JP4895525B2 - Scanning transmission electron microscope - Google Patents

Scanning transmission electron microscope Download PDF

Info

Publication number
JP4895525B2
JP4895525B2 JP2005112999A JP2005112999A JP4895525B2 JP 4895525 B2 JP4895525 B2 JP 4895525B2 JP 2005112999 A JP2005112999 A JP 2005112999A JP 2005112999 A JP2005112999 A JP 2005112999A JP 4895525 B2 JP4895525 B2 JP 4895525B2
Authority
JP
Japan
Prior art keywords
image
electron beam
scanning transmission
lens
magnification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005112999A
Other languages
Japanese (ja)
Other versions
JP2006294389A (en
Inventor
邦康 中村
泰介 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2005112999A priority Critical patent/JP4895525B2/en
Publication of JP2006294389A publication Critical patent/JP2006294389A/en
Application granted granted Critical
Publication of JP4895525B2 publication Critical patent/JP4895525B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,電子線をサブナノメータ径に収束して試料に照射し,該試料により回折,散乱,あるいは試料を透過した電子線の全てあるいは一部を選択し,電子線プローブの走査と同期して検出し,走査透過像として画像化する走査透過電子顕微鏡装置に関する。   The present invention converges an electron beam to a sub-nanometer diameter and irradiates the sample, selects all or part of the electron beam diffracted, scattered, or transmitted by the sample, and synchronizes with the scanning of the electron beam probe. The present invention relates to a scanning transmission electron microscope apparatus that detects and forms a scanning transmission image.

従来の走査透過電子顕微鏡装置を用いた明視野像の形成原理と取得方法は,例えば(非特許文献1)、(非特許文献2)、(非特許文献3)等に開示されている。この方法は透過電子顕微鏡と走査透過電子顕微鏡との相反性の原理に基づいて,透過電子顕微鏡における光源を走査透過電子顕微鏡の検出器に対応させ,透過電子顕微鏡における対物絞りを走査透過電子顕微鏡における収束絞りに対応させることによって等価な電子光学系が実現されることを利用した技術である。ここで,走査透過電子顕微鏡の検出器を光軸上に設置し,その検出角度を数ミリラジアン程度に小さくすれば,透過電子顕微鏡を用いて試料に電子線を平行照射した場合に対応する明視野像を得ることができる。また,走査透過電子顕微鏡の電子線プローブの収束角度を特定の結晶面に対する回折角度より小さくすれば,透過電子顕微鏡において対物絞りを用いて特定の結晶面に対応する回折電子線を除去した場合に形成される回折コントラスト像を得ることができる。逆に,走査透過電子顕微鏡の電子線プローブの収束角度を特定の結晶面に対する回折角度より大きくすれば,透過電子顕微鏡において特定の結晶面に対する回折電子線と透過電子線とを同時に対物絞りを通過させた場合に形成される位相コントラスト像を得ることができ,300万倍程度の高倍率で観察すれば特定の結晶面の間隔に対応する格子縞を得ることができる。   The formation principle and acquisition method of a bright field image using a conventional scanning transmission electron microscope apparatus are disclosed in, for example, (Non-Patent Document 1), (Non-Patent Document 2), (Non-Patent Document 3), and the like. This method is based on the principle of reciprocity between the transmission electron microscope and the scanning transmission electron microscope. The light source in the transmission electron microscope is made to correspond to the detector of the scanning transmission electron microscope, and the objective aperture in the transmission electron microscope is set in the scanning transmission electron microscope. This is a technique that utilizes the fact that an equivalent electron optical system is realized by corresponding to a converging aperture. Here, if the detector of the scanning transmission electron microscope is installed on the optical axis and the detection angle is reduced to about several milliradians, the bright field corresponding to the case where the sample is irradiated with an electron beam in parallel using the transmission electron microscope. An image can be obtained. In addition, if the convergence angle of the electron beam probe of the scanning transmission electron microscope is made smaller than the diffraction angle with respect to a specific crystal plane, the diffraction electron beam corresponding to the specific crystal plane is removed using the objective aperture in the transmission electron microscope. A diffraction contrast image to be formed can be obtained. Conversely, if the convergence angle of the electron probe of the scanning transmission electron microscope is made larger than the diffraction angle with respect to a specific crystal plane, the diffracted electron beam and the transmission electron beam with respect to the specific crystal plane pass through the objective aperture simultaneously in the transmission electron microscope. In this case, a phase contrast image formed can be obtained. When observed at a high magnification of about 3 million times, lattice fringes corresponding to intervals between specific crystal planes can be obtained.

一方,走査透過電子顕微鏡では上記の明視野像に加えて,試料により大角度に散乱された電子線を中心部に開口を持つ円環状の検出器により検出して画像化することも行われている。この画像は暗視野像と呼ばれており,結像原理や実際に観察される画像は例えば(非特許文献4)に開示されている。暗視野像の検出角度範囲は例えば200キロボルトの電子線を用いた場合には50ミリラジアン程度から300ミリラジアン程度の角度範囲に散乱された全ての電子線を取り込む条件に設定されることが一般的である。このような高角度では弾性散乱した電子線の強度は減少し,熱散漫散乱した電子線の強度が支配的となる。すなわち,暗視野像では主に物質による散乱の強弱により画像コントラストが形成されており,試料による電子線の回折や干渉の効果はコントラストとなって現れにくい。また,暗視野像の画像強度は経験的に原子番号Zに比例することが多いために,暗視野像はZコントラスト像とも呼ばれることがある。   On the other hand, in the scanning transmission electron microscope, in addition to the bright field image described above, an electron beam scattered at a large angle by the sample is detected and imaged by an annular detector having an opening at the center. Yes. This image is called a dark field image, and the imaging principle and the actually observed image are disclosed in, for example, (Non-Patent Document 4). For example, when an electron beam of 200 kilovolts is used, the detection angle range of the dark field image is generally set to a condition for capturing all the electron beams scattered in an angle range of about 50 milliradians to about 300 milliradians. is there. At such high angles, the intensity of the elastically scattered electron beam decreases, and the intensity of the diffusely scattered electron beam becomes dominant. That is, in the dark field image, image contrast is formed mainly by the intensity of scattering by the substance, and the effects of diffraction and interference of the electron beam by the sample hardly appear as contrast. Also, since the image intensity of a dark field image is often proportional to the atomic number Z empirically, the dark field image is sometimes called a Z contrast image.

Electron Microdiffraction 1992 Plenum Press(New York and London)第169項から第191項Electron Microdiffraction 1992 Plenum Press (New York and London) Paragraphs 169-191

Ultramicroscopy 1990年 32号 第93項から第102項Ultramicroscopy 1990, No. 32, paragraphs 93-102 Ultramicroscopy 2003年 96号 第239項から第249項Ultramicroscopy 2003, 96, paragraphs 239-249 Ultramicroscopy 1991年 37号 第14項から第38項Ultramicroscopy 1991, No. 37, paragraphs 14-38

従来の走査透過電子顕微鏡装置を用いた明視野像の取得方法では回折コントラスト像と格子像とを取得するために必要な電子線プローブの収束角度の設定が異なっている。よって,回折コントラスト像が得られる条件に対応する電子線プローブの収束角度を設定して観察した場合,低倍率では適切なコントラストで多結晶粒子,結晶基板や非晶質を区別して観察できるが,高倍率で電子線の干渉による格子縞を得ることは不可能であり,装置が持つ本来の分解能性能を引き出すことができない。一方,結晶格子像が得られる条件に対応する電子線プローブの収束角度を設定して観察した場合,高倍率では適切なコントラストで格子縞を観察することができるが,検出器により多数の回折電子線が同時に検出されるために,低倍率像では回折コントラストは低下し,多結晶粒子で粒界を区別して観察することや結晶基板と酸化膜とを区別することが難しくなる場合がある。例えば,(非特許文献2)に開示されている明視野格子像の観察条件では収束角度を27.2ミリラジアンに設定することによりシリコンの格子縞を高いコントラストで観察できている。しかし,この条件では透過電子線と(111)面,(220)面,(311)面及び(400)面からの回折電子線の全てが検出器で検出されてしまうので低倍率像では回折コントラストを得ることができない。   In the conventional method for acquiring a bright field image using a scanning transmission electron microscope apparatus, the setting of the convergence angle of the electron beam probe necessary for acquiring the diffraction contrast image and the grating image is different. Therefore, when setting the observation angle of the electron beam probe corresponding to the conditions for obtaining a diffraction contrast image, it is possible to distinguish and observe polycrystalline particles, crystal substrates, and amorphous materials at an appropriate contrast at low magnification. It is impossible to obtain lattice fringes due to electron beam interference at a high magnification, and the original resolution performance of the device cannot be extracted. On the other hand, when the electron beam probe convergence angle corresponding to the conditions for obtaining a crystal lattice image is set and observed, lattice fringes can be observed with an appropriate contrast at a high magnification. Are detected at the same time, the diffraction contrast is lowered in a low-magnification image, and it may be difficult to distinguish and observe a grain boundary with polycrystalline particles or to distinguish between a crystal substrate and an oxide film. For example, under the bright field lattice image observation conditions disclosed in (Non-patent Document 2), the silicon lattice fringes can be observed with high contrast by setting the convergence angle to 27.2 milliradians. However, under this condition, the transmission electron beam and all of the diffracted electron beams from the (111) plane, the (220) plane, the (311) plane, and the (400) plane are detected by the detector. Can't get.

そこで従来は,所望の倍率で所望のコントラストを得るために,観察倍率に応じて収束絞りの穴径を変化させて適切な収束角度を設定する方法が用いられてきた。しかし,倍率を変化させる度に収束絞りを操作する必要があり,迅速な観察,解析の妨げとなっていた。また,収束絞りは光学軸の中心と一致させる必要があり,調整が不十分であるとコマ収差が残留し,像分解能が低下する場合があった。さらに,コマ収差をキャンセルするための調整方法は煩雑であり,その操作が自動化されている場合でも,倍率を変える度に調整が終了するのを待たなくてはならず、観察時間遅延の要因となっていた。   Therefore, conventionally, in order to obtain a desired contrast at a desired magnification, a method of setting an appropriate convergence angle by changing the hole diameter of the convergence diaphragm according to the observation magnification has been used. However, it was necessary to operate the aperture stop every time the magnification was changed, which hindered rapid observation and analysis. In addition, it is necessary to make the converging aperture coincide with the center of the optical axis. If the adjustment is insufficient, the coma remains and the image resolution may be lowered. Furthermore, the adjustment method for canceling coma aberration is complicated, and even when the operation is automated, it is necessary to wait for the adjustment to be completed each time the magnification is changed. It was.

また,(非特許文献3)に開示されている球面収差補正器を搭載した走査透過電子顕微鏡では,3次球面収差を補正することにより電子線プローブの収束角度成分の25ミリラジアン以内を一定の位相シフト範囲内に保つことが可能となっている。すなわち,通常の観察条件では電子線の収束角度を25ミリラジアンに設定して使用することになり,収差補正された条件では上記と同じ理由により低倍率の明視野像の回折コントラストが低下するという問題があった。   Further, in the scanning transmission electron microscope equipped with the spherical aberration corrector disclosed in (Non-Patent Document 3), the third spherical aberration is corrected so that the convergence angle component of the electron beam probe is within 25 milliradians within a constant phase. It can be kept within the shift range. That is, under normal observation conditions, the electron beam convergence angle is set to 25 milliradians, and under the aberration-corrected conditions, the diffraction contrast of the low-magnification bright-field image decreases for the same reason as described above. was there.

また,暗視野像を用いた観察では,観察する倍率に依って収束角度を変化させる必要がないが,画像形成において原理的に回折コントラストが抽出できないために多結晶粒子の界面位置を計測するなどの目的では用いることができない。
これを解決するためには,収束絞りを操作する手順を必要とせずに所望の観察倍率を設定するだけで,低倍率像では回折コントラストが効率良く抽出できる電子光学条件が設定され,高倍率像では結晶格子縞のコントラストが効率良く抽出できる電子光学条件が設定される走査透過電子顕微鏡装置が必要である。
In the observation using a dark field image, it is not necessary to change the convergence angle depending on the magnification to be observed. However, since the diffraction contrast cannot be extracted in principle in image formation, the interface position of polycrystalline particles is measured. It cannot be used for the purpose.
In order to solve this problem, electro-optical conditions are set so that diffraction contrast can be extracted efficiently for low-magnification images by simply setting the desired observation magnification without the need to operate the converging aperture. Then, a scanning transmission electron microscope apparatus in which electron optical conditions are set so that the contrast of crystal lattice fringes can be extracted efficiently is required.

本発明は試料面上で電子線プローブを走査するための走査コイルにより像倍率を決定し,試料より下流側で光軸上に設置した電子線検出器により透過電子線及び回折電子線の一部が検出されるようにし,収束絞りを固定したまま像倍率と1段目収束レンズ,2段目収束レンズ,前磁場対物レンズ及び収差補正器の励磁を変化させて制御し,電子線プローブの焦点が常に試料と一致するように制御し,電子線プローブの収束角度を低倍率設定時には特定の結晶面に対応する回折角度より小さくして回折コントラストが得られるようにし,電子線プローブの収束角度を高倍率設定時には特定の結晶面に対応する回折角度より大きくして位相コントラストによる結晶格子縞が得られるようにする。   In the present invention, the image magnification is determined by a scanning coil for scanning the electron beam probe on the sample surface, and a part of the transmitted electron beam and diffracted electron beam is detected by the electron beam detector installed on the optical axis downstream from the sample. The focus of the electron beam probe is controlled by changing the image magnification and the excitation of the first-stage convergence lens, the second-stage convergence lens, the front magnetic field objective lens, and the aberration corrector while the convergence diaphragm is fixed. Is always matched with the sample, and when the convergence angle of the electron beam probe is set to a low magnification, the diffraction angle corresponding to a specific crystal plane is made smaller to obtain a diffraction contrast. When setting a high magnification, the diffraction angle corresponding to a specific crystal plane is set larger than that to obtain crystal lattice fringes due to phase contrast.

本発明によれば,走査透過電子顕微鏡装置を用いて明視野像を所望のコントラストや分解能で取得する際に,収束絞りの穴径を変化させて電子線プローブの収束角度を変化させる操作が必要なくなるので装置の操作性が向上すると共に,観察,解析に費やす時間の短縮が可能となる。電子線プローブを大きな収束角度を用いて形成する収差補正器を搭載した走査透過電子顕微鏡では,低倍率の明視野像で回折コントラストが低下するのを防止できる。   According to the present invention, when a bright-field image is acquired with a desired contrast and resolution using a scanning transmission electron microscope apparatus, an operation for changing the convergence angle of the electron beam probe by changing the hole diameter of the focusing aperture is required. As a result, the operability of the apparatus is improved and the time spent for observation and analysis can be shortened. In a scanning transmission electron microscope equipped with an aberration corrector that forms an electron beam probe using a large convergence angle, it is possible to prevent a decrease in diffraction contrast in a low-field bright-field image.

走査透過電子顕微鏡装置において収束絞りの穴径を変化させることなく,所望の像倍率を設定するだけで,低倍率の明視野像で電子線の回折に基づくコントラストを抽出した画像を取得可能であり,高倍率の明視野像で電子線の干渉よる結晶格子縞を取得可能とする装置の構成,電子光学条件を説明する。なお,以下の説明では電子線を用いた走査透過顕微鏡装置に関する実施の形態を記述するが,本発明はイオンビームを用いた装置にも適用可能である。   In a scanning transmission electron microscope device, it is possible to obtain an image obtained by extracting contrast based on electron beam diffraction in a low-magnification bright-field image by simply setting the desired image magnification without changing the aperture diameter of the focusing aperture. The configuration of the apparatus and the electron optical conditions that enable acquisition of crystal lattice fringes due to interference of electron beams with a high-magnification bright-field image will be described. In the following description, an embodiment related to a scanning transmission microscope apparatus using an electron beam will be described. However, the present invention can also be applied to an apparatus using an ion beam.

図1は本発明の走査透過電子顕微鏡装置の照射電子光学系を説明する図である。光源1から発生した電子線は1段目収束レンズ3,2段目収束レンズ4及び前磁場対物レンズ5により収束されて試料6上にサブナノメータ径の電子線プローブを形成する。これらの各レンズは磁場型あるいは静電型の回転対称レンズや多重極レンズが適用できる。また,光源とは電子源,静電型あるいは磁界型の電子線の引出し電極,静電型加速電極等から構成される電子銃によって形成された実際の電子線スポット,あるいは虚像の電子線スポットとして定義される仮想光源を意味しており,電子銃としては電子源を加熱しないで電子線を電界放出させる冷陰極型電界放出電子銃,あるいは電子源を加熱して電子線を放出させるショットキー型電子銃などの方式が考えられる。収束絞り7は試料6上での電子線プローブの収束角度を調整する目的で使用し,本実施例では穴径500ミクロンから10ミクロン程度の丸穴形状を有している。ここで穴の形状は丸穴のみでなく矩形穴等でも良い。   FIG. 1 is a view for explaining an irradiation electron optical system of a scanning transmission electron microscope apparatus of the present invention. The electron beam generated from the light source 1 is converged by the first-stage convergence lens 3, the second-stage convergence lens 4, and the front magnetic field objective lens 5 to form an electron beam probe having a sub-nanometer diameter on the sample 6. Each of these lenses may be a magnetic field type or electrostatic type rotationally symmetric lens or a multipole lens. A light source is an actual electron beam spot formed by an electron gun composed of an electron source, an electrostatic or magnetic type electron beam extraction electrode, an electrostatic acceleration electrode, or the like, or a virtual image electron beam spot. This means a virtual light source that is defined as an electron gun, a cold cathode field emission electron gun that emits an electron beam without heating the electron source, or a Schottky type that emits an electron beam by heating the electron source. A method such as an electron gun is conceivable. The focusing diaphragm 7 is used for the purpose of adjusting the convergence angle of the electron beam probe on the sample 6, and in this embodiment, has a round hole shape with a hole diameter of about 500 to 10 microns. Here, the shape of the hole may be not only a round hole but also a rectangular hole.

また,図1において収束絞り7の位置は光源1と1段目収束レンズ3との間に設置されているが,1段目収束レンズ3と2段目収束レンズ4との間あるいは2段目収束レンズ4と前磁場対物レンズ5との間に設置してもよい。1段目走査コイル8及び2段目走査コイル9は電子線を光軸2から偏向離軸させることにより,試料6上での電子線プローブの位置を制御する機能を有する。図中には記載省略したが1段目走査コイル8及び2段目走査コイル9のそれぞれと同一面内で90度方向回転した位置に同一機能を持つ走査コイルが配置されており,これらのコイルよる電子線プローブの位置制御を組み合わせて試料6上で電子線プローブを2次元的に走査することができる。走査透過像の形成は電子線の走査に同期して試料6を透過した電子線を検出器(図中省略)により検出して16ビット程度のダイナミックレンジを持った画像として表示することによって実施される。各レンズと走査コイルの制御は光学系の制御機構20により実施される。この光学系の制御機構20はCPUにより制御される駆動電源回路,ソフトウエア,操作者が入出力を制御できるディスプレイ,キーボード,マウス,つまみ等のインターフェースから構成されている。   Further, in FIG. 1, the position of the converging diaphragm 7 is set between the light source 1 and the first stage converging lens 3, but between the first stage converging lens 3 and the second stage converging lens 4 or the second stage. You may install between the converging lens 4 and the front magnetic field objective lens 5. FIG. The first-stage scanning coil 8 and the second-stage scanning coil 9 have a function of controlling the position of the electron beam probe on the sample 6 by deflecting and separating the electron beam from the optical axis 2. Although not shown in the figure, scanning coils having the same function are disposed at positions rotated by 90 degrees in the same plane as the first-stage scanning coil 8 and the second-stage scanning coil 9, respectively. The electron beam probe can be two-dimensionally scanned on the sample 6 by combining the position control of the electron beam probe. Scanning transmission image formation is performed by detecting an electron beam transmitted through the sample 6 in synchronization with the scanning of the electron beam by a detector (not shown) and displaying it as an image having a dynamic range of about 16 bits. The Control of each lens and the scanning coil is performed by the control mechanism 20 of the optical system. The control mechanism 20 of the optical system includes a drive power supply circuit controlled by a CPU, software, and an interface such as a display, a keyboard, a mouse, and a knob that can be controlled by an operator.

次に,本発明の走査透過電子顕微鏡装置による像倍率設定方法について説明する。走査透過像の像倍率とは試料6上での電子線プローブの離軸距離と画像表示の大きさとの比として定義される。例えば,試料6上での電子線プローブの離軸距離の全幅が10マイクロメートルで画像表示を100ミリメートル幅とすると像倍率は1万倍となる。図1において低倍率像観察時の試料面上での偏向量18及び高倍率像観察時の試料面上での偏向量19は光軸2に対する距離として定義したものであり,この距離で像倍率が決定される。1段目走査コイル8と2段目走査コイル9との偏向角度の比率を一定として1段目走査コイル8による偏向角度を大きくすると,試料6上での電子線プローブの離軸距離が大きくなる。すなわち,試料面上での偏向量を1段目走査コイル8による偏向角度により制御することによって段階的にあるいは任意に像倍率を設定できる。また,所定の像倍率で走査透過像を取得する試料6面での領域は1段目走査コイル8において走査用の偏向角度に位置決め用偏向角度を加算することによりその位置を決定できる。一般的には光軸2と電子線プローブの位置とが一致する条件を走査透過像の中心として表示する場合が多い。   Next, an image magnification setting method using the scanning transmission electron microscope apparatus of the present invention will be described. The image magnification of the scanning transmission image is defined as the ratio between the off-axis distance of the electron beam probe on the sample 6 and the size of the image display. For example, if the total width of the off-axis distance of the electron beam probe on the sample 6 is 10 micrometers and the image display is 100 millimeters wide, the image magnification is 10,000 times. In FIG. 1, the deflection amount 18 on the sample surface at the time of low-magnification image observation and the deflection amount 19 on the sample surface at the time of high-magnification image observation are defined as distances to the optical axis 2, and the image magnification is determined by this distance. Is determined. If the deflection angle by the first-stage scanning coil 8 is increased with the ratio of the deflection angles of the first-stage scanning coil 8 and the second-stage scanning coil 9 being constant, the off-axis distance of the electron beam probe on the sample 6 is increased. . That is, the image magnification can be set stepwise or arbitrarily by controlling the deflection amount on the sample surface by the deflection angle by the first stage scanning coil 8. Further, the position of the area on the surface of the sample 6 where the scanning transmission image is acquired at a predetermined image magnification can be determined by adding the positioning deflection angle to the scanning deflection angle in the first stage scanning coil 8. In general, the condition that the optical axis 2 and the position of the electron beam probe coincide with each other is often displayed as the center of the scanning transmission image.

次に,本発明の走査透過電子顕微鏡装置により像倍率とリンクして電子線プローブの収束角度を変化させる方法について説明する。試料6での電子線プローブの収束角度を変化させることは1段目収束レンズ3,2段目収束レンズ4及び前磁場対物レンズ5の励磁条件を組み合わせて変化させることによって実施できる。図1にその一例を示す。低倍率像観察時の光線図10を形成する条件として低倍率像観察時の1段目収束レンズの像点12及び低倍率像観察時の2段目収束レンズの像点14が形成される場合を想定している。高倍率像観察時の光線図11では高倍率像観察時の1段目収束レンズの像点13及び高倍率像観察時の2段目収束レンズの像点15が形成されるように1段目収束レンズ3及び2段目収束レンズ4の焦点距離を変化させる。この時,前磁場対物レンズ5は試料6に焦点が一致するように制御される。この電子光学条件の設定は前磁場対物レンズ5に入射する電子線の2段目収束レンズ像点からの出射角度を大きくすることによって,低倍率像観察時の試料に対する収束角度16を高倍率像観察時の試料に対する収束角度17へと変化させる方法の一例である。1段目収束レンズの像点を低倍率時と高倍率時で変化させずに2段目収束レンズの像点のみを変化させて,前磁場対物レンズ5にて試料6に焦点を一致させる方法でも同様な効果を得ることができる。ハードウエアの制御は操作者が所望の像倍率を光学系の制御機構20から設定すると1段目走査コイル8による偏向角度,1段目収束レンズ3,2段目収束レンズ4,及び前磁場対物レンズ5の条件が1つのパラメータセットとなって出力され,走査透過電子顕微鏡装置に自動で設定されるようになっている。   Next, a method for changing the convergence angle of the electron beam probe by linking with the image magnification by the scanning transmission electron microscope apparatus of the present invention will be described. The convergence angle of the electron beam probe on the sample 6 can be changed by combining and changing the excitation conditions of the first-stage convergence lens 3, the second-stage convergence lens 4, and the front magnetic field objective lens 5. An example is shown in FIG. When the image point 12 of the first-stage converging lens at the time of low-magnification image observation and the image point 14 of the second-stage convergence lens at the time of low-magnification image observation are formed as conditions for forming the ray diagram 10 at the time of low-magnification image observation Is assumed. In the light ray diagram at the time of high-magnification image observation, an image point 13 of the first-stage converging lens at the time of high-magnification image observation and an image point 15 of the second-stage convergence lens at the time of high-magnification image observation are formed. The focal lengths of the convergent lens 3 and the second stage convergent lens 4 are changed. At this time, the front magnetic field objective lens 5 is controlled so that the focal point coincides with the sample 6. This electron optical condition is set by increasing the exit angle of the electron beam incident on the front magnetic field objective lens 5 from the image point of the second-stage convergent lens, so that the convergence angle 16 with respect to the sample at the time of low-magnification image observation is set to a high-magnification image. It is an example of the method of changing to the convergence angle 17 with respect to the sample at the time of observation. A method in which only the image point of the second stage converging lens is changed without changing the image point of the first stage converging lens between the low magnification and the high magnification, and the focal point is matched with the sample 6 by the front magnetic field objective lens 5. However, the same effect can be obtained. When the operator sets a desired image magnification from the control system 20 of the optical system, the hardware is controlled by the deflection angle by the first stage scanning coil 8, the first stage convergence lens 3, the second stage convergence lens 4, and the front magnetic field objective. The conditions of the lens 5 are output as one parameter set, and are automatically set in the scanning transmission electron microscope apparatus.

次に,本発明の走査透過電子顕微鏡を用いた明視野像の取得における電子線検出機構について説明する。図2は走査透過電子顕微鏡の電子光学系において光軸2上の電子線,すなわち軸上電子線の光線図を図示したものである。ただし,光源1,1段目収束レンズ3及び収束絞り7は省略してある。試料6を透過した電子線は後磁場対物レンズ21及び投影レンズ23により拡大あるいは縮小される。図2では後磁場対物レンズ21により後磁場対物レンズの像点22が,投影レンズ23により投影レンズの像点24が形成される場合を想定している。投影レンズ23の下段には明視野像検出器26が設置されており,透過電子線の強度を電流あるいは電圧信号に変換する。検出器制御及び画像表示機構28は光学系の制御機構20による試料6上での電子線プローブの走査と同期して画像信号を16ビット程度の諧調を持った画像データに変換し,走査透過像を表示する。   Next, an electron beam detection mechanism for obtaining a bright field image using the scanning transmission electron microscope of the present invention will be described. FIG. 2 shows a ray diagram of an electron beam on the optical axis 2, that is, an axial electron beam, in the electron optical system of the scanning transmission electron microscope. However, the light source 1, the first-stage converging lens 3 and the converging diaphragm 7 are omitted. The electron beam transmitted through the sample 6 is enlarged or reduced by the rear magnetic field objective lens 21 and the projection lens 23. In FIG. 2, it is assumed that an image point 22 of the rear magnetic field objective lens is formed by the rear magnetic field objective lens 21 and an image point 24 of the projection lens is formed by the projection lens 23. A bright field image detector 26 is installed below the projection lens 23, and converts the intensity of the transmitted electron beam into a current or voltage signal. The detector control and image display mechanism 28 converts the image signal into image data having a gradation of about 16 bits in synchronization with the scanning of the electron beam probe on the sample 6 by the control mechanism 20 of the optical system, and transmits the scanned transmission image. Is displayed.

なお,検出器制御及び画像表示機構28は画像の表示だけでなく画像の媒体への記録,電子線プローブ強度の時間変動によるコントラスト変化の補正,ノイズ除去などを実行するハードウエア及びソフトウエアを具備している。明視野像用検出角度制限絞り27は明視野像検出器26の上段に設置されており,透過電子線の一部を選択して検出するために用いられる。明視野像用検出角度制限絞り27は穴径1ミリメートルから0.1ミリメートル程度の丸穴形状を具備している。ここで明視野像用検出角度制限絞り27の形状は丸穴だけでなく矩形穴等であっても良い。暗視野検出器25は試料6によって散乱された電子線の強度を検出し,明視野像と同じ原理で走査透過像として取得するための機構である。   The detector control and image display mechanism 28 includes hardware and software for performing not only display of an image but also recording of the image on a medium, correction of a contrast change due to temporal fluctuations in the electron beam probe intensity, and noise removal. is doing. The bright field image detection angle limiting stop 27 is installed on the upper stage of the bright field image detector 26, and is used to select and detect a part of the transmitted electron beam. The bright field image detection angle limiting diaphragm 27 has a round hole shape with a hole diameter of about 1 mm to 0.1 mm. Here, the shape of the bright field image detection angle limiting diaphragm 27 may be not only a round hole but also a rectangular hole. The dark field detector 25 is a mechanism for detecting the intensity of the electron beam scattered by the sample 6 and acquiring it as a scanning transmission image on the same principle as the bright field image.

次に,本発明における明視野像の検出角度範囲について説明する。図2において低倍率像観察時の光線図10と高倍率像観察時の光線図11においては,試料6上に形成された電子線プローブを物点として後磁場対物レンズの像点22及び投影レンズの像点24が同一点に形成されている。よって,明視野像用検出角度制限絞り27を使用すれば試料6上での電子線プローブの収束角度によらず任意の像倍率において電子線検出角度が一定となるように制御できる。すなわち,低倍率から高倍率まで変化させた場合に観察される走査透過像の強度が変化しないので,画像観察時に明視野像検出器26のゲインやオフセットを調整する必要がないという特徴を持っている。   Next, the detection angle range of the bright field image in the present invention will be described. In FIG. 2, a light ray diagram 10 at the time of low magnification image observation and a light ray diagram 11 at the time of high magnification image observation, the image point 22 of the rear magnetic field objective lens and the projection lens with the electron beam probe formed on the sample 6 as the object point. Are formed at the same point. Therefore, when the bright field image detection angle limiting diaphragm 27 is used, the electron beam detection angle can be controlled to be constant at an arbitrary image magnification regardless of the convergence angle of the electron beam probe on the sample 6. That is, since the intensity of the scanning transmission image observed when changing from low magnification to high magnification does not change, it is not necessary to adjust the gain and offset of the bright field image detector 26 during image observation. Yes.

次に,本発明の走査透過電子顕微鏡における低倍率像及び高倍率像のコントラストについて説明する。図3は低倍率像観察時の軸上電子線及び試料6によって回折された電子線の光線図を表すものである。試料による回折角度30の方向に出射した回折電子線の光線図31は後磁場対物レンズの像点22及び投影レンズの像点24で光軸2と交わり,該像点以外では光軸2から離軸する。明視野像用検出角度制限絞り27を用いて試料6を透過した軸上電子線だけを明視野像検出器26に到達するように設定すると,試料6において結晶が存在する箇所に電子線プローブが滞在した場合には回折した電子線の強度が排除されるために明視野検出器の信号強度が低下し,それ以外の場所では低下しない。よって,走査透過像において結晶が存在する部分と存在しない部分において電子線の回折に基づくコントラストが像強度に反映されて観察される。また,多結晶部分では結晶粒の方位と電子線プローブの入射方向に依存して回折される電子線の強度が異なるために,多結晶粒子を観察した場合には各結晶粒が様々なコントラストで観察される。   Next, the contrast of the low magnification image and the high magnification image in the scanning transmission electron microscope of the present invention will be described. FIG. 3 shows a ray diagram of an on-axis electron beam and an electron beam diffracted by the sample 6 during low-magnification image observation. The ray diagram 31 of the diffracted electron beam emitted in the direction of the diffraction angle 30 by the sample intersects with the optical axis 2 at the image point 22 of the rear magnetic field objective lens and the image point 24 of the projection lens. Axis. If only the on-axis electron beam that has passed through the sample 6 is set to reach the bright field image detector 26 using the bright field image detection angle limiting diaphragm 27, the electron beam probe is located at the location where the crystal exists in the sample 6. In the case of staying, the intensity of the diffracted electron beam is excluded, so that the signal intensity of the bright field detector is reduced and does not decrease in other places. Therefore, the contrast based on the diffraction of the electron beam is reflected in the image intensity in the portion where the crystal is present and the portion where the crystal is not present in the scanning transmission image. In addition, since the intensity of the diffracted electron beam differs depending on the orientation of the crystal grains and the incident direction of the electron beam probe in the polycrystalline portion, each crystal grain has various contrasts when observed. Observed.

図4は高倍率像観察時の軸上電子線及び試料6によって回折された電子線の光線図を表すものである。回折電子線の光線図31は上記低倍率像の場合と同様のパスを通過するが,高倍率像観察時の試料に対する収束角度17が試料による回折角度30よりも大きいために透過電子線と回折電子線の一部が重なることになる。この時,干渉性の高い冷陰極型電界放出電子銃等を用いると透過電子線と回折電子線はその重なり部分において干渉縞を形成する。この干渉縞は回折を起こした結晶面の情報を反映している。ここで,低倍率像を観察する条件と同一の明視野像用検出角度制限絞り27を使用すると,干渉領域32に含まれる干渉縞の強度が明視野像検出器26で検出される。干渉縞の強度は結晶面の周期に同期して明暗が反転するため,結晶面上で電子線プローブを走査させれば走査透過像には結晶面の周期に対応した格子縞が観察されることになる。本発明では例えば,シリコン(111)面の結晶面間隔0.31ナノメートルが識別可能な像倍率である200万倍以上の倍率を設定すると,高倍率像観察時の試料に対する収束角度17が200キロボルトの電子線に対するシリコン(111)面の回折角度である8ミリラジアンより大きくなるように自動で設定されるようになっている。   FIG. 4 shows a ray diagram of an on-axis electron beam and an electron beam diffracted by the sample 6 when observing a high-magnification image. The ray diagram 31 of the diffracted electron beam passes through the same path as in the case of the low-magnification image, but since the convergence angle 17 with respect to the sample at the time of high-magnification image observation is larger than the diffraction angle 30 by the sample, Part of the electron beam will overlap. At this time, when a cold cathode field emission electron gun or the like having high coherence is used, the transmission electron beam and the diffracted electron beam form interference fringes at the overlapping portion. This interference fringe reflects the information of the crystal plane that caused diffraction. Here, when the same bright field image detection angle limiting diaphragm 27 as the condition for observing the low magnification image is used, the intensity of the interference fringes included in the interference region 32 is detected by the bright field image detector 26. Since the intensity of the interference fringes reverses the brightness in synchronization with the period of the crystal plane, if the electron beam probe is scanned on the crystal plane, lattice fringes corresponding to the period of the crystal plane are observed in the scanned transmission image. Become. In the present invention, for example, when a magnification of 2 million times or more, which is an image magnification that can distinguish 0.31 nanometers between crystal planes of a silicon (111) plane, is set, the convergence angle 17 with respect to a sample during high magnification image observation is 200 kilovolts. It is automatically set so that the diffraction angle of the silicon (111) surface with respect to the electron beam is larger than 8 milliradians.

次に,本発明の走査透過電子顕微鏡の光学条件の制御方法について説明する。図5は収束角度及びプローブ径を像倍率とリンクして変化させる制御方法に関する実施形態の一例である。図5(a)は図1に示した電子光学系において収束角度が像倍率に比例して増加するように1段目収束レンズ3,2段目収束レンズ4及び前磁場対物レンズ5を動作させたものである。収束角度を大きくするためには1段目収束レンズの像点が1段目収束レンズ3の主面に近づくように1段目収束レンズ3の電流励磁を上昇させて制御する。この時,2段目収束レンズ4及び前磁場対物レンズ5の励磁電流は試料6面上での収束角度が所望の値となり,かつ試料6に焦点が一致するような組み合わせで選択可能である。実際の走査透過像の観察では高倍率像ほど高い像分解能,すなわち小さな電子線プローブ径を使用して観察する必要があり,像倍率によりプローブ径を縮小するという条件を上記の2段目収束レンズ4及び前磁場対物レンズ5の励磁電流条件に加えると1段目収束レンズ3,2段目収束レンズ4及び前磁場対物レンズ5の組み合わせが1通りに決定される。   Next, a method for controlling the optical conditions of the scanning transmission electron microscope of the present invention will be described. FIG. 5 is an example of an embodiment relating to a control method for changing the convergence angle and the probe diameter by linking with the image magnification. FIG. 5 (a) operates the first-stage convergence lens 3, the second-stage convergence lens 4 and the front magnetic field objective lens 5 so that the convergence angle increases in proportion to the image magnification in the electron optical system shown in FIG. It is a thing. In order to increase the convergence angle, the current excitation of the first stage convergence lens 3 is increased and controlled so that the image point of the first stage convergence lens approaches the main surface of the first stage convergence lens 3. At this time, the excitation currents of the second stage converging lens 4 and the front magnetic field objective lens 5 can be selected in such a combination that the convergence angle on the surface of the sample 6 has a desired value and the focal point coincides with the sample 6. In actual scanning transmission image observation, it is necessary to observe a higher image resolution with a higher magnification image, that is, using a smaller electron beam probe diameter. The condition that the probe diameter is reduced by the image magnification is the above-mentioned second-stage convergence lens. 4 and the excitation current condition of the front magnetic field objective lens 5, one combination of the first stage convergence lens 3, the second stage convergence lens 4 and the front magnetic field objective lens 5 is determined.

図5(b)は図5(a)のように収束角度を制御し,前磁場対物レンズ5の球面収差係数を1.3ミリメートル,電子線の加速電圧を200キロボルトの条件で走査透過電子顕微鏡を動作させた場合に実現可能なプローブ径の制御の一例を示している。この図5から,例えば,金結晶を250万倍以上の倍率で観察すれば,収束角度は200キロボルトの電子線に対する金(200)面の回折角度の12.3ミリラジアンより十分大きく,かつ電子線プローブ径も0.2ナノメートルより小さいので,金(200)面の結晶面間隔である0.204ナノメートルの格子縞が観察可能となる。一方,数万から数10万倍の低倍率像から中倍率像では収束角度が12.3ミリラジアンより小さいので,走査透像にて金(200)面からの回折コントラストが抽出可能となり,積層欠陥,結晶界面や粒子界面が高いコントラストで観察できる。なお,低倍率像観察時にも電子線プローブ径は像観察に必要なサイズより十分小さくなっているので問題ない。   FIG. 5 (b) controls the convergence angle as shown in FIG. 5 (a), the scanning transmission electron microscope under the condition that the spherical aberration coefficient of the front magnetic field objective lens 5 is 1.3 millimeters and the acceleration voltage of the electron beam is 200 kilovolts. 2 shows an example of probe diameter control that can be realized when the is operated. From FIG. 5, for example, if a gold crystal is observed at a magnification of 2.5 million times or more, the convergence angle is sufficiently larger than 12.3 milliradians of the diffraction angle of the gold (200) surface for an electron beam of 200 kilovolts, and the diameter of the electron probe Since it is smaller than 0.2 nanometer, the lattice fringes of 0.204 nanometer, which is the crystal plane spacing of the gold (200) plane, can be observed. On the other hand, since the convergence angle is smaller than 12.3 milliradians in the low-magnification image and the medium-magnification image of tens of thousands to several hundred thousand times, it becomes possible to extract the diffraction contrast from the gold (200) plane by the scanning transmission image, so The interface and particle interface can be observed with high contrast. Note that there is no problem because the diameter of the electron beam probe is sufficiently smaller than the size necessary for image observation even when observing a low magnification image.

次に,上記の電子光学条件を制御する方法について説明する。1段目収束レンズ3,2段目収束レンズ4及び前磁場対物レンズ5として磁界型レンズを用いる場合についての実施形態を図6に示した。各レンズはコイルに通電する電流を変化させることによってその焦点距離を可変できる。磁気回路の飽和の影響が小さい場合には,励磁電流を上昇させると焦点距離が短くなる特性があり,図5に示した光学条件を実現させるためには像倍率を増加させる制御に伴って1段目収束レンズ3の通電量を増加させ,2段目収束レンズ4の通電量を減少させることにより実現できる。前磁場対物レンズ5の焦点距離は通常2ミリメートル程度の短焦点にて動作させており,2段目収束レンズの像点の変化に対してはその励磁電流の変化量は微少量で対応できる。像倍率設定時に各レンズの通電量がデータテーブルあるいは計算式によって決定され,走査透過電子顕微鏡装置に自動的に設定されるように制御されているので,操作者は実際の観察時に電子光学条件を調整する必要がない。また,収束角度を変化させるためのテーブルあるいは計算式が複数個用意されており,操作者が観察する試料に応じて所望のコントラストが得られるように選択できるようになっている。さらに,照射角度の像倍率リンクの機能は操作者から実行するかしないかをソフトウエアあるいはハードウエアスイッチ等により選択できるようになっており,任意の倍率で操作者が所望とするコントラストや情報を含む走査透過像を取得可能となっている。本制御は像倍率リンクのオンオフにより異なるデータテーブルあるいは計算式が参照される制御方式となっており,また,操作者が自由に作成したデータを記憶できる機能も持っている。   Next, a method for controlling the above-described electron optical conditions will be described. FIG. 6 shows an embodiment in which a magnetic lens is used as the first-stage convergence lens 3, the second-stage convergence lens 4 and the front magnetic field objective lens 5. Each lens can vary its focal length by changing the current applied to the coil. When the influence of the saturation of the magnetic circuit is small, there is a characteristic that the focal length is shortened when the excitation current is increased, and in order to realize the optical condition shown in FIG. This can be realized by increasing the energization amount of the stage convergence lens 3 and decreasing the energization amount of the second stage convergence lens 4. The focal length of the front magnetic field objective lens 5 is normally operated with a short focus of about 2 millimeters, and the change amount of the excitation current can be dealt with with respect to the change of the image point of the second stage converging lens. When the image magnification is set, the energization amount of each lens is determined by a data table or a calculation formula and is controlled so as to be automatically set in the scanning transmission electron microscope apparatus. There is no need to adjust. In addition, a plurality of tables or calculation formulas for changing the convergence angle are prepared, and an operator can select a desired contrast according to the sample to be observed. Furthermore, the operator can select whether or not the image magnification link function of the irradiation angle is executed by software or a hardware switch, and the contrast and information desired by the operator can be selected at any magnification. A scanning transmission image including this can be acquired. This control is a control method in which different data tables or calculation formulas are referred to by turning on / off the image magnification link, and also has a function of storing data freely created by the operator.

次に,本発明の走査透過電子顕微鏡装置を用いて撮影した低倍率及び高倍率像の例を図7に示す。図7(a)は高倍率で結晶格子縞を観察するために収束角度を大きく設定した電子光学条件で観察した低倍率の明視野走査透過像である。試料はシリコンデバイスであり,配線部の多結晶タングステンシリサイド(Poly-WSi)は黒いコントラストで観察されており形状が判別できるが,その他の構成部,例えばシリコン基板(Si-substrate)とシリコン酸化膜(SiO)との境界が明瞭でなく,その形状評価が不可能である。これが従来の走査透過電子顕微鏡装置の問題点であり,観察倍率に応じて収束絞りの穴径を変化させることにより電子線プローブの収束角度を調整して解決するという方法で対応する場合が多い。しかし,収束絞り穴の中心位置は光学軸の中心と一致するように機械的あるいは電気的に調整する必要があり,倍率を変える度に絞りの駆動動作と調整とを実施することは操作者への負担が大きく,迅速なデバイス不良解析等の妨げとなっている。   Next, FIG. 7 shows examples of low and high magnification images taken using the scanning transmission electron microscope apparatus of the present invention. FIG. 7A is a low-magnification bright-field scanning transmission image observed under electro-optic conditions with a large convergence angle in order to observe crystal lattice fringes at a high magnification. The sample is a silicon device, and polycrystalline tungsten silicide (Poly-WSi) in the wiring part is observed with a black contrast, and the shape can be distinguished, but other components such as a silicon substrate and a silicon oxide film The boundary with (SiO) is not clear and its shape cannot be evaluated. This is a problem of the conventional scanning transmission electron microscope apparatus. In many cases, the problem is solved by adjusting the convergence angle of the electron beam probe by changing the hole diameter of the convergence aperture according to the observation magnification. However, it is necessary to adjust the center position of the converging aperture hole mechanically or electrically so as to coincide with the center of the optical axis, and it is necessary for the operator to perform driving operation and adjustment of the aperture whenever the magnification is changed. This impedes rapid device failure analysis.

また,収束絞り穴のセンターリング時には光学軸の位置を正確に判定する必要があるが,走査透過像で正確な光軸位置を判定するのは熟練度の高い操作者でも難しく,所望とする像分解能で走査透過像の観察ができない場合が発生する。一方,図7(b)は図1に示した実施例1の電子光学系を走査透過電子顕微鏡装置に適用して取得した低倍率の明視野走査透過像である。デバイスを構成する多結晶タングステンシリサイド(Poly-WSi)多結晶シリコン(Poly-Si),シリコン窒化膜(SiN),シリコン酸化膜(SiO)及びシリコン基板(Si-substrate)が像コントラストから識別できる。また,多結晶タングステンシリサイド(Poly-WSi)と多結晶シリコン(Poly-Si)の部分では各結晶粒子が異なるコントラストで観察されており,結晶粒界面の接合形態や各粒子径を測定することができる。さらに,図7(c)はシリコン酸化膜(SiO)とシリコン基板(Si-substrate)との界面部分を収束絞りの操作を実施せずに,像倍率を上げるだけの操作を実施して観察したものである。この画像ではシリコン(111)結晶面に対応する間隔0.31ナノメートルの格子縞が観察されており,界面における原子配列の情報を得ることができている。   In addition, it is necessary to accurately determine the position of the optical axis when centering the converging aperture. However, it is difficult for a highly skilled operator to determine the exact optical axis position from the scanned transmission image, and the desired image can be obtained. There is a case where the scanning transmission image cannot be observed with the resolution. On the other hand, FIG. 7B is a low-magnification bright-field scanning transmission image obtained by applying the electron optical system of Example 1 shown in FIG. 1 to a scanning transmission electron microscope apparatus. The polycrystalline tungsten silicide (Poly-WSi), polycrystalline silicon (Poly-Si), silicon nitride film (SiN), silicon oxide film (SiO) and silicon substrate (Si-substrate) constituting the device can be identified from the image contrast. In addition, crystal grains are observed at different contrasts in the polycrystalline tungsten silicide (Poly-WSi) and polycrystalline silicon (Poly-Si) parts. it can. Furthermore, FIG. 7 (c) observed the interface portion between the silicon oxide film (SiO) and the silicon substrate (Si-substrate) by performing only the operation of increasing the image magnification without performing the operation of the converging diaphragm. Is. In this image, lattice fringes with an interval of 0.31 nanometers corresponding to the silicon (111) crystal plane are observed, and information on the atomic arrangement at the interface can be obtained.

次に,照射電子光学系に収差補正器を含む場合の走査透過電子顕微鏡装置により像倍率とリンクして電子線プローブの収束角度を変化させる方法について説明する。図8はその第1の実施例を示す図である。本実施例では収差補正器40を2段目収束レンズ4と1段目走査コイル8との間に配置したものであるが,収差補正器40は1段目収束レンズ3と2段目収束レンズ4との間に配置する場合や,光源1と1段目収束レンズ3との間に配置する場合も考えられる。なお,収差補正器40とは各収束レンズや前磁場対物レンズ5で発生する球面収差を補正する機能,電子線のエネルギー分布による色収差を補正する機能,非点収差などの軸上寄生収差を補正する機能を持っており,電子線プローブをより小さく縮小することによって像分解能を向上させる目的で使用する。電子線プローブの収束角度を像倍率によって変化させる方法は図1に示した実施例と同様であり,1段目収束レンズ3及び2段目収束レンズ4の電流励磁を像倍率によって変化させて実施する。さらに,低倍率像観察時には収差補正器40の物点が低倍率像観察時の2段目収束レンズ4の像点14と一致するようにし,高倍率像観察時には収差補正器40の物点が低高倍率像観察時の2段目収束レンズ4の像点15と一致するように収差補正器40が光学系の制御機構20によって制御される。   Next, a method of changing the convergence angle of the electron beam probe by linking with the image magnification by the scanning transmission electron microscope apparatus when the irradiation electron optical system includes an aberration corrector will be described. FIG. 8 is a diagram showing the first embodiment. In this embodiment, the aberration corrector 40 is disposed between the second stage converging lens 4 and the first stage scanning coil 8, but the aberration corrector 40 includes the first stage converging lens 3 and the second stage converging lens. 4 and the case where it arrange | positions between the light source 1 and the 1st step | paragraph convergent lens 3 are also considered. The aberration corrector 40 is a function for correcting spherical aberration generated in each converging lens and the front magnetic field objective lens 5, a function for correcting chromatic aberration due to the energy distribution of electron beams, and correcting on-axis parasitic aberrations such as astigmatism. It is used for the purpose of improving the image resolution by reducing the electron beam probe to a smaller size. The method of changing the convergence angle of the electron beam probe according to the image magnification is the same as in the embodiment shown in FIG. 1, and the current excitation of the first-stage convergence lens 3 and the second-stage convergence lens 4 is performed by changing the image magnification. To do. Further, the object point of the aberration corrector 40 coincides with the image point 14 of the second stage converging lens 4 at the time of low-magnification image observation during low-magnification image observation, and the object point of the aberration corrector 40 at the time of high-magnification image observation. The aberration corrector 40 is controlled by the control mechanism 20 of the optical system so as to coincide with the image point 15 of the second stage converging lens 4 at the time of low-high magnification image observation.

最終的に,低倍率像観察時の収差補正器の像点41及び高倍率像観察時の収差補正器の像点42がそれぞれの倍率条件で試料6に焦点が一致するように前磁場対物レンズ5の励磁条件を調整することにより制御される。また,収差補正器40により収差補正器の中間像点43の位置が像倍率に依らず固定されるように制御し,かつ収差補正器40による電子線プローブの縮小率が像倍率に依らず一定となるように制御すれば,図1の実施例で用いた各レンズの励磁電流制御の値を変更せずに適用できるようになる。なお,この電子光学条件では収差補正器40による電子線プローブの縮小率に比例して試料6に対する収束角度が変化するので,図5に示した電子光学条件を再現することは収差補正器40による電子線プローブの縮小率を1倍に設定すれば実現できる。また,収差補正器40による電子線プローブの縮小率が1倍に設定できない時は収束絞り7の穴径を変更し,像倍率に依らず固定して使用すればよい。   Finally, the front magnetic field objective lens so that the image point 41 of the aberration corrector when observing the low magnification image and the image point 42 of the aberration corrector when observing the high magnification image are in focus on the sample 6 under the respective magnification conditions. 5 is controlled by adjusting the excitation condition. Also, the aberration corrector 40 controls the position of the intermediate image point 43 of the aberration corrector to be fixed regardless of the image magnification, and the reduction rate of the electron beam probe by the aberration corrector 40 is constant regardless of the image magnification. 1 can be applied without changing the excitation current control value of each lens used in the embodiment of FIG. In this electro-optical condition, the convergence angle with respect to the sample 6 changes in proportion to the reduction rate of the electron beam probe by the aberration corrector 40. Therefore, the reproduction of the electro-optical condition shown in FIG. This can be realized by setting the reduction ratio of the electron beam probe to 1 time. Further, when the reduction ratio of the electron beam probe by the aberration corrector 40 cannot be set to 1 time, the hole diameter of the converging diaphragm 7 may be changed and fixed without depending on the image magnification.

次に,収差補正器を含む走査透過電子顕微鏡装置に本発明を適用した例について説明する。本実施例で設定している電子光学条件は像倍率にリンクして1段目収束レンズにより試料6上での電子線プローブの収束角度を変化させ,2段目収束レンズの像点は固定するものである。この条件では収差補正器の物点44が像倍率に依らず一定の位置となるため収差補正器40の駆動条件を像倍率とリンクして変更する必要がなく,収差補正器40を定常動作させることが可能となるので,収差補正動作が安定するという利点がある。また,収差補正器40の条件を像倍率により変更する必要がないため収差補正器の像点45が常に一定の位置となるので,前磁場対物レンズ5の励磁条件も倍率により変更する必要がなくなる。これは前磁場対物レンズ5の安定動作においての利点となる。   Next, an example in which the present invention is applied to a scanning transmission electron microscope apparatus including an aberration corrector will be described. The electron optical conditions set in this embodiment are linked to the image magnification, and the convergence angle of the electron beam probe on the sample 6 is changed by the first stage converging lens, and the image point of the second stage converging lens is fixed. Is. Under this condition, the object point 44 of the aberration corrector is at a constant position regardless of the image magnification, so that it is not necessary to change the driving condition of the aberration corrector 40 in conjunction with the image magnification, and the aberration corrector 40 is operated in a steady state. Therefore, there is an advantage that the aberration correction operation is stabilized. In addition, since it is not necessary to change the condition of the aberration corrector 40 according to the image magnification, the image point 45 of the aberration corrector is always at a fixed position, so that the excitation condition of the front magnetic field objective lens 5 need not be changed according to the magnification. . This is an advantage in the stable operation of the front magnetic field objective lens 5.

低倍率及び高倍率の画像取得を実施する際の電子線の離軸距離及び収束角度を表す図。The figure showing the off-axis distance and convergence angle of an electron beam at the time of performing low magnification and high magnification image acquisition. 低倍率及び高倍率の画像取得時における電子線の検出角度範囲を表わす図。The figure showing the detection angle range of the electron beam at the time of the image acquisition of a low magnification and a high magnification. 低倍率の画像取得時における透過電子線及び回折電子線の検出器絞り面上での位置及び検出角度範囲の設定方法を表わす図。The figure showing the setting method of the position on the detector diaphragm surface of a transmission electron beam and a diffraction electron beam at the time of low-magnification image acquisition, and a detection angle range. 高倍率の画像取得時における透過電子線及び回折電子線の検出器絞り面上での位置及び検出角度範囲の設定方法を表わす図。The figure showing the setting method of the position on the detector aperture plane of a transmission electron beam and a diffraction electron beam at the time of high magnification image acquisition, and a detection angle range. 本発明における収束角度及び電子線プローブ径の制御方法を表す図。The figure showing the control method of the convergence angle and electron beam probe diameter in this invention. 本発明における収束レンズ電流及び対物レンズ電流の制御方法を表わす図。The figure showing the control method of the convergence lens current and objective lens current in this invention. 収束角度が大きい場合の低倍率像と本発明による低倍率像及び高倍率像の比較を表わす図。The figure showing the comparison of the low magnification image in case a convergence angle is large, the low magnification image by this invention, and the high magnification image. 第1の実施例での電子線の離軸距離及び収束角度を表わす図。The figure showing the off-axis distance and convergence angle of the electron beam in a 1st Example. 第2の実施例での電子線の離軸距離及び収束角度を表わす図。The figure showing the off-axis distance and convergence angle of the electron beam in a 2nd Example.

符号の説明Explanation of symbols

1・・・光源,2・・・光軸,3・・・1段目収束レンズ,4・・・2段目収束レンズ,5・・・前磁場対物レンズ,6・・・試料,7・・・収束絞り,8・・・1段目走査コイル,9・・・2段目走査コイル,10・・・低倍率像観察時の光線図,11・・・高倍率像観察時の光線図,12・・・低倍率像観察時の1段目収束レンズの像点,13・・・高倍率像観察時の1段目収束レンズの像点,14・・・低倍率像観察時の2段目収束レンズの像点,15・・・高倍率像観察時の2段目収束レンズの像点,16・・・低倍率像観察時の試料に対する収束角度,17・・・高倍率像観察時の試料に対する収束角度,18・・・低倍率像観察時の試料面上での偏向量,19・・・高倍率像観察時の試料面上での偏向量,20・・・光学系の制御機構,21・・・後磁場対物レンズ,22・・・後磁場対物レンズの像点,23・・・投影レンズ,24・・・投影レンズの像点,25・・・暗視野像検出器,26・・・明視野像検出器,27・・・明視野像用検出角度制限絞り,28・・・検出器制御及び画像表示機構,30・・・試料による回折角度,31・・・回折電子線の光線図,32・・・干渉領域,40・・・収差補正器,41・・・低倍率像観察時の収差補正器の像点,42・・・高倍率像観察時の収差補正器の像点,43・・・収差補正器の中間像点,44・・・収差補正器の物点,45・・・収差補正器の像点。 DESCRIPTION OF SYMBOLS 1 ... Light source, 2 ... Optical axis, 3 ... 1st stage | paragraph convergent lens, 4 ... 2nd stage | paragraph convergent lens, 5 ... Front magnetic field objective lens, 6 ... Sample, 7 * ..Convergent stop, 8... First stage scanning coil, 9... Second stage scanning coil, 10... Ray diagram when observing low magnification image, 11. , 12: Image point of the first-stage converging lens when observing a low-magnification image, 13: Image point of the first-stage converging lens when observing a high-magnification image, 14: 2 when observing a low-magnification image Image point of stage convergence lens, 15... Image point of second stage convergence lens during high magnification image observation, 16... Convergence angle with respect to sample during low magnification image observation, 17. Angle of convergence with respect to the sample at the time, 18... Deflection amount on the sample surface during low magnification image observation, 19... Deflection amount on the sample surface during high magnification image observation, 20. System Mechanism: 21 ... Post magnetic field objective lens, 22 ... Image point of the back magnetic field objective lens, 23 ... Projection lens, 24 ... Image point of the projection lens, 25 ... Dark field image detector, 26 ... Bright field image detector, 27 ... Detection angle limiting stop for bright field image, 28 ... Detector control and image display mechanism, 30 ... Diffraction angle by sample, 31 ... Diffraction electron Ray diagram of line, 32... Interference region, 40... Aberration corrector, 41... Image point of aberration corrector when observing low-magnification image, 42. 43, an intermediate image point of the aberration corrector, 44, an object point of the aberration corrector, 45, an image point of the aberration corrector.

Claims (5)

電子線源より発生した電子線を所定の電圧まで加速する静電レンズと、
前記電子線を収束する収束レンズと、
前記電子線の収束角度を決定する収束絞りと、
前記電子線を走査する偏向コイルと、
対物レンズと、
収差補正器と、
前記電子線を試料に照射して該試料を透過または回折した電子線を検出して走査透過像を形成する電子線検出手段と、
前記走査透過像を表示する表示手段とを有し、
前記走査透過像の像倍率に応じて前記電子線の収束角度を変化させ、回折コントラストまたは結晶格子縞の取得を切り替える手段を備えることを特徴とする走査透過電子顕微鏡装置。
An electrostatic lens that accelerates the electron beam generated from the electron beam source to a predetermined voltage;
A converging lens that converges the electron beam;
A convergence stop for determining a convergence angle of the electron beam;
A deflection coil for scanning the electron beam;
An objective lens;
An aberration corrector;
An electron beam detecting means for irradiating the sample with the electron beam and detecting a transmitted or diffracted electron beam to form a scanning transmission image;
Display means for displaying the scanning transmission image,
The scanning transmission image in accordance with the image magnification of changing the convergence angle of the electron beam, a scanning transmission electron microscope, characterized in that it comprises means Ru switches the acquisition of diffraction contrast or crystal lattice stripes.
請求項1に記載の走査透過電子顕微鏡装置において,
前記切り替える手段は、前記収束絞りを固定した状態で前記収束レンズ,前記対物レンズ及び前記収差補正器の励磁条件を制御する制御手段であることを特徴とする走査透過電子顕微鏡装置。
The scanning transmission electron microscope apparatus according to claim 1,
Said toggle its means, the condenser aperture the focusing lens in a fixed state, the scanning transmission electron microscope, wherein the is an objective lens, and control means for controlling the excitation condition of the aberration corrector.
請求項2に記載の走査透過電子顕微鏡装置において,
前記制御手段には、前記収束レンズ,対物レンズ及び収差補正器の励磁条件として観察像倍率を変数としたテーブルあるいは計算式が格納され,該テーブルあるいは計算式を参照して収束レンズ,対物レンズ及び収差補正器の通電を実施することを特徴とする走査透過電子顕微鏡装置。
The scanning transmission electron microscope apparatus according to claim 2,
The control means stores a table or calculation formula with the observation image magnification as a variable as an excitation condition for the convergent lens, objective lens, and aberration corrector. With reference to the table or calculation formula, the convergence lens, objective lens, and A scanning transmission electron microscope apparatus characterized by energizing an aberration corrector.
請求項2に記載の走査透過電子顕微鏡装置において,
前記制御手段には、前記収束レンズ,対物レンズ及び収差補正器の励磁条件として前記観察像倍率を変数としたテーブルあるいは計算式が複数個格納され,操作者が選択したテーブルあるいは計算式を参照して収束レンズ,対物レンズ及び収差補正器の通電を実施することを特徴とする走査透過電子顕微鏡装置。
The scanning transmission electron microscope apparatus according to claim 2,
The control means stores a plurality of tables or calculation formulas using the observation image magnification as a variable as excitation conditions for the convergent lens, objective lens, and aberration corrector. Refer to the table or calculation formula selected by the operator. A scanning transmission electron microscope apparatus characterized by energizing the focusing lens, the objective lens, and the aberration corrector.
請求項1に記載の走査透過電子顕微鏡装置において,
収差補正器は球面収差,色収差,非点収差,コマ収差,星型収差,葉状収差,像面湾曲収差,歪曲収差を補正する機能を具備していることを特徴とする走査透過電子顕微鏡装置。
The scanning transmission electron microscope apparatus according to claim 1,
A scanning transmission electron microscope apparatus, wherein the aberration corrector has a function of correcting spherical aberration, chromatic aberration, astigmatism, coma aberration, star aberration, leaf aberration, field curvature aberration, and distortion aberration.
JP2005112999A 2005-04-11 2005-04-11 Scanning transmission electron microscope Active JP4895525B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005112999A JP4895525B2 (en) 2005-04-11 2005-04-11 Scanning transmission electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112999A JP4895525B2 (en) 2005-04-11 2005-04-11 Scanning transmission electron microscope

Publications (2)

Publication Number Publication Date
JP2006294389A JP2006294389A (en) 2006-10-26
JP4895525B2 true JP4895525B2 (en) 2012-03-14

Family

ID=37414727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112999A Active JP4895525B2 (en) 2005-04-11 2005-04-11 Scanning transmission electron microscope

Country Status (1)

Country Link
JP (1) JP4895525B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009016861A1 (en) * 2009-04-08 2010-10-21 Carl Zeiss Nts Gmbh particle beam
JP5315302B2 (en) 2010-07-27 2013-10-16 株式会社日立ハイテクノロジーズ Scanning transmission electron microscope and axis adjusting method thereof
US9496330B2 (en) * 2013-08-02 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289035A (en) * 1990-04-03 1991-12-19 Jeol Ltd Aberration and open angle correction device in electron microscope
WO1999030342A1 (en) * 1997-12-11 1999-06-17 Philips Electron Optics B.V. Correction device for correcting the spherical aberration in particle-optical apparatus
JP3814149B2 (en) * 2000-02-02 2006-08-23 日本電子株式会社 Transmission electron microscope with energy filter
JP3914750B2 (en) * 2001-11-20 2007-05-16 日本電子株式会社 Charged particle beam device with aberration correction device
JP4204902B2 (en) * 2002-06-28 2009-01-07 日本電子株式会社 Charged particle beam device with aberration correction device
JP2004111404A (en) * 2004-01-08 2004-04-08 Hitachi Ltd Charged particle beam irradiation device

Also Published As

Publication number Publication date
JP2006294389A (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP5871440B2 (en) Contrast improvement of scanning confocal electron microscope
JP4553889B2 (en) Determination method of aberration coefficient in aberration function of particle optical lens
US20070181808A1 (en) Electron microscope and electron bean inspection system.
JP4679978B2 (en) Charged particle beam application equipment
US20090039258A1 (en) Scanning Electron Microscope And Method For Detecting An Image Using The Same
JP2003014667A (en) Apparatus and method for observing using electron beam
JP5735262B2 (en) Charged particle optical apparatus and lens aberration measuring method
US9613779B2 (en) Scanning transmission electron microscope with variable axis objective lens and detective system
US8067733B2 (en) Scanning electron microscope having a monochromator
JP6666627B2 (en) Charged particle beam device and method of adjusting charged particle beam device
JP2000123768A (en) Charged particle beam device, adjustment method of charged particle beam device and manufacture of semiconductor device
CN108463869B (en) Charged particle beam device and optical axis adjusting method thereof
JP2006032107A (en) Reflection image forming electron microscope and pattern defect inspection device using it
WO2015015985A1 (en) Charged particle beam device and aberration measurement method in charged particle beam device
JP2004342341A (en) Mirror electron microscope, and pattern defect inspection device using it
JP6266467B2 (en) Electron microscope and monochromator adjustment method
JP2006173027A (en) Scanning transmission electron microscope, aberration measuring method, and aberration correction method
TW202105443A (en) Method and apparatus for determining a wavefront of a massive particle beam
JP4895525B2 (en) Scanning transmission electron microscope
US8294096B2 (en) Charged particle beam device and a method of operating a charged particle beam device
JP2021162590A (en) Transmissive type charge particle microscope comprising electronic energy loss spectroscopic detector
JP4726048B2 (en) Observation method using phase recovery electron microscope
JP5934513B2 (en) Transmission electron microscope
JP2005235665A (en) Dark field scanning transmission electron microscope and observation method
WO2015037313A1 (en) Scanning transmission electron microscope and aberration measurement method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Ref document number: 4895525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350