JP4895735B2 - How to build a microgrid system - Google Patents

How to build a microgrid system Download PDF

Info

Publication number
JP4895735B2
JP4895735B2 JP2006244272A JP2006244272A JP4895735B2 JP 4895735 B2 JP4895735 B2 JP 4895735B2 JP 2006244272 A JP2006244272 A JP 2006244272A JP 2006244272 A JP2006244272 A JP 2006244272A JP 4895735 B2 JP4895735 B2 JP 4895735B2
Authority
JP
Japan
Prior art keywords
load
distributed power
power source
frequency
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006244272A
Other languages
Japanese (ja)
Other versions
JP2008067544A (en
Inventor
英介 下田
茂生 沼田
旬平 馬場
旦三 仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Shimizu Corp
Original Assignee
University of Tokyo NUC
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Shimizu Corp filed Critical University of Tokyo NUC
Priority to JP2006244272A priority Critical patent/JP4895735B2/en
Priority to PCT/JP2007/067316 priority patent/WO2008029849A1/en
Priority to CN2007800329430A priority patent/CN101512866B/en
Publication of JP2008067544A publication Critical patent/JP2008067544A/en
Application granted granted Critical
Publication of JP4895735B2 publication Critical patent/JP4895735B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、複数種類の分散型電源がネットワーク化された構成からなるマイクログリッドシステムの構築方法に関する。   The present invention relates to a method for constructing a microgrid system having a configuration in which a plurality of types of distributed power sources are networked.

周知のように、近年、天然ガスコージェネレーションや燃料電池といった様々な分散型電源の開発が進められている。そのような分散型電源を建物における自家発電設備として採用することにより、熱電供給による優れた総合エネルギー効率が得られ、地球温暖化ガスの排出量削減が期待でき、商用系統(電力会社からの買電)の契約電力量の削減や配電設備の簡略化によるコスト削減を図ることができ、震災や火災時の自立安定性も確保し易いといった様々な利点がある。したがって、分散型電源を用いた電力配給システムは、今後広く普及する気運にあり、例えば分散型電源を複数の需要家で融通し合うシステムが提案されている(例えば、特許文献1参照。)。   As is well known, various distributed power sources such as natural gas cogeneration and fuel cells have been developed in recent years. By adopting such a distributed power source as an in-house power generation facility in a building, it is possible to obtain excellent overall energy efficiency by supplying thermoelectric power, and to reduce greenhouse gas emissions. Power) and the cost reduction by simplifying the distribution facilities, and there are various advantages such as easy to ensure independence stability in the event of an earthquake or fire. Therefore, a power distribution system using a distributed power source is likely to be widely used in the future. For example, a system in which a distributed power source is interchanged among a plurality of consumers has been proposed (for example, see Patent Document 1).

ところで、上記した分散型電源を用いた電力配給システムでは、分散型電源と商用系統(電力会社の電力網)とを併用して当該分散型電源をベースロード運転させると、電力会社が電圧や周波数変動のアンシラリー機能を一手に引き受けることになり、商用系統には負荷変動の補償ばかりが求められて電力会社の負担が大きくなる。したがって、近年では、分散型電源を負荷追従運転させる技術が提案されている。例えば、複数の分散型電源と複数の需要家とをネットワーク化してなるマイクログリッドシステム全体をまとめて制御して負荷変動に追従するように最適運転させる技術が提案されている。このような技術によれば、商用系統にかかる負荷変動補償の負担を軽減させることができるだけでなく、負荷変動補償を商用系統に頼らないため、商用系統から独立したマイクログリッドシステムの運転(自立運転)を実現させることができる。(例えば、特許文献2参照。)。
特開2002−238168号公報 特開2005−160286号公報
By the way, in the power distribution system using the above-described distributed power source, when the distributed power source is used in a base load operation by using the distributed power source and a commercial system (electric power company's power network) together, the electric power company can change voltage and frequency. The ancillary function will be undertaken, and the commercial system will only be required to compensate for load fluctuations, increasing the burden on the power company. Therefore, in recent years, a technique for performing load following operation of a distributed power source has been proposed. For example, a technique has been proposed in which an entire microgrid system formed by networking a plurality of distributed power sources and a plurality of customers is collectively controlled so as to follow load fluctuations. According to such a technique, not only the load fluctuation compensation burden on the commercial system can be reduced, but also the load fluctuation compensation does not depend on the commercial system. ) Can be realized. (For example, refer to Patent Document 2).
JP 2002-238168 A JP 2005-160286 A

しかしながら、上記したマイクログリッドシステムを商用系統に連系させて負荷追従運転を行うためには、発電と負荷(需要)のバランスが常に一致していることが求められる。また、マイクログリッドシステムを商用系統から独立させて自立運転させる場合には、そのシステムの範囲内に安定した品質の電力を安定して供給することが求められ、瞬時々々における発電と負荷とのバランスが常に一致していることが求められる。マイクログリッドシステムのような小規模な分散型電源で構成されるシステムでは、電力の需給バランスが崩れることによって大きく電力品質が損なわれるおそれがある。すなわち、商用系統連系時の負荷追従運転や、自立運転時の安定した品質の電力供給を実現するためには、発電と負荷のバランスを常に一致させなければならない。   However, in order to perform the load following operation by connecting the above-described microgrid system to a commercial system, it is required that the balance between power generation and load (demand) is always consistent. In addition, when a microgrid system is operated independently from a commercial system, it is required to stably supply power of stable quality within the range of the system. It is required that the balance is always consistent. In a system constituted by a small-scale distributed power source such as a microgrid system, there is a risk that the power quality may be greatly impaired due to an imbalance of power supply and demand. In other words, in order to realize load following operation during commercial grid connection and stable quality power supply during independent operation, the balance between power generation and load must always be matched.

本発明は、上記した従来の問題が考慮されたものであり、分散型電源の選択や構成の決定段階から、各分散型電源の性能に見合った運転が実現できるように考慮することで、発電と負荷とのバランスを一致させることができるマイクログリッドシステムの構築方法を提供することを目的としている。   The present invention takes the above-described conventional problems into consideration, and considers that the operation suitable for the performance of each distributed power source can be realized from the stage of selecting the distributed power source and determining the configuration. It aims at providing the construction method of the microgrid system which can make the balance of load and load correspond.

本発明は、複数種類の分散型電源を統合的に制御して運用するネットワークを構築して特定エリアに電力を供給するマイクログリッドシステムの構築方法において、前記特定エリアの負荷変動を計測して、その計測データを周波数解析する工程と、各分散型電源の各々の周波数応答特性を基に各分散型電源がそれぞれ担当する分担周波数を決定し、該分担周波数に基づいて負荷変動の周波数解析結果を各分散型電源に割り当て、各分散型電源の容量を求める工程と、を備えており、負荷変化量の遷移確率分布と負荷変化率の遷移確率分布との両方又は何れか一方を作成することで、前記負荷変動の計測周期を決定することを特徴としている。 The present invention, in a construction method of a microgrid system that constructs a network that controls and operates a plurality of types of distributed power sources in an integrated manner and supplies power to a specific area, measures load fluctuations in the specific area, Based on the frequency analysis of the measurement data and the frequency response characteristics of each distributed power source, the shared frequency assigned to each distributed power source is determined, and the load analysis frequency analysis result is determined based on the shared frequency. Assigning to each distributed power source and obtaining the capacity of each distributed power source, and creating a transition probability distribution of load change amount and / or a transition probability distribution of load change rate The load fluctuation measurement period is determined .

このような特徴により、負荷変動の計測データが周波数解析されるため、非常に遅い負荷変動から瞬間的な負荷変動までの様々な速さの負荷変動が重なり合って構成された特定エリアの負荷変動が、各周波数成分に分解されて把握される。また、複数種類の分散型電源には各々異なる負荷追従特性(応答特性)があるが、各々の周波数応答特性を基に各分散型電源がそれぞれ担当する分担周波数が決定される。そして、その分担周波数に基づいて周波数解析結果(分解された各周波数成分)が各分散型電源に割り当てられるため、各分散型電源は各々に適した周波数帯域をそれぞれ担当することになる。さらに、上記した周波数解析結果と分担周波数とにより、各分散型電源の容量がそれぞれ算出されるため、分散型電源が適正な容量となる。   Because of these features, load fluctuation measurement data is frequency-analyzed, so load fluctuations in specific areas that are configured by overlapping load fluctuations at various speeds from very slow load fluctuations to instantaneous load fluctuations. The frequency components are decomposed and grasped. In addition, different types of distributed power supplies have different load following characteristics (response characteristics), but the shared frequency assigned to each distributed power supply is determined based on each frequency response characteristic. Since the frequency analysis result (resolved frequency components) is assigned to each distributed power source based on the shared frequency, each distributed power source is responsible for a frequency band suitable for each. Furthermore, since the capacity | capacitance of each distributed power supply is each calculated by the above-mentioned frequency analysis result and shared frequency, a distributed power supply becomes an appropriate capacity | capacitance.

また、負荷変化量や負荷変化率の遷移確率分布をみれば、計測周期によってどの程度の負荷変動を捉えることができるかが可視化されるため、負荷変動を適切に補償するために必要となる計測周期を明確にすることができる。 Also , if you look at the transition probability distribution of the load change amount and load change rate, you can visualize how much load fluctuation can be captured by the measurement cycle, so measurement required to properly compensate for load fluctuation The period can be clarified.

また、本発明は、燃料を使用する分散型電源について、定常運転時における発電効率と過渡運転時における発電効率とを併せて当該分散型電源の燃費特性を評価し、その評価結果に基づいて当該分散型電源の運用を決定するようにしてもよい。   Further, the present invention evaluates the fuel efficiency characteristics of a distributed power source that uses fuel together with the power generation efficiency during steady operation and the power generation efficiency during transient operation, and based on the evaluation result, The operation of the distributed power source may be determined.

これにより、燃料を使用する分散型電源を効率的に稼動させることができ、当該分散型電源の燃費を減らし、経済性を加味したマイクログリッドシステムの運用を実現することができる。   As a result, a distributed power source using fuel can be operated efficiently, the fuel consumption of the distributed power source can be reduced, and the operation of the microgrid system can be realized in consideration of economy.

また、本発明は、回転機型の発電機からなる分散型電源について、負荷変動に対する系統周波数変動の評価を行い、その評価結果に基づいて前記発電機からなる分散型電源の電力の出力値の範囲を決定するようにしてもよい。 In addition, the present invention evaluates system frequency fluctuations with respect to load fluctuations for a distributed power source composed of a rotary generator, and based on the evaluation result, outputs the power output value of the distributed power source composed of the generator. The range may be determined.

これにより、分散型電源だけから電力供給を行う自立運転時に、系統周波数の変動を所定の偏差内に収めることができ、所望の電力品質を確保することができる。   Thereby, at the time of the independent operation which supplies electric power only from a distributed power source, the fluctuation of the system frequency can be kept within a predetermined deviation, and a desired power quality can be ensured.

さらに、本発明は、前記発電機からなる分散型電源に検査用のダミーロードを接続して模擬的な仮想系統を構築し、該仮想系統を用いて前記負荷変動に対する系統周波数変動の評価を行うことが好ましい。   Furthermore, the present invention constructs a simulated virtual system by connecting a dummy load for inspection to the distributed power source composed of the generator, and evaluates the system frequency variation with respect to the load variation using the virtual system. It is preferable.

これにより、電気機器などの実負荷を用いて評価を行うと、低品質の電力により当該実負荷に故障を引き起こすおそれがあるが、ダミーロードを用いて評価することで、実負荷を故障させずに系統周波数レベルの評価を実施することができる。   As a result, when an evaluation is performed using an actual load such as an electric device, there is a risk of causing a failure in the actual load due to low-quality power. The system frequency level can be evaluated.

本発明に係るマイクログリッドシステムの構築方法によれば、負荷変動の速さ(周波数成分)および分散型電源の応答性能に基づいてマイクログリッドシステムが構築されるため、補償対象となる負荷変動を適切に捉えて効率的な負荷変動の補償を行うことができるとともに、分散型電源の容量を最適化することができ、分散型電源の容量不足や過剰設備を防止することができる。このように、分散型電源の選択や構成の決定段階から、各分散型電源の性能に見合った運転が実現できるように考慮されているため、マイクログリッドシステムにおける発電と負荷とのバランスを一致させることができる。   According to the construction method of the microgrid system according to the present invention, the microgrid system is constructed based on the speed of load fluctuation (frequency component) and the response performance of the distributed power supply. Thus, efficient compensation for load fluctuations can be performed, the capacity of the distributed power supply can be optimized, and the capacity shortage and excess facilities of the distributed power supply can be prevented. As described above, since the operation suitable for the performance of each distributed power source can be realized from the stage of selecting the distributed power source and determining the configuration, the balance between the power generation and the load in the microgrid system is matched. be able to.

以下、本発明に係るマイクログリッドシステムの構築方法の実施の形態について、図面に基いて説明する。なお、本実施の形態は、ある施設を特定エリアとし、その施設内にマイクログリッドシステム1を構築する場合を例にして説明する。   Embodiments of a method for constructing a microgrid system according to the present invention will be described below with reference to the drawings. In the present embodiment, a case where a certain facility is a specific area and the microgrid system 1 is built in the facility will be described as an example.

まず、本実施の形態におけるマイクログリッドシステム1について説明する。   First, the microgrid system 1 in the present embodiment will be described.

図1は本実施の形態におけるマイクログリッドシステム1の概略構成を表した概要図である。
図1に示すように、本実施の形態におけるマイクログリッドシステム1は、複数種類の分散型電源2〜5を制御手段6で統合的に制御して運用するネットワークを構築して特定エリアの負荷9…(電気機器等)に電力を供給するシステムである。このマイクログリッドシステム1は、受電点Pを介して商用系統7に接続されている。受電点Pには、スイッチ8が設けられており、このスイッチ8を切替えることで自在にマイクログリッドシステム1を商用系統7に接続させたり商用系統7から切り離したりすることができる。したがって、スイッチ8によりマイクログリッドシステム1が商用系統7に接続されているときには、当該商用系統7からの買電と各分散型電源2〜5による発電とにより特定エリア(施設)全体の負荷9…を賄う運転(連系運転)となる。一方、マイクログリッドシステム1が商用系統7から切り離されているときには、各分散型電源2〜5による発電だけで特定エリア全体の負荷9…を賄う運転(自立運転)となる。
FIG. 1 is a schematic diagram showing a schematic configuration of a microgrid system 1 in the present embodiment.
As shown in FIG. 1, the microgrid system 1 in the present embodiment constructs a network in which a plurality of types of distributed power sources 2 to 5 are integratedly controlled by a control means 6 to operate and load 9 in a specific area. ... A system that supplies power to (electrical equipment, etc.). The microgrid system 1 is connected to a commercial system 7 via a power receiving point P. The power receiving point P is provided with a switch 8. By switching the switch 8, the microgrid system 1 can be freely connected to the commercial system 7 or disconnected from the commercial system 7. Therefore, when the microgrid system 1 is connected to the commercial system 7 by the switch 8, the load 9 in the entire specific area (facility) is obtained by the power purchase from the commercial system 7 and the power generation by the respective distributed power sources 2-5. Driving (interconnected operation). On the other hand, when the microgrid system 1 is disconnected from the commercial system 7, the operation (self-sustained operation) is to cover the load 9 of the entire specific area only by the power generation by the respective distributed power sources 2-5.

次に、上記した構成のマイクログリッドシステム1を構築する手順について説明する。   Next, a procedure for constructing the microgrid system 1 having the above-described configuration will be described.

[負荷変動の性質調査]
まず、マイクログリッドシステム1を構築するに当たり、分散型電源2〜5の総容量を決定する必要があるため、特定エリアの負荷変動を計測する工程を行う。
[Investigation of the nature of load fluctuation]
First, since it is necessary to determine the total capacity of the distributed power sources 2 to 5 when constructing the microgrid system 1, a step of measuring the load fluctuation in a specific area is performed.

負荷変動を計測する工程を詳しく説明すると、マイクログリッドシステム1の構築予定箇所の負荷9…、及び商用系統7に接続させる受電点Pの予定箇所に図示せぬ電力計測器をそれぞれ設置し、それらの計測器によって年間における日負荷変動を計測する。そして、計測した電力値を基に分散型電源2〜5の総容量を決定する。
図2は日負荷変動の計測結果の具体例を示した日負荷曲線である。図2に示すように、日負荷変動の具体例として、最大で600kW程度の負荷電力がある場合、これを分散型電源2〜5の総容量とする。
The process of measuring the load fluctuation will be described in detail. A power measuring instrument (not shown) is installed at each of the loads 9... At the planned construction location of the microgrid system 1 and the planned receiving location P to be connected to the commercial system 7. The daily load fluctuation in the year is measured with the measuring instrument. Then, the total capacity of the distributed power sources 2 to 5 is determined based on the measured power value.
FIG. 2 is a daily load curve showing a specific example of the measurement result of daily load fluctuation. As shown in FIG. 2, as a specific example of daily load fluctuation, when there is a load power of about 600 kW at the maximum, this is defined as the total capacity of the distributed power sources 2 to 5.

また、連系運転時の負荷追従運転および自立運転時の安定した電力供給を実現するためには、急峻な負荷変動に対して分散型電源2〜5による変動補償を行う必要があるが、このときの「急峻」とはどの程度の時間変動を指すのか明確にする必要がある。そこで、負荷変動の計測周期を決定する工程を行う。   In addition, in order to realize load following operation at the time of interconnection operation and stable power supply at the time of independent operation, it is necessary to perform fluctuation compensation by the distributed power sources 2 to 5 for a steep load fluctuation. It is necessary to clarify how much time fluctuation means "steepness". Therefore, a process of determining a load fluctuation measurement period is performed.

負荷変動の計測周期を決定する工程を詳しく説明すると、負荷変化量の遷移確率分布と負荷変化率の遷移確率分布とを作成することで、負荷変動の計測周期を決定する。これにより、負荷変動補償を適切に行うために必要となる計測周期を採用することができる。遷移確率分布とは、ある計測時間から次の計測時間において計測値や計測値の変化率がどのように変化するかをプロットしたもので、計測周期によってどの程度の変動を捉えることができるかを可視化したものである。   The process of determining the load fluctuation measurement cycle will be described in detail. The load fluctuation measurement cycle is determined by creating a transition probability distribution of the load change amount and a transition probability distribution of the load change rate. As a result, it is possible to employ a measurement cycle necessary for appropriately performing load fluctuation compensation. The transition probability distribution is a plot of how the measurement value and the rate of change of the measurement value change from one measurement time to the next, and how much fluctuation can be captured by the measurement cycle. Visualized.

図3は負荷変化量の遷移確率分布の作成方法を表した図であり、図4は負荷変化率の遷移確率分布の作成方法を表した図である。
図3に示すように、負荷変化量の遷移確率分布は、所定周期で計測されたときの前の計測値(P[n])を横軸に後の計測値(P[n+1])を縦軸にしたグラフであり、各計測周期(I〜V)における前の計測値(P[n])と後の計測値(P[n+1])とから各計測周期(I〜V)をそれぞれプロットすることで作成される。また、図4に示すように、負荷変化率の遷移確率分布は、所定周期で計測されたときの前の計測値変化率(dP[n])を横軸に後の計測値変化率(dP[n+1])を縦軸にしたグラフであり、各計測周期における前の計測値変化率(dP[n])と後の計測値変化率(dP[n+1])とから各計測周期をそれぞれプロットすることで作成される。
FIG. 3 is a diagram showing a method of creating a transition probability distribution of load change amount, and FIG. 4 is a diagram showing a method of creating a transition probability distribution of load change rate.
As shown in FIG. 3, the transition probability distribution of the load change amount has the previous measured value (P [n]) measured at a predetermined period as the horizontal axis and the subsequent measured value (P [n + 1]). Is a graph with the vertical axis representing each measurement cycle (I to V) from the previous measurement value (P [n]) and the subsequent measurement value (P [n + 1]) in each measurement cycle (I to V). ) Is created by plotting each. Further, as shown in FIG. 4, the transition probability distribution of the load change rate has a subsequent measured value change rate (dP) with the horizontal axis representing the previous measured value change rate (dP [n]) measured at a predetermined period. [N + 1]) is a graph with the vertical axis representing each measurement from the previous measurement value change rate (dP [n]) and the subsequent measurement value change rate (dP [n + 1]) in each measurement cycle. Created by plotting each period.

図5、図6は負荷変化量の遷移確率分布および負荷変化率の遷移確率分布の具体例を示したグラフであり、図5(a)は10秒周期で計測した場合の負荷変化量の遷移確率分布であり、図5(b)は10秒周期で計測した場合の負荷変化率の遷移確率分布であり、図6(a)は1秒周期で計測した場合の負荷変化量の遷移確率分布であり、図6(b)は1秒周期で計測した場合の負荷変化率の遷移確率分布である。
図5(a)、図5(b)に示すように、10秒周期で計測された場合、負荷変化量や負荷変化率の遷移確率分布の特徴が漠然として把握しきれないが、図6(a)、図6(b)に示すように、1秒周期で計測された場合、負荷変化量や負荷変化率の遷移確率分布の特徴が形状に表れて明確に把握される。したがって、この具体例におけるマイクログリッドシステム1では、1秒周期で負荷を計測してその変動を補償する必要があることが分かる。
FIG. 5 and FIG. 6 are graphs showing specific examples of the transition probability distribution of the load change amount and the transition probability distribution of the load change rate, and FIG. 5A shows the transition of the load change amount when measured at a cycle of 10 seconds. FIG. 5B is a transition probability distribution of the load change rate when measured at a cycle of 10 seconds, and FIG. 6A is a transition probability distribution of the load change amount measured at a cycle of 1 second. FIG. 6B shows a transition probability distribution of the load change rate when measured at a cycle of 1 second.
As shown in FIGS. 5 (a) and 5 (b), when measured at a cycle of 10 seconds, the characteristics of the transition probability distribution of the load change amount and the load change rate cannot be grasped vaguely. As shown in a) and FIG. 6B, when the measurement is performed at a cycle of 1 second, the features of the transition probability distribution of the load change amount and the load change rate appear clearly in the shape. Therefore, it can be seen that in the microgrid system 1 in this specific example, it is necessary to measure the load at a period of 1 second to compensate for the variation.

次に、上述したように計測された負荷変動を周波数解析する工程を行う。具体的には、所定周期で計測された有効電力データをフーリエ変換により周波数解析する。これにより、計測されたデータは各周波数成分に分解される。   Next, a step of performing frequency analysis on the measured load variation as described above is performed. Specifically, the active power data measured at a predetermined cycle is subjected to frequency analysis by Fourier transform. Thereby, the measured data is decomposed | disassembled into each frequency component.

図7は負荷変動の周波数解析結果の具体例を表したグラフである。
図7に示すように、様々な周波数帯域の負荷変動が含まれていることが確認できるので、各周波数帯域の補償に適した分散型電源2〜5を選択する必要があることが分かる。なお、この具体例では、1秒周期で計測を行うこととしているので、周波数解析結果では、0.5Hz(2秒周期)より遅い変動成分にのみ分解されている。
FIG. 7 is a graph showing a specific example of the load analysis frequency analysis result.
As shown in FIG. 7, since it can be confirmed that load fluctuations in various frequency bands are included, it is understood that it is necessary to select distributed power sources 2 to 5 suitable for compensation of each frequency band. In this specific example, since measurement is performed at a cycle of 1 second, the frequency analysis result is decomposed only into fluctuation components slower than 0.5 Hz (2-second cycle).

[電源性能評価]
上述した周波数帯域でどのタイプの分散型電源2〜5が追従可能な応答性能を有するかを知る必要がある。そこで、各分散型電源2〜5が出力指令を受けてから実際にその出力に到達するまでの出力応答特性を計測し、周波数応答特性を評価する。応答性能を評価するために、各分散型電源2〜5において出力指令が最大から最小へと変化する際の正弦波応答特性を計測する。
[Power supply performance evaluation]
It is necessary to know which type of distributed power source 2 to 5 has a response performance that can be followed in the frequency band described above. Therefore, the output response characteristics from the time when each of the distributed power sources 2 to 5 receives the output command until it actually reaches the output is measured, and the frequency response characteristics are evaluated. In order to evaluate the response performance, the sine wave response characteristics when the output command changes from the maximum to the minimum in each of the distributed power sources 2 to 5 are measured.

図8は指令値を正弦波状に変化させた場合の応答特性を表しており、図8(a)は応答特性が限界である場合を示しており、図8(b)は応答特性が限界の2倍である場合を示している。
各図8(a)、図8(b)に示すように、正弦波指令値の周波数を大きくしていくと、指令(Pref)に対して出力(Pout)が追従できなくなる。その結果、出力(Pout)の正弦波の振幅が小さくなり、指令(Pref)の正弦波と出力(Pout)の正弦波との位相差が大きくなっていく。したがって、各分散型電源2〜5について、指令の周波数を変化させたときの正弦波指令値に対する正弦波出力値の振幅比や、指令の周波数を変化させたときの正弦波指令値に対する正弦波出力値の位相差から、各分散型電源2〜5の周波数応答特性を評価することができる。
FIG. 8 shows a response characteristic when the command value is changed in a sine wave shape, FIG. 8A shows a case where the response characteristic is the limit, and FIG. 8B shows a case where the response characteristic is the limit. The case where it is 2 times is shown.
As shown in FIGS. 8A and 8B, when the frequency of the sine wave command value is increased, the output (Pout) cannot follow the command (Pref). As a result, the amplitude of the sine wave of the output (Pout) decreases, and the phase difference between the sine wave of the command (Pref) and the sine wave of the output (Pout) increases. Therefore, for each of the distributed power sources 2 to 5, the amplitude ratio of the sine wave output value to the sine wave command value when the command frequency is changed, or the sine wave to the sine wave command value when the command frequency is changed. The frequency response characteristics of each of the distributed power sources 2 to 5 can be evaluated from the phase difference between the output values.

本実施の形態としては、分散型電源2〜5として、ゆっくりした変動に追従可能なガスエンジン2及びガスエンジン3と、速い変動に追従可能なニッケル水素電池4と、電気二重層キャパシタ5とを選択している。この場合、指令の周波数を変化させたときの正弦波指令値に対する正弦波出力値の振幅の比は、図9(a)のグラフのようになる。また、指令の周波数を変化させたときの正弦波指令値に対する正弦波出力値の位相差は、図9(b)のグラフのようになる。   In this embodiment, as the distributed power sources 2 to 5, a gas engine 2 and a gas engine 3 that can follow a slow fluctuation, a nickel metal hydride battery 4 that can follow a fast fluctuation, and an electric double layer capacitor 5. Selected. In this case, the ratio of the amplitude of the sine wave output value to the sine wave command value when the command frequency is changed is as shown in the graph of FIG. Further, the phase difference of the sine wave output value with respect to the sine wave command value when the command frequency is changed is as shown in the graph of FIG. 9B.

図9(a)、図9(b)に示すように、ガスエンジン2は、約0.01Hzまで振幅比(ゲイン)が0(dB)になっているが、約0.01Hzを超えると振幅比(ゲイン)が低下する。これは、約0.01Hzまでの範囲であれば、ガスエンジン2が指令に対して適正に応答可能であることを意味する。また、図9(a)、図9(b)のグラフより、ガスエンジン3についても同様に約0.03Hzまで応答可能であり、また、ニッケル水素電池4については約0.1Hzまで応答可能であり、さらに、電気二重層キャパシタ5については0.1Hz以上でも応答可能であることが分かる。   As shown in FIGS. 9 (a) and 9 (b), the gas engine 2 has an amplitude ratio (gain) of 0 (dB) up to about 0.01 Hz, but the amplitude exceeds about 0.01 Hz. The ratio (gain) decreases. This means that the gas engine 2 can respond appropriately to the command within a range up to about 0.01 Hz. 9A and 9B, the gas engine 3 can respond up to about 0.03 Hz, and the nickel-metal hydride battery 4 can respond up to about 0.1 Hz. Furthermore, it can be seen that the electric double layer capacitor 5 can respond even at 0.1 Hz or higher.

続いて、上述したように評価された各分散型電源2〜5の周波数応答特性を基に、各分散型電源2〜5の分担周波数をそれぞれ決定する。具体的には、ガスエンジン2に0.01Hzより低い周波数を担当させ、ガスエンジン3に0.01〜0.03Hzまでの周波数を担当させ、ニッケル水素電池4に0.03〜0.10Hzまでの周波数を担当させ、電気二重層キャパシタ5に0.1Hzより高い周波数を担当させる。   Subsequently, the shared frequency of each of the distributed power sources 2 to 5 is determined based on the frequency response characteristics of each of the distributed power sources 2 to 5 evaluated as described above. Specifically, the gas engine 2 is in charge of frequencies lower than 0.01 Hz, the gas engine 3 is in charge of frequencies from 0.01 to 0.03 Hz, and the nickel metal hydride battery 4 is 0.03 to 0.10 Hz. The electric double layer capacitor 5 is assigned a frequency higher than 0.1 Hz.

また、各分散型電源2〜5は、各々が担当する分担周波数帯域の負荷変動の全てを補償する必要があるが、分散型電源2〜5の容量が小さすぎると、その分担周波数の負荷変動の全てを補償できなくなる。一方、分散型電源2〜5の容量が大きすぎると、電源の過剰設備となり、不経済となる。そこで、上記した各分散型電源2〜5の分担周波数に基づいて負荷変動の周波数解析結果を各分散型電源2〜5に割り当てて、各分散型電源2〜5の最適な容量をそれぞれ求める。具体的には、各分散型電源2〜5の分担周波数帯域の強度を積分することで、その分散型電源2〜5の最適な容量を算出する。   Further, each distributed power source 2 to 5 needs to compensate for all the load fluctuations in the shared frequency band each of which is in charge, but if the capacity of the distributed power sources 2 to 5 is too small, the load fluctuations in the shared frequency band It becomes impossible to compensate all of. On the other hand, when the capacity | capacitance of the distributed power sources 2-5 is too large, it will become an excess installation of a power source and will become uneconomical. Therefore, the frequency analysis result of the load fluctuation is assigned to each of the distributed power sources 2 to 5 based on the shared frequency of each of the distributed power sources 2 to 5, and the optimum capacity of each of the distributed power sources 2 to 5 is obtained. Specifically, the optimum capacity of the distributed power sources 2 to 5 is calculated by integrating the intensity of the shared frequency band of each distributed power source 2 to 5.

図10は上記した例におけるニッケル水素電池4が担当する負荷変動の周波数解析を表したグラフである。
ニッケル水素電池4を例にとると、図10に示すように、ニッケル水素電池4が担当する分担周波数帯域の強度を積分することで、ニッケル水素電池4の最適な容量を算出することができる。
FIG. 10 is a graph showing the frequency analysis of the load fluctuation handled by the nickel metal hydride battery 4 in the above example.
Taking the nickel-metal hydride battery 4 as an example, as shown in FIG. 10, the optimum capacity of the nickel-metal hydride battery 4 can be calculated by integrating the intensity of the frequency band assigned to the nickel-metal hydride battery 4.

ところで、長時間周期の負荷変動に対しては、商用系統と同様に経済性を考慮した出力決定が望ましいが、電源の母数が少ないマイクログリッドシステム1では一定出力で運転できる分散型電源2〜5は非常に少なくなる。そこで、燃料を使用するガスエンジン2,3について、定常運転時における発電効率と過渡運転時における発電効率とを併せてガスエンジン2,3の燃費特性を評価し、その評価結果に基づいて当該ガスエンジン2,3の運用を決定する。定常運転時の発電効率は、各電源の出力を一定にした状態で発電電気量と消費燃料量とから算出される。一方、過渡運転時の発電効率は、各周波数について最大振幅で正弦波出力指令を与えたときの発電電気量と消費燃料量とから算出される。   By the way, for load fluctuations with a long period of time, it is desirable to determine the output in consideration of economy as in the case of the commercial system. However, in the microgrid system 1 having a small power source parameter, the distributed power source 2 can be operated with a constant output. 5 is very low. Therefore, for the gas engines 2 and 3 that use fuel, the fuel efficiency characteristics of the gas engines 2 and 3 are evaluated together with the power generation efficiency during steady operation and the power generation efficiency during transient operation, and based on the evaluation results, The operation of engines 2 and 3 is determined. The power generation efficiency during steady operation is calculated from the amount of electricity generated and the amount of fuel consumed with the output of each power source kept constant. On the other hand, the power generation efficiency during transient operation is calculated from the amount of electricity generated and the amount of fuel consumed when a sine wave output command is given with the maximum amplitude for each frequency.

図11(a)は定常運転時における発電効率を表したグラフであり、図11(b)は過渡運転時における発電効率を表したグラフである。
図11(a)に示すように、定常運転時のガスエンジン2,3は、高出力であるほど高効率で発電できる。一方、過渡運転時のガスエンジン2,3は、発電効率が出力変化の速さに依存していないことが分かる。これは、ガスエンジン2,3の発電効率が、平均的な出力のみに依存していることを示している。よって、運用時に出力を頻繁に変化させても問題なく、平均的に高出力が保たれるようにガスエンジン2,3を運用させるようにする。
FIG. 11A is a graph showing the power generation efficiency during steady operation, and FIG. 11B is a graph showing the power generation efficiency during transient operation.
As shown in FIG. 11A, the gas engines 2 and 3 during steady operation can generate power with higher efficiency as the output is higher. On the other hand, the gas engines 2 and 3 during the transient operation show that the power generation efficiency does not depend on the output change speed. This indicates that the power generation efficiency of the gas engines 2 and 3 depends only on the average output. Therefore, the gas engines 2 and 3 are operated so that a high output can be maintained on average without any problem even if the output is frequently changed during operation.

ところで、上記した分散型電源2〜5の少なくとも一つが回転機型の発電機である場合、自立運転時には、その発電機の回転速度が負荷変動に応じて変化するため、系統周波数に変動が生じる。この発電機の変動を連系運転時の受電点における買電電力に置き換えることで、連系運転時の負荷追従運転制御の制御から自立運転時の系統周波数の品質レベルを判定する。これにより、自立運転に移行した際の系統周波数の品質を、連系運転しながら評価することができる。   By the way, when at least one of the distributed power sources 2 to 5 described above is a rotating machine type generator, the rotation speed of the generator changes according to the load fluctuation during the self-sustained operation, so that fluctuation occurs in the system frequency. . The quality level of the system frequency during the independent operation is determined from the control of the load following operation control during the interconnection operation by replacing the fluctuation of the generator with the purchased power at the power receiving point during the interconnection operation. Thereby, the quality of the system frequency at the time of shifting to the independent operation can be evaluated while performing the interconnection operation.

具体的には、比例運転時における発電機の出力が最低出力から最大出力に変化するまでの時間を変化させ、電力変化率と系統周波数の変動の関係を評価する。これにより、系統周波数をある変動範囲内に抑えるために必要な単位時間当たりの発電機の出力変動の大きさが明確になる。また、正弦波運転時における発電機への出力指令が最大から最小へと変化する正弦波応答に対する系統周波数変動を評価する。これにより、負荷周波数応答性能が取得される。   Specifically, the time until the generator output during the proportional operation changes from the minimum output to the maximum output is changed, and the relationship between the power change rate and the fluctuation of the system frequency is evaluated. Thereby, the magnitude of the output fluctuation of the generator per unit time necessary for keeping the system frequency within a certain fluctuation range becomes clear. In addition, system frequency fluctuation is evaluated for a sine wave response in which the output command to the generator during sine wave operation changes from maximum to minimum. Thereby, load frequency response performance is acquired.

図12(a)は、ガスエンジン2で比例運転を行った際の系統周波数変動を示したグラフであり、図12(b)は、ガスエンジン2で正弦波運転を行った際の系統周波数変動を示したグラフである。
図12(a)に示すように、自立運転時の系統周波数偏差を設定すれば、その偏差内に収まるようにするのに必要な発電機出力の許容変化率の範囲が決定する。このため、連系運転時の買電電力を一定にさせた運転の制御精度から、自立運転時の発電機出力を変動抑制する制御の精度を計る目安として使用することができる。また、図12(b)に示すように、設定された系統周波数偏差に収めるために必要な周波数帯域が判明する。したがって、実際に自立運転を行う際には、発電機出力が上記した周波数帯域で負荷追従するように制御させる。
FIG. 12A is a graph showing the system frequency fluctuation when the gas engine 2 performs the proportional operation, and FIG. 12B is the system frequency fluctuation when the gas engine 2 performs the sine wave operation. It is the graph which showed.
As shown in FIG. 12 (a), if the system frequency deviation at the time of independent operation is set, the range of the allowable change rate of the generator output necessary to be within the deviation is determined. For this reason, it can be used as a standard for measuring the accuracy of control that suppresses fluctuations in the generator output during the self-sustained operation from the control accuracy of the operation in which the electric power purchased during the grid operation is constant. Further, as shown in FIG. 12 (b), the frequency band necessary to be within the set system frequency deviation is found. Therefore, when the autonomous operation is actually performed, the generator output is controlled so as to follow the load in the frequency band described above.

図13は系統周波数レベルの評価を行う際の系統を表した模式図である。
自立運転時には、系統の電力品質を一定に保つため、回転機型の発電機について、負荷変動に対する系統周波数変動の評価を行う必要がある。しかし、コンピュータ等の実負荷中には高品質の電力でないと故障等を引き起こすものがあるため、実際に実負荷を用いて試験することは難しい。そこで、図13に示すように、ダミーロード11を分散型電源に接続し、模擬的な自立系統を構築する。そして、当該ダミーロードを制御することで様々な負荷変動ケースを模擬し、変動に対する分散型電源2〜5の応答を確認する。
FIG. 13 is a schematic diagram showing a system when the system frequency level is evaluated.
During the independent operation, in order to keep the power quality of the system constant, it is necessary to evaluate the system frequency fluctuation with respect to the load fluctuation for the rotating generator. However, it is difficult to actually test using an actual load because some of the actual load of a computer or the like may cause a failure or the like unless power of high quality is used. Therefore, as shown in FIG. 13, the dummy load 11 is connected to a distributed power source to construct a simulated independent system. Then, various load fluctuation cases are simulated by controlling the dummy load, and the responses of the distributed power sources 2 to 5 to the fluctuation are confirmed.

上記した構成からなるマイクログリッドシステムの構築方法によれば、特定エリアの負荷変動を計測してその計測データを周波数解析する工程を行うため、非常に遅い負荷変動から瞬間的な負荷変動までの様々な速さの負荷変動が重なり合って構成された特定エリアの負荷変動が、各周波数成分に分解されて把握される。また、各分散型電源2〜5の各々の周波数応答特性を基に各分散型電源2〜5がそれぞれ担当する分担周波数を決定し、その分担周波数に基づいて負荷変動の周波数解析結果を各分散型電源2〜5に割り当て、各分散型電源2〜5の容量を求める工程を行うため、各分散型電源2〜5は、各々に適した周波数帯域をそれぞれ担当することになる。さらに、上記した周波数解析結果と分担周波数とにより、各分散型電源2〜5の容量がそれぞれ算出されるため、各分散型電源2〜5が適正な容量となる。このように、負荷変動の速さおよび分散型電源2〜5の応答性能に基づいてマイクログリッドシステム1が構築されるため、補償対象となる負荷変動を適切に捉えて効率的な負荷変動の補償を行うことができるとともに、分散型電源2〜5の容量不足や過剰設備を防止することができる。このように、分散型電源2〜5の選択や構成の決定段階から、各分散型電源2〜5の性能に見合った運転が実現できるように考慮されているため、マイクログリッドシステム1における発電と負荷とのバランスを一致させることができる。これにより、マイクログリッドシステム1を自立運転させたり、連系時運転時に負荷追従させたりすることができる。   According to the construction method of the microgrid system having the above-described configuration, since the process of measuring the load fluctuation in a specific area and performing frequency analysis of the measurement data, various processes from very slow load fluctuation to instantaneous load fluctuation are performed. A load fluctuation in a specific area configured by overlapping load fluctuations at a high speed is grasped by being decomposed into each frequency component. In addition, a shared frequency assigned to each distributed power source 2 to 5 is determined based on each frequency response characteristic of each distributed power source 2 to 5, and a load analysis frequency analysis result is distributed to each distributed frequency based on the shared frequency. In order to perform the process of determining the capacity of each of the distributed power sources 2 to 5 by assigning to the power sources 2 to 5, each of the distributed power sources 2 to 5 is responsible for the frequency band suitable for each. Furthermore, since the capacity | capacitance of each distributed power supply 2-5 is each calculated by the above-mentioned frequency analysis result and shared frequency, each distributed power supply 2-5 becomes an appropriate capacity | capacitance. As described above, since the microgrid system 1 is constructed based on the speed of the load fluctuation and the response performance of the distributed power sources 2 to 5, the load fluctuation to be compensated is appropriately captured to efficiently compensate for the load fluctuation. In addition, it is possible to prevent insufficient capacity and excess facilities of the distributed power sources 2 to 5. As described above, since the selection of the distributed power sources 2 to 5 and the determination of the configuration are considered so as to realize the operation suitable for the performance of each of the distributed power sources 2 to 5, the power generation in the microgrid system 1 The balance with the load can be matched. As a result, the microgrid system 1 can be operated independently, or the load can be tracked during operation during interconnection.

また、負荷変化量の遷移確率分布と負荷変化率の遷移確率分布とを作成することで、負荷変動の計測周期を決定しているため、変動補償の対象とする変動の時間間隔を明確にすることができる。   In addition, since the load fluctuation measurement cycle is determined by creating the transition probability distribution of the load change amount and the transition probability distribution of the load change rate, the time interval of the fluctuation subject to fluctuation compensation is clarified. be able to.

また、燃料を使用するガスエンジン2,3について、定常運転時における発電効率と過渡運転時における発電効率とを併せて燃費特性を評価し、その評価結果に基づいて当該ガスエンジン2,3の運用を決定しているため、燃料を使用するガスエンジン2,3を効率的に稼動させることができ、ガスエンジン2,3の燃費を減らし、経済性を加味したマイクログリッドシステム1の運用を実現することができる。   In addition, for the gas engines 2 and 3 that use fuel, the fuel efficiency characteristics are evaluated by combining the power generation efficiency during steady operation and the power generation efficiency during transient operation, and the operation of the gas engines 2 and 3 is performed based on the evaluation results. Therefore, the gas engines 2 and 3 that use fuel can be operated efficiently, the fuel consumption of the gas engines 2 and 3 can be reduced, and the operation of the microgrid system 1 taking into account the economy can be realized. be able to.

また、回転機型の発電機からなる分散型電源について、負荷変動に対する系統周波数変動の評価を行い、その評価結果に基づいて発電機の出力値の範囲を決定するため、自立運転時に、系統周波数の変動を所定の偏差内に収めることができ、所望の電力品質を確保することができる。   In addition, for distributed power sources consisting of rotating generators, system frequency fluctuations are evaluated against load fluctuations, and the generator output value range is determined based on the evaluation results. Can be kept within a predetermined deviation, and desired power quality can be ensured.

さらに、発電機からなる分散型電源に検査用のダミーロード10を接続して模擬的な仮想系統を構築し、この仮想系統を用いて負荷変動に対する系統周波数変動の評価を行うため、実負荷を故障させずに系統周波数レベルの評価を実施することができる。   Furthermore, a simulated virtual system is constructed by connecting a test dummy load 10 to a distributed power source consisting of a generator, and the system load fluctuation is evaluated using this virtual system. The system frequency level can be evaluated without failure.

以上、本発明に係るマイクログリッドシステムの構築方法の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した実施の形態では、負荷変化量の遷移確率分布と負荷変化率の遷移確率分布とを用いて負荷変動の計測周期を決定しているが、本発明は、負荷変化量の遷移確率分布だけを用いて負荷変動の計測周期を決定してもよく、或いは負荷変化率の遷移確率分布だけを用いて負荷変動の計測周期を決定してもよい As mentioned above, although embodiment of the construction method of the microgrid system concerning this invention was described, this invention is not limited to above-described embodiment, In the range which does not deviate from the meaning, it can change suitably. For example, in the above-described embodiment, the load fluctuation measurement cycle is determined using the transition probability distribution of the load change amount and the transition probability distribution of the load change rate. However, in the present invention, the transition probability of the load change amount is determined. The load fluctuation measurement period may be determined using only the distribution, or the load fluctuation measurement period may be determined using only the transition probability distribution of the load change rate .

また、上記した実施の形態では、燃料を使用するガスエンジン2,3について、定常運転時における発電効率と過渡運転時における発電効率とを併せて燃費特性を評価し、その評価結果に基づいて当該ガスエンジン2,3の運用を決定しているが、本発明は、定常運転時における発電効率と過渡運転時における発電効率とを併せた燃費特性の評価を行わずに燃料を使用する分散型電源を運用させることも可能である。例えば、定常運転時における発電効率だけを考慮して燃費特性を評価してもよく、或いは、過渡運転時における発電効率だけを考慮して燃費特性を評価してもよく、さらには、燃費特性を考慮せずに分散型電源を運用させてもよい。   Further, in the above-described embodiment, for the gas engines 2 and 3 that use fuel, the fuel efficiency characteristics are evaluated by combining the power generation efficiency during steady operation and the power generation efficiency during transient operation, and based on the evaluation results, Although the operation of the gas engines 2 and 3 is determined, the present invention is a distributed power source that uses fuel without evaluating fuel efficiency characteristics that combine power generation efficiency during steady operation and power generation efficiency during transient operation. Can also be operated. For example, the fuel efficiency characteristics may be evaluated considering only the power generation efficiency during steady operation, or the fuel efficiency characteristics may be evaluated considering only the power generation efficiency during transient operation. A distributed power source may be operated without consideration.

また、上記した実施の形態では、回転機型の発電機からなる分散型電源について、負荷変動に対する系統周波数変動の評価を行い、その評価結果に基づいてその発電機の出力値の範囲を決定しているが、本発明は、発電機について負荷変動に対する系統周波数変動の評価を行わずに、発電機の出力値の範囲を決定することも可能である。例えば、予め設定された出力値の範囲に決定させてもよく、或いは、発電機の出力値の範囲を決めなくてもよい。   In the above-described embodiment, for a distributed power source composed of a rotating machine type generator, the system frequency fluctuation is evaluated with respect to the load fluctuation, and the output value range of the generator is determined based on the evaluation result. However, according to the present invention, it is also possible to determine the range of the output value of the generator without evaluating the system frequency fluctuation against the load fluctuation for the generator. For example, the range of the output value set in advance may be determined, or the range of the output value of the generator may not be determined.

また、上記した実施の形態では、発電機に検査用のダミーロード10を接続して模擬的な仮想系統を構築し、この仮想系統を用いて負荷変動に対する系統周波数変動の評価を行っているが、本発明は、ダミーロード10を構築せずに負荷変動に対する系統周波数変動の評価を行うことも可能である。例えば、実負荷が、品質が低い電力であっても故障しないものである場合には、ダミーロードを構築せずに実負荷と実系統を用いて負荷変動に対する系統周波数変動の評価を行ってもよい。   In the above-described embodiment, a dummy virtual system 10 for inspection is connected to the generator to construct a simulated virtual system, and the system frequency fluctuation is evaluated with respect to the load fluctuation using this virtual system. In the present invention, it is also possible to evaluate the system frequency fluctuation against the load fluctuation without constructing the dummy load 10. For example, if the actual load is one that does not fail even with low-quality power, the system frequency variation against the load variation can be evaluated using the actual load and the actual system without constructing a dummy load. Good.

また、上記した実施の形態では、ある施設を特定エリアとしてその施設内にマイクログリッドシステムを構築する場合について説明しているが、本発明は、一つの施設内にマイクログリッドシステムを構築する場合に限らず、例えば、複数の住宅等が集まった区域を特定エリアとしてその区域内にマイクログリッドシステムを構築してもよい。   In the above-described embodiment, the case where a microgrid system is constructed in a facility with a certain facility as a specific area has been described. However, the present invention can be applied to a case where a microgrid system is constructed in one facility. For example, a microgrid system may be constructed in a specific area that is a collection area of a plurality of houses.

また、上記した実施の形態では、分散型電源2〜5として、ガスエンジン2,3及びニッケル水素電池4、電気二重層キャパシタ5を選択しているが、本発明に係る分散型電源は上記した電源に限定されるものではなく、電源の種類は適宜変更である。例えば、原則的に一定出力の燃料電池やガスタービンを選択することもでき、或いは、ニッケル水素電池以外のNAS電池や鉛蓄電池等の二次電池(電力貯蔵装置)を選択することもでき、さらに、非常に速い変動に追従可能な超電導電力貯蔵システムなどの電力貯蔵施設を選択することもできる。また、本発明に係る分散型電源は上記した実施の形態における台数に限定されるものではなく、電源の台数については複数台であれば適宜変更である。   In the above-described embodiment, the gas engines 2 and 3, the nickel metal hydride battery 4, and the electric double layer capacitor 5 are selected as the distributed power sources 2 to 5, but the distributed power source according to the present invention is described above. It is not limited to the power source, and the type of the power source is appropriately changed. For example, in principle, it is possible to select a fuel cell or gas turbine with a constant output, or it is possible to select a secondary battery (power storage device) such as a NAS battery or a lead storage battery other than a nickel metal hydride battery, It is also possible to select a power storage facility such as a superconducting power storage system capable of following very fast fluctuations. Further, the distributed power source according to the present invention is not limited to the number in the above-described embodiment, and the number of power sources can be changed as appropriate as long as it is plural.

その他、本発明の主旨を逸脱しない範囲で、上記した実施の形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した変形例を適宜組み合わせてもよい。   In addition, in the range which does not deviate from the main point of this invention, it is possible to replace suitably the component in above-mentioned embodiment with a well-known component, and you may combine the above-mentioned modification suitably.

本発明に係る実施の形態を説明するためのマイクログリッドシステムの概略構成を表した図である。It is a figure showing the schematic structure of the microgrid system for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための日負荷変動の計測結果を示したグラフである。It is the graph which showed the measurement result of the daily load fluctuation | variation for describing embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための負荷変化量の遷移確率分布の作成方法を表した図である。It is a figure showing the production method of the transition probability distribution of the load change amount for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための負荷変化率の遷移確率分布の作成方法を表した図である。It is a figure showing the preparation method of the transition probability distribution of the load change rate for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための負荷変化量の遷移確率分布および負荷変化率の遷移確率分布を表したグラフである。It is a graph showing the transition probability distribution of the load change amount and the transition probability distribution of the load change rate for explaining the embodiment according to the present invention. 本発明に係る実施の形態を説明するための負荷変化量の遷移確率分布および負荷変化率の遷移確率分布を表したグラフである。It is a graph showing the transition probability distribution of the load change amount and the transition probability distribution of the load change rate for explaining the embodiment according to the present invention. 本発明に係る実施の形態を説明するための負荷変動の周波数解析結果を表したグラフである。It is a graph showing the frequency analysis result of the load fluctuation | variation for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための指令値を正弦波状に変化させた場合の応答特性を表したグラフである。It is a graph showing the response characteristic at the time of changing the command value for describing embodiment concerning this invention to a sine wave form. 本発明に係る実施の形態を説明するための正弦波指令値に対する正弦波出力値の振幅比、及び正弦波指令値に対する正弦波出力値の位相差を表したグラフである。It is a graph showing the amplitude ratio of the sine wave output value with respect to the sine wave command value and the phase difference of the sine wave output value with respect to the sine wave command value for explaining the embodiment according to the present invention. 本発明に係る実施の形態を説明するためのニッケル水素電池が担当する負荷変動の周波数解析を表したグラフである。It is the graph showing the frequency analysis of the load variation which the nickel metal hydride battery for describing embodiment which concerns on this invention takes charge. 本発明に係る実施の形態を説明するための定常運転時及び過渡運転時における発電効率を表したグラフである。It is a graph showing the power generation efficiency at the time of steady operation and transient operation for describing an embodiment according to the present invention. 本発明に係る実施の形態を説明するための比例運転及び正弦波運転を行った際の系統周波数変動を示したグラフである。It is the graph which showed the system frequency fluctuation | variation at the time of performing the proportional operation and sine wave operation for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための系統周波数レベルの評価を行う際の系統を表した模式図である。It is a schematic diagram showing the system | strain at the time of performing the evaluation of the system | strain frequency level for describing embodiment which concerns on this invention.

符号の説明Explanation of symbols

1 マイクログリッドシステム
2 ガスエンジン(分散型電源)
3 ガスエンジン(分散型電源)
4 ニッケル水素電池(分散型電源)
5 電気二重層キャパシタ(分散型電源)
9 負荷
10 ダミーロード
1 Microgrid system 2 Gas engine (distributed power supply)
3 Gas engine (distributed power supply)
4 Nickel metal hydride battery (distributed power supply)
5 Electric double layer capacitor (distributed power supply)
9 Load 10 Dummy load

Claims (4)

複数種類の分散型電源を統合的に制御して運用するネットワークを構築して特定エリアに電力を供給するマイクログリッドシステムの構築方法において、
前記特定エリアの負荷変動を計測して、その計測データを周波数解析する工程と、
各分散型電源の各々の周波数応答特性を基に各分散型電源がそれぞれ担当する分担周波数を決定し、該分担周波数に基づいて負荷変動の周波数解析結果を各分散型電源に割り当て、各分散型電源の容量を求める工程と、
を備えており、
負荷変化量の遷移確率分布と負荷変化率の遷移確率分布との両方又は何れか一方を作成することで、前記負荷変動の計測周期を決定することを特徴とするマイクログリッドシステムの構築方法。
In a construction method of a microgrid system that constructs a network that controls and operates multiple types of distributed power sources in an integrated manner and supplies power to a specific area,
Measuring the load fluctuation of the specific area, and analyzing the frequency of the measurement data;
Based on the frequency response characteristics of each distributed power source, the shared frequency that each distributed power source is responsible for is determined, and the frequency analysis result of load fluctuation is assigned to each distributed power source based on the shared frequency. Determining the capacity of the power source;
Equipped with a,
A method for constructing a microgrid system , wherein the load fluctuation measurement cycle is determined by creating a transition probability distribution of a load change amount and / or a transition probability distribution of a load change rate .
請求項1に記載のマイクログリッドシステムの構築方法において、
燃料を使用する分散型電源について、定常運転時における発電効率と過渡運転時における発電効率とを併せて当該分散型電源の燃費特性を評価し、その評価結果に基づいて当該分散型電源の運用を決定することを特徴とするマイクログリッドシステムの構築方法。
In the construction method of the microgrid system according to claim 1 ,
For a distributed power source that uses fuel, evaluate the fuel efficiency characteristics of the distributed power source together with the power generation efficiency during steady operation and the power generation efficiency during transient operation, and operate the distributed power source based on the evaluation results. A method of constructing a microgrid system characterized by determining.
請求項1または2に記載のマイクログリッドシステムの構築方法において、
回転機型の発電機からなる分散型電源について、負荷変動に対する系統周波数変動の評価を行い、その評価結果に基づいて前記発電機からなる分散型電源の電力の出力値の範囲を決定することを特徴とするマイクログリッドシステムの構築方法。
In the construction method of the microgrid system according to claim 1 or 2 ,
An evaluation of system frequency fluctuations with respect to load fluctuations is performed on a distributed power source composed of a rotating machine type generator, and a range of power output values of the distributed power source composed of the generator is determined based on the evaluation result. A construction method of a featured microgrid system.
請求項3に記載のマイクログリッドシステムの構築方法において、
前記発電機からなる分散型電源に検査用のダミーロードを接続して模擬的な仮想系統を構築し、該仮想系統を用いて前記負荷変動に対する系統周波数変動の評価を行うことを特徴とするマイクログリッドシステムの構築方法。
In the construction method of the microgrid system according to claim 3 ,
A micro virtual system is constructed by connecting a dummy load for inspection to a distributed power source composed of the generator, and system frequency fluctuation is evaluated with respect to the load fluctuation using the virtual system. How to build a grid system.
JP2006244272A 2006-09-08 2006-09-08 How to build a microgrid system Active JP4895735B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006244272A JP4895735B2 (en) 2006-09-08 2006-09-08 How to build a microgrid system
PCT/JP2007/067316 WO2008029849A1 (en) 2006-09-08 2007-09-05 Microgrid system building method
CN2007800329430A CN101512866B (en) 2006-09-08 2007-09-05 Micro-grid system construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006244272A JP4895735B2 (en) 2006-09-08 2006-09-08 How to build a microgrid system

Publications (2)

Publication Number Publication Date
JP2008067544A JP2008067544A (en) 2008-03-21
JP4895735B2 true JP4895735B2 (en) 2012-03-14

Family

ID=39157275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006244272A Active JP4895735B2 (en) 2006-09-08 2006-09-08 How to build a microgrid system

Country Status (3)

Country Link
JP (1) JP4895735B2 (en)
CN (1) CN101512866B (en)
WO (1) WO2008029849A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4904597B2 (en) * 2008-01-24 2012-03-28 清水建設株式会社 Power storage facility determination method and power storage facility determination program
US8249756B2 (en) 2009-11-23 2012-08-21 International Business Machines Corporation Method, device and system for responsive load management using frequency regulation credits
JP5482141B2 (en) * 2009-11-25 2014-04-23 富士電機株式会社 Load frequency control method and load frequency control apparatus
JP5386444B2 (en) * 2010-06-30 2014-01-15 株式会社日立製作所 Storage battery control device, storage battery control method, and storage battery specification determination method
CN102185341B (en) * 2011-04-14 2013-01-02 天津大学 Master-slave control strategy microgrid-based main power supply double-mode running control method
JP5802469B2 (en) * 2011-08-02 2015-10-28 株式会社東芝 Power system load frequency control system and program
CN102800032A (en) * 2012-07-13 2012-11-28 中国电力科学研究院 Cost benefit analysis method of renewable energy source distributed generation operation mode
CN102799952A (en) * 2012-07-13 2012-11-28 中国电力科学研究院 Optimization method of renewable energy source distribution type power generation operation mode
CN102780267B (en) * 2012-07-26 2014-08-20 天津大学 Electric energy router
US9859735B2 (en) 2013-03-01 2018-01-02 Nec Corporation Supply and demand adjustment system, supply and demand adjustment method, and supply and demand adjustment program
CN103248068B (en) * 2013-04-28 2014-12-10 天津大学 Electric energy router provided with multiple power supply manners
JP6113604B2 (en) * 2013-08-23 2017-04-12 株式会社日立製作所 Power supply monitoring and control device
CN103647292B (en) * 2013-12-02 2017-07-07 中国能源建设集团广东省电力设计研究院有限公司 Microgrid power smooth control based on mixed energy storage system
JP6163121B2 (en) * 2014-02-26 2017-07-12 サンケン電気株式会社 Independent operation system
CN104123620B (en) * 2014-08-13 2018-02-06 国家电网公司 A kind of distribution method and device of distributed power source planning amount
CN104167763B (en) * 2014-09-04 2017-04-19 华电电力科学研究院 Distributed energy management method
CN104764945B (en) * 2014-12-30 2017-12-26 武汉烽火富华电气有限责任公司 A kind of micro-capacitance sensor simulated testing system
JP6430276B2 (en) * 2015-02-06 2018-11-28 三菱日立パワーシステムズ株式会社 Battery system, control method thereof, and control program
JP2016213933A (en) * 2015-05-01 2016-12-15 富士電機株式会社 Apparatus and method for supplying supply facilities of micro grid or smart grid
JP6408451B2 (en) * 2015-05-21 2018-10-17 株式会社日立製作所 Energy demand forecasting system and energy demand forecasting method
US10503132B2 (en) * 2015-07-06 2019-12-10 Caterpillar Inc. Load distribution for dissimilar generator sets
JP6903868B2 (en) * 2016-02-25 2021-07-14 オムロン株式会社 Power supply information estimation device, power supply information estimation method and power supply information estimation program
JP2018078685A (en) * 2016-11-08 2018-05-17 株式会社日立製作所 Power supply system and power supply system control method
JP7188963B2 (en) * 2018-10-02 2022-12-13 一般財団法人電力中央研究所 Driving support system, driving support device, driving support method and program

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3543191B2 (en) * 1998-07-24 2004-07-14 株式会社日立製作所 Generator load distribution device and load distribution method
JP2001086649A (en) * 1999-09-09 2001-03-30 Kansai Electric Power Co Inc:The Load frequency controlling method in power system
JP3930218B2 (en) * 2000-02-24 2007-06-13 株式会社東芝 Power system load frequency control system
JP2003324845A (en) * 2002-05-01 2003-11-14 Hitachi Ltd Power supply system and electricity charge settlement system
JP2005160286A (en) * 2003-10-28 2005-06-16 Shimizu Corp Carrier transformation / private power generation system in building
JP4616579B2 (en) * 2004-05-13 2011-01-19 株式会社四国総合研究所 Power supply system
JP4852885B2 (en) * 2005-05-24 2012-01-11 株式会社明電舎 Load following operation control method with multiple types of distributed power supply

Also Published As

Publication number Publication date
CN101512866A (en) 2009-08-19
WO2008029849A1 (en) 2008-03-13
JP2008067544A (en) 2008-03-21
CN101512866B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
JP4895735B2 (en) How to build a microgrid system
Krishan et al. Grid-independent PV system hybridization with fuel cell-battery/supercapacitor: Optimum sizing and comparative techno-economic analysis
CN104969436B (en) For providing the power plant of power grid assistant service and energy storage system
Barelli et al. Integrating Hybrid Energy Storage System on a Wind Generator to enhance grid safety and stability: A Levelized Cost of Electricity analysis
CN101919134B (en) Event-based control system for wind turbine generators and control method thereof
EP3075982B1 (en) Gas turbine suitable for renewable energy and control method thereof
Mišák et al. A heuristic approach to active demand side management in off-grid systems operated in a smart-grid environment
Leitermann Energy storage for frequency regulation on the electric grid
Aslanidou et al. Micro gas turbines in the future smart energy system: fleet monitoring, diagnostics, and system level requirements
Bracco et al. Planning and management of sustainable microgrids: The test-bed facilities at the University of Genoa
Timmons et al. Microeconomics of electrical energy storage in a fully renewable electricity system
Masrur et al. Efficient energy delivery system of the CHP-PV based microgrids with the economic feasibility study
Husein et al. Design and dynamic performance analysis of a stand-alone microgrid-A case study of Gasa Island, South Korea
JP4866764B2 (en) Control method of distributed power supply
Basheer et al. Investigating the optimal DOD and battery technology for hybrid energy generation models in cement industry using HOMER pro
Jorgenson et al. Storage futures study: Grid operational impacts of widespread storage deployment
Almihat et al. Design and implementation of Hybrid Renewable energy (PV/Wind/Diesel/Battery) Microgrids for rural areas
Yildirim et al. Oscillatory stability and eigenvalue analysis of power system with microgrid
Vafaei Optimally-sized design of a wind/diesel/fuel cell hybrid system for a remote community
Siti Khodijah et al. Design of compensation battery for tidal power‐photovoltaics‐SOFC microgrids in Ternate and Pulau‐Tidore Islands
Jonaitis et al. Dynamic model of wind power balancing in hybrid power system
Abdillah et al. Retired electric vehicle battery to reduce the load frequency control oscillation in the micro grid system
Elsied et al. Analysis, modeling, and control of an AC microgrid system based on green energy
Nguyen-Hong et al. Joint optimization of energy storage and wind power generation for an islanded system
Ibrahim et al. Feasibility study of hybrid wind-diesel-battery power generating systems: parametric and sensitivity analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250