JP4895513B2 - Surface mount type temperature sensor - Google Patents

Surface mount type temperature sensor Download PDF

Info

Publication number
JP4895513B2
JP4895513B2 JP2005063227A JP2005063227A JP4895513B2 JP 4895513 B2 JP4895513 B2 JP 4895513B2 JP 2005063227 A JP2005063227 A JP 2005063227A JP 2005063227 A JP2005063227 A JP 2005063227A JP 4895513 B2 JP4895513 B2 JP 4895513B2
Authority
JP
Japan
Prior art keywords
temperature
film
resistance
sensitive
terminal electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005063227A
Other languages
Japanese (ja)
Other versions
JP2006253166A (en
Inventor
孝二 四元
邦生 山口
由浩 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005063227A priority Critical patent/JP4895513B2/en
Publication of JP2006253166A publication Critical patent/JP2006253166A/en
Application granted granted Critical
Publication of JP4895513B2 publication Critical patent/JP4895513B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、温度検出用や温度補償用等に有効な表面実装型温度センサに関する。   The present invention relates to a surface mount type temperature sensor effective for temperature detection and temperature compensation.

従来、温度検出用や温度補償用として用いられている薄膜あるいは厚膜タイプのサーミスタとしては、絶縁性基板上にサーミスタ部を形成し、その両端に端子電極部を形成した抵抗モード型の2端子構造のものが知られている。このようなサーミスタを利用した一般的な温度検出回路としては、図4の等価回路に示すように、入力端子電極1、抵抗2、出力端子電極3、NTCサーミスタ(Negative Temperature Coefficient Themistor)4及びアース端子電極5をこの順に直列に接続したものが知られている。   Conventionally, as a thin film or thick film type thermistor used for temperature detection or temperature compensation, a resistance mode type two terminal in which a thermistor portion is formed on an insulating substrate and terminal electrode portions are formed at both ends thereof. Structures are known. As a general temperature detection circuit using such a thermistor, as shown in the equivalent circuit of FIG. 4, an input terminal electrode 1, a resistor 2, an output terminal electrode 3, an NTC thermistor (Negative Temperature Coefficient Themistor) 4 and a ground A device in which terminal electrodes 5 are connected in series in this order is known.

このような構成の温度検出回路は、入力端子電極1とアース端子電極5との間に電圧を印加し、出力端子電極3とアース端子電極5との間の電圧を計測することにより、出力電圧を温度に換算して温度変化を検出することができるものである。このような従来のサーミスタ(抵抗モード型)を用いて温度検出を行う場合にも、上記のような抵抗と組み合わせた温度検出回路を構成する必要があるが、その際には、個別部品を基板上に実装する工数が掛かること、小型化が困難なこと、精度の高い温度検出を行うために構成する各個別部品に関して特性ばらつきの小さいものを使用する必要があること等、小型化、高精度化及び低コスト化という観点で種々の課題があった。   The temperature detection circuit having such a configuration applies the voltage between the input terminal electrode 1 and the earth terminal electrode 5 and measures the voltage between the output terminal electrode 3 and the earth terminal electrode 5, thereby outputting the output voltage. Is converted into temperature, and a temperature change can be detected. Even when temperature detection is performed using such a conventional thermistor (resistance mode type), it is necessary to configure a temperature detection circuit combined with the above-described resistance. Downsizing, high accuracy, such as mounting man-hours on top, difficulty in miniaturization, and the need to use individual components with small characteristics variation for accurate temperature detection There were various problems from the viewpoint of cost reduction and cost reduction.

このため、サーミスタを含む感温抵抗体等の抵抗値精度を向上させる手段として、従来、例えば特許文献1には、直接、抵抗薄膜である感温膜(サーミスタ膜)をレーザトリミングして調整する方法が提案されている。また、従来のレーザトリミング方法としては、抵抗をモニタリングしながら、抵抗薄膜(感温膜)から形成された抵抗値調整用抵抗パターンを直接レーザトリミングすることで、所望の抵抗特性に調整することが行われている。   For this reason, as means for improving the resistance value accuracy of a temperature sensitive resistor including a thermistor, for example, in Patent Document 1, for example, a temperature sensitive film (thermistor film) which is a resistance thin film is directly adjusted by laser trimming. A method has been proposed. Further, as a conventional laser trimming method, it is possible to adjust to a desired resistance characteristic by directly laser trimming a resistance value adjusting resistance pattern formed from a resistance thin film (temperature-sensitive film) while monitoring the resistance. Has been done.

特開平10−189308号公報(特許請求の範囲、段落番号0002、図1、図2)JP 10-189308 A (claims, paragraph number 0002, FIGS. 1 and 2)

上記従来の技術には、以下の課題が残されている。
すなわち、従来では、抵抗薄膜を直接レーザトリミングするため、レーザ光の照射熱によって抵抗薄膜が発熱蒸発し、レーザ照射された付近の抵抗薄膜(感温膜)がガラス等の保護膜と反応して特性が部分的に劣化してしまう欠点があった。
また、従来、抵抗をモニタリングしながらレーザ照射し、所望の特性に調整することが行われているが、この場合、レーザ照射することにより感温膜の温度が上昇し、正確な抵抗の測定が難しく、所望の抵抗特性への合わせ込み精度の点でも大きな困難性があった。
The following problems remain in the conventional technology.
That is, in the past, since the resistive thin film is directly laser trimmed, the resistive thin film is heated and evaporated by the irradiation heat of the laser beam, and the resistive thin film (temperature sensitive film) near the laser irradiated reacts with a protective film such as glass. There was a drawback that the characteristics were partially degraded.
Conventionally, laser irradiation is performed while monitoring the resistance, and adjustment to a desired characteristic has been performed. In this case, the temperature of the temperature-sensitive film rises by laser irradiation, and accurate resistance measurement is possible. It is difficult, and there is a great difficulty in terms of accuracy of fitting to a desired resistance characteristic.

本発明は、前述の課題に鑑みてなされたもので、レーザトリミングを行っても特性劣化が少なく、抵抗特性の合わせ込みを高精度に行うことが可能な表面実装型温度センサを提供することを目的とする。   The present invention has been made in view of the above-described problems, and provides a surface-mount type temperature sensor that has little characteristic deterioration even when laser trimming is performed and that can perform resistance characteristic alignment with high accuracy. Objective.

本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の表面実装型温度センサは、サーミスタ膜からなる感温抵抗部と、前記感温抵抗部と互いの一端同士が電気的に接続されトリミング可能な膜状抵抗部と、前記感温抵抗部の他端に電気的に接続された第1の端子電極と、前記膜状抵抗部の他端に電気的に接続された第2の端子電極と、前記感温抵抗部及び前記膜状抵抗部のそれぞれの一端に電気的に接続された第3の端子電極と、を絶縁性基板上に設けたことを特徴とする。   The present invention employs the following configuration in order to solve the above problems. That is, the surface-mounted temperature sensor of the present invention includes a temperature-sensitive resistor portion made of a thermistor film, a film-like resistor portion that is electrically connected to one end of the temperature-sensitive resistor portion and can be trimmed, and the temperature-sensitive portion. A first terminal electrode electrically connected to the other end of the resistor, a second terminal electrode electrically connected to the other end of the film-like resistor, the temperature-sensitive resistor and the film-like A third terminal electrode electrically connected to one end of each of the resistance portions is provided over the insulating substrate.

この表面実装型温度センサでは、感温抵抗部とは別にトリミング可能な膜状抵抗部が設けられているので、感温抵抗部の抵抗特性に膜状抵抗部をトリミングして合わせることができ、高精度な特性を得ることができる。また、レーザトリミングを行っても、感温抵抗部ではなく膜状抵抗部にレーザ照射を行うので、感温抵抗部における特性劣化がないと共に、抵抗を測定しながらレーザトリミングを行っても、レーザ照射による感温抵抗部に対する温度上昇の影響が小さく、高精度な合わせ込みが可能となる。さらに、目的検知温度でのサーミスタ抵抗値に抵抗特性を合わせる場合、膜状抵抗部のトリミングを行うことで目的検知温度近傍で抵抗特性の高いリニア性を得ることができ、温度感度の増大やB定数のばらつき低減によって精度を向上させることができる。   In this surface mount type temperature sensor, since a film-like resistor part that can be trimmed is provided separately from the temperature-sensitive resistor part, the film-like resistor part can be trimmed to match the resistance characteristic of the temperature-sensitive resistor part, Highly accurate characteristics can be obtained. Also, even if laser trimming is performed, the film-shaped resistance portion, not the temperature-sensitive resistance portion, is irradiated with laser, so there is no deterioration in characteristics in the temperature-sensitive resistance portion, and even if laser trimming is performed while measuring resistance, the laser The effect of temperature rise on the temperature-sensitive resistance portion due to irradiation is small, and high-precision fitting is possible. Furthermore, when matching the resistance characteristics with the thermistor resistance value at the target detection temperature, trimming of the film-like resistance portion can provide linearity with high resistance characteristics in the vicinity of the target detection temperature, increasing the temperature sensitivity and B Accuracy can be improved by reducing variations in constants.

また、本発明の表面実装型温度センサは、前記第1から第3の端子電極と電気的に絶縁された第4の端子電極を前記絶縁性基板に設けたことを特徴とする。すなわち、この表面実装型温度センサでは、第1から第3の端子電極と電気的に絶縁された第4の端子電極を設けているので、この第4の端子電極が熱的結合端子として機能し、より高い熱伝導性を得ることができる。特に、過熱保護用途の場合であってFET等の発熱部品が検出対象となる場合に、この発熱部品との熱結合を図る場合に、検出温度精度を向上させることができるメリットがある。なお、この場合、第4の端子電極は、熱伝導性が良好でかつハンダ付け可能な材料で形成されることが好ましい。   The surface mount temperature sensor according to the present invention is characterized in that a fourth terminal electrode electrically insulated from the first to third terminal electrodes is provided on the insulating substrate. That is, in this surface mount type temperature sensor, since the fourth terminal electrode that is electrically insulated from the first to third terminal electrodes is provided, the fourth terminal electrode functions as a thermal coupling terminal. Higher thermal conductivity can be obtained. In particular, there is a merit that the detection temperature accuracy can be improved in the case of heat coupling with the heat generating component when the heat generating component such as FET is a detection target in the case of overheating protection. In this case, it is preferable that the fourth terminal electrode is formed of a material that has good thermal conductivity and can be soldered.

さらに、本発明の表面実装型温度センサは、前記第1から第4の端子電極が、前記絶縁性基板の裏面まで延在して形成されていることを特徴とする。すなわち、この表面実装型温度センサでは、第1から第4の端子電極が絶縁性基板の裏面まで形成されているので、これらを表面実装される回路基板上等にハンダ付け等で固定することで、4端子による強い接着強度が得られると共に、回路基板等との電気的接続を容易に行うことができる。   Furthermore, the surface mount type temperature sensor of the present invention is characterized in that the first to fourth terminal electrodes are formed to extend to the back surface of the insulating substrate. That is, in this surface mount type temperature sensor, since the first to fourth terminal electrodes are formed up to the back surface of the insulating substrate, they can be fixed on the surface mounted circuit board by soldering or the like. A strong adhesive strength with four terminals can be obtained, and electrical connection with a circuit board or the like can be easily performed.

また、本発明の表面実装型温度センサは、前記第4の端子電極が、少なくとも前記感温抵抗部の直下に形成されていることが好ましい。すなわち、この表面実装型温度センサでは、熱的結合端子として機能する第4の端子電極が感温抵抗部の直下に配されるので、熱を第4の端子電極から感温抵抗部に直接的かつ効率的に伝導させることができ、より高精度化を図ることができる。   In the surface-mount type temperature sensor of the present invention, it is preferable that the fourth terminal electrode is formed at least directly below the temperature-sensitive resistance portion. That is, in this surface mount type temperature sensor, since the fourth terminal electrode functioning as the thermal coupling terminal is arranged directly under the temperature sensitive resistor portion, heat is directly transmitted from the fourth terminal electrode to the temperature sensitive resistor portion. In addition, it is possible to conduct efficiently and to achieve higher accuracy.

また、本発明の表面実装型温度センサは、前記絶縁性基板における前記感温抵抗部の周囲に孔状又は溝状の空洞部が形成されていることを特徴とする。すなわち、この表面実装型温度センサでは、感温抵抗部の周囲に孔状又は溝状の空洞部が形成されているので、空洞部により感温抵抗部と周囲との熱絶縁性が高くなり、感温抵抗部の熱容量を低減することで、高速応答化を実現することができる。   Moreover, the surface-mount type temperature sensor of the present invention is characterized in that a hole-like or groove-like cavity is formed around the temperature-sensitive resistance part in the insulating substrate. That is, in this surface-mount type temperature sensor, since a hole-like or groove-like cavity is formed around the temperature-sensitive resistance part, the thermal insulation between the temperature-sensitive resistance part and the surroundings is enhanced by the cavity, By reducing the heat capacity of the temperature-sensitive resistor portion, it is possible to realize high-speed response.

本発明によれば、以下の効果を奏する。
すなわち、本発明に係る表面実装型温度センサによれば、感温抵抗部の抵抗特性に膜状抵抗部をトリミングして合わせることができるので、高精度な特性を得ることができると共に、レーザトリミングを行っても感温抵抗部の特性劣化や抵抗変動が少なく高い信頼性を得ることができる。また、レーザ照射による温度上昇の影響が小さくなって抵抗特性の合わせ込みを高精度に行うことができ、さらには目的検知温度近傍でリニア性の高い高精度な抵抗特性を得ることができる。
The present invention has the following effects.
That is, according to the surface mount type temperature sensor according to the present invention, the film resistance can be trimmed to match the resistance characteristics of the temperature sensitive resistance, so that high accuracy characteristics can be obtained and laser trimming can be performed. Even if the process is performed, the characteristics of the temperature-sensitive resistor portion are not deteriorated and the resistance variation is small, and high reliability can be obtained. Further, the influence of the temperature rise due to the laser irradiation is reduced, and the resistance characteristics can be adjusted with high accuracy, and furthermore, highly accurate resistance characteristics with high linearity can be obtained in the vicinity of the target detection temperature.

以下、本発明に係る表面実装型温度センサの第1実施形態を、図1及び図2を参照しながら説明する。   Hereinafter, a surface mount type temperature sensor according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.

本実施形態の表面実装型温度センサは、図1に示すように、アルミナ基板等の絶縁性基板10上に、サーミスタ膜からなる感温抵抗部11と、感温抵抗部11と互いの一端同士が電気的に接続されトリミング可能な膜状抵抗部12と、感温抵抗部11の他端に電気的に接続された第1の端子電極13と、膜状抵抗部12の他端に電気的に接続された第2の端子電極14と、感温抵抗部11及び膜状抵抗部12のそれぞれの一端に電気的に接続された第3の端子電極15と、第1から第3の端子電極13〜15と電気的に絶縁された第4の端子電極16と、を備えている。すなわち、この表面実装型温度センサは、第1から第3の端子電極13〜15からなる有効3端子と、第4の端子電極16のダミー端子と、を有する電圧出力タイプの温度センサである。   As shown in FIG. 1, the surface mount type temperature sensor of the present embodiment includes a temperature sensitive resistor portion 11 made of a thermistor film on an insulating substrate 10 such as an alumina substrate, and one end of each of the temperature sensitive resistor portion 11 and each other. Is electrically connected and can be trimmed, the first terminal electrode 13 electrically connected to the other end of the temperature-sensitive resistor 11, and the other end of the film-like resistor 12 electrically A second terminal electrode 14 connected to each other, a third terminal electrode 15 electrically connected to one end of each of the temperature-sensitive resistor portion 11 and the film-like resistor portion 12, and first to third terminal electrodes. 13 to 15 and a fourth terminal electrode 16 electrically insulated. That is, this surface mount type temperature sensor is a voltage output type temperature sensor having effective three terminals including first to third terminal electrodes 13 to 15 and dummy terminals of the fourth terminal electrode 16.

上記感温抵抗部11としては、NTC型、PTC型、CTR型等の薄膜サーミスタが挙げられるが、本実施形態ではNTC型サーミスタを採用している。感温抵抗部11は、矩形状にMn−Co−Cu系材料、Mn−Co−Fe系材料等のサーミスタ材料で形成されている。また、感温抵抗部11上には、互いに所定間隔を空けて対向配置された第1の櫛形電極部17aと、第2の櫛形電極部17bとが形成されている。   Examples of the temperature sensitive resistor section 11 include NTC type, PTC type, CTR type thin film thermistors. In this embodiment, NTC type thermistors are employed. The temperature-sensitive resistance portion 11 is formed of a thermistor material such as a Mn—Co—Cu-based material or a Mn—Co—Fe-based material in a rectangular shape. In addition, on the temperature-sensitive resistance portion 11, a first comb-shaped electrode portion 17a and a second comb-shaped electrode portion 17b are formed so as to be opposed to each other with a predetermined interval.

なお、第1の櫛形電極部17aと第1の端子電極13とは、絶縁性基板10上に形成された第1の配線部13aで接続されている。また、第2の櫛形電極部17bと第3の端子電極15とは、絶縁性基板10上に形成された第2の配線部15aで接続されている。
したがって、図4の等価回路で説明すると、第1の端子電極13はアース端子電極5として、また、第2の端子電極14は入力端子電極1として、さらに、第3の端子電極15は出力端子電極3として機能する。
The first comb electrode portion 17 a and the first terminal electrode 13 are connected by a first wiring portion 13 a formed on the insulating substrate 10. The second comb-shaped electrode portion 17 b and the third terminal electrode 15 are connected by a second wiring portion 15 a formed on the insulating substrate 10.
4, the first terminal electrode 13 is the ground terminal electrode 5, the second terminal electrode 14 is the input terminal electrode 1, and the third terminal electrode 15 is the output terminal. It functions as the electrode 3.

上記膜状抵抗部12は、帯状にNiCr膜やCr膜等の抵抗薄膜材料で形成されている。また、上記第1から第4の端子電極13〜16は、Cu膜上にAgフィラー入り樹脂電極と、Niめっき層と、Snめっき層と、をこの順で積層した構成を有している。また、第1及び第2の櫛形電極部17a、17bは、NiCr膜とCu膜とをこの順で積層した金属膜又はCr膜とCu膜とをこの順で積層した金属膜等で構成されている。また、第1及び第2の配線部13a、15aは、Cu膜等の金属薄膜で構成されている。
なお、上述したように、第1から第4の端子電極13〜16は、熱伝導性が良好でかつハンダ付け可能な材料で形成される。
また、感温抵抗部11と膜状抵抗部12とは、互いに所定間隔を空けて隣接して配されている。さらに、絶縁性基板10の上には、感温抵抗部11と膜状抵抗部12とを覆うようにSiOスパッタ膜や樹脂材料(エポキシ系)等の保護膜18が形成されている。
The film resistor 12 is formed of a resistive thin film material such as a NiCr film or a Cr film in a band shape. The first to fourth terminal electrodes 13 to 16 have a configuration in which an Ag filler-containing resin electrode, a Ni plating layer, and a Sn plating layer are stacked in this order on a Cu film. The first and second comb-shaped electrode portions 17a and 17b are composed of a metal film in which a NiCr film and a Cu film are laminated in this order or a metal film in which a Cr film and a Cu film are laminated in this order. Yes. The first and second wiring parts 13a and 15a are made of a metal thin film such as a Cu film.
As described above, the first to fourth terminal electrodes 13 to 16 are formed of a material having good thermal conductivity and solderable.
Further, the temperature-sensitive resistor portion 11 and the film-like resistor portion 12 are arranged adjacent to each other with a predetermined interval. Further, a protective film 18 such as a SiO 2 sputtered film or a resin material (epoxy-based) is formed on the insulating substrate 10 so as to cover the temperature-sensitive resistance part 11 and the film-like resistance part 12.

第1から第4の端子電極13〜16は、絶縁性基板10の表面において対向する2辺側に設けられていると共に、それぞれ絶縁性基板10の側面を介して、図2に示すように、絶縁性基板10の裏面まで延在して形成されている。
なお、第4の端子電極16は、感温抵抗部11の直下まで延在した直下熱伝導部16aを有している。この直下熱伝導部16aは、感温抵抗部11よりも若干大きい矩形状とされている。
As shown in FIG. 2, the first to fourth terminal electrodes 13 to 16 are provided on the two opposite sides on the surface of the insulating substrate 10 and through the side surfaces of the insulating substrate 10. The insulating substrate 10 is formed extending to the back surface.
The fourth terminal electrode 16 has a direct heat conduction portion 16 a that extends to a position immediately below the temperature sensitive resistance portion 11. The direct heat conduction portion 16 a has a rectangular shape that is slightly larger than the temperature-sensitive resistance portion 11.

第1の端子電極13と第4の端子電極16とは、感温抵抗部11を間に挟んで互いに対向して配置されていると共に、第2の端子電極14と第3の端子電極15とは、膜状抵抗部12を間に挟んで互いに対向して配置されている。   The first terminal electrode 13 and the fourth terminal electrode 16 are disposed to face each other with the temperature-sensitive resistor portion 11 interposed therebetween, and the second terminal electrode 14 and the third terminal electrode 15 Are arranged opposite to each other with the film-like resistance portion 12 interposed therebetween.

次に、本実施形態の表面実装型温度センサの製造方法及び抵抗値調整方法について、以下に説明する。   Next, a manufacturing method and a resistance value adjusting method of the surface mount type temperature sensor of this embodiment will be described below.

まず、絶縁性基板10上にレジストを塗布し、フォトリソグラフィ技術により感温抵抗部作成用にパターニングを行う。そして、この状態で、サーミスタ材料をスパッタにより成膜し、さらにリフトオフを行って不要部分を除去して矩形状にパターニングした後、熱処理(600℃)を施して感温抵抗部11を形成する。   First, a resist is applied on the insulating substrate 10, and patterning is performed for creating a temperature-sensitive resistor portion by a photolithography technique. Then, in this state, a thermistor material is formed by sputtering, further lifted off to remove unnecessary portions and patterned into a rectangular shape, and then subjected to heat treatment (600 ° C.) to form the temperature sensitive resistance portion 11.

次に、絶縁性基板10上にレジストを塗布し、フォトリソグラフィ技術により櫛形電極及び膜状抵抗部作成用にパターニングを行う。そして、この状態で、抵抗薄膜材料(NiCr等)及び電極材料(本実施形態では、Cu膜)をこの順でスパッタにより成膜し、さらにリフトオフを行って不要部分を除去して所定形状にパターニングする。この際、第1及び第2の櫛形電極17a、17b、第1から第4端子電極13〜16(表面側Cu膜)並びに第1及び第2の配線部13a、15aが、パターン形成される。さらに、この状態で、絶縁性基板10上にレジストを塗布し、フォトリソグラフィ技術により膜状抵抗部Cu層除去用にパターニングを行う。この状態で、Cu層の選択エッチングを行った後に、レジストを除去して抵抗薄膜材料だけの膜状抵抗部12を形成する。
なお、第1から第4の端子電極13〜16を、表面、裏面及び側面の3面に形成するために、これら3面にディップ等でCu膜上にAgフィラー入り樹脂電極を断面コ字状に形成する。そして、下地のAgフィラー入り樹脂電極上にNiめっき及びSnめっきを施して、第1から第4の端子電極13〜16を形成する。
Next, a resist is applied on the insulating substrate 10, and patterning is performed for forming the comb-shaped electrode and the film-shaped resistance portion by a photolithography technique. Then, in this state, a resistive thin film material (NiCr or the like) and an electrode material (Cu film in this embodiment) are formed in this order by sputtering, and further lift-off is performed to remove unnecessary portions and pattern them into a predetermined shape. To do. At this time, the first and second comb electrodes 17a and 17b, the first to fourth terminal electrodes 13 to 16 (surface-side Cu film), and the first and second wiring portions 13a and 15a are patterned. Further, in this state, a resist is applied on the insulating substrate 10, and patterning is performed for removing the film resistance portion Cu layer by a photolithography technique. In this state, after performing selective etching of the Cu layer, the resist is removed to form the film-like resistance portion 12 made of only the resistance thin film material.
In addition, in order to form the first to fourth terminal electrodes 13 to 16 on the front surface, the back surface, and the side surface, a resin electrode containing Ag filler is formed on the Cu film by dipping or the like on these three surfaces. To form. Then, the first to fourth terminal electrodes 13 to 16 are formed by performing Ni plating and Sn plating on the underlying Ag filler-containing resin electrode.

次に、事前に感温抵抗部11のサーミスタ特性を測定しておき、その値に合わせるように、膜状抵抗部12の抵抗を測定しながら、図1に示すように、膜状抵抗部12に対してレーザトリミングを行う。すなわち、膜状抵抗部12に対してその長手方向に直交する方向にレーザ照射をし、所定位置に所定長さだけ切り込み部12aを単数又は複数形成することで、トリミングを行う。この際、目的とする検知温度でのサーミスタ抵抗値に抵抗値を合わせるようにして、トリミングを行う。
なお、この後、感温抵抗部11及び膜状抵抗部12上に、SiOスパッタ膜や樹脂材料(エポキシ系)等で、保護膜18を形成する。
Next, the thermistor characteristic of the temperature-sensitive resistor unit 11 is measured in advance, and the resistance of the film-like resistor unit 12 is measured so as to match the value, as shown in FIG. Laser trimming is performed. That is, trimming is performed by irradiating the film-like resistance portion 12 with a laser beam in a direction orthogonal to the longitudinal direction, and forming one or a plurality of cut portions 12a with a predetermined length at predetermined positions. At this time, trimming is performed so that the resistance value matches the thermistor resistance value at the target detection temperature.
After that, a protective film 18 is formed on the temperature-sensitive resistance portion 11 and the film-like resistance portion 12 with a SiO 2 sputtered film, a resin material (epoxy system), or the like.

このように本実施形態では、感温抵抗部11とは別にトリミング可能な膜状抵抗部12が設けられているので、感温抵抗部11の抵抗特性に膜状抵抗部12をトリミングして合わせることができ、高精度な特性を得ることができる。また、レーザトリミングを行っても、感温抵抗部11ではなく膜状抵抗部12にレーザ照射を行うので、感温抵抗部11における特性劣化がないと共に、抵抗を測定しながらレーザトリミングを行っても、レーザ照射による感温抵抗部11に対する温度上昇の影響が小さく、高精度な合わせ込みが可能となる。   As described above, in the present embodiment, since the film-like resistor part 12 that can be trimmed is provided separately from the temperature-sensitive resistor part 11, the film-like resistor part 12 is trimmed to match the resistance characteristic of the temperature-sensitive resistor part 11. And highly accurate characteristics can be obtained. Further, even when laser trimming is performed, the film-shaped resistor portion 12 is irradiated with the laser instead of the temperature-sensitive resistor portion 11, so that there is no characteristic deterioration in the temperature-sensitive resistor portion 11, and laser trimming is performed while measuring the resistance. However, the influence of the temperature rise on the temperature-sensitive resistance portion 11 due to laser irradiation is small, and high-precision fitting is possible.

さらに、膜状抵抗部12のトリミングを行って、目的検知温度でのサーミスタ抵抗値に抵抗特性を合わせる場合、目的検知温度近傍で抵抗特性の高いリニア性を得ることができ、温度感度の増大やB定数(ある温度における抵抗値と基準温度における抵抗値との間に係る温度係数)のばらつき低減によって精度を向上させることができる。
また、第1から第3の端子電極13〜15と電気的に絶縁され熱的結合端子として機能する第4の端子電極16を、絶縁性基板10の裏面かつ感温抵抗部11の直下にまで設けているので、表面実装される回路基板等から、高い熱伝導性を得ることができる。特に、過熱保護用途の場合であってFET(電界効果型トランジスタ)等の発熱部品が検出対象となる場合に、この発熱部品との熱結合を図る場合に、検出温度精度を向上させることができるメリットがある。
Furthermore, when the resistance of the thermistor at the target detection temperature is adjusted by trimming the film-like resistance portion 12, linearity with high resistance characteristics can be obtained in the vicinity of the target detection temperature. Accuracy can be improved by reducing variation in the B constant (temperature coefficient between a resistance value at a certain temperature and a resistance value at a reference temperature).
Further, the fourth terminal electrode 16 that is electrically insulated from the first to third terminal electrodes 13 to 15 and functions as a thermal coupling terminal is extended to the back surface of the insulating substrate 10 and directly below the temperature-sensitive resistor portion 11. Since it is provided, high thermal conductivity can be obtained from a circuit board or the like that is surface-mounted. In particular, in the case of overheating protection, when a heat generating component such as an FET (field effect transistor) is to be detected, the detection temperature accuracy can be improved when thermal coupling with the heat generating component is intended. There are benefits.

また、第1から第4の端子電極13〜16が絶縁性基板10の裏面まで形成されているので、これらを表面実装される回路基板上等にハンダ付け等で固定することで、4端子による強い接着強度が得られると共に、回路基板等との電気的接続を容易に行うことができる。
なお、本温度センサは、電圧出力モードのセンサであるので、信号処理が容易である。また、本温度センサは、サーミスタ部である感温抵抗部11と抵抗部である膜状抵抗部12とが絶縁性基板10上に一体化された複合構造を有しているので、温度検出回路部の小型化を図ることが可能になる。
Further, since the first to fourth terminal electrodes 13 to 16 are formed up to the back surface of the insulating substrate 10, by fixing them on a surface-mounted circuit board or the like by soldering or the like, four terminals are used. Strong adhesive strength can be obtained, and electrical connection with a circuit board or the like can be easily performed.
Since the temperature sensor is a voltage output mode sensor, signal processing is easy. In addition, since the temperature sensor has a composite structure in which the temperature-sensitive resistance portion 11 that is a thermistor portion and the film-like resistance portion 12 that is a resistance portion are integrated on the insulating substrate 10, a temperature detection circuit is provided. It is possible to reduce the size of the part.

次に、本発明に係る表面実装型温度センサの第2実施形態について、図3を参照して以下に説明する。なお、上記実施形態において説明した同一の構成要素には同一の符号を付し、その説明は省略する。   Next, a second embodiment of the surface mount type temperature sensor according to the present invention will be described below with reference to FIG. In addition, the same code | symbol is attached | subjected to the same component demonstrated in the said embodiment, and the description is abbreviate | omitted.

第2実施形態と第1実施形態との異なる点は、第1実施形態では、単なる平板状の絶縁性基板10に感温抵抗部11を形成しているのに対し、第2実施形態では、図3に示すように、絶縁性基板20における感温抵抗部11の周囲に貫通孔状の空洞部21が形成されている点で異なっている。すなわち、第2実施形態では、感温抵抗部11の4辺近傍にそれぞれ長孔状の空洞部21が絶縁性基板20に設けられている。また、絶縁性基板20の感温抵抗部11が形成された領域は、四隅の連結部分(隣接する空洞部21端部の間)で架橋状態に支持されており、これらの連結部分上に第1及び第2の配線部13a、15aが形成されている。   The difference between the second embodiment and the first embodiment is that, in the first embodiment, the temperature-sensitive resistance portion 11 is formed on a mere flat insulating substrate 10, whereas in the second embodiment, As shown in FIG. 3, the difference is that a through hole-shaped cavity 21 is formed around the temperature-sensitive resistor 11 in the insulating substrate 20. That is, in the second embodiment, elongated holes 21 are provided in the insulating substrate 20 in the vicinity of the four sides of the temperature-sensitive resistance portion 11. Further, the region of the insulating substrate 20 where the temperature-sensitive resistor portion 11 is formed is supported in a bridging state at the connection portions at the four corners (between the ends of the adjacent hollow portions 21). First and second wiring portions 13a and 15a are formed.

このように本実施形態では、感温抵抗部11の周囲に空洞部21が形成されているので、空洞部21により感温抵抗部11と周囲との熱絶縁性が高くなり、感温抵抗部11の熱容量を低減することで、高速応答化を実現することができる。特に、本実施形態の表面実装型温度センサは、検出対象物の温度を非接触で検出する非接触タイプの温度センサとして好適である。なお、本実施形態の場合、絶縁性基板20自体もより薄型化することが好ましい。   Thus, in this embodiment, since the cavity part 21 is formed around the temperature-sensitive resistance part 11, the thermal insulation between the temperature-sensitive resistance part 11 and the surroundings is enhanced by the cavity part 21, and the temperature-sensitive resistance part. By reducing the heat capacity of 11, a high-speed response can be realized. In particular, the surface mount type temperature sensor of the present embodiment is suitable as a non-contact type temperature sensor that detects the temperature of a detection target object in a non-contact manner. In the present embodiment, it is preferable that the insulating substrate 20 itself is also made thinner.

なお、本発明の技術範囲は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、上記各実施形態では、スパッタリングで薄膜サーミスタの感温抵抗部11を形成しているが、スクリーン印刷法等を用いて厚膜サーミスタの感温抵抗部を形成しても構わない。なお、高速応答のためには、薄膜サーミスタのタイプが有利である。
また、上記第2実施形態では、貫通孔状の空洞部21を形成しているが、溝状の空洞部を設けても熱絶縁効果を得ることができる。なお、貫通孔状の空洞部21の場合は、熱絶縁的に有利であり、溝状の空洞部の場合は、基板強度的に有利である。
For example, in each of the above embodiments, the temperature-sensitive resistance portion 11 of the thin film thermistor is formed by sputtering, but the temperature-sensitive resistance portion of the thick film thermistor may be formed by using a screen printing method or the like. A thin film thermistor type is advantageous for high-speed response.
Moreover, in the said 2nd Embodiment, although the through-hole-shaped cavity part 21 is formed, even if it provides a groove-shaped cavity part, a thermal insulation effect can be acquired. The through-hole-shaped cavity 21 is advantageous in terms of thermal insulation, and the groove-shaped cavity 21 is advantageous in terms of substrate strength.

本発明に係る第1実施形態の表面実装型温度センサを示す平面図である。It is a top view which shows the surface mount type temperature sensor of 1st Embodiment which concerns on this invention. 第1実施形態の表面実装型温度センサを示す裏面図である。It is a reverse view which shows the surface mount type temperature sensor of 1st Embodiment. 第2実施形態の表面実装型温度センサを示す平面図である。It is a top view which shows the surface mounted type temperature sensor of 2nd Embodiment. サーミスタを利用した一般的な温度検出回路を示す等価回路図である。It is an equivalent circuit diagram showing a general temperature detection circuit using a thermistor.

符号の説明Explanation of symbols

10、20…絶縁性基板、11…感温抵抗部、12…膜状抵抗部、12a…切り込み部、13…第1の端子電極、14…第2の端子電極、15…第3の端子電極、16…第4の端子電極、16a…直下熱伝導部、21…空洞部   DESCRIPTION OF SYMBOLS 10, 20 ... Insulating board | substrate, 11 ... Temperature sensitive resistance part, 12 ... Film-like resistance part, 12a ... Notch part, 13 ... 1st terminal electrode, 14 ... 2nd terminal electrode, 15 ... 3rd terminal electrode , 16 ... fourth terminal electrode, 16a ... direct heat conduction part, 21 ... cavity

Claims (2)

サーミスタ膜からなる感温抵抗部と、
前記感温抵抗部と互いの一端同士が電気的に接続されトリミング可能な膜状抵抗部と、
前記感温抵抗部の他端に電気的に接続された第1の端子電極と、
前記膜状抵抗部の他端に電気的に接続された第2の端子電極と、
前記感温抵抗部及び前記膜状抵抗部のそれぞれの一端に電気的に接続された第3の端子電極と、を絶縁性基板上に設け、
前記第1から第3の端子電極と電気的に絶縁された第4の端子電極を前記絶縁性基板に設け、
前記第1から第4の端子電極が、前記絶縁性基板の側面を介して前記絶縁性基板の裏面まで延在して形成され
前記第4の端子電極が、少なくとも前記感温抵抗部の直下に形成されていることを特徴とする表面実装型温度センサ。
A temperature-sensitive resistor part made of a thermistor film;
The temperature-sensitive resistor portion and one end of each other are electrically connected and can be trimmed, and a film-like resistor portion,
A first terminal electrode electrically connected to the other end of the temperature sensitive resistor;
A second terminal electrode electrically connected to the other end of the film resistor,
A third terminal electrode electrically connected to one end of each of the temperature-sensitive resistor portion and the film-like resistor portion is provided on an insulating substrate;
A fourth terminal electrode electrically insulated from the first to third terminal electrodes is provided on the insulating substrate;
The first to fourth terminal electrodes are formed to extend to the back surface of the insulating substrate through the side surface of the insulating substrate ;
The surface-mount type temperature sensor, wherein the fourth terminal electrode is formed at least directly below the temperature-sensitive resistance portion .
請求項に記載の表面実装型温度センサにおいて、
前記絶縁性基板には、前記感温抵抗部の周囲に孔状又は溝状の空洞部が形成されていることを特徴とする表面実装型温度センサ。
The surface mount type temperature sensor according to claim 1 ,
A surface-mount type temperature sensor, wherein a hole-like or groove-like cavity is formed around the temperature-sensitive resistor portion in the insulating substrate.
JP2005063227A 2005-03-08 2005-03-08 Surface mount type temperature sensor Expired - Fee Related JP4895513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005063227A JP4895513B2 (en) 2005-03-08 2005-03-08 Surface mount type temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005063227A JP4895513B2 (en) 2005-03-08 2005-03-08 Surface mount type temperature sensor

Publications (2)

Publication Number Publication Date
JP2006253166A JP2006253166A (en) 2006-09-21
JP4895513B2 true JP4895513B2 (en) 2012-03-14

Family

ID=37093364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005063227A Expired - Fee Related JP4895513B2 (en) 2005-03-08 2005-03-08 Surface mount type temperature sensor

Country Status (1)

Country Link
JP (1) JP4895513B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5786320B2 (en) * 2010-11-29 2015-09-30 Tdk株式会社 Thermistor, temperature sensor and gas sensor

Also Published As

Publication number Publication date
JP2006253166A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
JP2007093453A (en) Surface-mounted temperature sensor
JP5256544B2 (en) Resistor
JP2002064002A (en) Chip resistor and its manufacturing method
US6292091B1 (en) Resistor and method of adjusting resistance of the same
KR20070009720A (en) Compound device
JP4895513B2 (en) Surface mount type temperature sensor
JP4073673B2 (en) Resistor manufacturing method
JP2009218317A (en) Surface-mounted resistor, and its manufacturing method
JP6256690B2 (en) Non-contact temperature sensor
JP2003173901A (en) Thin film thermistor and method of adjusting its resistance value
JP4683960B2 (en) Wiring board
JPH09320802A (en) Resistor
JP4487825B2 (en) Temperature detection element
JP2010199283A (en) Composite resistor and method of manufacturing the same
JP2001035702A (en) Structure of film-type resistor
KR100477831B1 (en) Chip composite electronic component and method of manufacturing the same
JP2001194247A (en) Thermistor temperature sensor
JP2001056257A (en) Temperature sensor element, manufacture thereof and temperature sensor
JPH0953967A (en) Flow rate sensor
JP2006278793A (en) Temperature detection element
JP7341595B2 (en) flow sensor
JP2006278810A (en) Thin film temperature sensor and method for adjusting characteristics thereof
JP4412034B2 (en) Surface mount type temperature sensor
JP2005294476A (en) Surface-mounting temperature sensing element
WO2023053594A1 (en) Chip resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees