 2008-235443 A

そこで、この発明の課題は、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a fine rod-shaped structure light emitting element with high light emission efficiency that can easily connect electrodes with a simple configuration.

また、この発明の課題は、上記棒状構造発光素子を用いることにより薄型化と軽量化が可能でかつ発光効率が高く省電力な発光装置およびその製造方法を提供することにある。   Another object of the present invention is to provide a light emitting device that can be reduced in thickness and weight by using the light emitting element with a rod-like structure, has high luminous efficiency, and saves power, and a method for manufacturing the same.

また、この発明の課題は、上記棒状構造発光素子を用いることにより薄型化と軽量化が可能でかつ発光効率が高く省電力なバックライトと照明装置および表示装置を提供することにある。   Another object of the present invention is to provide a backlight, an illuminating device, and a display device that can be reduced in thickness and weight by using the rod-shaped structure light emitting element, have high luminous efficiency, and save power.

上記課題を解決するため、この発明の棒状構造発光素子は、
棒状の第1導電型の半導体コアと、
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層と
を備え、
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、
上記半導体コアの上記被覆部分の長手方向に直交する断面の外周長よりも、上記半導体コアの上記露出部分の長手方向に直交する断面の外周長が短いことを特徴とする。
In order to solve the above problems, the rod-shaped structure light emitting device of the present invention is
A rod-shaped first conductive type semiconductor core;
A semiconductor layer of a second conductivity type that covers a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core,
Rutotomoni provided with an outer peripheral surface of the exposed portion not covered with the semiconductor layer of the semiconductor core, the stepped portion between the outer peripheral surface of the covering portion which is covered with the semiconductor layer of the semiconductor core,
The outer peripheral length of the cross section orthogonal to the longitudinal direction of the exposed portion of the semiconductor core is shorter than the outer peripheral length of the cross section orthogonal to the longitudinal direction of the covered portion of the semiconductor core .

上記構成によれば、棒状の第1導電型の半導体コアの一端側の部分を覆わないで露出部分とするように、半導体コアの露出部分以外の被覆部分を第2導電型の半導体層により覆うことによって、マイクロオーダーサイズやナノオーダーサイズの微細な棒状構造発光素子であっても、半導体コアの露出部分を一方の電極に接続し、半導体コアの被覆部分を覆う半導体層に他方の電極を接続することが可能となる。この棒状構造発光素子は、半導体コアの露出部分に一方の電極を接続し、半導体層に他方の電極を接続して、半導体コアの外周面と半導体層の内周面との界面(pn接合部)で電子と正孔の再結合が起きるように電極間に電流を流すことにより、半導体コアの外周面と半導体層の内周面との界面(pn接合部)から光が放出される。この棒状構造発光素子では、半導体層で覆われた半導体コアの側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高い。なお、半導体コアの外周面と半導体層の内周面との間に量子井戸層を設けてもよい。   According to the above configuration, the covering portion other than the exposed portion of the semiconductor core is covered with the second conductive type semiconductor layer so that the portion on one end side of the rod-shaped first conductive type semiconductor core is not covered and is exposed. Therefore, even in the case of micro-order or nano-order sized fine rod-shaped light emitting devices, the exposed part of the semiconductor core is connected to one electrode, and the other electrode is connected to the semiconductor layer covering the coated part of the semiconductor core It becomes possible to do. In this rod-shaped structure light emitting device, one electrode is connected to the exposed portion of the semiconductor core, the other electrode is connected to the semiconductor layer, and the interface between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer (pn junction portion) ), A light is emitted from the interface (pn junction) between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer. In this rod-shaped structure light emitting element, the light emitting region is widened by emitting light from the entire side surface of the semiconductor core covered with the semiconductor layer, so that the light emission efficiency is high. A quantum well layer may be provided between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer.

したがって、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子を実現できる。この棒状構造発光素子は、基板と一体でないので、装置への実装の自由度が高い。   Therefore, it is possible to realize a fine rod-shaped light emitting element with high luminous efficiency that can be easily connected to an electrode with a simple configuration. Since this rod-shaped structure light emitting element is not integrated with the substrate, the degree of freedom of mounting on the device is high.

さらに、上記半導体コアの半導体層に覆われていない露出部分の外周面と、半導体コアの半導体層に覆われた被覆部分の外周面との間に段差部を設けることによって、半導体コアの露出部分の外周面と被覆部分の外周面とが一致して段差がない場合に比べて、半導体コアの露出部分と半導体層との境界に形成された段差部により半導体層の端面の位置が決定され、製造時に境界位置のばらつきを抑制できる。ここで、上記半導体コアの露出部分は、被覆部分よりも小径であってもよいし大径であってもよい。また、上記段差部によって、半導体コアの露出部分の外周面と半導体層との距離を遠ざけることができるため、半導体コアの露出部分に電極を接続する場合に、電極と半導体層との間の短絡やリーク電流の発生を抑制できる。また、上記半導体コアの露出部分の外周面と被覆部分の外周面との境界に形成された段差部から外部へ光が取り出されやすくなるので、光の取り出し効率が向上する。さらに、上記半導体コアの被覆部分よりも露出部分の径が大きい場合は、半導体コアの露出部分に接続される電極との接触面が大きくとれるので、コンタクト抵抗を下げることができる。   Further, an exposed portion of the semiconductor core is provided by providing a step portion between the outer peripheral surface of the exposed portion of the semiconductor core not covered with the semiconductor layer and the outer peripheral surface of the covered portion of the semiconductor core covered with the semiconductor layer. The position of the end face of the semiconductor layer is determined by the stepped portion formed at the boundary between the exposed portion of the semiconductor core and the semiconductor layer, as compared with the case where the outer peripheral surface of the cover portion and the outer peripheral surface of the covering portion coincide with each other without a step. Variations in the boundary position can be suppressed during manufacturing. Here, the exposed portion of the semiconductor core may have a smaller diameter or a larger diameter than the covering portion. In addition, since the stepped portion can increase the distance between the outer peripheral surface of the exposed portion of the semiconductor core and the semiconductor layer, a short circuit between the electrode and the semiconductor layer when the electrode is connected to the exposed portion of the semiconductor core. And leakage current can be suppressed. In addition, light can be easily extracted from the stepped portion formed at the boundary between the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion, so that the light extraction efficiency is improved. Furthermore, when the diameter of the exposed portion is larger than the covered portion of the semiconductor core, the contact surface with the electrode connected to the exposed portion of the semiconductor core can be made large, so that the contact resistance can be lowered.

ここで、微細な棒状構造発光素子とは、例えば直径が1μmで長さ10μmのマイクロオーダーサイズや、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの素子である。また、上記棒状構造発光素子は、使用する半導体の量を少なくでき、発光素子を用いた装置の薄型化と軽量化が可能でかつ発光効率が高く省電力な発光装置,バックライト,照明装置および表示装置などを実現することができる。   Here, the fine rod-shaped structure light-emitting element is, for example, a micro-order size having a diameter of 1 μm and a length of 10 μm, or a nano-order size element having a diameter or length of less than 1 μm. Further, the rod-shaped structure light-emitting element can reduce the amount of semiconductors used, can reduce the thickness and weight of the device using the light-emitting element, and has high luminous efficiency and low power consumption, a backlight, a lighting device, and A display device or the like can be realized.

また、半導体コアの被覆部分の長手方向に直交する断面の外周長よりも、半導体コアの露出部分の長手方向に直交する断面の外周長が短いことによって、半導体コアの露出部分に電極を接続した場合に、半導体コアの露出部分の半導体層の外径は、半導体コアの半導体層に覆われている被覆部分の外径よりも細くなっているので、製造工程において基板上に立設するように形成された半導体コアの露出部分を基板側に設けることで半導体コアが折れやすくなり、製造が容易になる。また、上記半導体コアの露出部分が段差部で低い側(半導体層側が高い側)になることによって、半導体コアの露出部分の外周面と半導体層との距離を遠ざけることができるため、半導体コアの露出部分に電極を接続する場合に、電極と半導体層との間の短絡やリーク電流の発生を抑制できる。なお、上記半導体コアの露出部分と被覆部分のそれぞれの断面は円形状に限るものではなく、六角形などの他の多角形の断面形状でもよく、また、半導体コアの露出部分と被覆部分とが異なる断面形状であってもよく、半導体コアの被覆部分よりも露出部分が小径であれば、同様の効果を有する。 In addition , the electrode is connected to the exposed portion of the semiconductor core because the outer peripheral length of the cross section orthogonal to the longitudinal direction of the exposed portion of the semiconductor core is shorter than the outer peripheral length of the cross section orthogonal to the longitudinal direction of the coated portion of the semiconductor core. In this case, the outer diameter of the semiconductor layer in the exposed portion of the semiconductor core is smaller than the outer diameter of the covering portion covered with the semiconductor layer of the semiconductor core, so that it is erected on the substrate in the manufacturing process. By providing the exposed portion of the formed semiconductor core on the substrate side, the semiconductor core is easily broken, and manufacturing is facilitated. In addition, since the exposed portion of the semiconductor core is on the lower side of the step portion (the semiconductor layer side is higher), the distance between the outer peripheral surface of the exposed portion of the semiconductor core and the semiconductor layer can be increased. When an electrode is connected to the exposed portion, it is possible to suppress the occurrence of a short circuit or leakage current between the electrode and the semiconductor layer. The cross-sections of the exposed portion and the covering portion of the semiconductor core are not limited to a circular shape, but may be other polygonal cross-sectional shapes such as a hexagon, and the exposed portion and the covering portion of the semiconductor core Different cross-sectional shapes may be used, and the same effect can be obtained if the exposed portion has a smaller diameter than the coated portion of the semiconductor core.

また、少なくとも半導体コアの半導体層に覆われた被覆部分において、半導体層の外形よりも半導体コアの露出部分の外形の方が小さくなるため、棒状構造発光素子を基板上に基板平面に対して長手方向が平行になるように実装するときに、半導体層の外周面と基板との接触がとりやすくなり、放熱効率が向上する。
また、この発明の棒状構造発光素子は、
棒状の第1導電型の半導体コアと、
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層と
を備え、
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、
上記半導体コアの上記露出部分の長手方向に直交する断面の形状と、上記半導体コアの上記被覆部分の長手方向に直交する断面の形状とが異なることを特徴とする。
上記構成によれば、棒状の第1導電型の半導体コアの一端側の部分を覆わないで露出部分とするように、半導体コアの露出部分以外の被覆部分を第2導電型の半導体層により覆うことによって、マイクロオーダーサイズやナノオーダーサイズの微細な棒状構造発光素子であっても、半導体コアの露出部分を一方の電極に接続し、半導体コアの被覆部分を覆う半導体層に他方の電極を接続することが可能となる。この棒状構造発光素子は、半導体コアの露出部分に一方の電極を接続し、半導体層に他方の電極を接続して、半導体コアの外周面と半導体層の内周面との界面(pn接合部)で電子と正孔の再結合が起きるように電極間に電流を流すことにより、半導体コアの外周面と半導体層の内周面との界面(pn接合部)から光が放出される。この棒状構造発光素子では、半導体層で覆われた半導体コアの側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高い。なお、半導体コアの外周面と半導体層の内周面との間に量子井戸層を設けてもよい。
したがって、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子を実現できる。この棒状構造発光素子は、基板と一体でないので、装置への実装の自由度が高い。
さらに、上記半導体コアの半導体層に覆われていない露出部分の外周面と、半導体コアの半導体層に覆われた被覆部分の外周面との間に段差部を設けることによって、半導体コアの露出部分の外周面と被覆部分の外周面とが一致して段差がない場合に比べて、半導体コアの露出部分と半導体層との境界に形成された段差部により半導体層の端面の位置が決定され、製造時に境界位置のばらつきを抑制できる。ここで、上記半導体コアの露出部分は、被覆部分よりも小径であってもよいし大径であってもよい。また、上記段差部によって、半導体コアの露出部分の外周面と半導体層との距離を遠ざけることができるため、半導体コアの露出部分に電極を接続する場合に、電極と半導体層との間の短絡やリーク電流の発生を抑制できる。また、上記半導体コアの露出部分の外周面と被覆部分の外周面との境界に形成された段差部から外部へ光が取り出されやすくなるので、光の取り出し効率が向上する。さらに、上記半導体コアの被覆部分よりも露出部分の径が大きい場合は、半導体コアの露出部分に接続される電極との接触面が大きくとれるので、コンタクト抵抗を下げることができる。
また、半導体コアの露出部分の長手方向に直交する断面の形状と、半導体コアの被覆部分の長手方向に直交する断面の形状とが異なることによって、半導体コアの露出部分の外周面と被覆部分の外周面との境界に段差部が形成されるため、外部への光の取り出し効率が向上する。また、上記半導体コアの露出部分の外周面と被覆部分の外周面が一致して段差がない場合に比べて、半導体コアの露出部分と半導体層との境界に形成された段差部により半導体層の端面の位置が決定され、製造時に境界位置のばらつきを抑制できる。
また、この発明の棒状構造発光素子は、
棒状の第1導電型の半導体コアと、
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層と
を備え、
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、
上記半導体コアの上記露出部分とは反対側の端面を覆うように形成されたキャップ層を備え、
上記キャップ層は、上記半導体層よりも電気抵抗の大きな材料からなることを特徴とする。
上記構成によれば、棒状の第1導電型の半導体コアの一端側の部分を覆わないで露出部分とするように、半導体コアの露出部分以外の被覆部分を第2導電型の半導体層により覆うことによって、マイクロオーダーサイズやナノオーダーサイズの微細な棒状構造発光素子であっても、半導体コアの露出部分を一方の電極に接続し、半導体コアの被覆部分を覆う半導体層に他方の電極を接続することが可能となる。この棒状構造発光素子は、半導体コアの露出部分に一方の電極を接続し、半導体層に他方の電極を接続して、半導体コアの外周面と半導体層の内周面との界面(pn接合部)で電子と正孔の再結合が起きるように電極間に電流を流すことにより、半導体コアの外周面と半導体層の内周面との界面(pn接合部)から光が放出される。この棒状構造発光素子では、半導体層で覆われた半導体コアの側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高い。なお、半導体コアの外周面と半導体層の内周面との間に量子井戸層を設けてもよい。
したがって、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子を実現できる。この棒状構造発光素子は、基板と一体でないので、装置への実装の自由度が高い。
さらに、上記半導体コアの半導体層に覆われていない露出部分の外周面と、半導体コアの半導体層に覆われた被覆部分の外周面との間に段差部を設けることによって、半導体コアの露出部分の外周面と被覆部分の外周面とが一致して段差がない場合に比べて、半導体コアの露出部分と半導体層との境界に形成された段差部により半導体層の端面の位置が決定され、製造時に境界位置のばらつきを抑制できる。ここで、上記半導体コアの露出部分は、被覆部分よりも小径であってもよいし大径であってもよい。また、上記段差部によって、半導体コアの露出部分の外周面と半導体層との距離を遠ざけることができるため、半導体コアの露出部分に電極を接続する場合に、電極と半導体層との間の短絡やリーク電流の発生を抑制できる。また、上記半導体コアの露出部分の外周面と被覆部分の外周面との境界に形成された段差部から外部へ光が取り出されやすくなるので、光の取り出し効率が向上する。さらに、上記半導体コアの被覆部分よりも露出部分の径が大きい場合は、半導体コアの露出部分に接続される電極との接触面が大きくとれるので、コンタクト抵抗を下げることができる。
また、半導体層よりも電気抵抗の大きな材料からなるキャップ層が半導体コアの露出部分とは反対側の端面を覆うことによって、半導体コアのキャップ層側に接続された電極と半導体コアとの間でキャップ層を介して電流が流れないようにする一方で、キャップ層よりも抵抗の低い半導体層を介して電極と半導体コアの外周面側との間で電流が流れるようにする。これにより、上記半導体コアのキャップ層が設けられた側の端面への電流集中を抑制して、その半導体コアの端面に発光が集中することなく、半導体コアの側面からの光の取り出し効率が向上する。
In addition, since the outer shape of the exposed portion of the semiconductor core is smaller than the outer shape of the semiconductor layer at least in the covered portion of the semiconductor core covered with the semiconductor layer, the rod-shaped structure light emitting element is elongated on the substrate with respect to the substrate plane. When mounting so that the directions are parallel, the outer peripheral surface of the semiconductor layer and the substrate can be easily contacted, and the heat dissipation efficiency is improved.
The rod-shaped structure light emitting device of the present invention is
A rod-shaped first conductive type semiconductor core;
A second-conductivity-type semiconductor layer covering a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core;
With
Providing a step between the outer peripheral surface of the exposed portion of the semiconductor core that is not covered by the semiconductor layer and the outer peripheral surface of the covering portion of the semiconductor core that is covered by the semiconductor layer;
A shape of a cross section orthogonal to the longitudinal direction of the exposed portion of the semiconductor core is different from a shape of a cross section orthogonal to the longitudinal direction of the covered portion of the semiconductor core.
According to the above configuration, the covering portion other than the exposed portion of the semiconductor core is covered with the second conductive type semiconductor layer so that the portion on one end side of the rod-shaped first conductive type semiconductor core is not covered and is exposed. Therefore, even in the case of micro-order or nano-order sized fine rod-shaped light emitting devices, the exposed part of the semiconductor core is connected to one electrode, and the other electrode is connected to the semiconductor layer covering the coated part of the semiconductor core It becomes possible to do. In this rod-shaped structure light emitting device, one electrode is connected to the exposed portion of the semiconductor core, the other electrode is connected to the semiconductor layer, and the interface between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer (pn junction portion) ), A light is emitted from the interface (pn junction) between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer. In this rod-shaped structure light emitting element, the light emitting region is widened by emitting light from the entire side surface of the semiconductor core covered with the semiconductor layer, so that the light emission efficiency is high. A quantum well layer may be provided between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer.
Therefore, it is possible to realize a fine rod-shaped light emitting element with high luminous efficiency that can be easily connected to an electrode with a simple configuration. Since this rod-shaped structure light emitting element is not integrated with the substrate, the degree of freedom of mounting on the device is high.
Further, an exposed portion of the semiconductor core is provided by providing a step portion between the outer peripheral surface of the exposed portion of the semiconductor core not covered with the semiconductor layer and the outer peripheral surface of the covered portion of the semiconductor core covered with the semiconductor layer. The position of the end face of the semiconductor layer is determined by the stepped portion formed at the boundary between the exposed portion of the semiconductor core and the semiconductor layer, as compared with the case where the outer peripheral surface of the cover portion and the outer peripheral surface of the covering portion coincide with each other without a step. Variations in the boundary position can be suppressed during manufacturing. Here, the exposed portion of the semiconductor core may have a smaller diameter or a larger diameter than the covering portion. In addition, since the stepped portion can increase the distance between the outer peripheral surface of the exposed portion of the semiconductor core and the semiconductor layer, a short circuit between the electrode and the semiconductor layer when the electrode is connected to the exposed portion of the semiconductor core. And leakage current can be suppressed. In addition, light can be easily extracted from the stepped portion formed at the boundary between the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion, so that the light extraction efficiency is improved. Furthermore, when the diameter of the exposed portion is larger than the covered portion of the semiconductor core, the contact surface with the electrode connected to the exposed portion of the semiconductor core can be made large, so that the contact resistance can be lowered.
In addition, the shape of the cross section orthogonal to the longitudinal direction of the exposed portion of the semiconductor core is different from the shape of the cross section orthogonal to the longitudinal direction of the covered portion of the semiconductor core, so that the outer peripheral surface of the exposed portion of the semiconductor core and the covering portion Since the step portion is formed at the boundary with the outer peripheral surface, the light extraction efficiency to the outside is improved. In addition, compared to the case where the outer peripheral surface of the exposed portion of the semiconductor core is coincident with the outer peripheral surface of the covering portion and there is no step, the step portion formed at the boundary between the exposed portion of the semiconductor core and the semiconductor layer The position of the end face is determined, and variation in the boundary position can be suppressed during manufacturing.
The rod-shaped structure light emitting device of the present invention is
A rod-shaped first conductive type semiconductor core;
A second-conductivity-type semiconductor layer covering a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core;
With
Providing a step between the outer peripheral surface of the exposed portion of the semiconductor core that is not covered by the semiconductor layer and the outer peripheral surface of the covering portion of the semiconductor core that is covered by the semiconductor layer;
A cap layer formed to cover an end surface of the semiconductor core opposite to the exposed portion;
The cap layer is made of a material having a larger electric resistance than the semiconductor layer.
According to the above configuration, the covering portion other than the exposed portion of the semiconductor core is covered with the second conductive type semiconductor layer so that the portion on one end side of the rod-shaped first conductive type semiconductor core is not covered and is exposed. Therefore, even in the case of micro-order or nano-order sized fine rod-shaped light emitting devices, the exposed part of the semiconductor core is connected to one electrode, and the other electrode is connected to the semiconductor layer covering the coated part of the semiconductor core It becomes possible to do. In this rod-shaped structure light emitting device, one electrode is connected to the exposed portion of the semiconductor core, the other electrode is connected to the semiconductor layer, and the interface between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer (pn junction portion) ), A light is emitted from the interface (pn junction) between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer. In this rod-shaped structure light emitting element, the light emitting region is widened by emitting light from the entire side surface of the semiconductor core covered with the semiconductor layer, so that the light emission efficiency is high. A quantum well layer may be provided between the outer peripheral surface of the semiconductor core and the inner peripheral surface of the semiconductor layer.
Therefore, it is possible to realize a fine rod-shaped light emitting element with high luminous efficiency that can be easily connected to an electrode with a simple configuration. Since this rod-shaped structure light emitting element is not integrated with the substrate, the degree of freedom of mounting on the device is high.
Further, an exposed portion of the semiconductor core is provided by providing a step portion between the outer peripheral surface of the exposed portion of the semiconductor core not covered with the semiconductor layer and the outer peripheral surface of the covered portion of the semiconductor core covered with the semiconductor layer. The position of the end face of the semiconductor layer is determined by the stepped portion formed at the boundary between the exposed portion of the semiconductor core and the semiconductor layer, as compared with the case where the outer peripheral surface of the cover portion and the outer peripheral surface of the covering portion coincide with each other without a step. Variations in the boundary position can be suppressed during manufacturing. Here, the exposed portion of the semiconductor core may have a smaller diameter or a larger diameter than the covering portion. In addition, since the stepped portion can increase the distance between the outer peripheral surface of the exposed portion of the semiconductor core and the semiconductor layer, a short circuit between the electrode and the semiconductor layer when the electrode is connected to the exposed portion of the semiconductor core. And leakage current can be suppressed. In addition, light can be easily extracted from the stepped portion formed at the boundary between the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion, so that the light extraction efficiency is improved. Furthermore, when the diameter of the exposed portion is larger than the covered portion of the semiconductor core, the contact surface with the electrode connected to the exposed portion of the semiconductor core can be made large, so that the contact resistance can be lowered.
In addition, the cap layer made of a material having a larger electric resistance than the semiconductor layer covers the end surface opposite to the exposed portion of the semiconductor core, so that the electrode connected to the cap layer side of the semiconductor core is between the semiconductor core and the semiconductor core. While preventing the current from flowing through the cap layer, the current is allowed to flow between the electrode and the outer peripheral surface side of the semiconductor core through the semiconductor layer having a lower resistance than the cap layer. This suppresses current concentration on the end surface of the semiconductor core where the cap layer is provided, and improves light extraction efficiency from the side surface of the semiconductor core without concentrating light emission on the end surface of the semiconductor core. To do.

また、一実施形態の棒状構造発光素子では、
上記半導体コアの上記被覆部分の長手方向に直交する断面が多角形状である。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
The cross section orthogonal to the longitudinal direction of the covering portion of the semiconductor core is polygonal.

上記実施形態によれば、半導体コアの被覆部分の長手方向に直交する断面が多角形状であることによって、この棒状構造発光素子を基板上に基板平面に対して長手方向が平行になるように実装するときに、半導体層のどの外周面であっても基板との接触面が得やすく、基板への放熱効率が向上する。したがって、発光時の素子温度が上昇して発光効率が低下するのを抑制できる。また、上記半導体コアの露出部分の長手方向に直交する断面が円形よりも多角形(例えば六角形)の方が光の取り出し効率を向上させることができる(半導体コアの露出部分の断面は、頂点数の少ない多角形の方が外部に光が出やすくなる)。   According to the above embodiment, the rod-shaped structure light emitting element is mounted on the substrate so that the longitudinal direction thereof is parallel to the substrate plane because the cross section orthogonal to the longitudinal direction of the covering portion of the semiconductor core is polygonal. In this case, it is easy to obtain a contact surface with the substrate regardless of the outer peripheral surface of the semiconductor layer, and the heat dissipation efficiency to the substrate is improved. Therefore, it can suppress that the element temperature at the time of light emission raises, and luminous efficiency falls. In addition, the cross section perpendicular to the longitudinal direction of the exposed portion of the semiconductor core can improve the light extraction efficiency when the polygon (for example, hexagon) is more circular than the circular shape (the cross section of the exposed portion of the semiconductor core is the apex). The polygons with fewer numbers are more likely to emit light outside).

また、一実施形態の棒状構造発光素子では、
上記半導体コアの上記露出部分の長手方向に直交する断面が略円形状である。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
A cross section perpendicular to the longitudinal direction of the exposed portion of the semiconductor core is substantially circular.

上記実施形態によれば、半導体コアの露出部分の長手方向に直交する断面が略円形状であることによって、製造工程において半導体コアの成長時に使用するマスクパターンの形状が円形でよく、基板の平面方向の結晶方位に位置あわせたマスクレイアウトの制限を受けず、また、方位を揃えるための位置合わせ精度が不要のため、製造が容易にできる。   According to the above embodiment, the cross section orthogonal to the longitudinal direction of the exposed portion of the semiconductor core is substantially circular, so that the shape of the mask pattern used when growing the semiconductor core in the manufacturing process may be circular, and the plane of the substrate Manufacture is easy because there is no restriction on the mask layout aligned with the crystal orientation of the direction and the alignment accuracy for aligning the orientation is unnecessary.

また、一実施形態の棒状構造発光素子では、
上記半導体コアの上記段差部とその段差部側の上記半導体層の端面を覆うように、かつ、上記半導体コアの上記露出部分の上記段差部側を覆うように形成された絶縁層を備えた。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
An insulating layer is provided so as to cover the step portion of the semiconductor core and the end face of the semiconductor layer on the step portion side, and to cover the step portion side of the exposed portion of the semiconductor core.

上記実施形態によれば、半導体コアの段差部とその段差部側の半導体層の端面を覆うように、かつ、半導体コアの露出部分の段差部側を覆うように形成された絶縁層を備えることによって、半導体コアの露出部分の外周面と半導体層との間を絶縁層により絶縁できるため、半導体コアの露出部分に電極を接続する場合に、電極と半導体層との間の短絡やリーク電流の発生を確実に抑制できる。   According to the above embodiment, the insulating layer is formed so as to cover the stepped portion of the semiconductor core and the end surface of the semiconductor layer on the stepped portion side, and to cover the stepped portion side of the exposed portion of the semiconductor core. Therefore, when the electrode is connected to the exposed part of the semiconductor core, the outer peripheral surface of the exposed part of the semiconductor core and the semiconductor layer can be insulated by the insulating layer. Generation can be reliably suppressed.

また、一実施形態の棒状構造発光素子では、
上記半導体層を覆うように形成され、上記半導体層よりも電気抵抗が低い材料からなる導電層を備えた。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
A conductive layer made of a material formed so as to cover the semiconductor layer and having an electric resistance lower than that of the semiconductor layer is provided.

上記実施形態によれば、半導体層よりも電気抵抗が低い材料からなる導電層を介して半導体層を電極に接続することにより、電極接続部分に電流が集中して偏ることがなく、広い電流経路を形成して、半導体コアの側面全体を効率よく発光させることができ、発光効率がさらに向上する。   According to the above embodiment, by connecting the semiconductor layer to the electrode through the conductive layer made of a material having a lower electrical resistance than the semiconductor layer, current is not concentrated and biased in the electrode connection portion, and a wide current path The entire side surface of the semiconductor core can be made to emit light efficiently, and the luminous efficiency is further improved.

また、一実施形態の棒状構造発光素子では、
上記半導体コアと上記半導体層との間に形成された量子井戸層を備えた。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
A quantum well layer is provided between the semiconductor core and the semiconductor layer.

上記実施形態によれば、半導体コアの外周面と半導体層との間に量子井戸層を形成することによって、量子井戸層の量子閉じ込め効果により発光効率を向上できる。   According to the embodiment, by forming the quantum well layer between the outer peripheral surface of the semiconductor core and the semiconductor layer, the light emission efficiency can be improved by the quantum confinement effect of the quantum well layer.

また、一実施形態の棒状構造発光素子では、
上記半導体コアの径が500nm以上かつ100μm以下である。
Moreover, in the rod-shaped structure light emitting device of one embodiment,
The diameter of the semiconductor core is 500 nm or more and 100 μm or less.

上記実施形態によれば、半導体コアの径を500nm以上かつ100μm以下とすることによって、数10nm〜数100nm程度のものに比べて、半導体コアの径のばらつきを抑えることができ、発光特性のばらつきを抑えて、歩留まりのよい棒状構造発光素子を実現できる。   According to the above embodiment, by setting the diameter of the semiconductor core to 500 nm or more and 100 μm or less, it is possible to suppress the variation in the diameter of the semiconductor core compared to the semiconductor core having a diameter of about several tens to several hundreds of nm. Thus, it is possible to realize a bar-shaped light emitting element with a high yield.

また、この発明の発光装置では、
上記のいずれか1つの棒状構造発光素子と、
上記棒状構造発光素子の長手方向が実装面に平行になるように、上記棒状構造発光素子が実装された基板と
を備え、
上記基板上に所定の間隔をあけて電極が形成され、
上記基板上の一方の上記電極に上記棒状構造発光素子の上記半導体コアの一端側の上記露出部分が接続されると共に、上記基板上の他方の上記電極に上記半導体コアの他端側の上記半導体層が接続されていることを特徴とする。
In the light emitting device of the present invention,
Any one of the above rod-shaped structure light emitting elements;
A substrate on which the rod-shaped structure light emitting element is mounted so that the longitudinal direction of the rod-shaped structure light emitting element is parallel to the mounting surface;
Electrodes are formed on the substrate at predetermined intervals,
The exposed portion on one end side of the semiconductor core of the rod-shaped structure light emitting element is connected to one electrode on the substrate, and the semiconductor on the other end side of the semiconductor core is connected to the other electrode on the substrate. It is characterized in that the layers are connected.

上記構成によれば、長手方向が実装面に平行になるように基板に実装された棒状構造発光素子は、半導体層の外周面と基板の実装面とが接触するので、棒状構造発光素子で発生した熱を半導体層から基板に効率よく放熱することができる。したがって、発光効率が高くかつ放熱性のよい発光装置を実現できる。また、上記発光装置では、基板上に棒状構造発光素子を横倒しに配置しているので、基板を含めた厚さを薄くできる。上記発光装置において、例えば直径が1μmで長さ10μmのマイクロオーダーサイズや、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの微細な棒状構造発光素子を用いることにより、使用する半導体の量を少なくでき、この発光装置を用いて薄型化と軽量化が可能なバックライト,照明装置および表示装置などを実現することができる。   According to the above configuration, the rod-shaped structure light emitting element mounted on the substrate so that the longitudinal direction is parallel to the mounting surface is generated in the rod-shaped structure light emitting element because the outer peripheral surface of the semiconductor layer and the mounting surface of the substrate are in contact with each other. Heat can be efficiently radiated from the semiconductor layer to the substrate. Therefore, a light emitting device with high luminous efficiency and good heat dissipation can be realized. Further, in the above light emitting device, since the rod-shaped structure light emitting elements are disposed on the substrate in a horizontal direction, the thickness including the substrate can be reduced. In the above light emitting device, for example, a semiconductor used by using a micro rod size light emitting element having a diameter of 1 μm and a length of 10 μm, or a nano-order size of a diameter or length of at least a diameter of less than 1 μm. Therefore, a backlight, a lighting device, a display device, and the like that can be reduced in thickness and weight can be realized by using the light emitting device.

また、一実施形態の発光装置では、
上記半導体層を覆うように形成された導電層を備えた棒状構造発光素子と、
上記棒状構造発光素子の長手方向が実装面に平行になるように、上記棒状構造発光素子が実装された基板と
を備え、
上記基板上に所定の間隔をあけて電極が形成され、
上記基板上の一方の上記電極に上記棒状構造発光素子の上記半導体コアの一端側の上記露出部分が接続されると共に、上記基板上の他方の上記電極に上記半導体コアの他端側の上記導電層が接続されていることを特徴とする。
In the light emitting device of one embodiment,
A rod-shaped structure light emitting device including a conductive layer formed so as to cover the semiconductor layer;
A substrate on which the rod-shaped structure light emitting element is mounted so that the longitudinal direction of the rod-shaped structure light emitting element is parallel to the mounting surface;
Electrodes are formed on the substrate at predetermined intervals,
The exposed portion on one end side of the semiconductor core of the rod-shaped structure light emitting element is connected to one of the electrodes on the substrate, and the conductive portion on the other end side of the semiconductor core is connected to the other electrode on the substrate. It is characterized in that the layers are connected.

上記実施形態によれば、長手方向が実装面に平行になるように基板に実装された棒状構造発光素子は、導電層の外周面と基板の実装面とが接触するので、棒状構造発光素子で発生した熱を導電層から基板に効率よく放熱することができる。したがって、発光効率が高くかつ放熱性のよい発光装置を実現できる。また、上記発光装置では、基板上に棒状構造発光素子を横倒しに配置しているので、基板を含めた厚さを薄くできる。上記発光装置において、例えば直径が1μmで長さ10μmのマイクロオーダーサイズや、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの微細な棒状構造発光素子を用いることにより、使用する半導体の量を少なくでき、この発光装置を用いて薄型化と軽量化が可能なバックライト,照明装置および表示装置などを実現することができる。   According to the above embodiment, the rod-shaped structure light-emitting element mounted on the substrate so that the longitudinal direction is parallel to the mounting surface is in contact with the outer peripheral surface of the conductive layer and the mounting surface of the substrate. The generated heat can be efficiently radiated from the conductive layer to the substrate. Therefore, a light emitting device with high luminous efficiency and good heat dissipation can be realized. Further, in the above light emitting device, since the rod-shaped structure light emitting elements are disposed on the substrate in a horizontal direction, the thickness including the substrate can be reduced. In the above light emitting device, for example, a semiconductor used by using a micro rod size light emitting element having a diameter of 1 μm and a length of 10 μm, or a nano-order size of a diameter or length of at least a diameter of less than 1 μm. Therefore, a backlight, a lighting device, a display device, and the like that can be reduced in thickness and weight can be realized by using the light emitting device.

また、一実施形態の発光装置では、
上記棒状構造発光素子の上記導電層上かつ上記基板側に形成され、上記半導体層よりも電気抵抗が低い材料からなる第2の導電層を備えた。
In the light emitting device of one embodiment,
A second conductive layer made of a material having a lower electrical resistance than the semiconductor layer is provided on the conductive layer of the rod-shaped structure light emitting element and on the substrate side.

上記実施形態によれば、棒状構造発光素子の導電層上かつ基板側に、半導体層よりも電気抵抗が低い材料からなる第2の導電層を形成することによって、第2の導電層のない棒状構造発光素子の基板と反対の側においても、半導体コアの外周面を覆う導電層があるため、高抵抗の半導体層全体への電流の流れやすさを犠牲にすることなく、第2の導電層によって低抵抗化できる。また、半導体コアの外周面を覆う導電層には、発光効率を考慮すると透過率の低い材料が使えないために低抵抗の材料を用いることができないが、第2の導電層には、透過率よりも低抵抗であることを優先した導電性材料を用いることができる。さらに、長手方向が実装面に平行になるように基板に実装された棒状構造発光素子は、第2の導電層が基板の実装面と接するので、棒状構造発光素子で発生した熱を第2の導電層を介して基板に効率よく放熱することができる。   According to the above embodiment, the second conductive layer made of a material having a lower electrical resistance than the semiconductor layer is formed on the conductive layer of the rod-shaped structured light-emitting element and on the substrate side, so that the rod-shaped structure without the second conductive layer is formed. Since there is a conductive layer covering the outer peripheral surface of the semiconductor core on the side opposite to the substrate of the structured light emitting device, the second conductive layer can be obtained without sacrificing the ease of current flow to the entire high resistance semiconductor layer. Can reduce the resistance. In addition, a low-resistance material cannot be used for the conductive layer covering the outer peripheral surface of the semiconductor core because a low-transmittance material cannot be used in consideration of light emission efficiency, but the second conductive layer has a transmittance. It is possible to use a conductive material that prioritizes low resistance. Further, in the rod-shaped structure light-emitting element mounted on the substrate so that the longitudinal direction is parallel to the mounting surface, the second conductive layer is in contact with the mounting surface of the substrate. Heat can be efficiently radiated to the substrate through the conductive layer.

また、一実施形態の発光装置では、
上記基板上の上記電極間かつ上記棒状構造発光素子の下側に形成された金属部を備えた。
In the light emitting device of one embodiment,
The metal part formed between the said electrodes on the said board | substrate and the lower side of the said rod-shaped structure light emitting element was provided.

上記実施形態によれば、基板上の電極間かつ棒状構造発光素子の下側に金属部を形成することによって、両端が電極に接続された棒状構造発光素子の中央側を金属部の表面に接触させて支えるので、両持ちの棒状構造発光素子が撓むことなく、金属部により支持されると共に、棒状構造発光素子で発生した熱を半導体層から金属部を介して基板に効率よく放熱することができる。   According to the above embodiment, by forming the metal part between the electrodes on the substrate and below the rod-like structure light emitting element, the center side of the rod-like structure light emitting element whose both ends are connected to the electrode is brought into contact with the surface of the metal part Since the two-sided rod-shaped structure light emitting element is supported by the metal part without being bent, the heat generated in the rod-shaped structure light emitting element is efficiently radiated from the semiconductor layer to the substrate through the metal part. Can do.

また、一実施形態の発光装置では、
上記金属部は、上記棒状構造発光素子毎に上記基板上に形成され、
互いに隣接する上記棒状構造発光素子の上記金属部は、電気的に絶縁されている。
In the light emitting device of one embodiment,
The metal part is formed on the substrate for each of the rod-shaped structure light emitting elements,
The metal parts of the rod-shaped structure light emitting elements adjacent to each other are electrically insulated.

上記実施形態によれば、互いに隣接する棒状構造発光素子の向きが逆になっても、棒状構造発光素子の両端が接続された電極間が金属部を介して短絡するのを防止できる。   According to the embodiment, even if the directions of the bar-shaped structure light emitting elements adjacent to each other are reversed, it is possible to prevent a short circuit between the electrodes to which both ends of the bar-shaped structure light emitting element are connected via the metal portion.

また、この発明の発光装置の製造方法では、
上記のいずれか1つの棒状構造発光素子を備えた発光装置の製造方法であって、
独立した電位が夫々与えられる少なくとも2つの電極を単位とする配列領域が形成された絶縁性基板を作成する基板作成工程と、
上記絶縁性基板上にナノオーダーサイズまたはマイクロオーダーサイズの上記棒状構造発光素子を含んだ液体を塗布する塗布工程と、
上記少なくとも2つの電極に上記独立した電圧を夫々印加して、上記棒状構造発光素子を上記少なくとも2つの電極により規定される位置に配列させる配列工程と
を有することを特徴とする。
In the method for manufacturing a light emitting device of the present invention,
A method of manufacturing a light-emitting device including any one of the above rod-shaped structure light-emitting elements,
A substrate creating step for creating an insulating substrate in which an array region having at least two electrodes each having an independent potential applied thereto is formed;
An application step of applying a liquid containing the rod-shaped structure light emitting element of nano-order size or micro-order size on the insulating substrate;
And arranging the rod-shaped light emitting elements at positions defined by the at least two electrodes by applying the independent voltages to the at least two electrodes, respectively.

上記構成によれば、独立した電位が夫々与えられる少なくとも2つの電極を単位とする配列領域が形成された絶縁性基板を作成し、その絶縁性基板上にナノオーダーサイズまたはマイクロオーダーサイズの上記棒状構造発光素子を含んだ液体を塗布する。その後、少なくとも上記2つの電極に独立した電圧を夫々印加して、微細な棒状構造発光素子を少なくとも2つの電極により規定される位置に配列させる。これにより、上記棒状構造発光素子を所定の基板上に容易に配列させることができる。   According to the above configuration, an insulating substrate in which an array region having at least two electrodes each having an independent potential applied thereto is formed is formed, and the rod-shaped nano-order size or micro-order size is formed on the insulating substrate. A liquid containing the structured light emitting element is applied. Thereafter, independent voltages are applied to at least the two electrodes, respectively, so that the fine rod-shaped light emitting elements are arranged at positions defined by the at least two electrodes. Thereby, the said rod-shaped structure light emitting element can be easily arranged on a predetermined | prescribed board | substrate.

また、上記発光装置の製造方法では、微細な棒状構造発光素子のみを用いることによって、使用する半導体の量を少なくできると共に、薄型化と軽量化が可能な発光装置を製造することができる。また、上記棒状構造発光素子は、半導体層で覆われた半導体コアの側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高く省電力な発光装置を実現することができる。   Further, in the above method for manufacturing a light emitting device, by using only a fine rod-shaped structure light emitting element, it is possible to manufacture a light emitting device capable of reducing the amount of semiconductor used and reducing the thickness and weight. In addition, since the light emitting area is widened by emitting light from the entire side surface of the semiconductor core covered with the semiconductor layer, the rod-shaped structure light emitting element can realize a light emitting device with high luminous efficiency and power saving. .

また、この発明のバックライトでは、
上記のいずれか1つの棒状構造発光素子を備えたことを特徴とする。
In the backlight of the present invention,
Any one of the above rod-shaped structure light emitting elements is provided.

上記構成によれば、上記棒状構造発光素子を用いることによって、薄型化と軽量化が可能でかつ発光効率が高く省電力なバックライトを実現できる。   According to the above configuration, by using the rod-shaped structure light emitting element, it is possible to realize a backlight that can be reduced in thickness and weight, has high luminous efficiency, and saves power.

また、この発明の照明装置では、
上記のいずれか1つの棒状構造発光素子を備えたことを特徴とする。
In the lighting device of the present invention,
Any one of the above rod-shaped structure light emitting elements is provided.

上記構成によれば、上記棒状構造発光素子を用いることによって、薄型化と軽量化が可能でかつ発光効率が高く省電力な照明装置を実現できる。   According to the said structure, by using the said rod-shaped structure light emitting element, thickness reduction and weight reduction are possible, and the illuminating device with high luminous efficiency and power saving is realizable.

また、この発明の表示装置では、
上記のいずれか1つの棒状構造発光素子を備えたことを特徴とする。
In the display device of the present invention,
Any one of the above rod-shaped structure light emitting elements is provided.

上記構成によれば、上記棒状構造発光素子を用いることによって、薄型化と軽量化が可能でかつ発光効率が高く省電力な表示装置を実現できる。   According to the above configuration, by using the light emitting element with a rod-like structure, a display device that can be reduced in thickness and weight and has high luminous efficiency and low power consumption can be realized.

以上より明らかなように、この発明の棒状構造発光素子によれば、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子を実現することができる。   As is apparent from the above, according to the rod-shaped structure light emitting device of the present invention, it is possible to realize a fine rod-shaped structure light emitting device with high luminous efficiency that can be easily connected to an electrode with a simple configuration.

また、この発明の発光装置およびその製造方法によれば、上記棒状構造発光素子を用いることにより薄型化と軽量化が可能でかつ発光効率が高く省電力な発光装置およびその製造方法を実現することができる。   Further, according to the light emitting device and the manufacturing method thereof of the present invention, it is possible to realize a light emitting device that can be reduced in thickness and weight, has high luminous efficiency, and saves power by using the rod-shaped structure light emitting element, and a manufacturing method thereof. Can do.

また、この発明のバックライトと照明装置および表示装置によれば、上記棒状構造発光素子を用いることにより薄型化と軽量化が可能でかつ発光効率が高く省電力なバックライトと照明装置および表示装置を実現することができる。   In addition, according to the backlight, the illumination device, and the display device of the present invention, the backlight, the illumination device, and the display device that can be reduced in thickness and weight by using the rod-shaped structure light-emitting element and have high luminous efficiency and power saving. Can be realized.

図1はこの発明の第1実施形態の棒状構造発光素子の斜視図である。FIG. 1 is a perspective view of a rod-shaped structure light emitting device according to a first embodiment of the present invention. 図2は上記棒状構造発光素子の断面図である。FIG. 2 is a cross-sectional view of the rod-shaped structure light emitting device. 図3は比較例の棒状構造発光素子の要部の断面模式図である。FIG. 3 is a schematic cross-sectional view of the main part of a bar-shaped structure light emitting device of a comparative example. 図4は上記第1実施形態の棒状構造発光素子の要部の断面模式図である。FIG. 4 is a schematic cross-sectional view of the main part of the rod-shaped structure light emitting device of the first embodiment. 図5は上記第1実施形態の棒状構造発光素子の変形例の要部の断面図である。FIG. 5 is a cross-sectional view of a main part of a modification of the rod-shaped structure light emitting device of the first embodiment. 図6は上記棒状構造発光素子の半導体コアの露出部分の電極接続を説明するための要部の断面図である。FIG. 6 is a cross-sectional view of the main part for explaining electrode connection of the exposed portion of the semiconductor core of the rod-shaped structure light emitting device. 図7はこの発明の第2実施形態の棒状構造発光素子の斜視図である。FIG. 7 is a perspective view of a rod-shaped structure light emitting device according to a second embodiment of the present invention. 図8は上記第2実施形態の棒状構造発光素子の要部の断面模式図である。FIG. 8 is a schematic cross-sectional view of the main part of the rod-shaped structure light emitting device of the second embodiment. 図9Aは上記第1実施形態の棒状構造発光素子の半導体コアの露出部分の断面模式図である。FIG. 9A is a schematic cross-sectional view of an exposed portion of the semiconductor core of the rod-shaped structure light emitting device of the first embodiment. 図9Bは上記第2実施形態の棒状構造発光素子の半導体コアの露出部分の断面模式図である。FIG. 9B is a schematic cross-sectional view of the exposed portion of the semiconductor core of the rod-shaped structure light emitting device of the second embodiment. 図9Cは変形例の棒状構造発光素子の半導体コアの露出部分の断面模式図である。FIG. 9C is a schematic cross-sectional view of an exposed portion of a semiconductor core of a rod-shaped structure light emitting element of a modification. 図10はこの発明の第3実施形態の棒状構造発光素子の斜視図である。FIG. 10 is a perspective view of a rod-shaped structure light emitting device according to a third embodiment of the present invention. 図11は上記第3実施形態の棒状構造発光素子の第1の変形例の断面模式図である。FIG. 11 is a schematic cross-sectional view of a first modification of the rod-shaped structure light emitting device of the third embodiment. 図12は上記第3実施形態の棒状構造発光素子の第2の変形例の断面模式図である。FIG. 12 is a schematic cross-sectional view of a second modification of the rod-shaped structure light emitting device of the third embodiment. 図13はこの発明の第4実施形態の棒状構造発光素子の断面図である。FIG. 13 is a cross-sectional view of a rod-shaped structure light emitting device according to the fourth embodiment of the present invention. 図14は上記棒状構造発光素子の斜視図である。FIG. 14 is a perspective view of the rod-shaped structure light emitting element. 図15はこの発明の第5実施形態の棒状構造発光素子の断面図である。FIG. 15 is a sectional view of a rod-shaped structure light emitting device according to the fifth embodiment of the present invention. 図16は上記棒状構造発光素子の斜視図である。FIG. 16 is a perspective view of the rod-shaped structure light emitting element. 図17はこの発明の第6実施形態の棒状構造発光素子の斜視図である。FIG. 17 is a perspective view of a rod-shaped structure light emitting device according to the sixth embodiment of the present invention. 図18はこの発明の第7実施形態の棒状構造発光素子の斜視図である。FIG. 18 is a perspective view of a rod-shaped structure light emitting device according to the seventh embodiment of the present invention. 図19はこの発明の第8実施形態の棒状構造発光素子の断面図である。FIG. 19 is a sectional view of a rod-shaped structure light emitting device according to an eighth embodiment of the present invention. 図20は上記第8実施形態の棒状構造発光素子の要部の断面模式図である。FIG. 20 is a schematic cross-sectional view of the main part of the rod-shaped structure light emitting device of the eighth embodiment. 図21はこの発明の第9実施形態の棒状構造発光素子を備えた発光装置の斜視図である。FIG. 21 is a perspective view of a light-emitting device provided with a rod-shaped structure light-emitting element according to the ninth embodiment of the present invention. 図22はこの発明の第10実施形態の棒状構造発光素子を備えた発光装置の側面図である。FIG. 22 is a side view of a light emitting device including the rod-shaped structure light emitting element according to the tenth embodiment of the present invention. 図23は上記発光装置の断面図である。FIG. 23 is a cross-sectional view of the light emitting device. 図24はこの発明の第11実施形態の発光装置の斜視図である。FIG. 24 is a perspective view of a light emitting device according to an eleventh embodiment of the present invention. 図25は上記発光装置において、隣接する棒状構造発光素子が逆向きの状態の要部の平面図である。FIG. 25 is a plan view of the main part of the light emitting device with the adjacent bar-shaped structure light emitting elements in the reverse direction. 図26はこの発明の第12実施形態の棒状構造発光素子を備えた発光装置、バックライト、照明装置および表示装置に用いる絶縁性基板の平面図である。FIG. 26 is a plan view of an insulating substrate used in a light emitting device, a backlight, a lighting device, and a display device including a bar-shaped light emitting element according to a twelfth embodiment of the present invention. 図27は図26のXXVII−XXVII線から見た断面模式図である。FIG. 27 is a schematic sectional view taken along line XXVII-XXVII in FIG. 図28は上記棒状構造発光素子を配列する原理を説明する図である。FIG. 28 is a diagram for explaining the principle of arranging the rod-shaped structure light emitting elements. 図29は上記棒状構造発光素子を配列するときに電極に与える電位を説明する図である。FIG. 29 is a diagram for explaining the potential applied to the electrodes when arranging the rod-shaped structure light emitting elements. 図30は上記棒状構造発光素子を配列した絶縁性基板の平面図である。FIG. 30 is a plan view of an insulating substrate on which the rod-shaped structure light emitting elements are arranged. 図31は上記表示装置の平面図である。FIG. 31 is a plan view of the display device. 図32は上記表示装置の表示部の要部の回路図である。FIG. 32 is a circuit diagram of a main part of the display unit of the display device.

以下、この発明の棒状構造発光素子、発光装置、発光装置の製造方法、バックライト、照明装置および表示装置を図示の実施の形態により詳細に説明する。なお、この実施の形態では、第1導電型をn型とし、第2導電型をp型としたが、第1導電型をp型とし、第2導電型をn型としてもよい。   Hereinafter, the rod-shaped structure light emitting element, the light emitting device, the method for manufacturing the light emitting device, the backlight, the illumination device, and the display device of the present invention will be described in detail with reference to the illustrated embodiments. In this embodiment, the first conductivity type is n-type and the second conductivity type is p-type. However, the first conductivity type may be p-type and the second conductivity type may be n-type.

〔第1実施形態〕
図1はこの発明の第1実施形態の棒状構造発光素子の斜視図を示しており、図2は上記棒状構造発光素子の断面図を示している。
[First Embodiment]
FIG. 1 is a perspective view of a rod-shaped structure light emitting device according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view of the rod-shaped structure light emitting device.

この第1実施形態の棒状構造発光素子Aは、図1,図2に示すように、断面がほぼ円形の棒状のn型GaNからなる半導体コア11と、上記半導体コア11の一端側の部分を覆わないで露出部分11aとするように、半導体コア11の露出部分11a以外の被覆部分11bを覆うp型GaNからなる半導体層12とを備えている。上記半導体コア11は、露出部分11aを被覆部分11bよりも小径にして、露出部分11aの外周面と被覆部分11bの外周面との間に段差部11cを設けている。また、半導体コア11の他端側の端面は、半導体層12により覆われている。   As shown in FIGS. 1 and 2, the rod-shaped structure light emitting device A of the first embodiment includes a semiconductor core 11 made of a rod-shaped n-type GaN having a substantially circular cross section, and a portion on one end side of the semiconductor core 11. A semiconductor layer 12 made of p-type GaN covering the covered portion 11b other than the exposed portion 11a of the semiconductor core 11 is provided so as to be the exposed portion 11a without being covered. In the semiconductor core 11, the exposed portion 11a has a smaller diameter than the covering portion 11b, and a step portion 11c is provided between the outer peripheral surface of the exposed portion 11a and the outer peripheral surface of the covering portion 11b. Further, the end surface on the other end side of the semiconductor core 11 is covered with the semiconductor layer 12.

上記棒状構造発光素子Aは、次のように製造する。   The rod-shaped structure light emitting device A is manufactured as follows.

まず、n型GaNからなる基板上に、成長穴を有するマスクを形成する。マスクには、酸化シリコン(SiO2)あるいは窒化シリコン(Si34)など半導体コア11および半導体層12に対して選択的にエッチング可能な材料を用いる。成長穴の形成は、通常の半導体プロセスに使用する公知のリソグラフィー法とドライエッチング法が利用できる。 First, a mask having a growth hole is formed on a substrate made of n-type GaN. For the mask, a material that can be selectively etched with respect to the semiconductor core 11 and the semiconductor layer 12 such as silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ) is used. The growth hole can be formed by a known lithography method and dry etching method used in a normal semiconductor process.

次に、マスクの成長穴により露出した基板上に触媒金属層を形成する。この触媒金属層は、上記リソグラフィー法とドライエッチング法により成長穴形成の際に使用したレジストをマスク上に残したままの状態で、レジストおよび成長穴から露出した基板上(成長穴内の露出領域上)に触媒金属層を200nm〜400nm程度堆積し、リフトオフ法により、上記レジストとともにレジスト上の触媒金属層を除去することによって形成される。触媒金属層には、Ga,N,In,Alなどの化合物半導体材料ならびにSi、Mgなどの不純物に対して、これらを溶解して取り込み、かつ自身とは化合物を形成しないNi,Fe,Auなどの材料が使用できる。   Next, a catalytic metal layer is formed on the substrate exposed by the growth holes of the mask. The catalytic metal layer is formed on the resist and the substrate exposed from the growth hole (on the exposed region in the growth hole) while leaving the resist used for the growth hole formation on the mask by the lithography method and the dry etching method. ) Is deposited by removing the catalyst metal layer on the resist together with the resist by a lift-off method. Ni, Fe, Au, etc. that dissolve and take in compound semiconductor materials such as Ga, N, In, Al and impurities such as Si, Mg, etc., and do not form compounds with themselves in the catalytic metal layer Can be used.

次に、上記マスクの成長穴内に触媒金属層が形成された基板上に、MOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長)装置を用いて、触媒金属層と基板との界面からn型GaNを結晶成長させて棒状の半導体コア11を形成する。MOCVD装置の温度を950℃程度に設定し、成長ガスとしてトリメチルガリウム(TMG)およびアンモニア(NH3)を使用し、n型不純物供給用にシラン(SiH3)を、さらにキャリアガスとして水素(H3)を供給することによって、Siを不純物としたn型GaNの半導体コアを成長させることができる。この際、成長する半導体コア11の直径は、上記マスクの成長穴内では、上記触媒金属層の直径が成長穴の内径以上に広がらないために成長穴の内径によって決まるが、成長する半導体コア11の高さがマスクの高さ(成長穴の深さ)を越えてからは、島状に凝集する触媒金属層の直径で決めることができる。したがって、上記の膜厚で触媒金属層を形成した場合、成長する半導体コア11の高さがマスクの高さ(成長穴の深さ)を越えてからは、成長穴よりも大きな直径で島状に凝集するため、成長穴内の半導体コア11の露出部分11aの直径よりも大きな直径で半導体コア11の被覆部分11bを成長させることができる。 Next, using a MOCVD (Metal Organic Chemical Vapor Deposition) apparatus on the substrate having the catalytic metal layer formed in the growth hole of the mask, an n-type is formed from the interface between the catalytic metal layer and the substrate. GaN is crystal-grown to form a rod-shaped semiconductor core 11. The temperature of the MOCVD apparatus is set to about 950 ° C., trimethylgallium (TMG) and ammonia (NH 3 ) are used as growth gases, silane (SiH 3 ) is used for supplying n-type impurities, and hydrogen (H 3 ), an n-type GaN semiconductor core having Si as an impurity can be grown. At this time, the diameter of the growing semiconductor core 11 is determined by the inner diameter of the growing hole because the diameter of the catalytic metal layer does not expand beyond the inner diameter of the growing hole in the growing hole of the mask. After the height exceeds the mask height (growth hole depth), it can be determined by the diameter of the catalyst metal layer that aggregates in an island shape. Therefore, when the catalytic metal layer is formed with the above film thickness, after the height of the growing semiconductor core 11 exceeds the height of the mask (the depth of the growth hole), the island shape has a larger diameter than the growth hole. Therefore, the covering portion 11b of the semiconductor core 11 can be grown with a diameter larger than the diameter of the exposed portion 11a of the semiconductor core 11 in the growth hole.

次に、半導体コア11の先端に上記島状の触媒金属層を保持したままの状態で、棒状の半導体コア11を覆うように基板全面にp型GaNからなる半導体層を形成する。MOCVD装置の温度を960℃程度に設定し、成長ガスとしてトリメチルガリウム(TMG)およびアンモニア(NH3)を、p型不純物供給用にビスシクロペンタジエニルマグネシウム(Cp2Mg)を用いることによってマグネシウム(Mg)を不純物とするp型GaNを成長させることができる。 Next, a semiconductor layer made of p-type GaN is formed on the entire surface of the substrate so as to cover the rod-shaped semiconductor core 11 while the island-shaped catalyst metal layer is held at the tip of the semiconductor core 11. By setting the temperature of the MOCVD apparatus to about 960 ° C., using trimethylgallium (TMG) and ammonia (NH 3 ) as growth gases and biscyclopentadienylmagnesium (Cp 2 Mg) for supplying p-type impurities, It is possible to grow p-type GaN having (Mg) as an impurity.

次に、上記島状の触媒金属層を除去すると共に、リフトオフにより半導体層のうち半導体コアを覆う部分を除く領域とマスクを除去して、棒状の半導体コア11の基板側の外周面を露出させて露出部分を形成する。この状態で、上記半導体コア11の基板と反対の側の端面は、半導体層12により覆われており、半導体コア11の被覆部分11bよりも小径の露出部分11aが形成されている。   Next, the island-like catalytic metal layer is removed, and the region and mask other than the portion of the semiconductor layer that covers the semiconductor core are removed by lift-off to expose the outer peripheral surface of the rod-shaped semiconductor core 11 on the substrate side. To form an exposed portion. In this state, the end surface of the semiconductor core 11 opposite to the substrate is covered with the semiconductor layer 12, and an exposed portion 11a having a smaller diameter than the covered portion 11b of the semiconductor core 11 is formed.

上記マスクが酸化シリコン(SiO2)あるいは窒化シリコン(Si34)で構成されている場合、フッ酸(HF)を含んだ溶液を用いることにより、容易に半導体コアおよび半導体コアを覆う半導体層部分に影響を与えずにマスクをエッチングすることができ、マスクとともにマスク上の半導体コアを覆う半導体層の部分を除く領域をリフトオフにより除去することができる。この実施形態においては、除去されたマスクの膜厚によって、半導体コア11の露出部分11aの長さが決まる。この実施形態の露出工程では、リフトオフを用いたがエッチングにより半導体コアの一部を露出させてもよい。 When the mask is made of silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ), a semiconductor layer and a semiconductor layer that easily covers the semiconductor core can be obtained by using a solution containing hydrofluoric acid (HF). The mask can be etched without affecting the portion, and the region other than the portion of the semiconductor layer covering the semiconductor core on the mask together with the mask can be removed by lift-off. In this embodiment, the length of the exposed portion 11a of the semiconductor core 11 is determined by the thickness of the removed mask. In the exposure process of this embodiment, lift-off is used, but a part of the semiconductor core may be exposed by etching.

次に、イソプロピルアルコール(IPA)水溶液中に基板を浸し、超音波(例えば数10KHz)を用いて基板を基板平面に沿って振動させることにより、基板上に立設する半導体コア11の基板側に近い根元を折り曲げるように、半導体層12に覆われた半導体コア11に対して応力が働いて、半導体層12に覆われた半導体コア11が基板から切り離される。   Next, the substrate is immersed in an isopropyl alcohol (IPA) aqueous solution, and the substrate is vibrated along the plane of the substrate using ultrasonic waves (for example, several tens of kHz). Stress is applied to the semiconductor core 11 covered with the semiconductor layer 12 so that the close base is bent, and the semiconductor core 11 covered with the semiconductor layer 12 is separated from the substrate.

こうして、n型GaNからなる基板から切り離なされた微細な棒状構造発光素子を製造することができる。   In this way, a fine rod-shaped structure light emitting device separated from the substrate made of n-type GaN can be manufactured.

また、上記半導体コアを超音波を用いて基板から切り離したが、これに限らず、切断工具を用いて半導体コアを基板から機械的に折り曲げることによって切り離してもよい。この場合、簡単な方法で基板上に設けられた微細な複数の棒状構造発光素子を短時間で切り離すことができる。   Moreover, although the said semiconductor core was cut off from the board | substrate using the ultrasonic wave, you may cut off by not only this but mechanically bending the semiconductor core from a board | substrate using a cutting tool. In this case, a plurality of fine rod-shaped light emitting elements provided on the substrate can be separated in a short time by a simple method.

さらに、上記棒状構造発光素子は、半導体層12が半導体コア11の外周面から半径方向外向に結晶成長し、径方向の成長距離が短くかつ欠陥が外向に逃げるため、結晶欠陥の少ない半導体層12により半導体コア11を覆うことができる。したがって、特性の良好な棒状構造発光素子を実現することができる。   Furthermore, in the rod-shaped structure light emitting element, the semiconductor layer 12 grows crystal outward from the outer peripheral surface of the semiconductor core 11 in the radial direction, the radial growth distance is short, and the defects escape outward, so the semiconductor layer 12 with few crystal defects. Thus, the semiconductor core 11 can be covered. Therefore, it is possible to realize a rod-shaped structure light emitting device with good characteristics.

上記構成の棒状構造発光素子Aによれば、棒状のn型の半導体コア11の一端側の部分を覆わないで露出部分11aとするように、半導体コア11の露出部分11a以外の被覆部分11bをp型の半導体層12により覆うことによって、マイクロオーダーサイズやナノオーダーサイズの微細な棒状構造発光素子であっても、半導体コア11の露出部分11aをn側電極に接続し、半導体コア11を覆う半導体層12の部分にp側電極を接続することが可能となる。この棒状構造発光素子Aは、半導体コア11の露出部分11aにn側電極を接続し、半導体層12にp側電極を接続して、p側電極からn側電極に電流を流すことにより、半導体コア11の外周面と半導体層12の内周面との界面(pn接合部)で電子と正孔の再結合が起きて光が放出される。この棒状構造発光素子Aでは、半導体層12で覆われた半導体コア11の側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高い。   According to the rod-shaped structure light emitting element A having the above-described configuration, the covering portion 11b other than the exposed portion 11a of the semiconductor core 11 is formed so as to be the exposed portion 11a without covering the portion on one end side of the rod-shaped n-type semiconductor core 11. By covering with the p-type semiconductor layer 12, the exposed portion 11 a of the semiconductor core 11 is connected to the n-side electrode to cover the semiconductor core 11 even in a micro rod-shaped or nano-order sized light emitting element. It becomes possible to connect the p-side electrode to the portion of the semiconductor layer 12. In this rod-shaped structure light emitting element A, an n-side electrode is connected to the exposed portion 11a of the semiconductor core 11, a p-side electrode is connected to the semiconductor layer 12, and a current flows from the p-side electrode to the n-side electrode. Electrons and holes are recombined at the interface (pn junction) between the outer peripheral surface of the core 11 and the inner peripheral surface of the semiconductor layer 12, and light is emitted. In this rod-shaped structure light-emitting element A, the light emission region is widened by emitting light from the entire side surface of the semiconductor core 11 covered with the semiconductor layer 12, so that the light emission efficiency is high.

したがって、簡単な構成で電極接続が容易にできる発光効率の高い微細な棒状構造発光素子Aを実現することができる。また、上記棒状構造発光素子Aは、基板と一体でないので、装置への実装の自由度が高い。   Therefore, it is possible to realize a fine rod-shaped light emitting element A with high luminous efficiency that can easily connect electrodes with a simple configuration. Moreover, since the said rod-shaped structure light emitting element A is not integral with a board | substrate, the freedom degree of mounting to an apparatus is high.

ここで、微細な棒状構造発光素子とは、例えば直径が1μmで長さ10μm〜30μmのマイクロオーダーサイズや、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの素子である。また、上記棒状構造発光素子は、使用する半導体の量を少なくでき、発光素子を用いた装置の薄型化と軽量化が可能でかつ発光効率が高く省電力な発光装置,バックライト,照明装置および表示装置などを実現することができる。   Here, the fine rod-shaped structure light emitting device is, for example, a micro-order size having a diameter of 1 μm and a length of 10 μm to 30 μm, or a nano-order size device having a diameter or length of less than 1 μm. Further, the rod-shaped structure light-emitting element can reduce the amount of semiconductors used, can reduce the thickness and weight of the device using the light-emitting element, and has high luminous efficiency and low power consumption, a backlight, a lighting device, and A display device or the like can be realized.

また、上記半導体コア11の一端側の外周面が、例えば1μm〜5μm程度露出していることによって、半導体コア11の一端側の外周面の露出部分11aに一方のn側電極を接続し、半導体コア11の他端側の半導体層12にp側電極を接続することが可能となり、両端に電極を離して接続でき、半導体層12に接続するp側電極と半導体コア11の露出部分11aが短絡するのを容易に防止することができる。   Further, when the outer peripheral surface on one end side of the semiconductor core 11 is exposed, for example, by about 1 μm to 5 μm, one n-side electrode is connected to the exposed portion 11 a of the outer peripheral surface on one end side of the semiconductor core 11, The p-side electrode can be connected to the semiconductor layer 12 on the other end side of the core 11, the electrodes can be separated from each other, and the p-side electrode connected to the semiconductor layer 12 and the exposed portion 11 a of the semiconductor core 11 are short-circuited. This can be easily prevented.

図3は比較例の棒状構造発光素子の要部の断面模式図を示しており、この発明の棒状構造発光素子ではない。図3の棒状構造発光素子は、上記第1実施形態の図1,図2に示す棒状構造発光素子Aと異なる点は、半導体コア1011の露出部分の外周面と、半導体コア1011の半導体層1012により覆われた被覆部分との間に段差がないことである。   FIG. 3 is a schematic cross-sectional view of the main part of the bar-shaped structure light emitting device of the comparative example, and is not the bar-shaped structure light emitting device of the present invention. 3 differs from the rod-shaped structure light emitting device A shown in FIGS. 1 and 2 of the first embodiment in that the outer peripheral surface of the exposed portion of the semiconductor core 1011 and the semiconductor layer 1012 of the semiconductor core 1011 are different. That is, there is no step between the covered portion and the covered portion.

この棒状構造発光素子では、半導体コア1011の露出部分にn側電極を接続する場合、段差部がないのでn側電極1013と半導体層1012の端面との距離Lが近くなって、n側電極1013と半導体層12との間の短絡やリーク電流の発生する恐れがある。また、この棒状構造発光素子では、図3に示すように、半導体コア1011内から露出部分の外周面への入射角が大きい光は、半導体コア1011内に反射して外部に取り出しにくい。   In this rod-shaped structure light emitting device, when the n-side electrode is connected to the exposed portion of the semiconductor core 1011, there is no stepped portion, and therefore the distance L between the n-side electrode 1013 and the end surface of the semiconductor layer 1012 becomes short, and the n-side electrode 1013. And a short circuit between the semiconductor layer 12 and a leakage current may occur. Further, in this rod-shaped structure light emitting element, as shown in FIG. 3, light having a large incident angle from the inside of the semiconductor core 1011 to the outer peripheral surface of the exposed portion is reflected inside the semiconductor core 1011 and is difficult to take out to the outside.

これに対して、図4の断面模式図に示すように、上記第1実施形態の図1,図2に示す棒状構造発光素子では、図4に示すように、半導体コア11の半導体層12に覆われていない露出部分11aの外周面と、半導体コア11の半導体層12に覆われた被覆部分の外周面との間に段差部11cを設けることによって、半導体コア11の露出部分11aの外周面と被覆部分11bの外周面とが一致して段差がない図3の比較例に比べて、半導体コア11の露出部分11aと半導体層12との境界に形成された段差部11cにより半導体層12の端面の位置が決定され、製造時に境界位置のばらつきを抑制することができる。図3の比較例のように、半導体コアの露出部分の外周面と被覆部分の外周面が一致して段差がない場合は、半導体コアの成長時にマスクの成長穴内壁と半導体コアとの間に隙間が生じる虞があり、続いて半導体層の形成を行う際に、半導体層がマスクの成長穴内壁と半導体コアの隙間領域にも形成され、本来マスクの上面の位置で規定される半導体コアの露出部分と被覆部分の境界がばらつくことがある。これに対して、図4に示す第1実施形態のように、半導体コアの露出部分の外周面と被覆部分の外周面に段差がある場合、製造時において、マスクの高さを越えてから成長穴の内径よりも大きな直径で半導体コアを成長させるため、マスクの成長穴内壁と半導体コアの間に隙間が生じたとしても、隙間を塞ぐように半導体コアが成長し、半導体層の形成時に半導体層がマスク成長穴内壁と半導体コアの隙間領域に形成されるのを防止することができる。図4では、n側電極13と半導体層12の端面との長手方向の距離が同じでも、段差部11cだけ径方向に距離が広がる。   On the other hand, as shown in the schematic cross-sectional view of FIG. 4, in the rod-like structure light emitting device shown in FIGS. 1 and 2 of the first embodiment, the semiconductor layer 12 of the semiconductor core 11 is formed as shown in FIG. By providing a step portion 11c between the outer peripheral surface of the uncovered exposed portion 11a and the outer peripheral surface of the covered portion of the semiconductor core 11 covered with the semiconductor layer 12, the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 is provided. Compared with the comparative example of FIG. 3 in which the outer peripheral surface of the covering portion 11b coincides with that of the covering portion 11b, the step portion 11c formed at the boundary between the exposed portion 11a of the semiconductor core 11 and the semiconductor layer 12 The position of the end face is determined, and variations in the boundary position can be suppressed during manufacturing. When the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion coincide with each other as in the comparative example of FIG. 3 and there is no step, the gap between the inner wall of the growth hole of the mask and the semiconductor core is increased during the growth of the semiconductor core. When a semiconductor layer is subsequently formed, the semiconductor layer is also formed in the gap region between the growth hole inner wall of the mask and the semiconductor core, and the semiconductor core is originally defined by the position of the upper surface of the mask. The boundary between the exposed portion and the covered portion may vary. On the other hand, when there is a step between the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion as in the first embodiment shown in FIG. Since the semiconductor core is grown with a diameter larger than the inner diameter of the hole, even if a gap is formed between the inner wall of the growth hole of the mask and the semiconductor core, the semiconductor core grows so as to close the gap, and the semiconductor is formed when the semiconductor layer is formed. It is possible to prevent the layer from being formed in the gap region between the inner wall of the mask growth hole and the semiconductor core. In FIG. 4, even if the distance in the longitudinal direction between the n-side electrode 13 and the end face of the semiconductor layer 12 is the same, the distance increases in the radial direction by the step portion 11c.

また、上記半導体コア11の露出部分11aの外周面と被覆部分11bの外周面との間に設けられた段差部11cによって、半導体コア11の露出部分11aの外周面と半導体層12との距離を遠ざけることができるため、半導体コア11の露出部分11aにn側電極を接続する場合に、n側電極と半導体層12との間の短絡やリーク電流の発生を抑制することができる。さらに、半導体コア11の露出部分11aの外周面と被覆部分11bの外周面との境界に形成された段差部11cから外部へ光が取り出されやすくするので、光の取り出し効率が向上する。   Further, the step portion 11c provided between the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 and the outer peripheral surface of the covering portion 11b allows the distance between the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 and the semiconductor layer 12 to be increased. Since the n-side electrode can be connected to the exposed portion 11 a of the semiconductor core 11, it is possible to suppress the occurrence of a short circuit or leakage current between the n-side electrode and the semiconductor layer 12. Furthermore, light can be easily extracted to the outside from the step portion 11c formed at the boundary between the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 and the outer peripheral surface of the covering portion 11b, so that the light extraction efficiency is improved.

図5は上記第1実施形態の棒状構造発光素子の変形例の要部の断面図を示している。   FIG. 5 shows a cross-sectional view of a main part of a modification of the rod-shaped structure light emitting device of the first embodiment.

この変形例の棒状構造発光素子では、半導体コア15は、露出部分15aを被覆部分15bよりも大径にして、露出部分15aの外周面と被覆部分15bの外周面との間に段差部15cを設けている。上記半導体コア15の露出部分15aにn側電電極17を接続している。   In the rod-shaped structure light emitting element of this modification, the semiconductor core 15 has a stepped portion 15c between the outer peripheral surface of the exposed portion 15a and the outer peripheral surface of the covered portion 15b, with the exposed portion 15a having a larger diameter than the covered portion 15b. Provided. An n-side electrode 17 is connected to the exposed portion 15 a of the semiconductor core 15.

図5に示すように、半導体コア15の露出部分15aの外周面と被覆部分15bの外周面との境界に段差部15cが形成されているため、外部への光の取り出し効率が向上する。また、上記半導体コア15の被覆部分15bよりも露出部分15aの径が大きいので、半導体コア11の露出部分15aに接続されるn側電極17との接触面が大きくとれるので、コンタクト抵抗を下げることができる。   As shown in FIG. 5, since the step portion 15c is formed at the boundary between the outer peripheral surface of the exposed portion 15a of the semiconductor core 15 and the outer peripheral surface of the covering portion 15b, the light extraction efficiency to the outside is improved. Moreover, since the diameter of the exposed portion 15a is larger than the covered portion 15b of the semiconductor core 15, the contact surface with the n-side electrode 17 connected to the exposed portion 15a of the semiconductor core 11 can be made large, so that the contact resistance is lowered. Can do.

また、上記第1実施形態の棒状構造発光素子Aによれば、半導体コア11の被覆部分11bの長手方向に直交する断面の外周長よりも、半導体コア11の露出部分11aの長手方向に直交する断面の外周長を短くすることによって、すなわち、半導体コア11の被覆部分11bよりも露出部分11aが小径であることによって、製造工程において基板上に立設するように形成された半導体コア11の露出部分11aを基板側に設けることで半導体コア11が折れやすくなり、製造が容易になる。既に説明したように、半導体コア11は、IPA中で超音波により振動させることにより基板から切り離されるが、半導体コア11の露出部分11aが細くなっていることにより切り離しが容易になる。   In addition, according to the rod-shaped structure light emitting element A of the first embodiment, it is orthogonal to the longitudinal direction of the exposed portion 11a of the semiconductor core 11 rather than the outer peripheral length of the cross section orthogonal to the longitudinal direction of the covered portion 11b of the semiconductor core 11. The exposure of the semiconductor core 11 formed to stand on the substrate in the manufacturing process by shortening the outer peripheral length of the cross section, that is, by exposing the exposed portion 11a to be smaller in diameter than the covering portion 11b of the semiconductor core 11. By providing the portion 11a on the substrate side, the semiconductor core 11 is easily broken, and the manufacture is facilitated. As already described, the semiconductor core 11 is separated from the substrate by vibrating with ultrasonic waves in IPA. However, the semiconductor core 11 is easily separated because the exposed portion 11a of the semiconductor core 11 is thin.

また、上記半導体コア11の露出部分11aが段差部11cで低い側(半導体層12側が高い側)になることによって、半導体コア11の露出部分11aの外周面と半導体層12との距離を遠ざけることができるため、半導体コア11の露出部分11aにn側電極を接続する場合に、n側電極と半導体層12との間の短絡やリーク電流の発生を抑制することができる。   Further, the exposed portion 11a of the semiconductor core 11 is on the lower side of the step portion 11c (the semiconductor layer 12 side is higher), thereby increasing the distance between the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 and the semiconductor layer 12. Therefore, when an n-side electrode is connected to the exposed portion 11a of the semiconductor core 11, a short circuit or leakage current between the n-side electrode and the semiconductor layer 12 can be suppressed.

なお、上記半導体コア11の露出部分11aと被覆部分11bのそれぞれの断面は円形状に限るものではなく、六角形などの他の多角形の断面形状でもよく、また、半導体コアの露出部分と被覆部分とが異なる断面形状であってもよく、半導体コア11の被覆部分11bよりも露出部分11aが小径であれば、同様の効果を有する。   The cross sections of the exposed portion 11a and the covering portion 11b of the semiconductor core 11 are not limited to a circular shape, but may be other polygonal cross-sectional shapes such as a hexagon, and the exposed portion and the covering of the semiconductor core. The cross-sectional shape may be different from that of the portion, and the same effect can be obtained if the exposed portion 11a has a smaller diameter than the covered portion 11b of the semiconductor core 11.

また、上記半導体コア11の露出部分11aの長手方向に直交する断面が略円形状であることによって、製造工程において半導体コア11の成長時に使用するマスクパターンの形状が円形でよく、基板の平面方向の結晶方位に位置あわせたマスクレイアウトの制限を受けず、また、方位を揃えるための位置合わせ精度が不要のため、製造が容易にできる。   Further, since the cross section orthogonal to the longitudinal direction of the exposed portion 11a of the semiconductor core 11 is substantially circular, the shape of the mask pattern used when the semiconductor core 11 is grown in the manufacturing process may be circular, and the plane direction of the substrate Since the mask layout is not limited by the crystal orientation and the alignment accuracy for aligning the orientation is not required, the manufacturing can be facilitated.

図6は上記棒状構造発光素子Aの半導体コアの露出部分の電極接続を説明するための要部の断面図を示しており、長手方向が実装面に平行になるように棒状構造発光素子Aを基板10に実装すると共に、基板10上に形成されたn側電極14に半導体コア11の露出部分11aを接続している。   FIG. 6 is a cross-sectional view of the main part for explaining electrode connection of the exposed portion of the semiconductor core of the bar-shaped light emitting element A. The bar-shaped light emitting element A is arranged so that the longitudinal direction is parallel to the mounting surface. While being mounted on the substrate 10, the exposed portion 11 a of the semiconductor core 11 is connected to the n-side electrode 14 formed on the substrate 10.

図6に示すように、半導体コア11の半導体層12に覆われた被覆部分11bにおいて、半導体層12の外形よりも半導体コア11の露出部分11aの外形の方が小さくなるため、棒状構造発光素子を基板10上に基板平面に対して長手方向が平行になるように実装するときに、半導体層12の外周面と基板10との接触がとりやすくなり、放熱効率が向上する。すなわち、半導体コア11の露出部分11aは細いために変形してn側電極14に良好に接続され、半導体コア11の半導体層12に覆われた被覆部分11bは変形することなく基板10と密着することができるため、放熱性に優れる。一方、半導体コア11の露出部分11aの外周面と半導体層12に覆われた被覆部分11bの外周面が一致する場合、または半導体コア11の露出部分11aの外形が半導体層12に覆われた被覆部分11bの外形より大きい場合、半導体コア11の露出部分11aは変形し難い。それゆえ、半導体コア11の露出部分11aがn側電極14に接続される際に、半導体コア11の半導体層12に覆われた被覆部分11bが変形し、基板10と密着しなくなることにより放熱性が悪化する。   As shown in FIG. 6, in the covered portion 11 b of the semiconductor core 11 covered with the semiconductor layer 12, the outer shape of the exposed portion 11 a of the semiconductor core 11 is smaller than the outer shape of the semiconductor layer 12. Is mounted on the substrate 10 so that the longitudinal direction is parallel to the substrate plane, the contact between the outer peripheral surface of the semiconductor layer 12 and the substrate 10 is facilitated, and the heat dissipation efficiency is improved. That is, the exposed portion 11a of the semiconductor core 11 is deformed because it is thin, and is well connected to the n-side electrode 14, and the covering portion 11b covered with the semiconductor layer 12 of the semiconductor core 11 is in close contact with the substrate 10 without being deformed. Therefore, heat dissipation is excellent. On the other hand, when the outer peripheral surface of the exposed portion 11a of the semiconductor core 11 and the outer peripheral surface of the coating portion 11b covered with the semiconductor layer 12 are coincident, or the outer shape of the exposed portion 11a of the semiconductor core 11 is covered with the semiconductor layer 12 When it is larger than the outer shape of the portion 11b, the exposed portion 11a of the semiconductor core 11 is not easily deformed. Therefore, when the exposed portion 11 a of the semiconductor core 11 is connected to the n-side electrode 14, the covering portion 11 b covered with the semiconductor layer 12 of the semiconductor core 11 is deformed and does not come into close contact with the substrate 10. Gets worse.

なお、上記第1実施形態では、断面がほぼ円形の棒状の半導体コア11に半導体層12を被覆した棒状構造発光素子Aについて説明したが、例えば六角形や他の多角形の棒状の半導体コアに半導体層や量子井戸層などを被覆した棒状構造発光素子についてこの発明を適用してもよい。n型GaNは、六方晶系の結晶成長となり、基板表面に対して垂直方向をc軸方向にして成長させることにより、ほぼ六角柱形状の半導体コアが得られる。成長方向や成長温度などの成長条件に依存するが、成長させる半導体コアの直径が数10nmから数100nm程度の小さい場合に断面がほぼ円形に近い形状になりやすい傾向があり、直径が0.5μm程度から数μmに大きくなると断面がほぼ六角形で成長させることが容易になる傾向がある。   In the first embodiment, the rod-shaped structure light emitting element A in which the semiconductor layer 11 is coated on the rod-shaped semiconductor core 11 having a substantially circular cross section has been described. However, for example, a hexagonal or other polygonal rod-shaped semiconductor core The present invention may be applied to a rod-shaped structure light emitting device that covers a semiconductor layer, a quantum well layer, or the like. The n-type GaN has hexagonal crystal growth, and a substantially hexagonal columnar semiconductor core can be obtained by growing the substrate in the direction perpendicular to the substrate surface in the c-axis direction. Although depending on the growth conditions such as the growth direction and growth temperature, when the diameter of the semiconductor core to be grown is as small as several tens to several hundreds of nanometers, the cross section tends to be almost circular, and the diameter is 0.5 μm. When the thickness is increased from about a few μm, it tends to be easy to grow the cross section in a substantially hexagonal shape.

〔第2実施形態〕
図7はこの発明の第2実施形態の棒状構造発光素子の斜視図を示している。
[Second Embodiment]
FIG. 7 shows a perspective view of a rod-shaped structure light emitting device according to a second embodiment of the present invention.

この第2実施形態の棒状構造発光素子Bは、図7に示すように、断面がほぼ六角形の棒状のn型GaNからなる半導体コア21と、上記半導体コア21の一端側の部分を覆わないで露出部分21aとするように、半導体コア21の露出部分21a以外の被覆部分21bを覆うp型GaNからなる半導体層22とを備えている。上記半導体コア21は、露出部分21aを被覆部分21bよりも小径にして、露出部分21aの外周面と被覆部分21bの外周面との間に段差部21cを設けている。また、半導体コア21の他端側の端面は、半導体層22により覆われている。   As shown in FIG. 7, the rod-shaped structure light emitting element B of the second embodiment does not cover the semiconductor core 21 made of a rod-shaped n-type GaN having a substantially hexagonal cross section and the one end side portion of the semiconductor core 21. And a semiconductor layer 22 made of p-type GaN covering the covering portion 21b of the semiconductor core 21 other than the exposed portion 21a. In the semiconductor core 21, the exposed portion 21a has a smaller diameter than the covering portion 21b, and a step portion 21c is provided between the outer peripheral surface of the exposed portion 21a and the outer peripheral surface of the covering portion 21b. Further, the end surface on the other end side of the semiconductor core 21 is covered with the semiconductor layer 22.

上記棒状構造発光素子Bは、第1実施形態の棒状構造発光素子Aと同様の方法で製造する。   The rod-shaped structure light emitting element B is manufactured by the same method as the rod-shaped structure light emitting element A of the first embodiment.

また、図8は上記第2実施形態の棒状構造発光素子の要部の断面模式図を示しており、図8において、23はn側電極である。   FIG. 8 is a schematic cross-sectional view of the main part of the rod-shaped structure light emitting device of the second embodiment. In FIG. 8, reference numeral 23 denotes an n-side electrode.

この第2実施形態の棒状構造発光素子Bは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   The rod-shaped structure light emitting device B of the second embodiment has the same effect as the rod-shaped structure light emitting device A of the first embodiment.

上記第2実施形態の棒状構造発光素子Bによれば、半導体コア21の被覆部分21aの長手方向に直交する断面が六角形状であることによって、この棒状構造発光素子を基板上に基板平面に対して長手方向が平行になるように実装するときに、半導体層のどの外周面であっても基板との接触面が得やすく、基板への放熱効率が向上する。したがって、発光時の素子温度が上昇して発光効率が低下するのを抑制できる。   According to the rod-shaped structure light emitting element B of the second embodiment, the section perpendicular to the longitudinal direction of the covering portion 21a of the semiconductor core 21 has a hexagonal shape. When mounting so that the longitudinal directions are parallel, it is easy to obtain a contact surface with the substrate at any outer peripheral surface of the semiconductor layer, and the heat dissipation efficiency to the substrate is improved. Therefore, it can suppress that the element temperature at the time of light emission raises, and luminous efficiency falls.

図9Aは上記第1実施形態の棒状構造発光素子Aの半導体コアの露出部分の断面模式図を示し、図9Bは上記第2実施形態の棒状構造発光素子Bの半導体コアの露出部分の断面模式図を示している。   FIG. 9A is a schematic cross-sectional view of the exposed portion of the semiconductor core of the rod-shaped structure light emitting device A of the first embodiment, and FIG. 9B is a schematic cross-sectional view of the exposed portion of the semiconductor core of the rod-shaped structure light emitting device B of the second embodiment. The figure is shown.

また、図9Cは変形例の棒状構造発光素子の半導体コアの露出部分の断面模式図を示しており、この変形例の棒状構造発光素子では、半導体コア24の露出部分24aの長手方向に直交する断面を正三角形にしている。   FIG. 9C is a schematic cross-sectional view of the exposed portion of the semiconductor core of the rod-shaped structure light emitting device of the modification. In the rod-shaped structure light emitting device of this variation, the cross section is orthogonal to the longitudinal direction of the exposed portion 24a of the semiconductor core 24. The cross section is an equilateral triangle.

このように、半導体コアの露出部分の長手方向に直交する断面が、図9Aに示す円形よりも多角形(例えば図9Bに示す正六角形や図9Cに示す正三角形)の方が光の取り出し効率を向上させることができる。その理由は、半導体コアの露出部分の断面は、頂点数の少ない多角形の方が外部に光がより出やすくなるからである。   Thus, the light extraction efficiency of the cross section perpendicular to the longitudinal direction of the exposed portion of the semiconductor core is more polygonal (for example, a regular hexagon shown in FIG. 9B or a regular triangle shown in FIG. 9C) than the circle shown in FIG. 9A. Can be improved. The reason is that the cross section of the exposed portion of the semiconductor core is more likely to emit light to the outside when the polygon has a smaller number of vertices.

〔第3実施形態〕
図10はこの発明の第3実施形態の棒状構造発光素子の斜視図を示している。
[Third Embodiment]
FIG. 10 is a perspective view of a rod-shaped structure light emitting device according to the third embodiment of the present invention.

この第3実施形態の棒状構造発光素子Cは、図10に示すように、棒状のn型GaNからなる半導体コア31と、上記半導体コア31の一端側の部分を覆わないで露出部分31aとするように、半導体コア31の露出部分31a以外の被覆部分31bを覆うp型GaNからなる半導体層32とを備えている。上記半導体コア31の露出部分31aは長手方向に直交する断面がほぼ四角形であり、半導体コア31の被覆部分31bは長手方向に直交する断面がほぼ六角形である。上記半導体コア31の露出部分31aの外周面と被覆部分31bの外周面との間に段差部31cを設けている。また、半導体コア31の他端側の端面は、半導体層32により覆われている。   As shown in FIG. 10, the rod-shaped structured light emitting device C of the third embodiment has a semiconductor core 31 made of a rod-shaped n-type GaN and an exposed portion 31 a without covering a portion on one end side of the semiconductor core 31. As described above, a semiconductor layer 32 made of p-type GaN covering the covering portion 31b other than the exposed portion 31a of the semiconductor core 31 is provided. The exposed portion 31a of the semiconductor core 31 has a substantially rectangular cross section perpendicular to the longitudinal direction, and the coated portion 31b of the semiconductor core 31 has a substantially hexagonal cross section perpendicular to the longitudinal direction. A step portion 31c is provided between the outer peripheral surface of the exposed portion 31a of the semiconductor core 31 and the outer peripheral surface of the covering portion 31b. Further, the end surface on the other end side of the semiconductor core 31 is covered with the semiconductor layer 32.

上記棒状構造発光素子Cは、半導体コアの被覆部分を除いて第1実施形態の棒状構造発光素子Aと同様の方法で製造する。ここで、半導体コア31の露出部分31aの形状については、前述の通り、上記マスクの成長穴の高さを越えるまでは、成長穴の径および形状で成長する半導体コア31の径および形状が決まり、成長する半導体コア31の高さがマスクの高さを越えてからは、島状に凝集する触媒金属層の径で決まる。この第3実施形態では、四角形の成長穴を用いている。   The rod-shaped structure light emitting device C is manufactured by the same method as the rod-shaped structure light emitting device A of the first embodiment except for the covering portion of the semiconductor core. Here, as to the shape of the exposed portion 31a of the semiconductor core 31, as described above, the diameter and shape of the semiconductor core 31 that grows with the diameter and shape of the growth hole are determined until the height of the growth hole of the mask is exceeded. After the height of the growing semiconductor core 31 exceeds the height of the mask, it is determined by the diameter of the catalytic metal layer that aggregates in an island shape. In the third embodiment, a rectangular growth hole is used.

この第3実施形態の棒状構造発光素子Cは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   The rod-shaped structure light emitting device C of the third embodiment has the same effect as the rod-shaped structure light emitting device A of the first embodiment.

図11は上記第3実施形態の棒状構造発光素子の第1の変形例の断面模式図を示している。この第1の変形例では、半導体コア1031の露出部分1031aは長手方向に直交する断面がほぼ円形であり、半導体コア1031の被覆部分1031bは長手方向に直交する断面がほぼ六角形である。上記半導体コア1031の露出部分1031aの断面形状が、被覆部分1031bの断面形状よりも大きくなっている。上記半導体コア1031の露出部分1031aの外周面と被覆部分1031bの外周面との間に段差部1031cを設けている。   FIG. 11 is a schematic cross-sectional view of a first modification of the rod-shaped structure light emitting device of the third embodiment. In the first modification, the exposed portion 1031a of the semiconductor core 1031 has a substantially circular cross section perpendicular to the longitudinal direction, and the covered portion 1031b of the semiconductor core 1031 has a substantially hexagonal cross section perpendicular to the longitudinal direction. The cross-sectional shape of the exposed portion 1031a of the semiconductor core 1031 is larger than the cross-sectional shape of the covering portion 1031b. A step portion 1031c is provided between the outer peripheral surface of the exposed portion 1031a of the semiconductor core 1031 and the outer peripheral surface of the covering portion 1031b.

図12は上記第3実施形態の棒状構造発光素子の第2の変形例の断面模式図を示している。この第2の変形例では、半導体コア1041は、露出部分1041aの長手方向に直交する断面がほぼ円形であり、被覆部分1041bの長手方向に直交する断面がほぼ六角形である。上記半導体コア1041の被覆部分1041bの長手方向に直交する断面の外周長よりも、半導体コア1041の露出部分1041aの長手方向に直交する断面の外周長を短くしている。すなわち、上記半導体コア1031の露出部分1031aの断面形状が、被覆部分1031bの断面形状よりも小さくなっている。上記半導体コア1041の露出部分1041aの外周面と被覆部分1041bの外周面との間に段差部1041cを設けている。   FIG. 12 is a schematic cross-sectional view of a second modification of the rod-shaped structure light emitting device of the third embodiment. In the second modification, the semiconductor core 1041 has a substantially circular cross section orthogonal to the longitudinal direction of the exposed portion 1041a and a substantially orthogonal cross section orthogonal to the longitudinal direction of the covered portion 1041b. The outer peripheral length of the cross section orthogonal to the longitudinal direction of the exposed portion 1041a of the semiconductor core 1041 is shorter than the outer peripheral length of the cross section orthogonal to the longitudinal direction of the covering portion 1041b of the semiconductor core 1041. That is, the cross-sectional shape of the exposed portion 1031a of the semiconductor core 1031 is smaller than the cross-sectional shape of the covering portion 1031b. A step 1041c is provided between the outer peripheral surface of the exposed portion 1041a of the semiconductor core 1041 and the outer peripheral surface of the covering portion 1041b.

このように、図10〜図12に示す棒状構造発光素子において、半導体コア31,1031,1041の露出部分31a,1031a,1041aの長手方向に直交する断面の形状と、半導体コア31,1031,1041の被覆部分31b,1031b,1041bの長手方向に直交する断面の形状とが異なることによって、半導体コア31,1031,1041の露出部分31a,1031a,1041aの外周面と被覆部分31b,1031b,1041bの外周面との境界に段差部31c,1031c,1041cが形成されるため、外部への光の取り出し効率が向上する。   10 to 12, the cross-sectional shape perpendicular to the longitudinal direction of the exposed portions 31 a, 1031 a, and 1041 a of the semiconductor cores 31, 1031, and 1041, and the semiconductor cores 31, 1031, and 1041 Since the shape of the cross section orthogonal to the longitudinal direction of the covering portions 31b, 1031b, and 1041b of the semiconductor core 31, 1031, 1041b is different from the outer peripheral surface of the semiconductor core 31, 1031, 1041, and the covering portions 31b, 1031b, 1041b. Since the step portions 31c, 1031c, and 1041c are formed at the boundary with the outer peripheral surface, the light extraction efficiency to the outside is improved.

また、上記半導体コアの露出部分の外周面と被覆部分の外周面が一致して段差がない場合に比べて、半導体コア31,1031,1041の露出部分31a,1031a,1041aと半導体層32,1032,1042との境界に形成された段差部31c,1031c,1041cにより半導体層32,1032,1042の端面の位置が決定され、製造時に境界位置のばらつきを抑制できる。半導体コアの露出部分の外周面と被覆部分の外周面が一致して段差がない場合は、半導体コアの成長時にマスクの成長穴内壁と半導体コアの間に隙間が生じる虞があり、続いて半導体層の形成を行う際に、半導体層がマスクの成長穴内壁と半導体コアの隙間領域にも形成され、マスクの上面の位置で半導体コアの露出部分と被覆部分の境界がばらつくことがあるが、しかし、半導体コアの露出部分の外周面と被覆部分の外周面に段差がある場合、製造時において、マスクの高さを越えてから成長穴の内径よりも大きな直径で半導体コアを成長させるため、マスクの成長穴内壁と半導体コアの間に隙間が生じたとしても、隙間をふさぐように半導体コアが成長し、半導体層の形成時に半導体層がマスク成長穴内壁と半導体コアの隙間領域に形成されるのを防止することができる。   In addition, the exposed portions 31a, 1031a, 1041a of the semiconductor cores 31, 1031a, 1041 and the semiconductor layers 32, 1032 are compared to the case where the outer peripheral surface of the exposed portion of the semiconductor core is coincident with the outer peripheral surface of the covering portion and there is no step. , 1042, the positions of the end faces of the semiconductor layers 32, 1032, and 1042 are determined by the step portions 31 c, 1031 c, and 1041 c formed at the boundaries between them and the variation in the boundary positions during manufacturing. If the outer peripheral surface of the exposed portion of the semiconductor core is coincident with the outer peripheral surface of the covering portion and there is no step, there may be a gap between the inner wall of the mask growth hole and the semiconductor core during the growth of the semiconductor core. When forming the layer, the semiconductor layer is also formed in the gap region between the inner wall of the growth hole of the mask and the semiconductor core, and the boundary between the exposed portion and the covered portion of the semiconductor core may vary at the position of the upper surface of the mask. However, if there is a step between the outer peripheral surface of the exposed portion of the semiconductor core and the outer peripheral surface of the covering portion, during manufacturing, the semiconductor core is grown with a diameter larger than the inner diameter of the growth hole after exceeding the height of the mask. Even if a gap occurs between the inner wall of the mask growth hole and the semiconductor core, the semiconductor core grows to close the gap, and the semiconductor layer is formed in the gap region between the inner wall of the mask growth hole and the semiconductor core when the semiconductor layer is formed. Which can be prevented.

〔第4実施形態〕
図13はこの発明の第4実施形態の棒状構造発光素子の断面図を示しており、図14は上記棒状構造発光素子の斜視図を示している。
[Fourth Embodiment]
FIG. 13 shows a cross-sectional view of a rod-shaped structure light emitting device according to a fourth embodiment of the present invention, and FIG. 14 shows a perspective view of the rod-shaped structure light emitting device.

この第4実施形態の棒状構造発光素子Dは、図13, 図14に示すように、断面がほぼ六角形の棒状のn型GaNからなる半導体コア41と、上記半導体コア41の一端側の部分を覆わないで露出部分41aとするように、半導体コア41の露出部分41a以外の被覆部分41bを覆うp型GaNからなる半導体層42とを備えている。上記半導体コア41は、露出部分41aを被覆部分41bよりも小径にして、露出部分41aの外周面と被覆部分41bの外周面との間に段差部41cを設けている。また、半導体コア41の他端側の端面は、半導体層42により覆われている。   As shown in FIGS. 13 and 14, the rod-shaped structure light emitting device D of the fourth embodiment includes a semiconductor core 41 made of rod-shaped n-type GaN having a substantially hexagonal cross section, and a portion on one end side of the semiconductor core 41. The semiconductor layer 42 is made of p-type GaN so as to cover the covered portion 41b other than the exposed portion 41a of the semiconductor core 41 so that the exposed portion 41a is not covered. In the semiconductor core 41, the exposed portion 41a has a smaller diameter than the covering portion 41b, and a step portion 41c is provided between the outer peripheral surface of the exposed portion 41a and the outer peripheral surface of the covering portion 41b. The end surface on the other end side of the semiconductor core 41 is covered with the semiconductor layer 42.

また、上記半導体コア41の段差部41cとその段差部41c側の半導体層42の端面を覆うように、かつ、半導体コア41の露出部分41aの段差部41c側を覆うように絶縁層43を形成している。上記半導体コア41の露出部分41aにn側電極44を接続している。   Further, an insulating layer 43 is formed so as to cover the stepped portion 41c of the semiconductor core 41 and the end surface of the semiconductor layer 42 on the stepped portion 41c side, and to cover the stepped portion 41c side of the exposed portion 41a of the semiconductor core 41. is doing. An n-side electrode 44 is connected to the exposed portion 41 a of the semiconductor core 41.

上記棒状構造発光素子Dは、半導体コアの被覆部分を除いて第1実施形態の棒状構造発光素子Aと同様の方法で製造する。ここで、上記半導体コア41の段差部41cとその段差部41c側の半導体層42の端面を覆い、かつ、半導体コア41の露出部分41аの段差部41c側を覆う絶縁層43の形成については、第1実施形態の棒状構造発光素子Aの製造工程において、リフトオフにより半導体層のうち半導体コアを覆う部分を除く領域とマスクを除去する代わりに、まず異方性のドライエッチングを行い、半導体層のうち半導体コアを覆う部分を除く領域とマスクのエッチングを行う。そして、マスクを途中までエッチングした段階で、等方性のドライエッチングに切り替えてエッチングを行うことによって、部分的に上記マスクを絶縁層として残すことができる。   The rod-shaped structure light emitting device D is manufactured by the same method as the rod-shaped structure light emitting device A of the first embodiment except for the covering portion of the semiconductor core. Here, regarding the formation of the insulating layer 43 covering the step portion 41c of the semiconductor core 41 and the end surface of the semiconductor layer 42 on the step portion 41c side and covering the step portion 41c side of the exposed portion 41a of the semiconductor core 41, In the manufacturing process of the rod-shaped structure light emitting device A according to the first embodiment, instead of removing the region and the mask excluding the portion covering the semiconductor core of the semiconductor layer by lift-off, first, anisotropic dry etching is performed, Of these, the region except the portion covering the semiconductor core and the mask are etched. Then, when the mask is etched halfway, the mask can be partially left as an insulating layer by switching to isotropic dry etching.

上記マスクが酸化シリコン(SiO2)あるいは窒化シリコン(Si34)で構成されている場合、異方性のドライエッチングには、SiCl4などの塩素系ガス、あるいはCF4、CHF3などのフッ素系ガスを用いたRIE(Reactive Ion Etching:反応性イオンエッチング)を使用することができ、等方性のドライエッチングには、CF4を含んだガスのプラズマを用いることによりエッチングすることができる。この実施形態においては、ドライエッチングにより除去されたマスクの膜厚によって、絶縁層43の長さが決まる。また、異方性ドライエッチングの際にSiCl4を含むガスを使用し、マスクの側壁に反応生成物による保護膜を形成しながらエッチングを進めることにより、図13や図14に示すように、半導体層42の外周面と絶縁層43の外周面をほぼ一致させた加工を行うことができる。 When the mask is made of silicon oxide (SiO 2 ) or silicon nitride (Si 3 N 4 ), anisotropic dry etching may be performed using chlorine-based gas such as SiCl 4 , CF 4 , CHF 3 or the like. RIE (Reactive Ion Etching) using a fluorine-based gas can be used. For isotropic dry etching, etching can be performed by using plasma of a gas containing CF 4. . In this embodiment, the length of the insulating layer 43 is determined by the film thickness of the mask removed by dry etching. Further, a gas containing SiCl 4 is used in anisotropic dry etching, and etching is performed while forming a protective film of a reaction product on the side wall of the mask, so that a semiconductor as shown in FIGS. Processing can be performed in which the outer peripheral surface of the layer 42 and the outer peripheral surface of the insulating layer 43 are substantially matched.

この第4実施形態の棒状構造発光素子Dは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   The rod-shaped structure light emitting device D of the fourth embodiment has the same effect as the rod-shaped structure light emitting device A of the first embodiment.

また、上記棒状構造発光素子Dでは、半導体コア41の露出部分41aの外周面と半導体層42との間を絶縁層43により絶縁できるため、半導体コア41の露出部分41aにn側電極44を接続する場合に、n側電極44と半導体層42との間の短絡やリーク電流の発生を確実に抑制することができる。   Further, in the rod-shaped structure light emitting element D, since the insulating layer 43 can insulate the outer peripheral surface of the exposed portion 41a of the semiconductor core 41 and the semiconductor layer 42, the n-side electrode 44 is connected to the exposed portion 41a of the semiconductor core 41. In this case, the occurrence of a short circuit or leakage current between the n-side electrode 44 and the semiconductor layer 42 can be reliably suppressed.

〔第5実施形態〕
図15はこの発明の第5実施形態の棒状構造発光素子の断面図を示しており、図16は上記棒状構造発光素子の斜視図を示している。
[Fifth Embodiment]
FIG. 15 shows a cross-sectional view of a bar-shaped structure light emitting element according to a fifth embodiment of the present invention, and FIG. 16 shows a perspective view of the bar-shaped structure light emitting element.

この第5実施形態の棒状構造発光素子Eは、図15, 図16に示すように、断面がほぼ六角形の棒状のn型GaNからなる半導体コア51と、上記半導体コア51の一端側の部分を覆わないで露出部分51aとするように、半導体コア51の露出部分51a以外の被覆部分51bを覆うp型GaNからなる半導体層52とを備えている。   As shown in FIGS. 15 and 16, the rod-shaped structure light emitting device E of the fifth embodiment includes a semiconductor core 51 made of rod-shaped n-type GaN having a substantially hexagonal cross section, and a portion on one end side of the semiconductor core 51. The semiconductor layer 52 is made of p-type GaN so as to cover the covered portion 51b other than the exposed portion 51a of the semiconductor core 51 so that the exposed portion 51a is not covered.

上記半導体コア51の露出部分51aは、被覆部分51bよりも小径の段差部51c側の小径部51a−1と、その小径部51a−1に連なり、被覆部分51bよりも大径でかつ半導体層52と同じ外径の大径部51a−2とを有する。上記半導体コア51は、露出部分51aの小径部51a−1を被覆部分51bよりも小径にして、露出部分51aの外周面と被覆部分51bの外周面との間に段差部51cを設けている。また、半導体コア51の他端側の端面は、半導体層52により覆われている。   The exposed portion 51a of the semiconductor core 51 is connected to the small-diameter portion 51a-1 on the stepped portion 51c side having a smaller diameter than the covering portion 51b and the small-diameter portion 51a-1, and has a larger diameter than the covering portion 51b and the semiconductor layer 52. And a large-diameter portion 51a-2 having the same outer diameter. In the semiconductor core 51, the small-diameter portion 51a-1 of the exposed portion 51a is made smaller in diameter than the covering portion 51b, and a step portion 51c is provided between the outer peripheral surface of the exposed portion 51a and the outer peripheral surface of the covering portion 51b. Further, the end surface on the other end side of the semiconductor core 51 is covered with the semiconductor layer 52.

また、上記半導体コア51の段差部51cとその段差部51c側の半導体層52の端面を覆うように、かつ、半導体コア51の露出部分51aの小径部51a−1側を覆うように絶縁層53を形成している。上記半導体コア51の露出部分51aの大径部51a−2にn側電極54を接続している。   The insulating layer 53 covers the stepped portion 51c of the semiconductor core 51 and the end surface of the semiconductor layer 52 on the stepped portion 51c side, and covers the small diameter portion 51a-1 side of the exposed portion 51a of the semiconductor core 51. Is forming. An n-side electrode 54 is connected to the large diameter portion 51a-2 of the exposed portion 51a of the semiconductor core 51.

上記棒状構造発光素子Eは、半導体コアの被覆部分を除いて第1実施形態の棒状構造発光素子Aと同様の方法で製造する。この棒状構造発光素子Eでは、被覆部分51bよりも小径の段差部51c側の小径部51a−1と、その小径部51a−1に連なり、被覆部分51bよりも大径でかつ半導体層52と同じ外径の大径部51a−2とを有する半導体コア51の露出部分51aの形状、ならびに、半導体コア51の段差部51cとその段差部51c側の半導体層52の端面を覆い、かつ、半導体コア51の露出部分51aの小径部51a−1側を覆う絶縁層53は、第1実施形態の棒状構造発光素子Aの製造工程において、リフトオフにより半導体層のうち半導体コアを覆う部分を除く領域とマスクを除去する工程の代わりに、異方性のドライエッチングを行い、半導体層のうち半導体コア51を覆う部分を除く領域と、マスク、ついで基板までエッチングすることにより形成することができる。   The rod-shaped structure light emitting element E is manufactured by the same method as the rod-shaped structure light emitting element A of the first embodiment except for the covering portion of the semiconductor core. In this rod-shaped structure light emitting element E, the small diameter portion 51a-1 on the stepped portion 51c side smaller than the covering portion 51b and the small diameter portion 51a-1 are connected, and have a larger diameter than the covering portion 51b and the same as the semiconductor layer 52. The shape of the exposed portion 51a of the semiconductor core 51 having the outer diameter large portion 51a-2, the stepped portion 51c of the semiconductor core 51 and the end surface of the semiconductor layer 52 on the stepped portion 51c side, and the semiconductor core The insulating layer 53 that covers the small-diameter portion 51a-1 side of the exposed portion 51a of the 51 is a mask and a region excluding the portion of the semiconductor layer that covers the semiconductor core by lift-off in the manufacturing process of the rod-shaped structure light emitting device A of the first embodiment. Instead of the step of removing the film, anisotropic dry etching is performed, and the semiconductor layer is formed by etching the region excluding the portion covering the semiconductor core 51, the mask, and then the substrate. Rukoto can.

この第5実施形態の棒状構造発光素子Eは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   The rod-shaped structure light emitting device E of the fifth embodiment has the same effect as the rod-shaped structure light emitting device A of the first embodiment.

また、上記棒状構造発光素子Eでは、半導体コア51の段差部51cとその段差部51c側の半導体層52の端面を覆うように、かつ、半導体コア51の露出部分51aの段差部51c側を覆うように形成された絶縁層53を備えることによって、半導体コア51の露出部分51aの外周面と半導体層52との間を絶縁層53により絶縁できるため、半導体コア51の露出部分51aにn側電極54を接続する場合に、n側電極54と半導体層52との間の短絡やリーク電流の発生を確実に抑制することができる。   Further, in the rod-shaped structure light emitting element E, the stepped portion 51c of the semiconductor core 51 and the end surface of the semiconductor layer 52 on the stepped portion 51c side are covered, and the stepped portion 51c side of the exposed portion 51a of the semiconductor core 51 is covered. By providing the insulating layer 53 formed as described above, the insulating layer 53 can insulate the outer peripheral surface of the exposed portion 51a of the semiconductor core 51 and the semiconductor layer 52, so that the n-side electrode is provided on the exposed portion 51a of the semiconductor core 51. When 54 is connected, the occurrence of a short circuit or leakage current between the n-side electrode 54 and the semiconductor layer 52 can be reliably suppressed.

さらに、上記半導体コア51の被覆部分51bよりも露出部分51aの大径部51a−2の径が大きいので、半導体コア51の露出部分51aに接続されるn側電極54との接触面が大きくとれ、コンタクト抵抗を下げることができる。   Furthermore, since the diameter of the large-diameter portion 51a-2 of the exposed portion 51a is larger than the covering portion 51b of the semiconductor core 51, the contact surface with the n-side electrode 54 connected to the exposed portion 51a of the semiconductor core 51 can be increased. The contact resistance can be lowered.

〔第6実施形態〕
図17はこの発明の第6実施形態の棒状構造発光素子の断面図を示している。
[Sixth Embodiment]
FIG. 17 shows a sectional view of a rod-shaped structure light emitting device according to the sixth embodiment of the present invention.

この第6実施形態の棒状構造発光素子Fは、図17に示すように、棒状のn型GaNからなる半導体コア61と、上記半導体コア61の一端側の部分を覆わないで露出部分61aとするように、半導体コア61の露出部分61a以外の被覆部分61bを覆うp型GaNからなる半導体層62と、上記半導体層62を覆うように形成され、半導体層62よりも電気抵抗が低い材料からなる導電層63とを備えている。   As shown in FIG. 17, the rod-shaped structured light emitting element F of the sixth embodiment has a semiconductor core 61 made of a rod-shaped n-type GaN and an exposed portion 61a without covering a portion on one end side of the semiconductor core 61. As described above, the semiconductor layer 62 made of p-type GaN covering the covering portion 61b other than the exposed portion 61a of the semiconductor core 61 and the semiconductor layer 62 are formed so as to cover the semiconductor layer 62 and have a lower electric resistance than the semiconductor layer 62. And a conductive layer 63.

上記半導体コア61の露出部分61aは長手方向に直交する断面がほぼ円形であり、半導体コア61の被覆部分61bは長手方向に直交する断面がほぼ六角形である。上記半導体コア61は、露出部分61aを被覆部分61bよりも小径にして、露出部分61aの外周面と被覆部分61bの外周面との間に段差部61cを設けている。また、半導体コア61の他端側の端面は、半導体層62により覆われている。   The exposed portion 61a of the semiconductor core 61 has a substantially circular cross section perpendicular to the longitudinal direction, and the coated portion 61b of the semiconductor core 61 has a substantially hexagonal cross section perpendicular to the longitudinal direction. In the semiconductor core 61, the exposed portion 61a has a smaller diameter than the covering portion 61b, and a step portion 61c is provided between the outer peripheral surface of the exposed portion 61a and the outer peripheral surface of the covering portion 61b. Further, the end surface on the other end side of the semiconductor core 61 is covered with the semiconductor layer 62.

また、上記導電層63は、膜厚200nmのITO(錫添加酸化インジウム)により形成されている。このITOの成膜は蒸着法あるいはスパッタ法を用いることができる。ITO膜を成膜後、500℃から600℃で熱処理を行うことで、p型GaNからなる半導体層62とITOからなる導電層63のコンタクト抵抗を下げることができる。なお、導電層63は、これに限らず、例えば厚さ5nmのAg/NiまたはAu/Niの半透明の積層金属膜などを用いてもよい。この積層金属膜の成膜には蒸着法あるいはスパッタ法を用いることができる。さらに、より導電層の抵抗を下げるために、上記ITO膜上にAg/NiまたはAu/Niの積層金属膜を積層してもよい。   The conductive layer 63 is made of ITO (tin added indium oxide) having a thickness of 200 nm. The ITO film can be formed by vapor deposition or sputtering. After forming the ITO film, the contact resistance between the semiconductor layer 62 made of p-type GaN and the conductive layer 63 made of ITO can be lowered by performing heat treatment at 500 ° C. to 600 ° C. The conductive layer 63 is not limited to this, and may be, for example, a 5 nm thick Ag / Ni or Au / Ni semitransparent laminated metal film. Vapor deposition or sputtering can be used to form this laminated metal film. Furthermore, in order to further reduce the resistance of the conductive layer, a laminated metal film of Ag / Ni or Au / Ni may be laminated on the ITO film.

上記棒状構造発光素子Fは、第1実施形態の棒状構造発光素子Aと同様の方法で製造する。この棒状構造発光素子Fは、触媒金属層の除去後に半導体コア61を覆う半導体層62を形成し、さらに半導体層62を覆うように導電層としてITO膜の形成を行った後、異方性ドライエッチングによりITO膜のうち半導体層62を覆う部分を除く領域を除去し、その後、第1実施形態と同様に、リフトオフにより半導体層のうち半導体コア61を覆う部分を除く領域とマスクを除去することによって形成することができる。   The rod-shaped structure light emitting element F is manufactured by the same method as the rod-shaped structure light emitting element A of the first embodiment. In this rod-shaped structure light emitting element F, after removing the catalytic metal layer, a semiconductor layer 62 covering the semiconductor core 61 is formed, and further, an ITO film is formed as a conductive layer so as to cover the semiconductor layer 62, and then an anisotropic dry layer is formed. Etching removes the region of the ITO film excluding the portion covering the semiconductor layer 62, and then removing the region excluding the portion of the semiconductor layer covering the semiconductor core 61 and the mask by lift-off, as in the first embodiment. Can be formed.

また、この第6実施形態の棒状構造発光素子Fは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   Further, the rod-like structure light emitting element F of the sixth embodiment has the same effect as the rod-like structure light emitting element A of the first embodiment.

上記第6実施形態の棒状構造発光素子Fによれば、半導体コア61の被覆部分61aの長手方向に直交する断面が六角形状であることによって、この棒状構造発光素子を基板上に基板平面に対して長手方向が平行になるように実装するときに、半導体層のどの外周面であっても基板との接触面が得やすく、基板への放熱効率が向上する。したがって、発光時の素子温度が上昇して発光効率が低下するのを抑制できる。   According to the rod-shaped structure light emitting element F of the sixth embodiment, the section perpendicular to the longitudinal direction of the covering portion 61a of the semiconductor core 61 has a hexagonal shape. When mounting so that the longitudinal directions are parallel, it is easy to obtain a contact surface with the substrate at any outer peripheral surface of the semiconductor layer, and the heat dissipation efficiency to the substrate is improved. Therefore, it can suppress that the element temperature at the time of light emission raises, and luminous efficiency falls.

また、上記半導体コア61の露出部分61aの長手方向に直交する断面の形状と、半導体コア61の被覆部分61bの長手方向に直交する断面の形状とが異なることによって、半導体コア61の露出部分61aの外周面と被覆部分61bの外周面との境界に段差部61cが形成されるため、外部への光の取り出し効率が向上する。   Further, the exposed portion 61a of the semiconductor core 61 is different from the shape of the cross section orthogonal to the longitudinal direction of the exposed portion 61a of the semiconductor core 61 and the shape of the cross section orthogonal to the longitudinal direction of the covered portion 61b of the semiconductor core 61. Since the step portion 61c is formed at the boundary between the outer peripheral surface of the cover and the outer peripheral surface of the covering portion 61b, the light extraction efficiency to the outside is improved.

また、上記半導体層62よりも電気抵抗が低い材料からなる導電層63を介して半導体層62をp側電極に接続することにより、電極接続部分に電流が集中して偏ることがなく、広い電流経路を形成して、半導体コア61の側面全体を効率よく発光させることができ、発光効率がさらに向上する。   In addition, by connecting the semiconductor layer 62 to the p-side electrode through the conductive layer 63 made of a material having a lower electrical resistance than the semiconductor layer 62, current does not concentrate on the electrode connection portion and is not biased. By forming a path, the entire side surface of the semiconductor core 61 can be efficiently emitted, and the light emission efficiency is further improved.

〔第7実施形態〕
図18はこの発明の第7実施形態の棒状構造発光素子の断面図を示している。
[Seventh Embodiment]
FIG. 18 is a sectional view of a rod-shaped structure light emitting device according to the seventh embodiment of the present invention.

この第7実施形態の棒状構造発光素子Gは、図18に示すように、棒状のn型GaNからなる半導体コア71と、上記半導体コア71の一端側の部分を覆わないで露出部分71aとするように、半導体コア71の露出部分71a以外の部分を覆うp型InGaNからなる量子井戸層72と、上記量子井戸層72の外周面を覆うp型GaNからなる半導体層73と、上記半導体層73を覆うように形成され、半導体層73よりも電気抵抗が低い材料からなる導電層74とを備えている。   As shown in FIG. 18, the rod-shaped structured light emitting element G of the seventh embodiment has a semiconductor core 71 made of a rod-shaped n-type GaN and an exposed portion 71a without covering a portion on one end side of the semiconductor core 71. As described above, the quantum well layer 72 made of p-type InGaN covering the portion other than the exposed portion 71 a of the semiconductor core 71, the semiconductor layer 73 made of p-type GaN covering the outer peripheral surface of the quantum well layer 72, and the semiconductor layer 73 And a conductive layer 74 made of a material having an electric resistance lower than that of the semiconductor layer 73.

上記半導体コア71の露出部分71aは長手方向に直交する断面がほぼ円形であり、半導体コア71の被覆部分71bは長手方向に直交する断面がほぼ六角形である。上記半導体コア71は、露出部分71aを被覆部分71bよりも小径にして、露出部分71aの外周面と被覆部分71bの外周面との間に段差部71cを設けている。また、半導体コア71の他端側の端面は、半導体層72により覆われている。   The exposed portion 71a of the semiconductor core 71 has a substantially circular cross section perpendicular to the longitudinal direction, and the coated portion 71b of the semiconductor core 71 has a substantially hexagonal cross section perpendicular to the longitudinal direction. In the semiconductor core 71, the exposed portion 71a has a smaller diameter than the covering portion 71b, and a step portion 71c is provided between the outer peripheral surface of the exposed portion 71a and the outer peripheral surface of the covering portion 71b. Further, the end surface on the other end side of the semiconductor core 71 is covered with a semiconductor layer 72.

また、上記導電層74は、膜厚200nmのITO(錫添加酸化インジウム)により形成されている。このITOの成膜は蒸着法あるいはスパッタ法を用いることができる。ITO膜を成膜後、500℃から600℃で熱処理を行うことで、p型GaNからなる半導体層72とITOからなる導電層74のコンタクト抵抗を下げることができる。なお、導電層74は、これに限らず、例えば厚さ5nmのAg/NiまたはAu/Niの半透明の積層金属膜などを用いてもよい。この積層金属膜の成膜には蒸着法あるいはスパッタ法を用いることができる。さらに、より導電層の抵抗を下げるために、上記ITO膜上にAg/NiまたはAu/Niの積層金属膜を積層してもよい。   The conductive layer 74 is formed of ITO (tin-added indium oxide) having a thickness of 200 nm. The ITO film can be formed by vapor deposition or sputtering. After forming the ITO film, the contact resistance between the semiconductor layer 72 made of p-type GaN and the conductive layer 74 made of ITO can be lowered by performing heat treatment at 500 ° C. to 600 ° C. The conductive layer 74 is not limited to this, and may be, for example, a 5 nm thick Ag / Ni or Au / Ni semi-transparent laminated metal film. Vapor deposition or sputtering can be used to form this laminated metal film. Furthermore, in order to further reduce the resistance of the conductive layer, a laminated metal film of Ag / Ni or Au / Ni may be laminated on the ITO film.

上記棒状構造発光素子Gは、第1実施形態の棒状構造発光素子Aと同様の方法で製造する。この棒状構造発光素子Gは、触媒金属層の除去後に半導体コア71を覆う量子井戸層72および半導体層73を形成し、さらにITO膜のうち半導体層73を覆うように導電層としてITO膜の形成を行い、ついで、異方性ドライエッチングにより半導体層72を覆う部分を除く領域を除去した後、第1実施形態と同様に、リフトオフにより量子井戸層および半導体層のうち半導体コアを覆う部分を除く領域とマスクを除去することによって形成することができる。   The rod-shaped structure light emitting element G is manufactured by the same method as the rod-shaped structure light emitting element A of the first embodiment. In this rod-shaped structure light emitting element G, a quantum well layer 72 and a semiconductor layer 73 covering the semiconductor core 71 are formed after the removal of the catalytic metal layer, and an ITO film is formed as a conductive layer so as to cover the semiconductor layer 73 of the ITO film. Next, after removing the region excluding the portion covering the semiconductor layer 72 by anisotropic dry etching, the portion covering the semiconductor core in the quantum well layer and the semiconductor layer is removed by lift-off as in the first embodiment. It can be formed by removing the region and the mask.

また、この第7実施形態の棒状構造発光素子Gは、第1実施形態の棒状構造発光素子Aと同様の効果を有する。   Moreover, the rod-shaped structure light emitting element G of the seventh embodiment has the same effect as the rod-shaped structure light emitting element A of the first embodiment.

上記第7実施形態の棒状構造発光素子Gによれば、半導体コア71の被覆部分71aの長手方向に直交する断面が六角形状であることによって、この棒状構造発光素子を基板上に基板平面に対して長手方向が平行になるように実装するときに、半導体層のどの外周面であっても基板との接触面が得やすく、基板への放熱効率が向上する。したがって、発光時の素子温度が上昇して発光効率が低下するのを抑制できる。   According to the rod-shaped structure light emitting element G of the seventh embodiment, the section perpendicular to the longitudinal direction of the covering portion 71a of the semiconductor core 71 has a hexagonal shape. When mounting so that the longitudinal directions are parallel, it is easy to obtain a contact surface with the substrate at any outer peripheral surface of the semiconductor layer, and the heat dissipation efficiency to the substrate is improved. Therefore, it can suppress that the element temperature at the time of light emission raises, and luminous efficiency falls.

また、上記半導体コア71の露出部分71aの長手方向に直交する断面の形状と、半導体コア71の被覆部分71bの長手方向に直交する断面の形状とが異なることによって、半導体コア71の露出部分71aの外周面と被覆部分71bの外周面との境界に段差部71cが形成されるため、外部への光の取り出し効率が向上する。   Further, the exposed portion 71a of the semiconductor core 71 is different from the shape of the cross section orthogonal to the longitudinal direction of the exposed portion 71a of the semiconductor core 71 and the shape of the cross section orthogonal to the longitudinal direction of the covered portion 71b of the semiconductor core 71. Since the stepped portion 71c is formed at the boundary between the outer peripheral surface of the cover and the outer peripheral surface of the covering portion 71b, the light extraction efficiency to the outside is improved.

また、上記半導体層73よりも電気抵抗が低い材料からなる導電層74を介して半導体層73をp側電極に接続することにより、電極接続部分に電流が集中して偏ることがなく、広い電流経路を形成して、半導体コア71の側面全体を効率よく発光させることができ、発光効率がさらに向上する。   Further, by connecting the semiconductor layer 73 to the p-side electrode through the conductive layer 74 made of a material having a lower electric resistance than the semiconductor layer 73, current is not concentrated and biased in the electrode connection portion, and a wide current By forming a path, the entire side surface of the semiconductor core 71 can be efficiently emitted, and the light emission efficiency is further improved.

また、上記半導体コア71の被覆部分71bの外周面と半導体層73との間に量子井戸層72を形成することによって、量子井戸層72の量子閉じ込め効果により発光効率を向上できる。   Further, by forming the quantum well layer 72 between the outer peripheral surface of the covering portion 71 b of the semiconductor core 71 and the semiconductor layer 73, the light emission efficiency can be improved by the quantum confinement effect of the quantum well layer 72.

なお、この量子井戸層は、GaNの障壁層とInGaNの量子井戸層を交互に積層した多重量子井戸構造であってもよい。   The quantum well layer may have a multiple quantum well structure in which GaN barrier layers and InGaN quantum well layers are alternately stacked.

〔第8実施形態〕
図19はこの発明の第8実施形態の棒状構造発光素子の断面図を示している。この第8実施形態の棒状構造発光素子は、キャップ層を除いて第7実施形態の棒状構造発光素子と同一の構成をしている。
[Eighth Embodiment]
FIG. 19 shows a sectional view of a rod-shaped structure light emitting device according to an eighth embodiment of the present invention. The rod-shaped structure light emitting device of the eighth embodiment has the same configuration as the rod-shaped structure light emitting device of the seventh embodiment except for the cap layer.

この第8実施形態の棒状構造発光素子Hは、図19に示すように、断面がほぼ六角形の棒状のn型GaNからなる半導体コア81と、上記半導体コア81の一方の端面を覆うキャップ層82と、上記キャップ層82に覆われた半導体コア81の部分とは反対側の部分を覆わないで露出部分81aとするように、半導体コア81の露出部分81a以外の被覆部分81bの外周面を覆うp型InGaNからなる量子井戸層83と、上記量子井戸層83の外周面を覆うp型GaNからなる半導体層84と、上記半導体層84の外周面を覆う導電層85とを備えている。   As shown in FIG. 19, the rod-shaped structure light emitting element H of the eighth embodiment includes a semiconductor core 81 made of a rod-shaped n-type GaN having a substantially hexagonal cross section, and a cap layer that covers one end face of the semiconductor core 81. 82 and the outer peripheral surface of the covering portion 81b other than the exposed portion 81a of the semiconductor core 81 so that the exposed portion 81a is formed without covering the portion opposite to the portion of the semiconductor core 81 covered with the cap layer 82. A quantum well layer 83 made of p-type InGaN, a semiconductor layer 84 made of p-type GaN covering the outer peripheral surface of the quantum well layer 83, and a conductive layer 85 covering the outer peripheral surface of the semiconductor layer 84 are provided.

上記半導体コア81は、露出部分81aを被覆部分81bよりも小径にして、露出部分81aの外周面と被覆部分81bの外周面との間に段差部81cを設けている。また、上記半導体コア81の外周面とキャップ層82の外周面とが、連続した量子井戸層83と半導体層84により覆われている。   In the semiconductor core 81, the exposed portion 81a has a smaller diameter than the covering portion 81b, and a step portion 81c is provided between the outer peripheral surface of the exposed portion 81a and the outer peripheral surface of the covering portion 81b. The outer peripheral surface of the semiconductor core 81 and the outer peripheral surface of the cap layer 82 are covered with a continuous quantum well layer 83 and a semiconductor layer 84.

また、上記導電層85は、膜厚200nmのITO(錫添加酸化インジウム)により形成されている。このITOの成膜は蒸着法あるいはスパッタ法を用いることができる。ITO膜を成膜後、500℃から600℃で熱処理を行うことで、p型GaNからなる半導体層84とITOからなる導電層85のコンタクト抵抗を下げることができる。なお、導電層85は、これに限らず、例えば厚さ5nmのAg/NiまたはAu/Niの半透明の積層金属膜などを用いてもよい。この積層金属膜の成膜には蒸着法あるいはスパッタ法を用いることができる。さらに、より導電層の抵抗を下げるために、上記ITO膜上にAg/NiまたはAu/Niの積層金属膜を積層してもよい。   The conductive layer 85 is formed of ITO (tin-added indium oxide) having a thickness of 200 nm. The ITO film can be formed by vapor deposition or sputtering. After forming the ITO film, the contact resistance between the semiconductor layer 84 made of p-type GaN and the conductive layer 85 made of ITO can be lowered by performing heat treatment at 500 to 600 ° C. The conductive layer 85 is not limited to this, and may be, for example, a 5 nm thick Ag / Ni or Au / Ni semi-transparent laminated metal film. Vapor deposition or sputtering can be used to form this laminated metal film. Furthermore, in order to further reduce the resistance of the conductive layer, a laminated metal film of Ag / Ni or Au / Ni may be laminated on the ITO film.

図20は上記棒状構造発光素子Hの要部の断面模式図を示しており、図20に示すように、この第8実施形態の棒状構造発光素子Hでは、半導体層84よりも電気抵抗の大きな材料からなるキャップ層82が半導体コア81の一方の端面を覆うことによって、半導体コア81のキャップ層82側に接続されたp側電極86と半導体コア81との間でキャップ層82を介して電流が流れないようする一方で、キャップ層82よりも抵抗の低い導電層85,半導体層84を介してp側電極86と半導体コア81の外周面側との間で電流が流れるようにする。これにより、上記半導体コア81のキャップ層82が設けられた側の端面への電流集中を抑制して、その半導体コア81の端面に発光が集中することなく、半導体コア81の側面からの光の取り出し効率が向上する。   FIG. 20 is a schematic cross-sectional view of the main part of the rod-shaped structure light emitting element H. As shown in FIG. 20, the rod-shaped structure light emitting element H of the eighth embodiment has a larger electric resistance than the semiconductor layer 84. The cap layer 82 made of a material covers one end surface of the semiconductor core 81, so that a current flows between the p-side electrode 86 connected to the cap layer 82 side of the semiconductor core 81 and the semiconductor core 81 via the cap layer 82. On the other hand, current flows between the p-side electrode 86 and the outer peripheral surface side of the semiconductor core 81 through the conductive layer 85 and the semiconductor layer 84 having lower resistance than the cap layer 82. As a result, current concentration on the end surface of the semiconductor core 81 on the side where the cap layer 82 is provided is suppressed, and light is not concentrated on the end surface of the semiconductor core 81, so that light from the side surface of the semiconductor core 81 can be reduced. Extraction efficiency is improved.

上記第8実施形態の棒状構造発光素子Hは、第7実施形態の棒状構造発光素子と同様の効果を有する。   The rod-shaped structure light emitting element H of the eighth embodiment has the same effect as the rod-shaped structure light emitting element of the seventh embodiment.

また、上記棒状構造発光素子は、半導体コア81の露出部分81aにn側電極(図示せず)を接続し、半導体コア81のキャップ層82が設けられた側にp側電極86を接続するとき、キャップ層82により半導体コア81の一方の端面が露出していないので、その端部の半導体層84と導電層85を介して半導体コア81とp側電極86との電気的接続が容易にできる。それにより、半導体層84と導電層85で覆われた半導体コア81の側面全体のうちのp側電極86が遮る面積を最小限にすることができ、光の取り出し効率を向上できる。また、上記半導体コア81のキャップ層82が設けられた側の端面への電流集中を抑制して、その半導体コアの端面に発光が集中することなく、半導体コア81の側面からの光の取り出し効率が向上する。   In the rod-shaped structure light emitting element, when an n-side electrode (not shown) is connected to the exposed portion 81a of the semiconductor core 81, and the p-side electrode 86 is connected to the side of the semiconductor core 81 where the cap layer 82 is provided. Since one end face of the semiconductor core 81 is not exposed by the cap layer 82, the semiconductor core 81 and the p-side electrode 86 can be easily electrically connected via the semiconductor layer 84 and the conductive layer 85 at the end. . As a result, the area blocked by the p-side electrode 86 in the entire side surface of the semiconductor core 81 covered with the semiconductor layer 84 and the conductive layer 85 can be minimized, and the light extraction efficiency can be improved. Further, the current concentration on the end surface of the semiconductor core 81 on the side where the cap layer 82 is provided is suppressed, and the light extraction efficiency from the side surface of the semiconductor core 81 is reduced without concentration of light emission on the end surface of the semiconductor core. Will improve.

なお、半導体コア81のキャップ層82側の端部において、キャップ層82には接続せず、導電層85のみとp側電極86とを電気的接続してもよい。   Note that, at the end of the semiconductor core 81 on the cap layer 82 side, only the conductive layer 85 and the p-side electrode 86 may be electrically connected without being connected to the cap layer 82.

〔第9実施形態〕
図21はこの発明の第9実施形態の棒状構造発光素子を備えた発光装置の斜視図を示している。
[Ninth Embodiment]
FIG. 21 is a perspective view of a light-emitting device provided with the rod-shaped structure light-emitting element according to the ninth embodiment of the present invention.

この第9実施形態の発光装置は、図21に示すように、実装面に金属電極98,99が形成された絶縁性基板90と、上記絶縁性基板90上に長手方向が絶縁性基板90の実装面に平行になるように実装された棒状構造発光素子Iとを備えている。   In the light emitting device according to the ninth embodiment, as shown in FIG. 21, an insulating substrate 90 having metal electrodes 98 and 99 formed on the mounting surface, and a longitudinal direction of the insulating substrate 90 on the insulating substrate 90. And a rod-shaped structure light emitting element I mounted so as to be parallel to the mounting surface.

上記棒状構造発光素子Iは、棒状のn型GaNからなる半導体コア91と、上記半導体コア91の一端側の部分を覆わないで露出部分91aとするように、半導体コア91の露出部分91a以外の被覆部分91bを覆うp型GaNからなる半導体層92とを備えている。   The rod-shaped structure light emitting element I includes a semiconductor core 91 made of a rod-shaped n-type GaN and an exposed portion 91a other than the exposed portion 91a of the semiconductor core 91 so as not to cover a portion on one end side of the semiconductor core 91. And a semiconductor layer 92 made of p-type GaN covering the covering portion 91b.

上記半導体コア91の露出部分91aは長手方向に直交する断面がほぼ円形であり、半導体コア91の被覆部分91bは長手方向に直交する断面がほぼ六角形である。上記半導体コア91の露出部分91aを被覆部分91bよりも小径にして、露出部分91aの外周面と被覆部分91bの外周面との間に段差部91cを設けている。   The exposed portion 91a of the semiconductor core 91 has a substantially circular cross section perpendicular to the longitudinal direction, and the covering portion 91b of the semiconductor core 91 has a substantially hexagonal cross section perpendicular to the longitudinal direction. The exposed portion 91a of the semiconductor core 91 has a smaller diameter than the covering portion 91b, and a step portion 91c is provided between the outer peripheral surface of the exposed portion 91a and the outer peripheral surface of the covering portion 91b.

図21に示すように、棒状構造発光素子Iの一端側の露出部分91aを金属電極98に接続すると共に、棒状構造発光素子Iの他端側の半導体層92を金属電極99に接続している。   As shown in FIG. 21, the exposed portion 91 a on one end side of the rod-shaped structure light emitting element I is connected to the metal electrode 98, and the semiconductor layer 92 on the other end side of the rod-shaped structure light emitting element I is connected to the metal electrode 99. .

ここで、棒状構造発光素子Iは、後述する第12実施形態の棒状構造発光素子の配列方法におけるIPA水溶液の乾燥時に、基板表面と棒状構造発光素子の隙間の液滴が蒸発により縮小するときに発生するスティクションにより中央部分が撓んで絶縁性基板90上に接している。   Here, the rod-shaped structure light emitting device I is used when the droplets in the gap between the substrate surface and the rod-shaped structure light emitting device are reduced by evaporation when the IPA aqueous solution is dried in the method for arranging the rod-shaped structure light emitting devices of the twelfth embodiment described later. The central portion is bent by the generated stiction and is in contact with the insulating substrate 90.

上記第9実施形態の発光装置によれば、長手方向が実装面に平行になるように絶縁性基板90に実装された棒状構造発光素子Iは、半導体層92の外周面と絶縁性基板90の実装面とが接触するので、棒状構造発光素子Iで発生した熱を半導体層92から絶縁性基板90に効率よく放熱することができる。したがって、発光効率が高くかつ放熱性のよい発光装置を実現することができる。なお、半導体層を覆うように導電層が形成された棒状構造発光素子においても、導電層の外周面と絶縁性基板の実装面とが接触することにより、同様に効果が得られる。   According to the light emitting device of the ninth embodiment, the rod-shaped structure light-emitting element I mounted on the insulating substrate 90 so that the longitudinal direction is parallel to the mounting surface includes the outer peripheral surface of the semiconductor layer 92 and the insulating substrate 90. Since the mounting surface comes into contact, the heat generated in the rod-shaped structure light emitting element I can be efficiently radiated from the semiconductor layer 92 to the insulating substrate 90. Therefore, a light emitting device with high luminous efficiency and good heat dissipation can be realized. Note that, in the rod-shaped structure light-emitting element in which the conductive layer is formed so as to cover the semiconductor layer, the same effect can be obtained by bringing the outer peripheral surface of the conductive layer into contact with the mounting surface of the insulating substrate.

また、上記発光装置では、絶縁性基板90上に棒状構造発光素子Iを横倒しに配置しているので、絶縁性基板90を含めた厚さを薄くできる。上記発光装置において、例えば直径が1μmで長さ10μmのマイクロオーダーサイズや、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの微細な棒状構造発光素子Iを用いることにより、使用する半導体の量を少なくでき、この発光装置を用いて薄型化と軽量化が可能なバックライト,照明装置および表示装置などを実現することができる。   Further, in the above light emitting device, since the rod-shaped structure light emitting element I is disposed on the insulating substrate 90 in a horizontal direction, the thickness including the insulating substrate 90 can be reduced. In the above light emitting device, for example, a micro-order size having a diameter of 1 μm and a length of 10 μm, or a fine rod-shaped light-emitting element I having a nano-order size of at least a diameter or length of less than 1 μm is used. The amount of semiconductor can be reduced, and a backlight, a lighting device, a display device, and the like that can be reduced in thickness and weight can be realized by using the light emitting device.

なお、上記第9実施形態において、棒状構造発光素子に第1〜第9実施形態の棒状構造発光素子のいずれかを用いてもよい。   In the ninth embodiment, any of the rod-shaped structure light emitting elements of the first to ninth embodiments may be used as the rod-shaped structure light emitting element.

〔第10実施形態〕
図22はこの発明の第10実施形態の棒状構造発光素子を備えた発光装置の側面図を示している。
[Tenth embodiment]
FIG. 22 shows a side view of a light-emitting device provided with a rod-like structure light-emitting element according to the tenth embodiment of the present invention.

この第10実施形態の発光装置は、図22に示すように、絶縁性基板100と、絶縁性基板100上に長手方向が絶縁性基板100の実装面に平行になるように実装された棒状構造発光素子Jとを備えている。   As shown in FIG. 22, the light emitting device of the tenth embodiment includes an insulating substrate 100 and a rod-like structure mounted on the insulating substrate 100 so that the longitudinal direction is parallel to the mounting surface of the insulating substrate 100. And a light emitting element J.

上記棒状構造発光素子Jは、棒状のn型GaNからなる半導体コア101と、上記半導体コア51の一方の端面を覆うキャップ層102(図23に示す)と、上記キャップ層102に覆われた半導体コア101の部分とは反対側の部分を覆わないで露出部分101aとするように、半導体コア101の露出部分101a以外の被覆部分101bの外周面を覆うp型InGaNからなる量子井戸層103と、上記量子井戸層103の外周面を覆うp型GaNからなる半導体層104と、上記半導体層104の外周面を覆う導電層105とを備えている。   The rod-shaped structure light emitting element J includes a semiconductor core 101 made of rod-shaped n-type GaN, a cap layer 102 (shown in FIG. 23) covering one end surface of the semiconductor core 51, and a semiconductor covered with the cap layer 102. A quantum well layer 103 made of p-type InGaN covering the outer peripheral surface of the covering portion 101b other than the exposed portion 101a of the semiconductor core 101 so as to make the exposed portion 101a without covering the portion opposite to the portion of the core 101; A semiconductor layer 104 made of p-type GaN covering the outer peripheral surface of the quantum well layer 103 and a conductive layer 105 covering the outer peripheral surface of the semiconductor layer 104 are provided.

上記半導体コア101の露出部分101aは長手方向に直交する断面がほぼ円形であり、半導体コア101の被覆部分101bは長手方向に直交する断面がほぼ六角形である。上記半導体コア101の露出部分101aを被覆部分101bよりも小径にして、露出部分101aの外周面と被覆部分101bの外周面との間に段差部101cを設けている。   The exposed portion 101a of the semiconductor core 101 has a substantially circular cross section perpendicular to the longitudinal direction, and the coated portion 101b of the semiconductor core 101 has a substantially hexagonal cross section perpendicular to the longitudinal direction. The exposed portion 101a of the semiconductor core 101 has a smaller diameter than the covering portion 101b, and a step portion 101c is provided between the outer peripheral surface of the exposed portion 101a and the outer peripheral surface of the covering portion 101b.

上記導電層105上かつ絶縁性基板100側に第2の導電層の一例としての金属層106を形成している。上記金属層106は、導電層105の外周面の下側略半分を覆っている。上記導電層105は、ITOにより形成されている。なお、導電層は、これに限らず、例えば厚さ5nmのAg/NiまたはAu/Niの半透明の積層金属膜などを用いてもよい。この積層金属膜の成膜には蒸着法あるいはスパッタ法を用いることができる。さらに、より導電層の抵抗を下げるために、上記ITO膜上にAg/NiまたはAu/Niの積層金属膜を積層してもよい。また、金属層106は、Alに限らず、Cu,W,Ag,Auなどを用いてもよい。   A metal layer 106 as an example of a second conductive layer is formed on the conductive layer 105 and on the insulating substrate 100 side. The metal layer 106 covers the lower half of the outer peripheral surface of the conductive layer 105. The conductive layer 105 is made of ITO. The conductive layer is not limited to this, and may be, for example, a 5 nm thick Ag / Ni or Au / Ni semi-transparent laminated metal film. Vapor deposition or sputtering can be used to form this laminated metal film. Furthermore, in order to further reduce the resistance of the conductive layer, a laminated metal film of Ag / Ni or Au / Ni may be laminated on the ITO film. The metal layer 106 is not limited to Al, and Cu, W, Ag, Au, or the like may be used.

この第10実施形態の発光装置は、図23に示すように、実装面に金属電極107,108が形成された絶縁性基板100と、上記絶縁性基板100上に長手方向が絶縁性基板100の実装面に平行になるように実装された棒状構造発光素子Jとを備えている。   As shown in FIG. 23, the light emitting device of the tenth embodiment includes an insulating substrate 100 having metal electrodes 107 and 108 formed on the mounting surface, and a longitudinal direction of the insulating substrate 100 on the insulating substrate 100. And a rod-shaped structure light emitting element J mounted so as to be parallel to the mounting surface.

上記棒状構造発光素子Jの一端側の露出部分101aを金属電極107に導電性接着剤などの接着部109Aにより接続すると共に、棒状構造発光素子Jの他端側の金属層106を金属電極108に導電性接着剤などの接着部109Bにより接続している。   The exposed portion 101a on one end side of the rod-shaped structure light emitting element J is connected to the metal electrode 107 by an adhesive portion 109A such as a conductive adhesive, and the metal layer 106 on the other end side of the rod-shaped structure light emitting element J is connected to the metal electrode 108. They are connected by an adhesive portion 109B such as a conductive adhesive.

ここで、棒状構造発光素子Jは、後述する第12実施形態の棒状構造発光素子の配列方法におけるIPA水溶液の乾燥時に、基板表面と棒状構造発光素子の隙間の液滴が蒸発により縮小するときに発生するスティクションにより中央部分が撓んで絶縁性基板100上に接している。   Here, the rod-like structure light emitting element J is used when the droplets in the gap between the substrate surface and the rod-like structure light emitting element are reduced by evaporation when the IPA aqueous solution is dried in the method for arranging the rod-like structure light emitting elements of the twelfth embodiment described later. The central portion is bent by the generated stiction and is in contact with the insulating substrate 100.

上記第10実施形態の発光装置によれば、棒状構造発光素子Jの導電層105上かつ絶縁性基板100側に、半導体層104よりも電気抵抗が低い材料からなる第2の導電層の一例としての金属層106を形成することによって、金属層106のない棒状構造発光素子Jの絶縁性基板100と反対の側においても、半導体コア101の外周面を覆う導電層105があるため、高抵抗の半導体層104全体への電流の流れやすさを犠牲にすることなく、金属層106によって低抵抗化できる。また、半導体コア101の外周面を覆う導電層105には、発光効率を考慮すると透過率の低い材料が使えないために低抵抗の材料を用いることができないが、金属層106には、透過率よりも低抵抗であることを優先した導電性材料を用いることができる。さらに、長手方向が実装面に平行になるように絶縁性基板100に実装された棒状構造発光素子Jは、金属層106が絶縁性基板100の実装面と接するので、棒状構造発光素子Jで発生した熱を金属層106を介して絶縁性基板100に効率よく放熱することができる。   According to the light emitting device of the tenth embodiment, as an example of the second conductive layer made of a material having lower electrical resistance than the semiconductor layer 104 on the conductive layer 105 of the rod-shaped structure light emitting element J and on the insulating substrate 100 side. By forming the metal layer 106, the conductive layer 105 covering the outer peripheral surface of the semiconductor core 101 is provided on the side opposite to the insulating substrate 100 of the rod-shaped structure light emitting element J without the metal layer 106. The resistance can be reduced by the metal layer 106 without sacrificing the ease of current flow through the entire semiconductor layer 104. In addition, the conductive layer 105 covering the outer peripheral surface of the semiconductor core 101 cannot use a low-resistance material because a material with low transmittance cannot be used in consideration of light emission efficiency, but the metal layer 106 has a transmittance. It is possible to use a conductive material that prioritizes low resistance. Furthermore, the rod-shaped structure light emitting element J mounted on the insulating substrate 100 so that the longitudinal direction is parallel to the mounting surface is generated in the rod-shaped structure light emitting element J because the metal layer 106 is in contact with the mounting surface of the insulating substrate 100. Thus, the heat can be efficiently radiated to the insulating substrate 100 through the metal layer 106.

〔第11実施形態〕
図24はこの発明の第11実施形態の発光装置の斜視図を示している。この第11実施形態では、第2実施形態の棒状構造発光素子Bと同一の構成の棒状構造発光素子を用いている。なお、棒状構造発光素子に上記第1,第3〜第10実施形態の棒状構造発光素子のいずれかを用いてもよい。
[Eleventh embodiment]
FIG. 24 is a perspective view of the light emitting device according to the eleventh embodiment of the present invention. In the eleventh embodiment, a rod-shaped structure light emitting device having the same configuration as that of the rod-shaped structure light emitting device B of the second embodiment is used. In addition, you may use any of the said rod-shaped structure light emitting element of the said 1st, 3rd-10th embodiment for a rod-shaped structure light emitting element.

この第11実施形態の発光装置は、図24に示すように、実装面に金属電極201,202が形成された絶縁性基板200と、上記絶縁性基板200上に長手方向が絶縁性基板200の実装面に平行になるように実装された棒状構造発光素子Kとを備えている。上記絶縁性基板200には、絶縁性基板200上の金属電極201,202間かつ棒状構造発光素子Kの下側に金属部の一例としての第3の金属電極203を形成している。図24では、金属電極201,202,203の一部のみを示している。   As shown in FIG. 24, the light emitting device of the eleventh embodiment includes an insulating substrate 200 in which metal electrodes 201 and 202 are formed on the mounting surface, and a longitudinal direction of the insulating substrate 200 on the insulating substrate 200. And a rod-shaped structure light emitting element K mounted so as to be parallel to the mounting surface. A third metal electrode 203 as an example of a metal portion is formed on the insulating substrate 200 between the metal electrodes 201 and 202 on the insulating substrate 200 and below the rod-shaped structure light emitting element K. In FIG. 24, only a part of the metal electrodes 201, 202, 203 is shown.

上記棒状構造発光素子Kは、断面がほぼ六角形の棒状のn型GaNからなる半導体コア111と、上記半導体コア111の部分とは反対側の部分を覆わないで露出部分111aとするように、半導体コア111の露出部分111a以外の被覆部分111bの外周面を覆うp型GaNからなる半導体層112とを有する。上記半導体コア111は、露出部分111aを被覆部分111bよりも小径にして、露出部分111aの外周面と被覆部分111bの外周面との間に段差部111cを設けている。また、半導体コア111の他端側の端面は、半導体層112により覆われている。   The rod-shaped structure light emitting element K has a semiconductor core 111 made of a rod-shaped n-type GaN having a substantially hexagonal cross section, and an exposed portion 111a without covering a portion opposite to the portion of the semiconductor core 111. And a semiconductor layer 112 made of p-type GaN covering the outer peripheral surface of the covering portion 111b other than the exposed portion 111a of the semiconductor core 111. In the semiconductor core 111, the exposed portion 111a has a smaller diameter than the covering portion 111b, and a step portion 111c is provided between the outer peripheral surface of the exposed portion 111a and the outer peripheral surface of the covering portion 111b. Further, the end surface on the other end side of the semiconductor core 111 is covered with the semiconductor layer 112.

上記第11実施形態の発光装置によれば、絶縁性基板200上の電極201,202間かつ棒状構造発光素子Kの下側に金属電極203を形成することによって、両端が金属電極201,202に接続された棒状構造発光素子Kの中央側を金属電極203の表面に接触させて支えるので、両持ちの棒状構造発光素子Kが撓むことなく、金属電極203により支持されると共に、棒状構造発光素子Kで発生した熱を半導体層112から金属電極203を介して絶縁性基板200に効率よく放熱することができる。   According to the light emitting device of the eleventh embodiment, the metal electrode 203 is formed between the electrodes 201 and 202 on the insulating substrate 200 and below the rod-shaped structure light emitting element K, so that both ends become the metal electrodes 201 and 202. Since the center side of the connected rod-shaped structure light emitting element K is supported by being brought into contact with the surface of the metal electrode 203, the both-end supported rod-shaped structure light emitting element K is supported by the metal electrode 203 without being bent, and the rod-shaped structure light emitting element is supported. Heat generated in the element K can be efficiently radiated from the semiconductor layer 112 to the insulating substrate 200 through the metal electrode 203.

なお、図25に示すように、金属電極201と金属電極202夫々は、互いに所定の間隔をあけて略並行な基部201a,202aと、基部201a,202aの対向する位置から基部201a,202a間に延びる複数の電極部201b,202bを有する。金属電極201の電極部201bと、それに対向する金属電極202の電極部202bとに1つの棒状構造発光素子Kが配列される。この金属電極201の電極部201bとそれに対向する金属電極202の電極部202bの間に、中央部分が狭くなった蝶形状の第3の金属電極203を絶縁性基板200上に形成している。   As shown in FIG. 25, each of the metal electrode 201 and the metal electrode 202 includes a base portion 201a, 202a that is substantially parallel to each other at a predetermined interval, and a position between the base portion 201a, 202a from a position where the base portions 201a, 202a face each other. It has a plurality of electrode portions 201b and 202b extending. One rod-shaped structure light emitting element K is arranged in the electrode part 201b of the metal electrode 201 and the electrode part 202b of the metal electrode 202 opposite to the electrode part 201b. A butterfly-shaped third metal electrode 203 having a narrow central portion is formed on the insulating substrate 200 between the electrode portion 201b of the metal electrode 201 and the electrode portion 202b of the metal electrode 202 opposed thereto.

上記互いに隣接する第3の金属電極203同士は、電気的に切り離されており、図25に示すように、互いに隣接する棒状構造発光素子Kの向きが逆になっても、金属電極203を介して金属電極201と金属電極202が短絡するのを防止できる。   The third metal electrodes 203 adjacent to each other are electrically separated from each other. As shown in FIG. 25, even if the directions of the rod-shaped structure light emitting elements K adjacent to each other are reversed, the third metal electrodes 203 are interposed via the metal electrodes 203. Thus, the metal electrode 201 and the metal electrode 202 can be prevented from being short-circuited.

〔第12実施形態〕
次に、この発明の第12実施形態の棒状構造発光素子を備えた発光装置、バックライト、照明装置および表示装置について説明する。この第12実施形態では、上記第1〜第10実施形態の棒状構造発光素子を絶縁性基板に配列する。この棒状構造発光素子の配列は、本出願人が特願2007−102848(特開2008−260073号公報)で出願した「微細構造体の配列方法及び微細構造体を配列した基板、並びに集積回路装置及び表示素子」の発明の技術を用いて行う。
[Twelfth embodiment]
Next, a light emitting device, a backlight, an illuminating device, and a display device each including a bar-shaped structured light emitting element according to a twelfth embodiment of the present invention will be described. In the twelfth embodiment, the rod-shaped structure light emitting elements of the first to tenth embodiments are arranged on an insulating substrate. The arrangement of the rod-shaped structure light-emitting elements is the same as that disclosed in Japanese Patent Application No. 2007-102848 (Japanese Patent Application Laid-Open No. 2008-260073), “Microstructure Arrangement Method, Substrate Arranged with Fine Structure, and Integrated Circuit Device” And display device ".

図26はこの第12実施形態の発光装置、バックライト、照明装置および表示装置に用いる絶縁性基板の平面図を示している。図26に示すように、絶縁性基板300の表面に、金属電極301,302を形成している。絶縁性基板300はガラス、セラミック、酸化アルミニウム、樹脂のような絶縁体、またはシリコンのような半導体表面にシリコン酸化膜を形成し、表面が絶縁性を有するような基板である。ガラス基板を用いる場合は、表面にシリコン酸化膜、シリコン窒化膜のような下地絶縁膜を形成するのが望ましい。   FIG. 26 shows a plan view of an insulating substrate used in the light emitting device, backlight, illumination device and display device of the twelfth embodiment. As shown in FIG. 26, metal electrodes 301 and 302 are formed on the surface of the insulating substrate 300. The insulating substrate 300 is an insulating material such as glass, ceramic, aluminum oxide, resin, or a substrate in which a silicon oxide film is formed on a semiconductor surface such as silicon, and the surface is insulative. When a glass substrate is used, it is desirable to form a base insulating film such as a silicon oxide film or a silicon nitride film on the surface.

上記金属電極301,302は、印刷技術を利用して所望の電極形状に形成している。なお、金属膜および感光体膜を一様に積層し、所望の電極パターンを露光し、エッチングして形成してもよい。   The metal electrodes 301 and 302 are formed in a desired electrode shape using a printing technique. The metal film and the photosensitive film may be uniformly laminated, and a desired electrode pattern may be exposed and etched.

図26では省略されているが、金属電極301,302には外部から電位を与えられるように、パッドを形成している。この金属電極301,302が対向する部分(配列領域)に棒状構造発光素子を配列する。図26では、棒状構造発光素子を配列する配列領域が2×2個配列されているが、任意の個数を配列してよい。   Although omitted in FIG. 26, pads are formed on the metal electrodes 301 and 302 so that potentials can be applied from the outside. A rod-shaped structure light emitting element is arranged in a portion (arrangement region) where the metal electrodes 301 and 302 face each other. In FIG. 26, 2 × 2 arrangement regions for arranging rod-shaped structure light emitting elements are arranged, but any number may be arranged.

図27は図26のXXVII−XXVII線から見た断面模式図である。   FIG. 27 is a schematic sectional view taken along line XXVII-XXVII in FIG.

まず、図27に示すように、絶縁性基板300上に、棒状構造発光素子310を含んだイソプロピルアルコール(IPA)311を薄く塗布する。IPA311の他に、エチレングリコール、プロピレングリコール、メタノール、エタノール、アセトン、またはそれらの混合物でもよい。あるいは、IPA311は、他の有機物からなる液体、水などを用いることができる。   First, as shown in FIG. 27, isopropyl alcohol (IPA) 311 including a rod-shaped structure light emitting element 310 is thinly applied on an insulating substrate 300. In addition to IPA 311, ethylene glycol, propylene glycol, methanol, ethanol, acetone, or a mixture thereof may be used. Alternatively, the IPA 311 can use a liquid made of another organic material, water, or the like.

ただし、液体を通じて金属電極301,302間に大きな電流が流れてしまうと、金属電極301,302間に所望の電圧差を印加できなくなってしまう。そのような場合には、金属電極301,302を覆うように、絶縁性基板300表面全体に、10nm〜30nm程度の絶縁膜をコーティングすればよい。   However, if a large current flows between the metal electrodes 301 and 302 through the liquid, a desired voltage difference cannot be applied between the metal electrodes 301 and 302. In such a case, the entire surface of the insulating substrate 300 may be coated with an insulating film of about 10 nm to 30 nm so as to cover the metal electrodes 301 and 302.

棒状構造発光素子310を含むIPA311を塗布する厚さは、次に棒状構造発光素子310を配列する工程で、棒状構造発光素子310が配列できるよう、液体中で棒状構造発光素子310が移動できる厚さである。したがって、IPA311を塗布する厚さは、棒状構造発光素子310の太さ以上であり、例えば、数μm〜数mmである。塗布する厚さは薄すぎると、棒状構造発光素子310が移動し難くなり、厚すぎると、液体を乾燥する時間が長くなる。また、IPAの量に対して、棒状構造発光素子310の量は、1×104本/cm3〜1×107本/cm3が好ましい。 The thickness of applying the IPA 311 including the rod-shaped structure light emitting element 310 is such that the rod-shaped structure light emitting element 310 can move in the liquid so that the rod-shaped structure light emitting element 310 can be arranged in the next step of arranging the rod-shaped structure light emitting element 310. That's it. Therefore, the thickness of applying the IPA 311 is equal to or greater than the thickness of the rod-shaped structure light emitting element 310, and is, for example, several μm to several mm. If the applied thickness is too thin, the rod-like structure light emitting element 310 is difficult to move. If it is too thick, the time for drying the liquid becomes long. Further, the amount of the rod-like structure light emitting element 310 is preferably 1 × 10 4 pieces / cm 3 to 1 × 10 7 pieces / cm 3 with respect to the amount of IPA.

棒状構造発光素子310を含むIPA311を塗布するために、棒状構造発光素子310を配列させる金属電極の外周囲に枠を形成し、その枠内に棒状構造発光素子310を含むIPA311を所望の厚さになるように充填してもよい。しかしながら、棒状構造発光素子310を含むIPA311が粘性を有する場合は、枠を必要とせずに、所望の厚さに塗布することが可能である。   In order to apply the IPA 311 including the rod-shaped structure light-emitting element 310, a frame is formed around the outer periphery of the metal electrode on which the rod-shaped structure light-emitting element 310 is arranged, and the IPA 311 including the rod-shaped structure light-emitting element 310 is formed in a desired thickness. It may be filled so that However, when the IPA 311 including the rod-shaped structure light emitting element 310 has viscosity, it can be applied to a desired thickness without requiring a frame.

IPAやエチレングリコール、プロピレングリコール、…、またはそれらの混合物、あるいは、他の有機物からなる液体、または水などの液体は、棒状構造発光素子310の配列工程のためには粘性が低いほど望ましく、また加熱により蒸発しやすい方が望ましい。   A liquid made of IPA, ethylene glycol, propylene glycol,..., Or a mixture thereof, or other organic substances, or a liquid such as water is desirable for the arrangement process of the rod-shaped structure light emitting element 310 to have a low viscosity, It is desirable that it evaporates easily when heated.

次に、金属電極301,302間に電位差を与える。この第12実施形態では、1Vの電位差とするのが適当であった。金属電極301,302の電位差は、0.1〜10Vを印加することができるが、0.1V以下では棒状構造発光素子310の配列が悪くなり、10V以上では金属電極間の絶縁が問題になり始める。したがって、1〜5Vが好ましく、更には1V程度とするのが好ましい。   Next, a potential difference is applied between the metal electrodes 301 and 302. In the twelfth embodiment, a potential difference of 1V was appropriate. The potential difference between the metal electrodes 301 and 302 can be 0.1 to 10 V, but if the voltage is 0.1 V or less, the arrangement of the rod-shaped structure light emitting elements 310 is poor, and if it is 10 V or more, insulation between the metal electrodes becomes a problem. start. Therefore, it is preferably 1 to 5V, and more preferably about 1V.

図28は上記棒状構造発光素子310が金属電極301,302上に配列する原理を示している。図28に示すように、金属電極301に電位VLを印加し、金属電極302に電位VR(VL<VR)を印加すると、金属電極301には負電荷が誘起され、金属電極302には正電荷が誘起される。そこに棒状構造発光素子310が接近すると、棒状構造発光素子310において、金属電極301に近い側に正電荷が誘起され、金属電極302に近い側に負電荷が誘起される。この棒状構造発光素子310に電荷が誘起されるのは静電誘導による。すなわち、電界中に置かれた棒状構造発光素子310は、内部の電界が0となるまで表面に電荷が誘起されることによる。その結果、各電極と棒状構造発光素子310との間に静電力により引力が働き、棒状構造発光素子310は、金属電極301,302間に生じる電気力線に沿うと共に、各棒状構造発光素子310に誘起された電荷がほぼ等しいので、電荷による反発力により、ほぼ等間隔に一定方向に規則正しく配列する。しかしながら、例えば、第1実施形態の図1に示す棒状構造発光素子では、半導体層12に覆われた半導体コア11の露出部分11a側の向きは一定にならず、ランダムになる(他の実施形態の棒状構造発光素子でも同様)。   FIG. 28 shows the principle that the rod-shaped structure light emitting elements 310 are arranged on the metal electrodes 301 and 302. As shown in FIG. 28, when a potential VL is applied to the metal electrode 301 and a potential VR (VL <VR) is applied to the metal electrode 302, a negative charge is induced in the metal electrode 301 and a positive charge is applied to the metal electrode 302. Is induced. When the rod-shaped structure light emitting element 310 approaches, a positive charge is induced on the side close to the metal electrode 301 and a negative charge is induced on the side close to the metal electrode 302. The charge is induced in the rod-shaped structure light emitting element 310 by electrostatic induction. That is, the rod-shaped structure light emitting element 310 placed in the electric field is caused by the charge being induced on the surface until the internal electric field becomes zero. As a result, an attractive force is exerted between each electrode and the rod-shaped structure light emitting element 310 by an electrostatic force, and the rod-shaped structure light emitting element 310 follows the electric lines of force generated between the metal electrodes 301 and 302 and each rod-shaped structure light emitting element 310. Since the charges induced in the are substantially equal, the repulsive force caused by the charges causes the charges to be regularly arranged in a fixed direction at almost equal intervals. However, for example, in the rod-shaped structure light-emitting element shown in FIG. 1 of the first embodiment, the direction of the exposed portion 11a side of the semiconductor core 11 covered with the semiconductor layer 12 is not constant, but is random (another embodiment). The same applies to the rod-shaped structure light-emitting element.

以上のように、棒状構造発光素子310が金属電極301,302間に発生した外部電場により、棒状構造発光素子310に電荷を発生させ、電荷の引力により金属電極301,302に棒状構造発光素子310を吸着させるので、棒状構造発光素子310の大きさは、液体中で移動可能な大きさであることが必要である。したがって、棒状構造発光素子310の大きさは、液体の塗布量(厚さ)により変化する。液体の塗布量が少ない場合は、棒状構造発光素子310はナノオーダーサイズでなければならないが、液体の塗布量が多い場合は、マイクロオーダーサイズであってもかまわない。   As described above, an electric field generated between the metal electrodes 301 and 302 in the rod-shaped structure light emitting element 310 generates charges in the rod-shaped structure light emitting element 310, and the rod-shaped structure light emitting elements 310 are applied to the metal electrodes 301 and 302 by the attractive force of the charges. Therefore, the size of the rod-like structure light emitting element 310 needs to be a size that can move in the liquid. Therefore, the size of the rod-shaped structure light emitting element 310 varies depending on the application amount (thickness) of the liquid. When the amount of liquid applied is small, the rod-shaped structure light emitting element 310 must be nano-order size, but when the amount of liquid applied is large, it may be micro-order size.

棒状構造発光素子310が電気的に中性ではなく、正または負に帯電している場合は、金属電極301,302間に静的な電位差(DC)を与えるだけでは、棒状構造発光素子310を安定して配列することができない。例えば、棒状構造発光素子310が正味として正に帯電した場合は、正電荷が誘起されている金属電極302との引力が相対的に弱くなる。そのため、棒状構造発光素子310の配列が非対象になる。   When the rod-shaped structure light-emitting element 310 is not electrically neutral and is charged positively or negatively, the rod-shaped structure light-emitting element 310 can be formed only by giving a static potential difference (DC) between the metal electrodes 301 and 302. It cannot be arranged stably. For example, when the rod-shaped structure light emitting element 310 is positively charged as a net, the attractive force with the metal electrode 302 in which the positive charge is induced becomes relatively weak. Therefore, the arrangement of the rod-shaped structure light emitting elements 310 is not targeted.

そのような場合は、図29に示すように、金属電極301,302間にAC電圧を印加することが好ましい。図29においては、金属電極302に基準電位を、金属電極301には振幅VPPL/2のAC電圧を印加している。こうすることにより、棒状構造発光素子310が帯電している場合でも、配列を対象に保つことができる。なお、この場合の金属電極302に与える交流電圧の周波数は、10Hz〜1MHzとするのが好ましく、50Hz〜1kHzとするのが最も配列が安定し、より好ましい。さらに、金属電極301,302間に印加するAC電圧は、正弦波に限らず、矩形波、三角波、ノコギリ波など、周期的に変動するものであればよい。なお、VPPLは1V程度とするのが好ましかった。   In such a case, it is preferable to apply an AC voltage between the metal electrodes 301 and 302 as shown in FIG. In FIG. 29, a reference potential is applied to the metal electrode 302 and an AC voltage having an amplitude VPPL / 2 is applied to the metal electrode 301. By doing so, even when the rod-shaped structure light emitting element 310 is charged, the arrangement can be kept as a target. In this case, the frequency of the AC voltage applied to the metal electrode 302 is preferably 10 Hz to 1 MHz, and more preferably 50 Hz to 1 kHz because the arrangement is most stable. Furthermore, the AC voltage applied between the metal electrodes 301 and 302 is not limited to a sine wave, but may be any voltage that varies periodically, such as a rectangular wave, a triangular wave, and a sawtooth wave. VPPL was preferably about 1V.

次に、金属電極301,302上に、棒状構造発光素子310を配列させた後、絶縁性基板300を加熱することにより、液体を蒸発させて乾燥させ、棒状構造発光素子310を金属電極301,302間の電気力線に沿って等間隔に配列させて固着させる。   Next, after the rod-shaped structure light emitting elements 310 are arranged on the metal electrodes 301 and 302, the insulating substrate 300 is heated to evaporate the liquid and dry the metal. The wires are arranged at equal intervals along the lines of electric force between 302 and fixed.

図30は上記棒状構造発光素子310を配列した絶縁性基板300の平面図を示している。この棒状構造発光素子310を配列した絶縁性基板300を、液晶表示装置などのバックライトに用いることにより、薄型化と軽量化が可能でかつ発光効率が高く省電力なバックライトを実現することができる。また、この棒状構造発光素子310を配列した絶縁性基板300を照明装置として用いることにより、薄型化と軽量化が可能でかつ発光効率が高く省電力な照明装置を実現することができる。   FIG. 30 is a plan view of the insulating substrate 300 on which the rod-shaped structure light emitting elements 310 are arranged. By using the insulating substrate 300 on which the rod-shaped structure light emitting elements 310 are arranged for a backlight of a liquid crystal display device or the like, it is possible to realize a backlight that can be reduced in thickness and weight, has high luminous efficiency, and saves power. it can. Further, by using the insulating substrate 300 in which the rod-shaped structure light emitting elements 310 are arranged as a lighting device, it is possible to realize a lighting device that can be reduced in thickness and weight, has high luminous efficiency, and saves power.

また、図31は上記棒状構造発光素子310を配列した絶縁性基板を用いた表示装置の平面図を示している。図31に示すように、表示装置400は、絶縁性基板410上に、表示部401、論理回路部402、論理回路部403、論理回路部404および論理回路部405を備える構成となっている。上記表示部401には、マトリックス状に配置された画素に棒状構造発光素子310を配列している。   FIG. 31 is a plan view of a display device using an insulating substrate on which the rod-shaped structure light emitting elements 310 are arranged. As illustrated in FIG. 31, the display device 400 includes a display portion 401, a logic circuit portion 402, a logic circuit portion 403, a logic circuit portion 404, and a logic circuit portion 405 on an insulating substrate 410. In the display portion 401, rod-shaped structure light emitting elements 310 are arranged in pixels arranged in a matrix.

図32は上記表示装置400の表示部401の要部の回路図を示しており、上記表示装置400の表示部401は、図32に示すように、互いに交差する複数の走査信号線GL(図32では1本のみを示す)と複数のデータ信号線SL(図32では1本のみを示す)とを備えており、隣接する2本の走査信号線GLと隣接する2本のデータ信号線SLとで包囲された部分に、画素がマトリクス状に配置されている。この画素は、ゲートが走査信号線GLに接続され、ソースがデータ信号線SLに接続されたスイッチング素子Q1と、そのスイッチング素子Q1のドレインにゲートが接続されたスイッチング素子Q2と、上記スイッチング素子Q2のゲートに一端が接続された画素容量Cと、上記スイッチング素子Q2により駆動される複数の発光ダイオードD1〜Dn(棒状構造発光素子310)とを有している。   FIG. 32 is a circuit diagram of a main part of the display unit 401 of the display device 400. As shown in FIG. 32, the display unit 401 of the display device 400 has a plurality of scanning signal lines GL (see FIG. 32, only one line is shown) and a plurality of data signal lines SL (only one line is shown in FIG. 32), and two adjacent scanning signal lines GL and two adjacent data signal lines SL are provided. Pixels are arranged in a matrix in a portion surrounded by. This pixel has a switching element Q1 having a gate connected to the scanning signal line GL and a source connected to the data signal line SL, a switching element Q2 having a gate connected to the drain of the switching element Q1, and the switching element Q2. And a plurality of light emitting diodes D1 to Dn (bar-shaped structure light emitting element 310) driven by the switching element Q2.

上記棒状構造発光素子310のpnの極性は、一方に揃っておらず、ランダムに配列されている。このため、駆動時は交流電圧により駆動されて、異なる極性の棒状構造発光素子310が交互に発光することになる。   The pn polarities of the rod-shaped structure light emitting elements 310 are not aligned on one side, but are randomly arranged. For this reason, at the time of driving, it is driven by an alternating voltage, and the bar-shaped structure light emitting elements 310 having different polarities emit light alternately.

また、上記表示装置によれば、上記棒状構造発光素子を用いることによって、薄型化と軽量化が可能でかつ発光効率が高く省電力な表示装置を実現することができる。   Further, according to the display device, by using the rod-shaped structure light emitting element, it is possible to realize a display device that can be reduced in thickness and weight, has high luminous efficiency, and saves power.

また、上記発光装置、バックライト、照明装置および表示装置の製造方法によれば、独立した電位が夫々与えられる2つの金属電極301,302を単位とする配列領域が形成された絶縁性基板300を作成し、その絶縁性基板300上にナノオーダーサイズまたはマイクロオーダーサイズの棒状構造発光素子310を含んだ液体を塗布する。その後、2つの金属電極301,302に独立した電圧を夫々印加して、微細な棒状構造発光素子310を2つの金属電極301,302により規定される位置に配列させる。これにより、上記棒状構造発光素子310を所定の絶縁性基板300上に容易に配列させることができる。   In addition, according to the method for manufacturing the light emitting device, the backlight, the lighting device, and the display device, the insulating substrate 300 in which the array region is formed in units of two metal electrodes 301 and 302 to which independent potentials are respectively applied. The liquid containing the rod-shaped structure light emitting element 310 of nano order size or micro order size is applied on the insulating substrate 300. Thereafter, independent voltages are applied to the two metal electrodes 301 and 302, respectively, so that the fine rod-shaped light emitting elements 310 are arranged at positions defined by the two metal electrodes 301 and 302. Thereby, the rod-shaped structure light emitting element 310 can be easily arranged on the predetermined insulating substrate 300.

また、上記発光装置、バックライト、照明装置および表示装置の製造方法では、使用する半導体の量を少なくできると共に、薄型化と軽量化が可能な発光装置、バックライト、照明装置および表示装置を製造することができる。また、上記棒状構造発光素子310は、半導体層で覆われた半導体コアの側面全体から光が放出されることにより発光領域が広くなるので、発光効率が高く省電力な発光装置、バックライト、照明装置および表示装置を実現することができる。   Moreover, in the manufacturing method of the light emitting device, the backlight, the lighting device, and the display device, the light emitting device, the backlight, the lighting device, and the display device that can reduce the amount of semiconductors used and can be reduced in thickness and weight are manufactured. can do. In addition, the light emitting element 310 has a light emitting region that is widened by emitting light from the entire side surface of the semiconductor core covered with the semiconductor layer, so that the light emitting device, backlight, and illumination with high luminous efficiency and power saving can be obtained. A device and a display device can be realized.

また、上記第1〜第12実施形態では、半導体コアとキャップ層および半導体層に、GaNを母材とする半導体を用いたが、GaAs,AlGaAs,GaAsP,InGaN,AlGaN,GaP,ZnSe,AlGaInPなどを母材とする半導体を用いた発光素子にこの発明を適用してもよい。また、半導体コアをn型とし、半導体層をp型としたが、導電型が逆の棒状構造発光素子にこの発明を適用してもよい。また、円形または六角形の棒状の半導体コアを有する棒状構造発光素子について説明したが、これに限らず、断面が楕円の棒状であってもよいし、断面が三角形などの他の多角形状の棒状の半導体コアを有する棒状構造発光素子にこの発明を適用してもよい。   In the first to twelfth embodiments, the semiconductor core, the cap layer, and the semiconductor layer are made of a semiconductor having GaN as a base material. The present invention may be applied to a light-emitting element using a semiconductor whose base material is. Further, although the semiconductor core is n-type and the semiconductor layer is p-type, the present invention may be applied to a rod-shaped structure light-emitting element having a reverse conductivity type. Moreover, although the rod-shaped structure light emitting element having a circular or hexagonal rod-shaped semiconductor core has been described, the present invention is not limited to this, and the rod-like structure may be an ellipse-like rod shape, or a rod shape having another polygonal shape such as a triangle. The present invention may be applied to a rod-shaped structure light emitting device having a semiconductor core.

また、上記第1〜第12実施形態では、棒状構造発光素子の直径を1μmとし長さを10μm〜30μmのマイクロオーダーサイズとしたが、直径または長さのうちの少なくとも直径が1μm未満のナノオーダーサイズの素子でもよい。上記棒状構造発光素子の半導体コアの直径は500nm以上かつ100μm以下が好ましく、数10nm〜数100nmの棒状構造発光素子に比べて半導体コアの直径のばらつきを抑えることができ、発光面積すなわち発光特性のばらつきを低減でき、歩留まりを向上できる。   In the first to twelfth embodiments, the rod-shaped structure light emitting element has a diameter of 1 μm and a length of 10 μm to 30 μm. However, at least one of the diameters or lengths is less than 1 μm in the nano order. A size element may be used. The diameter of the semiconductor core of the rod-shaped structure light emitting element is preferably 500 nm or more and 100 μm or less, and variation in the diameter of the semiconductor core can be suppressed as compared with the rod-shaped structure light emitting element of several tens nm to several hundred nm, and the light emission area, that is, the light emission characteristics. Variation can be reduced and yield can be improved.

また、上記第1〜第12実施形態では、MOCVD装置を用いて半導体コアやキャップ層を結晶成長させているが、MBE(分子線エピタキシャル)装置などの他の結晶成長装置を用いて半導体コアやキャップ層を形成してもよい。また、成長穴を有するマスクを用いて半導体コアを基板上に結晶成長させたが、基板上に金属種を配置して、金属種から半導体コアを結晶成長させてもよい。   In the first to twelfth embodiments, the semiconductor core and the cap layer are grown using the MOCVD apparatus. However, the semiconductor core and the cap layer are grown using another crystal growth apparatus such as an MBE (molecular beam epitaxial) apparatus. A cap layer may be formed. Further, although the semiconductor core is crystal-grown on the substrate using a mask having a growth hole, the semiconductor core may be crystal-grown from the metal seed by arranging a metal species on the substrate.

また、上記第12実施形態では、絶縁性基板300の表面に形成された2つの金属電極301,302に電位差を与えて、金属電極301,302間に棒状構造発光素子300を配列させたが、これに限らず、絶縁性基板の表面に形成された2つの電極間に、第3の電極を形成し、3つの電極に独立した電圧を夫々印加して、棒状構造発光素子を電極により規定される位置に配列させてもよい。   In the twelfth embodiment, the rod-shaped structure light emitting element 300 is arranged between the metal electrodes 301 and 302 by applying a potential difference to the two metal electrodes 301 and 302 formed on the surface of the insulating substrate 300. Not limited to this, a third electrode is formed between two electrodes formed on the surface of the insulating substrate, and an independent voltage is applied to each of the three electrodes. You may arrange in the position.

この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.

11,21, 24,31,41,51,61,71,81,91,101,111…半導体コア
11a,21a,24a, 31a,41a,51a,61a,71a,81a,91a,101a,111a…露出部分
11b,21b,31b,41b,51b,61b,71b,81b,91b,101b,111b…被覆部分
11c,21c,31c,41c,51c,61c,71c,81c,91c,101c,111c…段差部
12,22,32,42,52,62,73,84,92,104,112…半導体層
23,44,54…n側電極
43,53…絶縁層
63,74,85,105…導電層
72,103…量子井戸層
82,102…キャップ層
90,100,200…絶縁性基板
98,99,107,108,201,202,203…金属電極
106…金属層
300…絶縁性基板
301,302…金属電極
310…棒状構造発光素子
311…IPA
400…表示装置
401…表示部
402,403,404,405…論理回路部
410…絶縁性基板
A〜K…棒状構造発光素子
11, 21, 24, 31, 41, 51, 61, 71, 81, 91, 101, 111 ... Semiconductor core 11a, 21a, 24a, 31a, 41a, 51a, 61a, 71a, 81a, 91a, 101a, 111a ... Exposed portion 11b, 21b, 31b, 41b, 51b, 61b, 71b, 81b, 91b, 101b, 111b ... Covered portion 11c, 21c, 31c, 41c, 51c, 61c, 71c, 81c, 91c, 101c, 111c ... Stepped portion 12, 22, 32, 42, 52, 62, 73, 84, 92, 104, 112 ... Semiconductor layer 23, 44, 54 ... n-side electrode 43, 53 ... Insulating layer 63, 74, 85, 105 ... Conductive layer 72 , 103 ... Quantum well layer 82,102 ... Cap layer 90,100,200 ... Insulating substrate 98,99,107,108,201,202,203 ... Metal electrode 106 ... Metal layer 300 ... Insulating substrate 301,302 ... Metal electrode 310 ... Bar-shaped structure light emitting element 311 ... IPA
DESCRIPTION OF SYMBOLS 400 ... Display apparatus 401 ... Display part 402,403,404,405 ... Logic circuit part 410 ... Insulating board AK ... Bar-shaped structure light emitting element

Claims (18)

棒状の第1導電型の半導体コアと、
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層と
を備え、
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、
上記半導体コアの上記被覆部分の長手方向に直交する断面の外周長よりも、上記半導体コアの上記露出部分の長手方向に直交する断面の外周長が短いことを特徴とする棒状構造発光素子。
A rod-shaped first conductive type semiconductor core;
A second-conductivity-type semiconductor layer covering a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core;
With
Providing a step between the outer peripheral surface of the exposed portion of the semiconductor core that is not covered by the semiconductor layer and the outer peripheral surface of the covering portion of the semiconductor core that is covered by the semiconductor layer;
A rod-shaped structure light emitting element, wherein an outer peripheral length of a cross section orthogonal to a longitudinal direction of the exposed portion of the semiconductor core is shorter than an outer peripheral length of a cross section orthogonal to the longitudinal direction of the covered portion of the semiconductor core.
棒状の第1導電型の半導体コアと、A rod-shaped first conductive type semiconductor core;
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層とA second-conductivity-type semiconductor layer covering a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core;
を備え、With
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、Providing a step between the outer peripheral surface of the exposed portion of the semiconductor core that is not covered by the semiconductor layer and the outer peripheral surface of the covering portion of the semiconductor core that is covered by the semiconductor layer;
上記半導体コアの上記露出部分の長手方向に直交する断面の形状と、上記半導体コアの上記被覆部分の長手方向に直交する断面の形状とが異なることを特徴とする棒状構造発光素子。A rod-shaped structure light emitting element, wherein a shape of a cross section orthogonal to a longitudinal direction of the exposed portion of the semiconductor core is different from a shape of a cross section orthogonal to the longitudinal direction of the covered portion of the semiconductor core.
棒状の第1導電型の半導体コアと、A rod-shaped first conductive type semiconductor core;
上記半導体コアの一端側の部分を覆わないで露出部分とするように、上記半導体コアの上記露出部分以外の部分を覆う第2導電型の半導体層とA second-conductivity-type semiconductor layer covering a portion other than the exposed portion of the semiconductor core so as not to cover a portion on one end side of the semiconductor core;
を備え、With
上記半導体コアの上記半導体層に覆われていない上記露出部分の外周面と、上記半導体コアの上記半導体層に覆われた被覆部分の外周面との間に段差部を設けると共に、Providing a step between the outer peripheral surface of the exposed portion of the semiconductor core that is not covered by the semiconductor layer and the outer peripheral surface of the covering portion of the semiconductor core that is covered by the semiconductor layer;
上記半導体コアの上記露出部分とは反対側の端面を覆うように形成されたキャップ層を備え、A cap layer formed to cover an end surface of the semiconductor core opposite to the exposed portion;
上記キャップ層は、上記半導体層よりも電気抵抗の大きな材料からなることを特徴とする棒状構造発光素子。The said cap layer consists of material with a larger electrical resistance than the said semiconductor layer, The rod-shaped structure light emitting element characterized by the above-mentioned.
請求項1から3までのいずれか1つに記載の棒状構造発光素子において、
上記半導体コアの上記被覆部分の長手方向に直交する断面が多角形状であることを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 3 ,
A rod-like structure light emitting element, wherein a cross section of the semiconductor core perpendicular to the longitudinal direction of the covering portion is polygonal.
請求項1から4までのいずれか1つに記載の棒状構造発光素子において、
上記半導体コアの上記露出部分の長手方向に直交する断面が略円形状であることを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 4,
A rod-shaped structure light emitting element characterized in that a cross section perpendicular to the longitudinal direction of the exposed portion of the semiconductor core is substantially circular.
請求項1から5までのいずれか1つに記載の棒状構造発光素子において、
上記半導体コアの上記段差部とその段差部側の上記半導体層の端面を覆うように、かつ、上記半導体コアの上記露出部分の上記段差部側を覆うように形成された絶縁層を備えたことを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 5,
An insulating layer formed to cover the stepped portion of the semiconductor core and the end surface of the semiconductor layer on the stepped portion side, and to cover the stepped portion side of the exposed portion of the semiconductor core. A rod-shaped structure light emitting device characterized by the above.
請求項1から6までのいずれか1つに記載の棒状構造発光素子において、
上記半導体層を覆うように形成され、上記半導体層よりも電気抵抗が低い材料からなる導電層を備えたことを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 6,
A rod-shaped structure light emitting element comprising a conductive layer formed so as to cover the semiconductor layer and made of a material having an electric resistance lower than that of the semiconductor layer.
請求項1から7までのいずれか1つに記載の棒状構造発光素子において、
上記半導体コアと上記半導体層との間に形成された量子井戸層を備えたことを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 7,
A rod-shaped structure light emitting device comprising a quantum well layer formed between the semiconductor core and the semiconductor layer.
請求項1からまでのいずれか1つに記載の棒状構造発光素子において、
上記半導体コアの径が500nm以上かつ100μm以下であることを特徴とする棒状構造発光素子。
In the rod-shaped structure light emitting element according to any one of claims 1 to 8 ,
A rod-shaped structure light-emitting element, wherein the semiconductor core has a diameter of 500 nm or more and 100 μm or less.
請求項1からまでのいずれか1つに記載の棒状構造発光素子と、
上記棒状構造発光素子の長手方向が実装面に平行になるように、上記棒状構造発光素子が実装された基板と
を備え、
上記基板上に所定の間隔をあけて電極が形成され、
上記基板上の一方の上記電極に上記棒状構造発光素子の上記半導体コアの一端側の上記露出部分が接続されると共に、上記基板上の他方の上記電極に上記半導体コアの他端側の上記半導体層が接続されていることを特徴とする発光装置。
A rod-shaped structure light emitting device according to any one of claims 1 to 9 ,
A substrate on which the rod-shaped structure light emitting element is mounted so that the longitudinal direction of the rod-shaped structure light emitting element is parallel to the mounting surface;
Electrodes are formed on the substrate at predetermined intervals,
The exposed portion on one end side of the semiconductor core of the rod-shaped structure light emitting element is connected to one electrode on the substrate, and the semiconductor on the other end side of the semiconductor core is connected to the other electrode on the substrate. A light-emitting device, wherein layers are connected.
請求項7に記載の棒状構造発光素子と、
上記棒状構造発光素子の長手方向が実装面に平行になるように、上記棒状構造発光素子が実装された基板と
を備え、
上記基板上に所定の間隔をあけて電極が形成され、
上記基板上の一方の上記電極に上記棒状構造発光素子の上記半導体コアの一端側の上記露出部分が接続されると共に、上記基板上の他方の上記電極に上記半導体コアの他端側の上記導電層が接続されていることを特徴とする発光装置。
A rod-shaped structure light emitting device according to claim 7,
A substrate on which the rod-shaped structure light emitting element is mounted so that the longitudinal direction of the rod-shaped structure light emitting element is parallel to the mounting surface;
Electrodes are formed on the substrate at predetermined intervals,
The exposed portion on one end side of the semiconductor core of the rod-shaped structure light emitting element is connected to one of the electrodes on the substrate, and the conductive portion on the other end side of the semiconductor core is connected to the other electrode on the substrate. A light-emitting device, wherein layers are connected.
請求項1に記載の発光装置において、
上記棒状構造発光素子の上記導電層上かつ上記基板側に形成され、上記半導体層よりも電気抵抗が低い材料からなる第2の導電層を備えたことを特徴とする発光装置。
In the light-emitting device according to claim 1 1,
A light-emitting device comprising a second conductive layer formed on the conductive layer of the rod-shaped structure light emitting element and on the substrate side and made of a material having a lower electrical resistance than the semiconductor layer.
請求項1から1までのいずれか1つに記載の発光装置において、
上記基板上の上記電極間かつ上記棒状構造発光素子の下側に形成された金属部を備えたことを特徴とする発光装置。
In the light-emitting device according to any one of claims 1 0 to 1 2,
A light-emitting device comprising a metal portion formed between the electrodes on the substrate and below the rod-shaped structure light-emitting element.
請求項1に記載の発光装置において、
上記金属部は、上記棒状構造発光素子毎に上記基板上に形成され、
互いに隣接する上記棒状構造発光素子の上記金属部は、電気的に絶縁されていることを特徴とする発光装置。
In the light-emitting device according to claim 1 3,
The metal part is formed on the substrate for each of the rod-shaped structure light emitting elements,
The light emitting device, wherein the metal parts of the bar-shaped light emitting elements adjacent to each other are electrically insulated.
請求項1から1のいずれか1つに記載の上記棒状構造発光素子を備えた発光装置の製造方法であって、
独立した電位が夫々与えられる少なくとも2つの電極を単位とする配列領域が形成された絶縁性基板を作成する基板作成工程と、
上記絶縁性基板上にナノオーダーサイズまたはマイクロオーダーサイズの上記棒状構造発光素子を含んだ液体を塗布する塗布工程と、
上記少なくとも2つの電極に上記独立した電圧を夫々印加して、上記棒状構造発光素子を上記少なくとも2つの電極により規定される位置に配列させる配列工程と
を有することを特徴とする発光装置の製造方法。
The method for manufacturing a light emitting device having the above-mentioned rod-like structure light emitting device according to claim 1, any one of 1 4,
A substrate creating step for creating an insulating substrate in which an array region having at least two electrodes each having an independent potential applied thereto is formed;
An application step of applying a liquid containing the rod-shaped structure light emitting element of nano-order size or micro-order size on the insulating substrate;
A method of manufacturing a light-emitting device, comprising: an arraying step of applying the independent voltages to the at least two electrodes, respectively, and arranging the rod-shaped structure light emitting elements at positions defined by the at least two electrodes. .
請求項1からまでのいずれか1つに記載の棒状構造発光素子を備えたことを特徴とするバックライト。 Backlight comprising the rod-like structure element according to any one of claims 1 to 9. 請求項1からまでのいずれか1つに記載の棒状構造発光素子を備えたことを特徴とする照明装置。 An illuminating device comprising the rod-shaped structure light emitting element according to any one of claims 1 to 9 . 請求項1からまでのいずれか1つに記載の棒状構造発光素子を備えたことを特徴とする表示装置。 Display device characterized by comprising a rod structure element according to any one of claims 1 to 9.
JP2009275460A 2009-10-19 2009-12-03 BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE Active JP4897034B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009275460A JP4897034B2 (en) 2009-12-03 2009-12-03 BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE
KR1020100099883A KR101178468B1 (en) 2009-10-19 2010-10-13 Bar type light emitting device, method of manufacturing the same, backlight, illumination device and display device
US12/904,773 US8872214B2 (en) 2009-10-19 2010-10-14 Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
CN201010516174.5A CN102074631B (en) 2009-10-19 2010-10-19 The manufacture method of club shaped structure light-emitting component, club shaped structure light-emitting component, backlight, lighting device and display unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009275460A JP4897034B2 (en) 2009-12-03 2009-12-03 BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE

Publications (2)

Publication Number Publication Date
JP2011119449A JP2011119449A (en) 2011-06-16
JP4897034B2 true JP4897034B2 (en) 2012-03-14

Family

ID=44284441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009275460A Active JP4897034B2 (en) 2009-10-19 2009-12-03 BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE

Country Status (1)

Country Link
JP (1) JP4897034B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130093115A (en) 2010-09-01 2013-08-21 샤프 가부시키가이샤 Light emitting element and production method for same, production method for light-emitting device, illumination device, backlight, display device, and diode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4345776B2 (en) * 2000-07-18 2009-10-14 ソニー株式会社 Semiconductor light emitting device, method for manufacturing the same, and image display device
CA2442985C (en) * 2001-03-30 2016-05-31 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
KR101132076B1 (en) * 2003-08-04 2012-04-02 나노시스, 인크. System and process for producing nanowire composites and electronic substrates therefrom
KR20070015260A (en) * 2005-07-30 2007-02-02 삼성전자주식회사 Making method of one-dimensional nano material, one-dimensional nano material thereby and thin film transistor substrate using one-dimensional nano material
JP4500797B2 (en) * 2005-12-06 2010-07-14 キヤノン株式会社 CIRCUIT DEVICE AND DISPLAY DEVICE HAVING CAPACITOR AND FIELD EFFECT TRANSISTOR

Also Published As

Publication number Publication date
JP2011119449A (en) 2011-06-16

Similar Documents

Publication Publication Date Title
US8872214B2 (en) Rod-like light-emitting device, method of manufacturing rod-like light-emitting device, backlight, illuminating device, and display device
US9287242B2 (en) Light emitting device, method for manufacturing light emitting device, illuminating device, and backlight
JP5066164B2 (en) Manufacturing method of semiconductor device
TWI593136B (en) Light-emitting element and method of manufacturing the same, method of manufacturing light-emitting device, lighting device, backlight, display device and diode
US20110089850A1 (en) Light emitting device and manufacturing method therefor
JP4996660B2 (en) Light emitting device and manufacturing method thereof
KR20130136906A (en) Nanowire led structure and method for manufacturing the same
WO2012172986A1 (en) Semiconductor element, method for manufacturing semiconductor element, light-emitting diode, method for manufacturing light-emitting diode, photoelectric conversion element, solar cell, illumination device, backlight, and display device
JP5492822B2 (en) LIGHT EMITTING DEVICE, LIGHTING DEVICE, AND BACKLIGHT
KR101178468B1 (en) Bar type light emitting device, method of manufacturing the same, backlight, illumination device and display device
JP2012074673A (en) Light-emitting element, method of manufacturing the same, method of manufacturing light-emitting device, lighting device, backlight, and display device
JP2015126048A (en) Light-emitting element, method of manufacturing light-emitting element, light-emitting device comprising plurality of light-emitting elements, and method of manufacturing light-emitting device
JP4887414B2 (en) LIGHT EMITTING DEVICE, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5014477B2 (en) Method for manufacturing rod-shaped structure light emitting device and method for manufacturing display device
JP5422712B2 (en) Bar-shaped structure light emitting device, backlight, illumination device and display device
JP5014403B2 (en) BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP4848464B2 (en) Method for manufacturing light emitting device
JP2011119617A (en) Method of manufacturing rod type light emitting device
JP4897034B2 (en) BAR-LIKE STRUCTURE LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE, LIGHT EMITTING DEVICE MANUFACTURING METHOD, BACKLIGHT, LIGHTING DEVICE, AND DISPLAY DEVICE
JP5378184B2 (en) Bar-shaped structure light emitting device, backlight, illumination device and display device
JP4912454B2 (en) Method for manufacturing rod-shaped structure light emitting element, rod-shaped structure light emitting element, backlight, illumination device, and display device
JP5242764B2 (en) LIGHT EMITTING DEVICE, BACKLIGHT, LIGHTING DEVICE AND DISPLAY DEVICE
JP2011198697A (en) Light-emitting device, manufacturing method of light-emitting device, illumination device, and backlight
JP5422628B2 (en) Method for manufacturing light emitting device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111221

R150 Certificate of patent or registration of utility model

Ref document number: 4897034

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3