JP4894359B2 - X-ray tomographic imaging apparatus and X-ray tomographic imaging method - Google Patents

X-ray tomographic imaging apparatus and X-ray tomographic imaging method Download PDF

Info

Publication number
JP4894359B2
JP4894359B2 JP2006156352A JP2006156352A JP4894359B2 JP 4894359 B2 JP4894359 B2 JP 4894359B2 JP 2006156352 A JP2006156352 A JP 2006156352A JP 2006156352 A JP2006156352 A JP 2006156352A JP 4894359 B2 JP4894359 B2 JP 4894359B2
Authority
JP
Japan
Prior art keywords
ray
inspected
dimensional
focal point
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006156352A
Other languages
Japanese (ja)
Other versions
JP2007322384A (en
Inventor
康雄 篠原
優 藤井
達雄 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006156352A priority Critical patent/JP4894359B2/en
Publication of JP2007322384A publication Critical patent/JP2007322384A/en
Application granted granted Critical
Publication of JP4894359B2 publication Critical patent/JP4894359B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、X線等を用いて被検査体の内部構造データを検査するX線断層撮像装置及びX線断層撮像方法に関する。   The present invention relates to an X-ray tomographic imaging apparatus and an X-ray tomographic imaging method for inspecting internal structure data of an object to be examined using X-rays or the like.

従来、半導体素子等の研究開発分野などでは、微小被検査体内部に存在するひび割れや断線等を検査するため非破壊三次元分析が要求されている。その手法の一つとして、X線によるコンピュータ断層撮像装置(以下、X線断層撮像装置と称する。)を用いる方法がある。   Conventionally, non-destructive three-dimensional analysis is required in the field of research and development of semiconductor elements and the like in order to inspect cracks, breaks, and the like that exist inside a micro-inspection object. As one of the methods, there is a method using a computed tomography apparatus using X-rays (hereinafter referred to as an X-ray tomography apparatus).

X線断層撮像装置は、例えば、X線源(X線管等から構成されるX線発生装置)と、このX線源よりX線焦点を経て被検査体にコーンビーム状に照射されて透過したX線を検出する二次元検出手段と、この検出手段との間に被検査体を載置するとともにX線焦点からこの検出手段の検出面に降ろした垂線に直交する回転軸を備え設定に基づく角度変位で回転する回転基台部を有する。X線源より被検査体にX線を照射し、被検査体の透過X線投影像を二次元検出手段により撮像しディジタル化された各角度位相毎の複数の画像データとして処理し、これらの画像データより内部構造データを再構成することによって、被検査体内部の検査及び観察等を行い易くする。   The X-ray tomographic imaging apparatus is, for example, an X-ray source (an X-ray generator configured by an X-ray tube or the like) and an X-ray focus from this X-ray source to irradiate a subject to be examined in the form of a cone beam. A two-dimensional detection means for detecting the detected X-ray, and a rotation axis orthogonal to the perpendicular line dropped from the X-ray focal point to the detection surface of the detection means while being placed between the detection means and the detection means It has a rotating base that rotates with an angular displacement based on it. The X-ray source irradiates the inspection object with X-rays, the transmission X-ray projection image of the inspection object is picked up by the two-dimensional detection means, processed as a plurality of digitized image data for each angle phase, and By reconstructing the internal structure data from the image data, it becomes easier to inspect and observe the inside of the inspection object.

上述の内部構造データを再構成する計算において、被検査体の投影像が二次元検出手段の検出面の幅方向内に収まっていることが望ましく、拡大率を向上させるには幅広の二次元検出手段にて撮像することが要求される。   In the calculation for reconstructing the internal structure data described above, it is desirable that the projected image of the object to be inspected is within the width direction of the detection surface of the two-dimensional detection means. It is required to take an image by means.

例えば、有限な二次元検出手段の幅を擬似的に拡張する手段として、特許文献1に記載されているような方法がある。   For example, there is a method as described in Patent Document 1 as means for artificially expanding the width of a finite two-dimensional detection means.

図8及び図9を用いて、特許文献1に記載されている、二次元検出手段の幅を擬似的に拡張する技術について、その概略を説明する。図8は、従来のX線二次元検出器を平行移動させて撮像する方法を説明する模式図(鳥瞰図)である。図9は、図8の上面図である。   An outline of a technique for artificially extending the width of the two-dimensional detection unit described in Patent Document 1 will be described with reference to FIGS. 8 and 9. FIG. 8 is a schematic diagram (bird's eye view) illustrating a method of imaging by moving a conventional X-ray two-dimensional detector in parallel. FIG. 9 is a top view of FIG.

図8及び図9に示すように、X線二次元検出器102(特許文献1に記載のX線検出器101に対応)の初期位置を、X線管101(特許文献1に記載のX線管1に対応)のX線焦点とX線二次元検出器102との間に配置された被検査体107(特許文献1に記載の被検体11に対応)の回転中心を通り、X線焦点からX線二次元検出器102の検出面に下ろした垂線に当該X線二次元検出器102の中央が交わる位置とする。X線二次元検出器102を検出面に平行な面内において、位置102a,102b,102cというように平行移動させ、得られた複数の投影像を合成し、仮想的に幅広な投影像を得る。   As shown in FIGS. 8 and 9, the initial position of the X-ray two-dimensional detector 102 (corresponding to the X-ray detector 101 described in Patent Document 1) is set as the X-ray tube 101 (X-ray described in Patent Document 1). (Corresponding to the tube 1) and the X-ray focal point passing through the rotation center of the inspection object 107 (corresponding to the subject 11 described in Patent Document 1) arranged between the X-ray focal point of the X-ray two-dimensional detector 102 To the position where the center of the X-ray two-dimensional detector 102 intersects with a perpendicular drawn to the detection surface of the X-ray two-dimensional detector 102. The X-ray two-dimensional detector 102 is translated in a plane parallel to the detection surface, such as positions 102a, 102b, and 102c, and a plurality of obtained projection images are synthesized to obtain a virtually wide projection image. .

特開平9−327453号公報JP 9-327453 A

しかしながら、X線二次元検出器102はX線の漏洩を防ぐ装置(シールドカバー)内に載置されており、その平行移動量は装置のサイズに大きく制限される。さらにX線二次元検出器102の平行移動量が位置102a,102cのように大きくなると、X線焦点からX線二次元検出器102へ引いた垂線からの距離が次第に大きくなり、X線二次元検出器102で捕獲される投影像が十分な明るさが得られない。   However, the X-ray two-dimensional detector 102 is placed in a device (shield cover) that prevents X-ray leakage, and the amount of parallel movement is largely limited by the size of the device. Further, when the amount of parallel movement of the X-ray two-dimensional detector 102 increases as in the positions 102a and 102c, the distance from the perpendicular drawn from the X-ray focal point to the X-ray two-dimensional detector 102 gradually increases, and the X-ray two-dimensional The projection image captured by the detector 102 cannot obtain sufficient brightness.

本発明は斯かる点に鑑みてなされたものであり、限られた空間を持つ装置内に載置されたX線二次元検出器を用いて、投影像の輝度の減衰を抑えつつ、撮像により得られる投影像の拡大率を向上させることを目的とする。   The present invention has been made in view of such a point, and by using an X-ray two-dimensional detector placed in an apparatus having a limited space, it is possible to perform imaging while suppressing attenuation of luminance of a projected image. An object is to improve the magnification ratio of the obtained projection image.

上記課題を解決するため、本発明によるX線断層撮像装置の一側面は、X線源と、被検査体を透過したX線を検出して該被検査体の投影像を撮像する二次元検出手段と、前記X線源のX線焦点と前記二次元検出手段との間に配置され前記被検査体を載置して前記X線焦点から前記二次元検出手段の検出面に降ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と、各角度位相毎に撮像された投影像より前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有する。
前記制御手段は、前記検出面が前記被検査体の回転軸と平行で前記X線焦点を通る直線を中心軸とした仮想円筒面に外接し、かつ、前記X線焦点から前記二次元検出手段の初期位置における検出面に降ろした垂線を含み前記被検査体の初期位置における回転軸と平行な面に関して面対称であって、前記検出面の側端部が一部重なる第1及び第2の位置に前記二次元検出手段を旋回機構により旋回させ、旋回後の各撮像位置において各角度位相の投影像を撮像し、
また、前記第1及び/又は第2の位置において前記被検査体の前記検出面に投影されなかった部分が前記第1及び/又は第2の位置にて前記検出面に投影されるよう、前記回転手段を、前記X線焦点から前記初期位置における回転軸までの距離と同じ距離を保ちつつ前記面を挟んでそれぞれ前記第1及び/又は第2の位置の反対領域へ移動機構により移動させ、かつ、前記回転手段の移動量に基づいて前記回転手段の初期角度位相を変化させ、前記第1及び第2の位置において移動後の回転手段上の前記被検査体の各角度位相の投影像を撮像し、
前記各撮像位置において得られた各角度位相の投影像を、前記仮想円筒面に射影し、射影して得られた投影像から再構成計算を行ない、前記被検査体の内部構造データを再構成することを特徴とするものである。
In order to solve the above problems, one aspect of an X-ray tomographic imaging apparatus according to the present invention includes an X-ray source and a two-dimensional detection that detects an X-ray transmitted through an object to be inspected and images a projection image of the object to be inspected. A vertical line arranged between the X-ray source and the X-ray focus of the X-ray source and the two-dimensional detection means, and the test object is placed on the detection surface of the two-dimensional detection means. Rotating means that rotates at an angular displacement set around an orthogonal rotation axis, and control means that performs control to reconstruct the internal structure data of the object to be inspected from the projected images imaged for each angular phase. Have.
The control means circumscribes a virtual cylindrical surface whose center plane is a straight line that passes through the X-ray focal point and is parallel to the rotation axis of the object to be inspected, and from the X-ray focal point, the two-dimensional detection unit First and second planes that are perpendicular to the detection surface at the initial position and that are symmetrical with respect to a plane parallel to the rotation axis at the initial position of the object to be inspected, with the side edges of the detection surface partially overlapping. The two-dimensional detection means is turned to a position by a turning mechanism, and a projected image of each angular phase is taken at each imaging position after turning,
Further, the portion that is not projected onto the detection surface of the object to be inspected at the first and / or second position is projected onto the detection surface at the first and / or second position. The rotating means is moved by the moving mechanism to the regions opposite to the first and / or second positions, respectively, across the surface while maintaining the same distance as the distance from the X-ray focal point to the rotation axis at the initial position, And the initial angle phase of the said rotation means is changed based on the moving amount | distance of the said rotation means, and the projection image of each angle phase of the said to-be-inspected object on the rotation means after the movement in the said 1st and 2nd position is obtained. Image
The projection image of each angular phase obtained at each imaging position is projected onto the virtual cylindrical surface, the reconstruction calculation is performed from the projection image obtained by the projection, and the internal structure data of the inspection object is reconstructed It is characterized by doing.

上述の構成によれば、従来の二次元検出手段を2箇所以上の撮像位置に平行移動して幅広の投影像を合成する手法に比べ、内接円(仮想円筒面)に沿って二次元検出手段を移動させるので、移動距離を少なくでき、遮蔽構造或いは装置全体のコンパクト化が図れる。
さらに、被検査体がX線源と衝突する危険性が緩和されるとともに、被検査体とX線焦点間距離をより小さくできるので、被検査体投影の拡大率向上に効果がある。
According to the above-described configuration, two-dimensional detection is performed along the inscribed circle (virtual cylindrical surface) as compared with a method in which a conventional two-dimensional detection means is translated to two or more imaging positions to synthesize a wide projection image. Since the means is moved, the moving distance can be reduced, and the shielding structure or the entire apparatus can be made compact.
Furthermore, the risk of the object to be inspected collides with the X-ray source is alleviated and the distance between the object to be inspected and the X-ray focal point can be further reduced, which is effective in improving the magnification of the object to be inspected.

本発明によれば、限られた空間を持つ装置内に載置されたX線二次元検出器を用いて、投影像の輝度の減衰を抑えつつ、撮像により得られる投影像の拡大率を向上させることができる。   According to the present invention, an X-ray two-dimensional detector placed in an apparatus having a limited space is used to improve the magnification of a projected image obtained by imaging while suppressing the attenuation of the brightness of the projected image. Can be made.

以下、本発明を実施するための最良の形態の例を説明するが、本発明は以下の例に限定されるものではない。すなわち、現在、断層撮像装置の中でも広く用いられているX線による断層撮像装置を例に説明するが、本発明は、X線その他の放射線等を多方向から物体に照射し、その投影像を撮像した複数の投影データより内部構造データを再構成計算する断層撮像装置に適用することができる。   Examples of the best mode for carrying out the present invention will be described below, but the present invention is not limited to the following examples. That is, an X-ray tomographic imaging apparatus that is widely used among tomographic imaging apparatuses will be described as an example. However, the present invention irradiates an object with X-rays and other radiations from multiple directions, and displays a projection image thereof. The present invention can be applied to a tomographic imaging apparatus that reconstructs internal structure data from a plurality of captured projection data.

図1及び図2を参照して、本発明の一実施形態例によるX線断層撮像装置の構成について説明する。
図1は、本発明の一実施形態例によるX線断層撮像装置の概略上面図である。また、図2は、同じくX線断層撮像装置の概略側面図である。これら図1及び図2に示す構成は、本出願人が先に出願した「特開2005−292047号公報」に記載の機構を利用したものであるが、この例に限られるものではないことは勿論である。
A configuration of an X-ray tomographic imaging apparatus according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
FIG. 1 is a schematic top view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. FIG. 2 is a schematic side view of the same X-ray tomographic imaging apparatus. The configurations shown in FIGS. 1 and 2 utilize the mechanism described in “Japanese Patent Laid-Open No. 2005-292047” previously filed by the present applicant, but are not limited to this example. Of course.

図1及び図2に示されるX線断層撮像装置は、大きく分けて、X線管1、X線が照射される被検査体5を載置する回転基台12、被検査体5を透過したX線の検出面を有する二次元検出器20、そして、これらのものを支持し移動可能な各駆動機構、及びこれら一切を載置し振動除去機能を備えた定盤34から構成される。   The X-ray tomographic imaging apparatus shown in FIG. 1 and FIG. 2 is broadly transmitted through the X-ray tube 1, the rotating base 12 on which the inspection object 5 to be irradiated with X-rays is placed, and the inspection object 5. The two-dimensional detector 20 having an X-ray detection surface, each drive mechanism supporting and moving these elements, and a surface plate 34 on which all of them are mounted and provided with a vibration removing function.

X線管1は、例えば円錐形状(コーンビーム状)のX線を発生する周知のマイクロフォーカスX線源であり、X線管1から円錐形状のX線を出射し被検査体5全体にX線を照射する。この被検査体5を透過したX線を二次元検出器20で検出し、画像信号に変換することで所望の投影像が得られる。X線管1から照射されるX線は、例えば焦点サイズ5μm以下の極小のX線焦点を形成するよう構成されている。X線断層撮像装置の分解能はX線の焦点サイズで決まるので、より微少サイズの損傷等を観察するにはこの数値は小さい方が好ましい。   The X-ray tube 1 is a well-known microfocus X-ray source that generates, for example, a cone-shaped (cone beam-shaped) X-ray. The X-ray tube 1 emits a cone-shaped X-ray from the X-ray tube 1 to the entire inspection object 5. Irradiate the line. A desired projection image can be obtained by detecting the X-rays transmitted through the inspection object 5 by the two-dimensional detector 20 and converting it into an image signal. X-rays irradiated from the X-ray tube 1 are configured to form a very small X-ray focal point having a focal size of 5 μm or less, for example. Since the resolution of the X-ray tomographic imaging apparatus is determined by the focal size of the X-ray, it is preferable that this numerical value is small in order to observe a finer damage or the like.

X線管1本体は、図2に示すように、前部筐体1aと後部筐体1bがヒンジ6により連結された構成とされ、X線焦点近傍のL字状ブラケット7とX線管1の重量重心1cの直下かつブラケット7水平面上に設けられたVブロック8とによって定盤34上に支持されている。   As shown in FIG. 2, the main body of the X-ray tube 1 has a structure in which a front housing 1a and a rear housing 1b are connected by a hinge 6, and an L-shaped bracket 7 and an X-ray tube 1 near the X-ray focal point. Is supported on the surface plate 34 by the V block 8 provided immediately below the weight center of gravity 1c and on the horizontal surface of the bracket 7.

図2に示されるように、Vブロック8はブラケット7上の回動支点11を軸に回動可能なVブロック受け台10に弾性体9を介して載置される。このようにブラケット7と重心1cの直下にVブロック8を置くことにより、X線管1のカソード(図示略)の位置出しが容易となるばかりでなく、ヒンジ6による連結を解除し真空を解除してカソードを交換する際、X線管1の後部筐体1bを弾性力で支持するので、カソード座標調整などの精密な機械作業が水平置の姿勢でも容易となる。X線管1本体連結部のヒンジ6の回転軸とVブロック受け台10の回動支点11は略同軸上に配置されている。   As shown in FIG. 2, the V block 8 is placed via a resilient body 9 on a V block pedestal 10 that can be rotated about a rotation fulcrum 11 on the bracket 7. By placing the V block 8 immediately below the bracket 7 and the center of gravity 1c in this way, not only the positioning of the cathode (not shown) of the X-ray tube 1 is facilitated, but also the connection by the hinge 6 is released and the vacuum is released. When the cathode is replaced, the rear housing 1b of the X-ray tube 1 is supported by elastic force, so that precise mechanical work such as cathode coordinate adjustment becomes easy even in a horizontal position. The rotation axis of the hinge 6 of the X-ray tube 1 main body connecting portion and the rotation fulcrum 11 of the V block cradle 10 are arranged substantially coaxially.

図1に示すように、被検査体5は、被検査体5を回転させるための例えば駆動モータ及び軸受け(図示略)等より構成される回転基台12上に保持され、X線管1のX線焦点2から後述する二次元検出器20の検出面に降ろした垂線と直角に交わる回転軸を中心に回転する。また、回転基台12と締結されZ軸方向に可動するZ軸可動部13と、Y軸方向に可動するY軸可動部14と、X軸方向に可動するX軸可動部15と、定盤34に固定された直動案内部16によって、X軸、Y軸、Z軸方向への駆動機構が構成されている。これらの機構は、被検査体を移動させる手段(移動機構)として機能する。   As shown in FIG. 1, the inspected object 5 is held on a rotating base 12 constituted by, for example, a drive motor and a bearing (not shown) for rotating the inspected object 5, and the X-ray tube 1 The X-ray focal point 2 rotates about a rotation axis that intersects at right angles with a perpendicular drawn to a detection surface of a two-dimensional detector 20 described later. Also, a Z-axis movable part 13 that is fastened to the rotary base 12 and is movable in the Z-axis direction, a Y-axis movable part 14 that is movable in the Y-axis direction, an X-axis movable part 15 that is movable in the X-axis direction, and a surface plate A linear motion guide portion 16 fixed to 34 constitutes a drive mechanism in the X-axis, Y-axis, and Z-axis directions. These mechanisms function as means for moving the object to be inspected (moving mechanism).

さらに回転基台12は、例えば空気軸受け(図示略)によって支持されて、この空気軸受けに同軸上に直結された例えば0.2分以下の角度位置決め精度を持つサーボモータ(図示略)及び回転位相検出手段(図示略)により、これらサーボモータ及び回転位相検出手段の分解能に応じた各角度変位において、再構成に必要な上記投影データの取り込み期間に同期して静止される。回転基台12の軸受けの回転軸はX線管1の焦点から二次元検出器20の検出面へ降ろした垂線と直交している。本例では回転基台12を微少角度変位制御できる空気軸受けよりなるが、これに限るものではなく、回転基台12を支持し滑らかに回転して微少角度変位制御できるものであればよい。   Further, the rotary base 12 is supported by, for example, an air bearing (not shown), and is directly coupled coaxially to the air bearing and has a servo motor (not shown) having an angular positioning accuracy of, for example, 0.2 minutes or less, and a rotation phase. The detecting means (not shown) is stationary in synchronism with the projection data capturing period necessary for reconstruction at each angular displacement corresponding to the resolution of the servo motor and the rotational phase detecting means. The rotation axis of the bearing of the rotation base 12 is orthogonal to the perpendicular line dropped from the focal point of the X-ray tube 1 to the detection surface of the two-dimensional detector 20. In this example, the rotary base 12 is composed of an air bearing capable of controlling the fine angular displacement. However, the present invention is not limited to this, and any structure may be used as long as the rotary base 12 is supported and smoothly rotated to control the fine angular displacement.

二次元検出器20は、例えば、フラットパネルディテクタ(FPD)より構成され、X線が中心に照射されるよう左右上下への動きが調節できるようになっている。FPDについては、特開平6−342098号公報にその一例が具体的に開示されている。この特許公報に記載された技術は、被写体を透過したX線をa- Se層等の光導電層で吸収してX線強度に応じた電荷を発生させ、その電荷量を画素毎に検知するというものである。他の方式のFPDの例としては、例えば特開平9−90048号公報に開示されているような、X線を増感紙等の蛍光体層に吸収させて蛍光を発生させ、その蛍光の強度を画素毎に設けたフォトダイオード等の光検出器で検知するものがある。蛍光の検知手段としては他に、CCD(Charge Coupled Devices)やC−MOS(Complementary-Metal OXideSemiconductor)センサを用いる方式もある。   The two-dimensional detector 20 is composed of, for example, a flat panel detector (FPD), and can be adjusted to move left and right and up and down so that X-rays are irradiated at the center. An example of the FPD is specifically disclosed in JP-A-6-342098. The technique described in this patent publication absorbs X-rays transmitted through a subject with a photoconductive layer such as an a-Se layer to generate charges according to the X-ray intensity, and detects the amount of charges for each pixel. That's it. As an example of another type of FPD, for example, as disclosed in JP-A-9-90048, X-rays are absorbed in a phosphor layer such as an intensifying screen to generate fluorescence, and the intensity of the fluorescence Is detected by a photodetector such as a photodiode provided for each pixel. In addition, there is a method using a CCD (Charge Coupled Devices) or a C-MOS (Complementary Metal Oxide Semiconductor) sensor as a fluorescence detecting means.

特に上記特開平6−342098号公報に開示された方式のFPDでは、X線量を画素毎の電荷量に直接変換するため、FPDでの鮮鋭性の劣化が少なく、鮮鋭性に優れた画像が得られる。本例では二次元検出器20をFPDにより構成するものとしているが、被検査体の透過X線を検出し画素毎に処理して画像信号を得られるものであればよい。   In particular, in the FPD of the method disclosed in the above Japanese Patent Laid-Open No. 6-342098, the X-ray dose is directly converted into the charge amount for each pixel, so that there is little deterioration in sharpness in the FPD and an image with excellent sharpness is obtained. It is done. In this example, the two-dimensional detector 20 is configured by an FPD. However, any device can be used as long as it can detect transmitted X-rays of an object to be inspected and process each pixel to obtain an image signal.

二次元検出器20は、その検出面が支持体21によってX線管1のX線焦点2から被検査体5略中心を通る直線と直角となるように設置される。支持体21は二次元検出器20を垂直(Z軸)方向に移動可能とする駆動機構を備えている。さらに、支持体21と締結された直動機構を構成する水平可動部22が直動案内部23上を水平方向に移動することによって二次元検出器20を検出面と平行な水平方向へ移動させることができる。   The two-dimensional detector 20 is installed such that its detection surface is perpendicular to the straight line passing through the approximate center of the inspection object 5 from the X-ray focal point 2 of the X-ray tube 1 by the support 21. The support 21 includes a drive mechanism that allows the two-dimensional detector 20 to move in the vertical (Z-axis) direction. Further, the horizontal movable portion 22 constituting the linear motion mechanism fastened to the support 21 moves on the linear motion guide portion 23 in the horizontal direction, thereby moving the two-dimensional detector 20 in the horizontal direction parallel to the detection surface. be able to.

さらに、二次元検出器20を水平方向に移動させるのに使用される直動案内部23下面の端部近傍に凸部(カムフォロワー)27が設けられており、この凸部27を例えば溝を有する係合部材26と係合させ、係合部材26を検出器基台28に設けられた旋回案内部25上でX軸方向に直線的にスライド移動させることにより、直動案内部23上に搭載された二次元検出器20を直動案内部23と一体に、例えばY軸に対し約±30°の角度未満で回転基台12の回転軸と平行な軸を中心に旋回させることができる。このときの旋回角度は回転軸24に直結されたエンコーダ30の指示値に基づき制御される。これらの機構は二次元検出器を旋回させる手段(旋回機構)として機能する。なお、支持台29は、二次元検出器20の駆動機構全体を支持するものである。   Further, a convex portion (cam follower) 27 is provided in the vicinity of the end portion of the lower surface of the linear motion guide portion 23 used for moving the two-dimensional detector 20 in the horizontal direction. The engaging member 26 is engaged with the engaging member 26, and the engaging member 26 is linearly slid in the X-axis direction on the turning guide unit 25 provided on the detector base 28. The mounted two-dimensional detector 20 can be rotated integrally with the linear motion guide unit 23, for example, about an axis parallel to the rotation axis of the rotary base 12 at an angle less than about ± 30 ° with respect to the Y axis. . The turning angle at this time is controlled based on the indicated value of the encoder 30 directly connected to the rotating shaft 24. These mechanisms function as means for turning the two-dimensional detector (turning mechanism). The support base 29 supports the entire drive mechanism of the two-dimensional detector 20.

本例では、二次元検出器20の旋回駆動を、従来用いられていたダイレクトドライブモータ(インデックスモータ)で行わず、より角度精度を出しやすく衝突や暴走の懸念のない例えばボールネジ駆動(直動)機構などを用いて行うようにしている。   In this example, the turning drive of the two-dimensional detector 20 is not performed by a conventionally used direct drive motor (index motor), for example, ball screw drive (linear motion) is easy to obtain angle accuracy and there is no fear of collision or runaway. This is done using a mechanism.

これら二次元検出器20を載置する検出器基台28は、駆動部32を駆動させることにより駆動軸33を介してレール31上をX軸方向(光軸主線方向)に移動することができるので、X線焦点2から二次元検出器20までの距離調整が可能である。   The detector base 28 on which these two-dimensional detectors 20 are mounted can move on the rail 31 via the drive shaft 33 in the X-axis direction (optical axis main line direction) by driving the drive unit 32. Therefore, the distance from the X-ray focal point 2 to the two-dimensional detector 20 can be adjusted.

このような構成により、例えば図3に示すように、二次元検出器20は、X線焦点2から二次元検出器20の初期位置(Pos0)における検出面20aに降ろした垂線を含み被検査体5の初期位置における回転軸と平行な面に関して面対称な偶数箇所の撮影位置Pos1,2,3,4に移動することができる。   With such a configuration, for example, as shown in FIG. 3, the two-dimensional detector 20 includes a perpendicular drawn from the X-ray focal point 2 to the detection surface 20 a at the initial position (Pos0) of the two-dimensional detector 20. 5 can be moved to imaging positions Pos1, 2, 3, and 4 at even-numbered positions that are plane-symmetric with respect to a plane parallel to the rotational axis at the initial position.

なお、定盤34上の機構全体は図示しない電離放射線遮蔽ボックス(シールドカバー)で覆われている。   The entire mechanism on the surface plate 34 is covered with an ionizing radiation shielding box (shield cover) (not shown).

次に、上述したX線断層撮像装置のブロック構成の一例について、図4を参照して説明する。   Next, an example of a block configuration of the above-described X-ray tomographic imaging apparatus will be described with reference to FIG.

X線管1は、上述したように回転基台12上に載置された被検査体5に対してX線を照射するものである。このとき照射されるX線の強度、線質等は、X線制御手段であるX線制御部41を通じて制御操作卓44により制御される。   As described above, the X-ray tube 1 irradiates the inspection object 5 placed on the rotating base 12 with X-rays. The intensity and quality of the X-rays irradiated at this time are controlled by the control console 44 through the X-ray control unit 41 which is an X-ray control means.

上記被検査体5を載置する回転基台12の位置、回転角度変位、初期角度位相等は、回転基台12の位置及び動きを制御する機構制御手段として機能する機構制御部42を通じて、制御操作卓44により制御される。回転基台12に載置された被検査体5は制御操作卓44からの制御信号により指定された角度変位で回転され、その投影像は2次元検出器2により撮像される。   The position, rotation angle displacement, initial angle phase, and the like of the rotary base 12 on which the inspection object 5 is placed are controlled through a mechanism control unit 42 that functions as a mechanism control means for controlling the position and movement of the rotary base 12. It is controlled by the console 44. The inspection object 5 placed on the rotating base 12 is rotated by the angular displacement designated by the control signal from the control console 44, and the projection image is taken by the two-dimensional detector 2.

制御操作卓44は、制御手段の一例であり、例えば、キーボード等の入力手段及びGUI(Graphical User Interface)の画面や被写体像の再構成結果等を表示する表示手段が接続されたパーソナルコンピュータ(以下、PCという)よりなる。パーソナルコンピュータに搭載されたプロセッサ(演算処理装置)により、ROM(Read Only Memory)等の不揮発性メモリ(図示略)に格納されたプログラムに従い後述するX線断層撮像処理の演算・制御等を行う。また、パーソナルコンピュータは、X線管1より出射されるX線のX線強度等の情報を表示手段に表示させたり、入力手段を介して入力された操作信号に基づいてX線制御部41に対して制御指令を出力したり、回転基台12に対して被検査体5の適切な位置出しのための指令を出力するなどする。また、機構制御部43を通じて二次元検出器20に対して指令を出し、傾斜角(回転角)及びX軸方向への移動等を制御する。   The control console 44 is an example of a control means. For example, a personal computer (hereinafter referred to as a keyboard) and other display means for displaying a GUI (Graphical User Interface) screen, a reconstruction result of a subject image, and the like are connected. And PC). A processor (arithmetic processing unit) mounted on a personal computer performs calculation and control of an X-ray tomographic imaging process, which will be described later, according to a program stored in a non-volatile memory (not shown) such as a ROM (Read Only Memory). In addition, the personal computer displays information such as the X-ray intensity of the X-rays emitted from the X-ray tube 1 on the display means, or causes the X-ray control unit 41 to display information based on an operation signal input via the input means. On the other hand, a control command is output, or a command for appropriately positioning the object to be inspected 5 is output to the rotating base 12. Further, a command is issued to the two-dimensional detector 20 through the mechanism control unit 43 to control the inclination angle (rotation angle), movement in the X-axis direction, and the like.

被検査体5を透過したX線は、二次元検出器20で捕獲され検出される。二次元検出器20は、検出したX線の情報である投影像を投影像記憶手段としての投影像記憶部45に供給する。この投影像は、制御操作卓44からの指示により、ディジタル化された投影データとして撮像時の角度位相と対応づけて投影像記憶部45に保存される。投影像記憶部45は、投影データを記録できる容量を有するものであればこれに限るものではなく、大容量の磁気記録装置等、光記録媒体や半導体メモリ等のリムーバブルな記録媒体などを含め、さまざまなものを適用することができる。また、二次元検出器20から供給された投影データを、撮像時の角度位相や角度変位、初期角度位相、X線強度等の情報と対応づけて投影像記憶部45に保存してもよい。   X-rays that have passed through the inspection object 5 are captured and detected by the two-dimensional detector 20. The two-dimensional detector 20 supplies a projection image, which is detected X-ray information, to a projection image storage unit 45 serving as a projection image storage unit. This projection image is stored in the projection image storage unit 45 as digitized projection data in association with the angle phase at the time of imaging in accordance with an instruction from the control console 44. The projection image storage unit 45 is not limited to this as long as it has a capacity capable of recording projection data, and includes a large-capacity magnetic recording device, a removable recording medium such as an optical recording medium or a semiconductor memory, etc. Various things can be applied. Further, the projection data supplied from the two-dimensional detector 20 may be stored in the projection image storage unit 45 in association with information such as the angle phase, angle displacement, initial angle phase, and X-ray intensity at the time of imaging.

そして、投影像記憶部45に記憶された投影データは、これと接続された再構成手段として機能する再構成計算用計算機46に供給される。再構成計算用計算機46では入力された投影データより被検査体5の内部構造データを再構成計算する。再構成された内部構造データ(再構成データ)は、投影像記憶部45あるいは他の記録媒体に記憶されるとともに、図示しない表示メモリを介して表示手段である再構成結果表示装置47に入力され、CRT(Cathode Ray Tube)モニタ等のディスプレイに表示される。   The projection data stored in the projection image storage unit 45 is supplied to a reconstruction calculation computer 46 that functions as reconstruction means connected thereto. The reconstruction calculation computer 46 reconstructs the internal structure data of the inspected object 5 from the input projection data. The reconstructed internal structure data (reconstruction data) is stored in the projection image storage unit 45 or another recording medium, and is also input to the reconstruction result display device 47 as display means via a display memory (not shown). And displayed on a display such as a CRT (Cathode Ray Tube) monitor.

再構成計算用計算機46は、入力される投影データを収集して内部構造データを再構成できる演算処理能力があればよく、制御操作卓44の制御手段と共用でもよい。また、再構成結果表示装置47は制御操作卓44の表示手段と共用であってもよい。   The computer 46 for reconstruction calculation only needs to have an arithmetic processing capability capable of collecting input projection data and reconstructing internal structure data, and may be shared with the control means of the control console 44. The reconstruction result display device 47 may be shared with the display means of the control console 44.

以上のような構成により、被検査体5の内部構造データが再構成結果表示装置47に得られ、被検査体5の内部構造が表示される。オペレータ(作業者)は、再構成結果表示装置47に表示された内部構造により、多層膜板や微小な電子部品素子等の被検査体内部のひび割れや断線など、欠陥の有無及びその状態を視覚的に確認することができる。   With the configuration as described above, the internal structure data of the inspection object 5 is obtained in the reconstruction result display device 47, and the internal structure of the inspection object 5 is displayed. The operator (operator) visually recognizes the presence and state of defects such as cracks and breaks in the inspected object such as multilayer film plates and minute electronic component elements by the internal structure displayed on the reconstruction result display device 47. Can be confirmed.

次に、上述したX線断層撮像装置による撮像処理について説明する。本実施形態では、図3に示したように、二次元検出器20を、X線焦点2から二次元検出器20の初期位置(Pos0)における検出面20aに降ろした垂線を含み被検査体5の初期位置における回転軸と平行な面に関して面対称な偶数箇所に移動させ、移動後の各撮像位置において各角度位相の投影像を撮像する。このとき拡大率を一定に保つため、図5に示すように、二次元検出器20の検出面20aが被検査体5の回転軸と平行でX線焦点2を通る直線を中心軸とした仮想円筒面に外接し、かつ、検出面20aの側端部が各々の位置で一部重なるよう二次元検出器20を旋回機構により旋回させる。   Next, imaging processing by the above-described X-ray tomographic imaging apparatus will be described. In the present embodiment, as shown in FIG. 3, the inspected object 5 includes a vertical line that drops the two-dimensional detector 20 from the X-ray focal point 2 to the detection surface 20 a at the initial position (Pos0) of the two-dimensional detector 20. Are moved to even-numbered positions that are plane-symmetric with respect to the plane parallel to the rotation axis at the initial position, and the projected images of the respective angular phases are captured at the respective imaging positions after the movement. At this time, in order to keep the enlargement ratio constant, as shown in FIG. 5, a virtual surface with the detection surface 20 a of the two-dimensional detector 20 parallel to the rotation axis of the object to be inspected 5 and passing through the X-ray focal point 2 is the central axis. The two-dimensional detector 20 is turned by a turning mechanism so as to circumscribe the cylindrical surface and partially overlap the side end portion of the detection surface 20a at each position.

二次元検出器20は、旋回後の各撮像位置Pos1,2,3,4において所定角度変位ごとの各角度位相の投影像を撮像し、撮像した各部分投影像のデータを投影像記憶部45に記憶する。そして、再構成計算用計算機46により、各部分投影像を合成して全体投影像を作成し、この全体投影像を用いて再構成計算を行い、被検査体5の内部構造データを再構成する。   The two-dimensional detector 20 captures projection images of each angular phase for each predetermined angular displacement at each imaging position Pos1, 2, 3, and 4 after turning, and the projection image storage unit 45 stores data of each captured partial projection image. To remember. Then, the reconstruction calculation computer 46 synthesizes the partial projection images to create an entire projection image, performs reconstruction calculation using the entire projection image, and reconstructs the internal structure data of the inspection object 5. .

このような撮像方法によれば、二次元検出器20を2箇所以上の撮像位置に平行移動して幅広の投影像を合成する手法(図8及び図9参照)に比べ、内接円(仮想円筒面60)に沿って二次元検出器20を移動させるので、遮蔽構造或いは装置全体のコンパクト化が図れる。
また、二次元検出器20で撮像した投影像を仮想円筒面60に射影する場合は、実際の二次元検出面20aと仮想的な円筒面60との距離差が仮想的平面に射影することに比べて小さく、より変換誤差の少ない画像が得られる。
さらに、従来の手法で幅広の投影像を得ようとする場合、検出面上の画素がX線源1と被検査体5の中心(回転軸)を結ぶ直線から離れた位置になればなるほど、X線源1と二次元検出器20との距離が離れ、投影像の輝度が減衰するが、本実施形態においてはX線源1と二次元検出器20との距離は一定なので、そのような問題は生じず、検出面の中心部あるいは周辺部のいずれにおいても輝度が一定の投影像が得られる。
According to such an imaging method, an inscribed circle (virtual circle) is compared to a method (see FIGS. 8 and 9) in which the two-dimensional detector 20 is translated to two or more imaging positions to synthesize a wide projection image. Since the two-dimensional detector 20 is moved along the cylindrical surface 60), the shielding structure or the entire apparatus can be made compact.
In addition, when the projection image captured by the two-dimensional detector 20 is projected onto the virtual cylindrical surface 60, the distance difference between the actual two-dimensional detection surface 20a and the virtual cylindrical surface 60 is projected onto the virtual plane. A smaller image with less conversion error can be obtained.
Furthermore, when trying to obtain a wide projection image by the conventional method, the farther the pixel on the detection surface is away from the straight line connecting the X-ray source 1 and the center (rotation axis) of the inspection object 5, Although the distance between the X-ray source 1 and the two-dimensional detector 20 is increased and the brightness of the projection image is attenuated, in the present embodiment, the distance between the X-ray source 1 and the two-dimensional detector 20 is constant. There is no problem, and a projection image with a constant luminance can be obtained at either the central portion or the peripheral portion of the detection surface.

次に、上述したX線断層撮像装置による撮像処理の他の例について説明する。本例では、図5に示す偶数箇所の撮像位置のうち、撮像位置Pos2及びPos3のみを選択し、被検査体5の初期位置(-S,0)において被検査体5の高拡大率部分投影を取得する。そして、それらの撮像位置からはみだした(検出面に投影されなかった)撮像位置Pos1で撮像すべき被検査体投影の部分投影を、二次元検出器20の位置は撮像位置Pos2のまま回転基台12の回転軸を回転基台移動機構により位置A(-Scosα,Ssinα)の座標へ移動せしめ、さらに被検査体角度位相をα度オフセットさせると、撮像位置Pos1と幾何学的に合同な投影データが取得可能である。   Next, another example of imaging processing by the X-ray tomographic imaging apparatus described above will be described. In this example, only the imaging positions Pos2 and Pos3 are selected from the even-numbered imaging positions shown in FIG. 5, and the high-magnification partial projection of the inspection object 5 is performed at the initial position (−S, 0) of the inspection object 5. To get. Then, the partial projection of the inspected object projection to be imaged at the imaging position Pos1 that is beyond the imaging position (not projected onto the detection surface), and the rotation base of the two-dimensional detector 20 remains at the imaging position Pos2. When the 12 rotation axes are moved to the coordinates of the position A (-Scos α, Ssin α) by the rotation base moving mechanism, and the object angular phase is further offset by α degrees, the projection data is geometrically congruent with the imaging position Pos1. Can be obtained.

同じく撮像位置Pos3ではみ出した撮像位置Pos4で撮像すべき投影データを、二次元検出器の位置は撮像位置Pos3のまま、被検査体回転基台12をB(-Scosα,-Ssinα)の座標へ移動せしめ、さらに被検査体角度位相を−α度オフセットさせて取得することが可能である。この撮像方法の概念は図示しない4を超える偶数箇所での分割撮像のときも応用可能である。   Similarly, the projection data to be imaged at the imaging position Pos4 that protrudes at the imaging position Pos3, the position of the two-dimensional detector remains at the imaging position Pos3, and the inspection object rotation base 12 is moved to the coordinates of B (-Scosα, -Ssinα). It is possible to obtain the object by shifting the position and further offsetting the inspection object angle phase by -α degrees. The concept of this imaging method can also be applied to divided imaging at even locations exceeding 4 (not shown).

ここで、上述した二次元検出器20をPos1,4に旋回移動させずに被検査体を移動させて投影像を撮像する方法について、さらに具体的に説明する。図6は、図5に示したX線断層撮像装置の要部の拡大図(上面図)である。   Here, a method for capturing a projection image by moving the object to be inspected without turning the two-dimensional detector 20 to Pos 1 and 4 will be described more specifically. FIG. 6 is an enlarged view (top view) of a main part of the X-ray tomographic imaging apparatus shown in FIG.

図6において、X線管1の焦点の位置を原点Oとし、X軸、Y軸を設定する。X線管1のX線焦点2から被検査体5の初期位置における中心点までの距離をSとすれば、被検査体5の位置は(−S,0)と表される。   In FIG. 6, the focus position of the X-ray tube 1 is set as the origin O, and the X axis and the Y axis are set. If the distance from the X-ray focal point 2 of the X-ray tube 1 to the center point at the initial position of the inspection object 5 is S, the position of the inspection object 5 is expressed as (−S, 0).

まず、二次元検出器20の検出面20aが被検査体5の回転軸と平行でX線焦点2を通る直線を中心軸とした仮想円筒面60に外接し、かつ、X線焦点2から二次元検出器20の初期位置検出面に降ろした垂線を含み被検査体5の初期位置回転軸と平行な面に関して面対称であって、検出面20aの側端部が一部重なるようにPos2及びPos3の位置に二次元検出器20を旋回機構により旋回させ、旋回後の各撮像位置において各角度位相の投影像を撮像する。   First, the detection surface 20a of the two-dimensional detector 20 circumscribes the virtual cylindrical surface 60 having a straight line passing through the X-ray focal point 2 parallel to the rotation axis of the object 5 to be inspected and Pos2 and Pos2 are arranged so as to be plane symmetric with respect to a plane parallel to the initial position rotation axis of the object 5 to be inspected, including a perpendicular line dropped on the initial position detection surface of the dimension detector 20, and so that the side end portions of the detection surface 20a partially overlap. The two-dimensional detector 20 is turned by the turning mechanism to the position of Pos3, and a projected image of each angle phase is taken at each imaging position after the turning.

さらに、Pos2の撮像位置において被検査体5の検出面20aに投影されなかった部分がPos2の位置にて検出面20aに投影されるよう、回転基台12を、X線焦点2と初期位置回転軸との距離を一定に保ちつつ対称軸(面)51を挟んでPos2の反対領域の位置5aへ移動機構により移動させ、かつ、回転基台12の移動量(移動角度)αに基づいて回転基台12の初期角度位相を変化させる。すなわち、被検査体5の中心を位置A(−Scosθ,Ssinθ)に移動させ、さらに被検査体5の角度位相をα度オフセットさせる。そして、被検査体5を位置5aに移動後に、各撮像位置において各角度位相の投影像を撮像する。このような手法により、被検査体5の位置5aで撮像した投影像はPos1で撮像した投影像とほぼ同じ投影像が得られる。   Further, the rotation base 12 is rotated with the X-ray focal point 2 and the initial position so that a portion that is not projected onto the detection surface 20a of the inspection object 5 at the Pos2 imaging position is projected onto the detection surface 20a at the Pos2 position. While keeping the distance from the axis constant, the axis is moved to the position 5a in the opposite region of Pos2 across the symmetry axis (plane) 51, and rotated based on the movement amount (movement angle) α of the rotating base 12. The initial angle phase of the base 12 is changed. That is, the center of the inspection object 5 is moved to the position A (−Scos θ, Ssin θ), and the angular phase of the inspection object 5 is offset by α degrees. And after moving the to-be-inspected object 5 to the position 5a, the projection image of each angle phase is imaged in each imaging position. By such a method, the projection image captured at the position 5a of the inspection object 5 can obtain a projection image substantially the same as the projection image captured at Pos1.

この角度移相のオフセットは、図6に示すように、被検査体5を位置5aに移動後、X線焦点2と被検査体5の中心を通る直線が被検査体5上の基準点5b1を通るように被検査体5を回転させることで行うことができる。   As shown in FIG. 6, the offset of this angle phase shift is such that a straight line passing through the X-ray focal point 2 and the center of the inspection object 5 is a reference point 5b1 on the inspection object 5 after the inspection object 5 is moved to the position 5a. This can be done by rotating the object 5 so as to pass through.

同様に、二次元検出器20の撮像位置Pos3において、被検査体5の検出面20aに投影されなかった部分がある場合、被検査体5の中心を位置B(−Scosθ,−Ssinθ)に移動させ、さらに被検査体5の角度位相を−α度オフセットさせる。そして、被検査体5を位置5bに移動後に、各撮像位置において各角度位相の投影像を撮像する。このような手法により、被検査体5の位置5aで撮像した投影像はPos4で撮像した投影像とほぼ同じ投影像が得られる。   Similarly, at the imaging position Pos3 of the two-dimensional detector 20, when there is a portion that is not projected onto the detection surface 20a of the inspection object 5, the center of the inspection object 5 is moved to the position B (−Scos θ, −Ssin θ). Further, the angle phase of the object to be inspected 5 is offset by -α degrees. And after moving the to-be-inspected object 5 to the position 5b, the projection image of each angle phase is imaged in each imaging position. By such a method, the projection image captured at the position 5a of the inspection object 5 can obtain a projection image substantially the same as the projection image captured at Pos4.

再構成計算用計算機46は、上記の二次元検出器20の各撮像位置に対して被検査体5の移動前後の各位置にて撮像された各部分投影像を合成し得られた全体投影像を用いて再構成計算を行い、被検査体5の内部構造データを再構成する。   The computer 46 for reconstruction calculation is an overall projection image obtained by synthesizing each partial projection image captured at each position before and after the movement of the inspection object 5 with respect to each imaging position of the two-dimensional detector 20 described above. Is used to reconstruct the internal structure data of the inspected object 5.

通常、投影像の拡大率を支配する1番上位の要素はX線焦点2と回転基台12に保持された被検査体5との相互間距離の関係であり、図5では拡大率はdOF/dFDで表される。有限な装置サイズ(遮蔽構造)では拡大率が大きければ大きいほどdOFを小さくする必要が生じる。そして有限な検出器サイズで高精細な再構成画像を得るため高拡大率の被検査体全体の投影像を取得しようとすると、部分投影の分割撮像回数が増えることとなる。ここで、二次元検出器20を初期位置Pos0の座標のまま、Pos1あるいはPos4の撮像位置で撮像すべき部分投影を被検査体回転基台12の移動のみで幾何学的合同を得るには、図5において被検査体5を所定の角度β旋回させる必要性が生じる。しかしながら、隣接する撮像位置のなす角度をα、初期位置Pos0とPos4のなす角度をβとすると、α<βであるから被検査体5がX線管1先端に衝突する危険性が高まることは明らかである。したがって、図5のPos2、Pos3の座標へ二次元検出器20を移動せしめる駆動機構を有することは衝突の危険性を回避する上で有益である。   Usually, the highest element that controls the magnification of the projected image is the relationship between the distance between the X-ray focal point 2 and the object 5 to be inspected held on the rotary base 12. In FIG. 5, the magnification is dOF. / DFD. With a finite device size (shielding structure), it is necessary to reduce dOF as the enlargement ratio increases. If an attempt is made to acquire a projection image of the entire object to be inspected with a high magnification ratio in order to obtain a high-definition reconstructed image with a finite detector size, the number of partial imagings for partial projection increases. Here, in order to obtain the geometric congruence only by moving the inspected object rotation base 12, the partial projection to be imaged at the imaging position Pos1 or Pos4 while keeping the coordinates of the initial position Pos0 on the two-dimensional detector 20. In FIG. 5, it is necessary to turn the object to be inspected 5 by a predetermined angle β. However, if α is an angle formed by adjacent imaging positions and β is an angle formed by the initial positions Pos0 and Pos4, the risk of the object 5 to be inspected colliding with the tip of the X-ray tube 1 is increased since α <β. it is obvious. Therefore, having a drive mechanism that moves the two-dimensional detector 20 to the coordinates Pos2 and Pos3 in FIG. 5 is beneficial in avoiding the risk of collision.

上記他の実施形態例によれば、上述実施形態例と同様の効果を奏するとともに、新たに次のような効果が得られる。   According to the above other embodiment examples, the same effects as the above embodiment examples are obtained, and the following effects are newly obtained.

まず、二次元検出器20の旋回量を少なくして被検査体5の位置を移動させて撮像する方法は、X線断層撮像装置の構造の簡略化が図れ、4分割撮像の際も大型の検出器略2枚分を包含する奥行きの遮蔽構造であれば十分な空間とみなせるから、装置サイズをコンパクトにすることが可能となる。
また、シンメトリックな偶数分割撮像方式は、対称面の片方のみの投影データを用いて再構成計算をする撮像法を選択した場合、奇数分割撮像より効率よく取得したデータを活用することができる。
また、二次元検出器20の中には、被検査体が何も映っていない白画像又は黒画像を元にキャリブレーションを行なう必要があるものがあり、このキャリブレーションはX線源の焦点位置と二次元検出器20の位置関係が変化する度に行なう必要がある。しかし、上記他の実施形態例では、二次元検出器20の位置を変化させずに撮像することも可能であるので、一度キャリブレーションしただけで、各ポジション(撮像位置)における撮像が可能となる。
また、二次元検出器20を固定したまま、撮像を行える分、定盤が撓むことがなく幾何学的位置関係を保つことが容易となり、より高精度な撮像を実現できるので、X線断層撮像装置の構成も簡潔なものとなる。
First, the method of imaging by moving the position of the subject 5 while reducing the amount of rotation of the two-dimensional detector 20 simplifies the structure of the X-ray tomographic imaging apparatus, and is large even in quadrant imaging. Since a depth shielding structure including approximately two detectors can be regarded as a sufficient space, the apparatus size can be made compact.
The symmetrical even-division imaging method can utilize data acquired more efficiently than odd-division imaging when an imaging method that performs reconstruction calculation using projection data of only one of the symmetry planes is selected.
Some of the two-dimensional detectors 20 need to be calibrated based on a white image or a black image in which nothing is reflected, and this calibration is performed by adjusting the focal position of the X-ray source. And the two-dimensional detector 20 must be changed each time the positional relationship changes. However, in the above-described other embodiment examples, it is possible to take an image without changing the position of the two-dimensional detector 20, so that it is possible to take an image at each position (imaging position) only by performing calibration once. .
In addition, since the imaging can be performed with the two-dimensional detector 20 fixed, it is easy to maintain the geometric positional relationship without bending the surface plate, and more accurate imaging can be realized. The configuration of the imaging device is also simplified.

一般的に、X線断層撮像装置を用いた検査の分野で公知のオフセットスキャンと呼ばれる撮像法及び被検査体の断層画像の取得は、図5に示した撮像位置Pos1、Pos2の2箇所のみで撮像し合成された投影データか、又は撮像位置Pos3、Pos4の2箇所のみで撮像し合成された投影データを用いて行われる。2分割撮像ならPos2又はPos3の投影のどちらかを用いればよい。上記X線焦点から初期位置Pos0の二次元検出器20に引いた垂線を含み被検査体回転軸と平行な面を対称軸(面)として4を越える偶数箇所でシンメトリック(対称)に分割撮像する場合、対称面を境界としたPos2側,Pos3側のどちらか片方の投影データを用いることにより、2又は4箇所撮像の場合と同様にオフセットスキャン法の概念が適用可能である。   In general, an imaging method known as an offset scan known in the field of examination using an X-ray tomographic imaging apparatus and acquisition of a tomographic image of an object to be inspected are only at the two imaging positions Pos1 and Pos2 shown in FIG. This is performed using projection data that has been picked up and combined, or projection data that has been picked up and combined at only two positions of image pickup positions Pos3 and Pos4. In the case of two-division imaging, either Pos2 or Pos3 projection may be used. Symmetrical (symmetrical) division imaging at an even number exceeding 4 with a plane parallel to the inspection object rotation axis and including a perpendicular drawn from the X-ray focal point to the two-dimensional detector 20 at the initial position Pos0. In this case, by using projection data on either the Pos2 side or the Pos3 side with the symmetry plane as a boundary, the concept of the offset scan method can be applied as in the case of imaging at two or four points.

次に、図7を参照して、二次元検出器20で撮像された投影像を、これと内接する仮想円筒面60に射影変換する方法について説明する。図7において、仮想円筒面60は二次元検出器20の水平方向の2×G個(=偶数個)の水平方向総画素を2分する中点で接するものとし、便宜上その中点より片側の半分の領域について示されている。また二次元検出器20の水平方向総画素を2分する中点を含む検出面20a上の水平線は、図5に示すようにX線焦点2から二次元検出器20に降ろした垂線と各撮像位置において交わっている。本例では、二次元検出器20のG画素の情報を、仮想円筒面60のG画素(二次元検出器20と同数)の情報へ重み付けをしながら、射影変換する手法である。   Next, with reference to FIG. 7, a method for projective transformation of the projected image captured by the two-dimensional detector 20 to the virtual cylindrical surface 60 inscribed therein will be described. In FIG. 7, the virtual cylindrical surface 60 is assumed to contact at a midpoint that bisects 2 × G (= even) horizontal total pixels in the horizontal direction of the two-dimensional detector 20. Half of the area is shown. Further, the horizontal line on the detection surface 20a including the midpoint that bisects the total horizontal pixels of the two-dimensional detector 20 includes a perpendicular line dropped from the X-ray focal point 2 to the two-dimensional detector 20, as shown in FIG. Cross in position. In this example, the G pixel information of the two-dimensional detector 20 is projectively transformed while weighting the G pixel information (the same number as the two-dimensional detector 20) of the virtual cylindrical surface 60.

ここで、Lは検出面20aの水平方向の2分割した大きさ、X線焦点Oから二次元検出器20の検出面20aと仮想円筒面60との接点までの距離をR、仮想円筒面60の検出面の角度θ、検出面20aの水平方向の画素ピッチ(画素サイズ)をδ、仮想円筒面60の水平方向の隣接する画素間のなす角度をΔθとすると、諸元の定義にのっとれば、
L=G×δ、
θ=arctan(L/R)、
Δθ=θ/G(θ<45°と仮定する)
である。
Here, L is the size of the detection surface 20a divided in two in the horizontal direction, R is the distance from the X-ray focal point O to the contact point between the detection surface 20a of the two-dimensional detector 20 and the virtual cylindrical surface 60, and the virtual cylindrical surface 60 If the angle θ of the detection surface is δ, the pixel pitch (pixel size) in the horizontal direction of the detection surface 20a is δ, and the angle between adjacent pixels in the horizontal direction of the virtual cylindrical surface 60 is Δθ, ,
L = G × δ,
θ = arctan (L / R),
Δθ = θ / G (assuming θ <45 °)
It is.

X線焦点Oから二次元検出器20の検出面20aと仮想円筒面60との接点までの距離をR、検出面20aの水平方向の画素ピッチをδ、仮想円筒面60の水平方向の等角度な画素ピッチをΔθ、検出面20aの水平方向の画素において上記接点からn番目の画素の画素値をPn、仮想円筒面60の水平方向の画素において上記接点からn番目の画素の画素値をTnとするとき、二次元検出器20で得られた水平方向の投影像を仮想円筒面60に射影変換するための計算式は、以下のように求められる。   The distance from the X-ray focal point O to the contact point between the detection surface 20a of the two-dimensional detector 20 and the virtual cylindrical surface 60 is R, the horizontal pixel pitch of the detection surface 20a is δ, and the horizontal angle of the virtual cylindrical surface 60 is equal. The pixel value of the nth pixel from the contact point in the horizontal pixel of the detection surface 20a is Pn, and the pixel value of the nth pixel from the contact point in the horizontal pixel of the virtual cylindrical surface 60 is Tn. Then, a calculation formula for projectively transforming the horizontal projection image obtained by the two-dimensional detector 20 onto the virtual cylindrical surface 60 is obtained as follows.

まず、二次元検出器20の水平方向において、接点からn番目の画素までの距離Ln、Ln−1は、
Ln=R×tan(n×Δθ)
Ln−1=R×tan{(n−1)×Δθ}
で表される。
First, in the horizontal direction of the two-dimensional detector 20, the distances Ln and Ln−1 from the contact point to the nth pixel are:
Ln = R × tan (n × Δθ)
Ln−1 = R × tan {(n−1) × Δθ}
It is represented by

これらの定義及び計算式から、上記中点(接点)よりn番目の二次元検出器20上の等間隔な画素情報をPn、等角度ピッチな水平方向総画素数が等しい仮想円筒面60の同じく当該中点からn番目の画素情報をTnとすると、θが45度でG=10の場合は、当該垂線を含み被検査体回転軸と直交する平面上及びその近傍で、重み付けを考慮した一意的な関係が以下のように表される。   From these definitions and calculation formulas, the pixel information on the n-th two-dimensional detector 20 from the middle point (contact point) on the two-dimensional detector 20 is Pn, and the virtual cylindrical surface 60 with the same total number of pixels in the horizontal direction with the same angular pitch is also the same. Assuming that the nth pixel information from the midpoint is Tn, when θ is 45 degrees and G = 10, a unique value that considers weighting on and near the plane that includes the perpendicular and is orthogonal to the rotation axis of the inspection object The general relationship is expressed as follows.

Figure 0004894359
Figure 0004894359

このように、仮想円筒面60の角度θと二次元検出器20の画素数Gが決まれば、それぞれについて(1)式に類似した一意的な関係式が求められる。   Thus, if the angle θ of the virtual cylindrical surface 60 and the number of pixels G of the two-dimensional detector 20 are determined, a unique relational expression similar to the expression (1) is obtained for each.

ところで、仮想円筒面60の等角度ピッチな水平方向総画素数が二次元検出器20の水平方向に等間隔な総画素数と等しいと仮定する方法以外に、例えば両者の画素サイズを等しくかつ等角度ピッチな仮想円筒面への射影変換法も考えられる。しかし、二次元検出器の検出面の側端部の一部が互いに重なる分割撮像の場合、仮想円筒面へ射影された部分投影を合成する際に、円筒面上の半端な画素座標での貼り合わせを避けようとすると、その反作用で実在する二次元検出器側の貼り合わせ位置の演算が込み入って複雑となる不利益(デメリット)や、図5,6より明らかなように内接仮想円弧の方が二次元検出器より短いから、元の二次元検出器で得られた投影の情報量を減じさせるデメリット等が生じてしまう。   By the way, other than the method of assuming that the total number of pixels in the horizontal direction of the virtual cylindrical surface 60 with equal angular pitch is equal to the total number of pixels equally spaced in the horizontal direction of the two-dimensional detector 20, for example, the pixel sizes of both are equal and equal. A projective transformation method to a virtual cylindrical surface with an angular pitch is also conceivable. However, in the case of divided imaging where part of the side edges of the detection surface of the two-dimensional detector overlap each other, when combining the partial projections projected onto the virtual cylindrical surface, pasting with half-end pixel coordinates on the cylindrical surface is performed. If you try to avoid alignment, the calculation of the bonding position on the two-dimensional detector side that actually exists due to the reaction will be complicated and disadvantageous (demerit) will become complicated, as shown in FIGS. Since this is shorter than the two-dimensional detector, there is a demerit that reduces the amount of projection information obtained by the original two-dimensional detector.

これに対し、上述した実施形態によれば、仮想円筒面60の水平方向総画素数を二次元検出器20の水平方向総画素数と等しいと定義して射影変換を行うことによって、射影変換後も元の二次元検出器20で撮像した投影像の情報量を損なわず、分割投影像貼り合わせの複雑さも軽減することができる。   On the other hand, according to the above-described embodiment, by performing the projective transformation by defining the total number of horizontal pixels of the virtual cylindrical surface 60 as being equal to the total number of horizontal pixels of the two-dimensional detector 20, the post-projection transformation is performed. In addition, the information amount of the projection image captured by the original two-dimensional detector 20 is not impaired, and the complexity of pasting the divided projection images can be reduced.

なお、本願特許請求の範囲及び明細書において、X線断層撮像方法を実現する各過程(ステップ)は、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。   In the claims and the specification of the present application, each process (step) for realizing the X-ray tomographic imaging method is not necessarily performed in time series according to the described order, but is necessarily performed in time series. Even if it is not, it includes processing executed in parallel or individually.

また、上述実施の形態例において、回転基台3の回転角度は必ずしも360°である必要はなく、例えば270°等でもよい。   In the above-described embodiment, the rotation angle of the rotation base 3 is not necessarily 360 °, and may be 270 °, for example.

また、被検査体の投影像を捕獲する手段は、X線二次元検出器に限らず、ラインセンサー等の一次元検出器でもよい。   The means for capturing the projected image of the object to be inspected is not limited to the X-ray two-dimensional detector, but may be a one-dimensional detector such as a line sensor.

また、以上の説明で挙げた使用材料及びその量、処理時間及び寸法などの数値的条件は好適例に過ぎず、説明に用いた各図における寸法形状及び配置関係も概略的なものである。すなわち、本発明は、この実施の形態に限られるものではない。   Moreover, the numerical conditions such as the materials used, the amount thereof, the processing time, and the dimensions mentioned in the above description are only suitable examples, and the dimensional shapes and arrangement relationships in the drawings used for the description are also schematic. That is, the present invention is not limited to this embodiment.

本発明の一実施の形態例によるX線断層撮像装置の概略上面図である。1 is a schematic top view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明の一実施の形態例によるX線断層撮像装置の概略側面図である。1 is a schematic side view of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 二次元検出器を面対称な偶数箇所の撮像位置に移動させた例を示す図である。It is a figure which shows the example which moved the two-dimensional detector to the imaging position of the even number place of plane symmetry. 本発明の一実施の形態例に係るX線断層撮像装置のブロック構成図である。1 is a block configuration diagram of an X-ray tomographic imaging apparatus according to an embodiment of the present invention. 本発明のX線断層撮像方法の説明に供する図である。It is a figure where it uses for description of the X-ray tomographic imaging method of this invention. 図5に示したX線断層撮像装置の要部の一例を示す図である。It is a figure which shows an example of the principal part of the X-ray tomographic imaging apparatus shown in FIG. 本発明に係る射影変換の説明に供する図である。It is a figure where it uses for description of the projective transformation which concerns on this invention. 従来のX線二次元検出器を平行移動させて撮像する方法を説明する概略図(鳥瞰図)である。It is the schematic (bird's-eye view) explaining the method to translate and image the conventional X-ray two-dimensional detector. 従来のX線二次元検出器を平行移動させて撮像する方法を説明する概略図(上面図)である。It is the schematic (top view) explaining the method to translate and image the conventional X-ray two-dimensional detector.

符号の説明Explanation of symbols

1…X線管、2…焦点、2a…第1照射野、3…擬似焦点、3a…第2照射野、4…円錐中心軸(X軸)、5…被検査体、5a,5b…被検査体の移動位置、12…回転基台、20…2次元検出器、20a…検出面、42,43…機構制御部、44…制御操作卓、45…投影像記憶部、46…再構成計算用計算機、47…再構成結果表示装置、50…被検査体初期位置、51…対称軸(面)、60…仮想円筒面、Pos1,2,3,4…二次元検出器の移動位置   DESCRIPTION OF SYMBOLS 1 ... X-ray tube, 2 ... Focus, 2a ... 1st irradiation field, 3 ... Pseudo focus, 3a ... 2nd irradiation field, 4 ... Conical center axis (X axis), 5 ... Test object, 5a, 5b ... Cover The moving position of the test object, 12: Rotation base, 20 ... Two-dimensional detector, 20a ... Detection surface, 42, 43 ... Mechanism control unit, 44 ... Control console, 45 ... Projection image storage unit, 46 ... Reconstruction calculation Computer 47: Reconstruction result display device 50 ... Inspected object initial position 51 ... Symmetry axis (plane) 60 ... Virtual cylindrical surface Pos 1, 2, 3, 4 ... Moving position of two-dimensional detector

Claims (4)

X線源と、被検査体透過したX線を検出して該被検査体の投影像を撮像する二次元検出手段と、前記X線源のX線焦点と前記二次元検出手段との間に配置され前記被検査体を載置して前記X線焦点から前記二次元検出手段の検出面に降ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と各角度位相毎に撮像された投影像より前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有するX線断層撮像装置であって、
前記制御手段は、前記検出面が前記被検査体の回転軸と平行で前記X線焦点を通る直線を中心軸とした仮想円筒面に外接し、かつ、前記X線焦点から前記二次元検出手段の初期位置における検出面に降ろした垂線を含み前記被検査体の初期位置における回転軸と平行な面に関して面対称であって、前記検出面の側端部が一部重なる第1及び第2の位置に前記二次元検出手段を旋回機構により旋回させ、旋回後の各撮像位置において各角度位相の投影像を撮像し、
また、前記第1及び/又は第2の位置において前記被検査体の前記検出面に投影されなかった部分が前記第1及び/又は第2の位置にて前記検出面に投影されるよう、前記回転手段を、前記X線焦点から前記初期位置における回転軸までの距離と同じ距離を保ちつつ前記面を挟んでそれぞれ前記第1及び/又は第2の位置の反対領域へ移動機構により移動させ、かつ、前記回転手段の移動量に基づいて前記回転手段の初期角度位相を変化させ、前記第1及び第2の位置において移動後の回転手段上の前記被検査体の各角度位相の投影像を撮像し、
前記各撮像位置において得られた各角度位相の投影像を、前記仮想円筒面に射影し、射影して得られた投影像から再構成計算を行ない、前記被検査体の内部構造データを再構成す
線断層撮像装置。
Between the X-ray source, a two-dimensional detector means for capturing a projection image of the detection to obtaining step body transmitted X-rays the object to be inspected, the X-ray focal point of the X-ray source and the two-dimensional detector rotating means for rotating at arranged the inspection object placed to perpendicular to that rotation axis set angular displacement about the the perpendicular dropped from the X-ray focal point to the test exit face of the two-dimensional detecting unit to , an X-ray tomographic imaging apparatus and a control means for controlling to reconstruct the internal structure data of the test subject than the projected image captured in each angular phase,
The control means circumscribes a virtual cylindrical surface whose center plane is a straight line that passes through the X-ray focal point and is parallel to the rotation axis of the object to be inspected, and from the X-ray focal point, the two-dimensional detection unit said it includes perpendicular dropped to the detection surface in the initial position a plane symmetrical with respect to a plane parallel to the rotational axis in the initial position of the device under test, the detection surface side end portion first and second overlapping part of the The two-dimensional detection means is turned to a position by a turning mechanism, and a projected image of each angular phase is taken at each imaging position after turning,
Further, the portion that is not projected onto the detection surface of the object to be inspected at the first and / or second position is projected onto the detection surface at the first and / or second position. The rotating means is moved by the moving mechanism to the regions opposite to the first and / or second positions, respectively, across the surface while maintaining the same distance as the distance from the X-ray focal point to the rotation axis at the initial position, And the initial angle phase of the said rotation means is changed based on the moving amount | distance of the said rotation means, and the projection image of each angle phase of the said to-be-inspected object on the rotation means after the movement in the said 1st and 2nd position is obtained. Image
The projection image of each angular phase obtained at each imaging position is projected onto the virtual cylindrical surface, the reconstruction calculation is performed from the projection image obtained by the projection , and the internal structure data of the inspection object is reconstructed you
X- ray tomographic imaging apparatus.
前記制御手段は、前記二次元検出手段の水平方向の画素に得られた前記各撮像位置において各角度位相の被検査体を撮像して得られた投影像を、前記被検査体の回転軸と平行で前記X線焦点を通る直線を中心軸に持ち、かつ、水平方向の画素の総数が前記二次元検出手段の水平方向の総画素数と等しい前記仮想円筒面に前記二次元検出手段上の一個か又は2個以上の相当画素情報を按分にサンプリングしつつ射影し、
前記射影された各投影像を合成し得られた投影像を用いて再構成計算を行い、前記被検査体の内部構造データを再構成する
求項に記載のX線断層撮像装置。
The control means uses a projection image obtained by imaging an object to be inspected at each angle phase at each imaging position obtained by a horizontal pixel of the two-dimensional detection means as a rotation axis of the object to be inspected. has a straight line passing through the X-ray focal point parallel to the central axis, and the horizontal pixel total number on the two-dimensional detecting unit to the imaginary cylindrical surface is equal to the total number of pixels in the horizontal direction of the two-dimensional detector Project one or more equivalent pixel information while sampling well.
Reconfigures calculated using the projected shadow image which is obtained by combining the projected shadow image which is the projection, to reconstruct the internal structure data of the object to be inspected
X-ray tomographic imaging apparatus according to Motomeko 1.
X線源と、被検査体透過したX線を検出して該被検査体の投影像を撮像する二次元検出手段と、前記X線源のX線焦点と前記二次元検出手段との間に配置され前記被検査体を載置して前記X線焦点から前記二次元検出手段の検出面に降ろした垂線に直交する回転軸を中心に設定された角度変位で回転する回転手段と、各角度位相毎に撮像された投影像より前記被検査体の内部構造データを再構成する制御を行う制御手段と、を有するX線断層撮像装置のX線断層撮像方法であって、
前記制御手段により、前記検出面が前記被検査体の回転軸と平行で前記X線焦点を通る直線を中心軸とした仮想円筒面に外接し、かつ、前記X線焦点から前記二次元検出手段の初期位置における検出面に降ろした垂線を含み前記被検査体の初期位置における回転軸と平行な面に関して面対称であって、前記検出面の側端部が一部重なる第1及び第2の位置に前記二次元検出手段を旋回機構により旋回させるステップと、
旋回後の各撮像位置において各角度位相の投影像を撮像するステップと、
前記第1及び/又は第2の位置において前記被検査体の前記検出面に投影されなかった部分が前記第1及び/又は第2の位置にて前記検出面に投影されるよう、前記回転手段を、前記X線焦点から前記初期位置における回転軸までの距離と同じ距離を保ちつつ前記面を挟んでそれぞれ前記第1及び/又は第2の位置の反対領域へ移動機構により移動させるステップと、
前記回転手段の移動量に基づいて前記回転手段の初期角度位相を変化させるステップと、
前記第1及び第2の位置において移動後の回転手段上の前記被検査体の各角度位相の投影像を撮像するステップと、
前記各撮像位置において得られた各角度位相の投影像を、前記仮想円筒面に射影し、射影して得られた投影像から再構成計算を行ない、前記被検査体の内部構造データを再構成するステップと
を有するX線断層撮像方法。
Between the X-ray source, a two-dimensional detector means for capturing a projection image of the detection to obtaining step body transmitted X-rays the object to be inspected, the X-ray focal point of the X-ray source and the two-dimensional detector rotating means for rotating at arranged the inspection object placed to perpendicular to that rotation axis set angular displacement about the the perpendicular dropped from the X-ray focal point to the test exit face of the two-dimensional detecting unit to An X-ray tomographic imaging method for an X-ray tomographic imaging apparatus, comprising: a control unit that performs control to reconstruct the internal structure data of the object to be inspected from projection images captured for each angular phase;
The control means circumscribes the virtual cylindrical surface whose center plane is a straight line passing through the X-ray focal point and parallel to the rotation axis of the object to be inspected, and from the X-ray focal point to the two-dimensional detection unit said it includes perpendicular dropped to the detection surface in the initial position a plane symmetrical with respect to a plane parallel to the rotational axis in the initial position of the device under test, the detection surface side end portion first and second overlapping part of the Turning the two-dimensional detection means to a position by a turning mechanism;
Capturing a projected image of each angular phase at each imaging position after turning;
The rotating means so that a portion of the object to be inspected that is not projected onto the detection surface at the first and / or second position is projected onto the detection surface at the first and / or second position. Are moved by a moving mechanism to the regions opposite to the first and / or second positions, respectively, with the surface being held while maintaining the same distance as the distance from the X-ray focal point to the rotation axis at the initial position;
Changing the initial angle phase of the rotating means based on the amount of movement of the rotating means;
Capturing a projected image of each angular phase of the object to be inspected on the rotating means after movement at the first and second positions;
The projection image of each angular phase obtained at each imaging position is projected onto the virtual cylindrical surface, the reconstruction calculation is performed from the projection image obtained by the projection , and the internal structure data of the inspection object is reconstructed the method comprising the steps of,
X-ray tomographic imaging method that have a.
前記制御手段により、前記二次元検出手段の水平方向の画素に得られた前記各撮像位置において各角度位相の被検査体を撮像して得られた投影像を、前記被検査体の回転軸と平行で前記X線焦点を通る直線を中心軸に持ち、かつ、水平方向の画素の総数が前記二次元検出手段の水平方向の総画素数と等しい前記仮想円筒面に前記二次元検出手段上の一個か又は2個以上の相当画素情報を按分にサンプリングしつつ射影し、A projection image obtained by imaging the object to be inspected at each angular phase at each imaging position obtained by the control means on the pixels in the horizontal direction of the two-dimensional detection means is used as a rotation axis of the object to be inspected. A parallel straight line passing through the X-ray focal point is a central axis, and the total number of pixels in the horizontal direction is equal to the total number of pixels in the horizontal direction of the two-dimensional detection unit on the two-dimensional detection unit. Project one or more equivalent pixel information while sampling well.
前記射影された各投影像を合成し得られた投影像を用いて再構成計算を行い、前記被検査体の内部構造データを再構成するReconstruction calculation is performed using the projection images obtained by combining the projected images, and the internal structure data of the object to be inspected is reconstructed.
請求項3に記載のX線断層撮像方法。The X-ray tomographic imaging method according to claim 3.
JP2006156352A 2006-06-05 2006-06-05 X-ray tomographic imaging apparatus and X-ray tomographic imaging method Expired - Fee Related JP4894359B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006156352A JP4894359B2 (en) 2006-06-05 2006-06-05 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006156352A JP4894359B2 (en) 2006-06-05 2006-06-05 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Publications (2)

Publication Number Publication Date
JP2007322384A JP2007322384A (en) 2007-12-13
JP4894359B2 true JP4894359B2 (en) 2012-03-14

Family

ID=38855329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006156352A Expired - Fee Related JP4894359B2 (en) 2006-06-05 2006-06-05 X-ray tomographic imaging apparatus and X-ray tomographic imaging method

Country Status (1)

Country Link
JP (1) JP4894359B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6345053B2 (en) * 2014-09-12 2018-06-20 キヤノン株式会社 Tomographic imaging system
WO2017003665A1 (en) * 2015-06-30 2017-01-05 Illinois Tool Works Inc. Inline x-ray measurement apparatus and method
US9897559B2 (en) * 2015-12-22 2018-02-20 Bruker Axs, Inc. Method for collecting accurate X-ray diffraction data with a scanning two-dimensional detector
CN109738465A (en) * 2019-03-07 2019-05-10 北京航星机器制造有限公司 A kind of CT detection device and system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141346A (en) * 1984-12-13 1986-06-28 株式会社東芝 Tomographic method
JP2000201920A (en) * 1999-01-19 2000-07-25 Fuji Photo Film Co Ltd Photographed image data acquiring method and photographed image data acquiring device
EP2915488B1 (en) * 2002-03-19 2019-06-05 Medtronic Navigation, Inc. Computer tomography with a detector following the movement of a pivotable x-ray source
AU2003262726A1 (en) * 2002-08-21 2004-03-11 Breakaway Imaging, Llc Apparatus and method for reconstruction of volumetric images in a divergent scanning computed tomography system

Also Published As

Publication number Publication date
JP2007322384A (en) 2007-12-13

Similar Documents

Publication Publication Date Title
JP5783987B2 (en) Radiography equipment
JP2012200567A (en) Radiographic system and radiographic method
US7359479B2 (en) Radiographic apparatus
JP5024973B2 (en) X-ray topography equipment
JP4561990B2 (en) X-ray equipment
JP5060862B2 (en) Tomography equipment
JP4894359B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP5056284B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
WO2019239624A1 (en) X-ray imaging device
WO2012169426A1 (en) Radiography system
WO2012169427A1 (en) Radiography system
JP4788272B2 (en) X-ray tomographic imaging apparatus and X-ray tomographic imaging method
JP2005134213A (en) X-ray tomographic method and device
JP2006266754A (en) Method and system for x-ray tomographic imaging
JP2005292047A (en) X-ray tomographic imaging device, and x-ray tomographic imaging method
WO2012147749A1 (en) Radiography system and radiography method
JP5138279B2 (en) Computed tomography equipment
JP4165319B2 (en) Computer tomography method and apparatus
US20240057955A1 (en) System and method for incorporating lidar-based techniques with a computed tomography system
US20240099682A1 (en) X-ray phase imaging apparatus and display method of preview image in x-ray phase imaging apparatus
WO2013084659A1 (en) Radiography device
JP2004340630A (en) Computer tomography, and computer tomographic device
JP2003344311A (en) Method and apparatus for x-ray tomography
US20240102945A1 (en) X-ray phase imaging apparatus and display method of preview image in x-ray phase imaging apparatus
WO2013084657A1 (en) Radiation imaging device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees