JP4884959B2 - Optical digital transmission system and method - Google Patents

Optical digital transmission system and method Download PDF

Info

Publication number
JP4884959B2
JP4884959B2 JP2006353949A JP2006353949A JP4884959B2 JP 4884959 B2 JP4884959 B2 JP 4884959B2 JP 2006353949 A JP2006353949 A JP 2006353949A JP 2006353949 A JP2006353949 A JP 2006353949A JP 4884959 B2 JP4884959 B2 JP 4884959B2
Authority
JP
Japan
Prior art keywords
modulation
quaternary
receiver
transmission
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006353949A
Other languages
Japanese (ja)
Other versions
JP2008167126A (en
Inventor
寛和 久保田
裕三 宮川
孝行 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2006353949A priority Critical patent/JP4884959B2/en
Publication of JP2008167126A publication Critical patent/JP2008167126A/en
Application granted granted Critical
Publication of JP4884959B2 publication Critical patent/JP4884959B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Communication Control (AREA)
  • Optical Communication System (AREA)

Description

本発明は、ディジタルデータ信号を、光キャリアを変調することにより伝送する光ディジタル伝送システムに利用する。特に、光伝送路の特性の変動に対応する技術に関する。   The present invention is used in an optical digital transmission system that transmits a digital data signal by modulating an optical carrier. In particular, the present invention relates to a technique for dealing with fluctuations in characteristics of optical transmission lines.

近年の光ディジタル伝送システムの高速化のために光多値伝送方式が採用され始めているが、光多値伝送方式では伝送路に要求される条件が厳しくなる。また、送受信回路が複雑化してくる。   In recent years, an optical multilevel transmission system has begun to be adopted to increase the speed of an optical digital transmission system. However, in the optical multilevel transmission system, conditions required for a transmission path become severe. In addition, the transmission / reception circuit becomes complicated.

簡単な回路構成による光ディジタル伝送では、直接検波(direct detection)を使用する。直接検波を使用すると2乗検波となるため振幅の正負(位相)の判定はできないが回路は簡単になる。この場合には、コヒーレント検波の一つであるホモダイン検波を用いることで位相成分を抽出することができる。   In optical digital transmission with a simple circuit configuration, direct detection is used. When direct detection is used, square detection is performed, so that the positive / negative (phase) of the amplitude cannot be determined, but the circuit becomes simple. In this case, the phase component can be extracted by using homodyne detection which is one of coherent detection.

一方、無線ディジタル伝送、電気のディジタル伝送においては大容量伝送方式としてパルス振幅変調方式(Pulse Amplitude Modulation :PAM)、位相変調方式(Phase Shift Keying :PSK)、直交振幅強度変調方式(Quadrature Amplitude Modulation :QAM)等が使用される(例えば、非特許文献1参照)。   On the other hand, in wireless digital transmission and electrical digital transmission, pulse amplitude modulation (PAM), phase shift keying (PSK), quadrature amplitude amplitude modulation (Quadrature Amplitude Modulation): QAM) etc. are used (for example, refer nonpatent literature 1).

光ディジタル伝送においても3値のデュオバイナリ変調方式(Duobinary Modulation)、4値の4相位相変調方式1(Quadruple Phase Shift Keying :QPSK)は確立された技術である(例えば、非特許文献2参照)。さらに、8相PSKや8QAM、16QAM等より多値化した方式の検討も行われている(例えば、非特許文献3〜5参照)。   In optical digital transmission, ternary duobinary modulation and quadruple phase shift keying (QPSK) are established techniques (see Non-Patent Document 2, for example). . Furthermore, a multi-value scheme is being studied from 8-phase PSK, 8QAM, 16QAM, and the like (for example, see Non-Patent Documents 3 to 5).

光ディジタル伝送においても無線技術をとり入れて直交振幅強度変調(QAM)方式を行うことも可能だが、まだ光通信の広帯域性を使うところまでは成熟していない(例えば、非特許文献6参照)。   Even in optical digital transmission, it is possible to adopt a quadrature amplitude intensity modulation (QAM) system by adopting wireless technology, but it has not yet matured until it uses the broadband property of optical communication (for example, see Non-Patent Document 6).

PROAKIS著(坂庭好一訳)「ディジタルコミュニケーション」科学技術出版、1999年Proakis (translated by Yoshikazu Sakaiba) “Digital Communication” Science and Technology Publishing, 1999 A.Sano他、ECOC2006、paper Mo3.2.1、2006年A. Sano et al., ECOC 2006, paper Mo 3.2.1, 2006 E.Agrell and M.Karlsson、Optics Express、Vol.14 No.4,p.1700、2006年E. Agrell and M.M. Karlsson, Optics Express, Vol. No. 14 4, p. 1700, 2006 C.Kim and G.Li、Optics Express Vol.12 No.15、p.3415、2004年C. Kim and G.K. Li, Optics Express Vol. 12 No. 15, p. 3415, 2004 N.Kikuchi他、ECOC2006、paper Tu3.2.1、2006年N. Kikuchi et al., ECOC 2006, paper Tu3.2.1, 2006 M.Nakazawa他、Electron Lett.26 No.12M.M. Nakazawa et al., Electron Lett. 26 No. 12 C.Rasmussen他、JLT 22、203−207、2004年C. Rasmussen et al., JLT 22, 203-207, 2004

伝送路の伝送特性にあわせて信号誤りが生じないように送受信の諸条件を可変することは無線伝送では広く行われているが、光伝送においては光伝送路の状態変化が激しく無かったため、これまでは検討されていない。   Although it is widely used in wireless transmission to vary transmission and reception conditions so that signal errors do not occur according to the transmission characteristics of the transmission line, in optical transmission there has been no significant change in the state of the optical transmission line. Until now, it has not been examined.

しかし、光ネットワークが大規模化されるに伴い、光伝送路においても様々な状態が想定されるようになりつつあるため、光伝送路の状態が常に良好に保たれるとは限らず、光伝送路の状態が悪い場合には通信が不安定になる。   However, as the optical network is scaled up, various states are being assumed in the optical transmission line, so the state of the optical transmission line is not always kept good. Communication becomes unstable when the state of the transmission path is bad.

しかしながら、光デバイスにより構成される光ディジタル伝送用の送受信回路においては回路構成の変更が、スイッチ等の切替えによって容易に実現できるわけではなく、変調方式等の送受信の諸条件を可変することは、電子部品のみにより構成される無線ディジタル伝送または電気のディジタル伝送の送受信回路と比べると難しい。   However, in a transmission / reception circuit for optical digital transmission constituted by an optical device, a change in circuit configuration cannot be easily realized by switching a switch or the like, and varying transmission / reception conditions such as a modulation method, Compared with a wireless digital transmission or electrical digital transmission / reception circuit composed only of electronic components.

本発明は、このような背景の下に行われたものであって、光伝送路の伝送特性に応じて送受信回路を変更することなく送受信の諸条件を変更することができる光ディジタル伝送システムおよび方法を提供することを目的とする。   The present invention has been made under such a background, and an optical digital transmission system capable of changing various conditions of transmission / reception without changing the transmission / reception circuit according to the transmission characteristics of the optical transmission line, and It aims to provide a method.

本発明は、ディジタルデータを多値符号化し光キャリアを変調して送信する送信機と、前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機とを備えた光ディジタル伝送システムであって、本発明の特徴とするところは、前記送信機と前記受信機との間の光伝送路の伝送特性に応じて前記多値符号の多値数または変調方式またはその双方を可変する手段を備えたところにある。   The present invention provides an optical device comprising: a transmitter that multi-value encodes digital data and modulates and transmits an optical carrier; and a receiver that identifies a received signal using a plurality of identification values corresponding to the multi-value encoding. A digital transmission system characterized in that the present invention is characterized in that the multi-level code of the multi-level code and / or the modulation scheme are both in accordance with transmission characteristics of an optical transmission path between the transmitter and the receiver. It is in the place with the means to change.

これによれば、信号処理等を行わずに変調器へのデータ供給のみを変えることによって多値符号の多値数または変調方式またはその双方を変えるため、変調器や復調器などの送受信回路に手を加えること無く、また、信号処理のための電子的処理を行うこと無く、伝送容量を変化させることができる。   According to this, in order to change the multi-value number of the multi-value code and / or the modulation system by changing only the data supply to the modulator without performing signal processing or the like, the transmitter / receiver circuit such as the modulator or demodulator is used. The transmission capacity can be changed without any modification and without performing electronic processing for signal processing.

これにより、光伝送路の伝送特性が劣化した場合には、伝送容量を低減させることにより、送受信間で誤りなく信号を伝達することができる。   Thereby, when the transmission characteristic of the optical transmission line is deteriorated, the signal can be transmitted without error between transmission and reception by reducing the transmission capacity.

例えば、一つまたは複数の前記送信機および前記受信機に対して前記可変する手段を一元的に設けることができる。あるいは、前記可変する手段は、前記送信機または前記受信機に設けることができる。   For example, the variable means can be centrally provided for one or a plurality of the transmitters and the receivers. Alternatively, the variable means can be provided in the transmitter or the receiver.

また、本発明を送信機としての観点から観ることもできる。すなわち、本発明は、多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機に対し、ディジタルデータを多値符号化し光キャリアを変調して送信する送信機であって、本発明の特徴とするところは、自送信機と前記受信機との間の光伝送路の伝送特性に応じて前記多値符号の多値数または変調方式またはその双方を可変する手段を備えたところにある。   The present invention can also be viewed from the viewpoint of a transmitter. That is, the present invention is a transmitter that multi-values digital data and modulates and transmits an optical carrier to a receiver that identifies a received signal using a plurality of identification values corresponding to multi-level coding. A feature of the present invention is that it comprises means for varying the multi-level number of the multi-level code and / or the modulation scheme in accordance with the transmission characteristics of the optical transmission path between the transmitter and the receiver. There is.

また、本発明を受信機としての観点から観ることもできる。すなわち、本発明は、ディジタルデータを多値符号化し光キャリアを変調して送信する送信機から送信された送信信号を受信し、前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機であって、本発明の特徴とするところは、前記送信機と自受信機との間の光伝送路の伝送特性に応じて前記送信機における前記多値符号の多値数または変調方式またはその双方を可変する手段を備えたところにある。   The present invention can also be viewed from the viewpoint of a receiver. That is, the present invention receives a transmission signal transmitted from a transmitter that multi-value encodes digital data and modulates and transmits an optical carrier, and receives a received signal using a plurality of identification values corresponding to the multi-value encoding. The present invention is characterized in that the multi-level number of the multi-level code in the transmitter according to the transmission characteristics of the optical transmission path between the transmitter and the own receiver. Alternatively, a means for changing the modulation system or both is provided.

また、本発明は、ディジタルデータを多値符号化し光キャリアを変調して送信する送信機と、前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機とを備えた光ディジタル伝送システムに適用される光ディジタル伝送方法であって、本発明の特徴とするところは、一つまたは複数の前記送信機および前記受信機を一元的に管理する装置または前記送信機または前記受信機が、前記送信機と前記受信機との間の光伝送路の伝送特性に応じて前記多値符号の多値数または変調方式またはその双方を可変するところにある。   The present invention also includes a transmitter that multi-value encodes digital data and modulates and transmits an optical carrier, and a receiver that identifies a received signal using a plurality of identification values corresponding to the multi-value encoding. An optical digital transmission method applied to an optical digital transmission system, characterized in that the present invention is characterized in that one or a plurality of the transmitter and the receiver are managed in an integrated manner, the transmitter, The receiver is configured to change the multi-level number of the multi-level code and / or the modulation scheme according to transmission characteristics of an optical transmission path between the transmitter and the receiver.

本発明によれば、変調器または復調器などの送受信回路を変更すること無く、簡便に、伝送容量を変更することができるため、光伝送路の伝送特性の変化に関わらず常に良好な通信を確保できる。   According to the present invention, since the transmission capacity can be easily changed without changing a transmission / reception circuit such as a modulator or a demodulator, good communication is always performed regardless of changes in the transmission characteristics of the optical transmission line. It can be secured.

本発明の実施形態を図1〜図23を参照して説明する。図1は本実施形態の伝送容量選択機能のブロック構成図である。図2は本実施形態の伝送容量選択機能の動作を示すフローチャートである。図3は伝送容量選択装置を備えた本実施形態の光ディジタル伝送システムの全体構成図である。図4は伝送容量選択部を備えた送信機を有する本実施形態の光ディジタル伝送システムの全体構成図である。図5は伝送容量選択部を備えた受信機を有する本実施形態の光ディジタル伝送システムの全体構成図である。   An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of the transmission capacity selection function of this embodiment. FIG. 2 is a flowchart showing the operation of the transmission capacity selection function of this embodiment. FIG. 3 is an overall configuration diagram of the optical digital transmission system of this embodiment provided with a transmission capacity selection device. FIG. 4 is an overall configuration diagram of the optical digital transmission system of this embodiment having a transmitter having a transmission capacity selection unit. FIG. 5 is an overall configuration diagram of the optical digital transmission system of this embodiment having a receiver having a transmission capacity selection unit.

本実施形態は、図3に示すように、ディジタルデータを多値符号化し光キャリアを変調して送信する送信機11と、前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機12とを備えた光ディジタル伝送システムであって、特徴とするところは、送信機11と受信機12との間の光伝送路60の伝送特性に応じて前記多値符号の多値数または変調方式またはその双方を可変する伝送容量選択装置10を備えたところにある。   In this embodiment, as shown in FIG. 3, a transmitter 11 that multi-values digital data and modulates and transmits an optical carrier and a received signal using a plurality of identification values corresponding to the multi-value coding are used. An optical digital transmission system including a receiver 12 for identification, which is characterized by the fact that the multi-level code has a plurality of values according to the transmission characteristics of the optical transmission path 60 between the transmitter 11 and the receiver 12. There is a transmission capacity selection device 10 that can change the number of values and / or the modulation method.

伝送容量選択装置10は、図1に示す伝送容量選択機能を有し、伝送特性観測部1は受信機12から伝送特性情報を受け取ることによって伝送特性観測を実施する。伝送容量選択部2は、伝送特性観測部1の観測結果に応じて伝送容量を選択し、その選択結果を送信機11のプリコーダおよび受信機12のデコーダに通知する。   The transmission capacity selection device 10 has a transmission capacity selection function shown in FIG. 1, and the transmission characteristic observation unit 1 performs transmission characteristic observation by receiving transmission characteristic information from the receiver 12. The transmission capacity selection unit 2 selects a transmission capacity according to the observation result of the transmission characteristic observation unit 1, and notifies the selection result to the precoder of the transmitter 11 and the decoder of the receiver 12.

図3では、送信機11および受信機12は1台ずつ描かれているが、複数台の送信機11および受信機12を一台の伝送容量選択装置10が一元的に管理することもできる。   In FIG. 3, one transmitter 11 and one receiver 12 are illustrated, but a plurality of transmitters 11 and receivers 12 can be managed by a single transmission capacity selection device 10.

あるいは、図4に示すように、図1に示す伝送容量選択機能を有する伝送容量選択部21を送信機20に備える構成とすることもできる。あるいは、図5に示すように、図1に示す伝送容量選択機能を有する伝送容量選択部51を受信機50に備えることもできる。   Alternatively, as illustrated in FIG. 4, the transmitter 20 may include a transmission capacity selection unit 21 having the transmission capacity selection function illustrated in FIG. 1. Alternatively, as shown in FIG. 5, the receiver 50 may include the transmission capacity selection unit 51 having the transmission capacity selection function shown in FIG. 1.

いずれの場合でも図2に示すように、受信機12、30または受信機部52からの伝送特性情報を伝送特性観測部1が受け取り、その観測結果(S1)により、伝送特性が良好であれば(S2)、伝送容量を通常に保ち(S3)、伝送特性が良好でなければ(S2)、伝送容量を低減させる(S4)。   In any case, as shown in FIG. 2, if the transmission characteristic observation unit 1 receives the transmission characteristic information from the receiver 12, 30 or the receiver unit 52 and the transmission result is good according to the observation result (S1), (S2) The transmission capacity is kept normal (S3). If the transmission characteristics are not good (S2), the transmission capacity is reduced (S4).

以下では、具体的な伝送容量の選択手法について第一〜第三の実施形態として説明する。   Hereinafter, specific transmission capacity selection methods will be described as first to third embodiments.

(第一の実施形態)
図6に多値光ディジタル伝送の模式構成を示す。プリコーダ70に入力される複数の入出力データ列により変調器71でキャリア光を変調した後、光伝送路60を通して伝送し、復調器72により入出力データ列を復調し、デコーダ73によりデータを復元する。
(First embodiment)
FIG. 6 shows a schematic configuration of multilevel optical digital transmission. The modulator 71 modulates the carrier light with a plurality of input / output data strings input to the precoder 70, and then transmits the modulated light through the optical transmission line 60. The demodulator 72 demodulates the input / output data strings, and the decoder 73 restores the data. To do.

図7は本発明の模式構成例であり、複数の入出力データ列の中から、一部のデータ列のみを使用することで、伝送容量を犠牲とすることにより光伝送路60の伝送特性が悪い場合にも良好な伝送特性を確保する。   FIG. 7 is a schematic configuration example of the present invention. By using only a part of data strings from among a plurality of input / output data strings, the transmission characteristics of the optical transmission line 60 are reduced by sacrificing the transmission capacity. Good transmission characteristics are ensured even in bad cases.

どれだけの伝送容量で通信可能であるかは、データ伝送の開始に先立って、伝送特性観測部1の観測結果に応じて伝送容量選択部2が判断する。この判断方法は、電気通信のモデムや無線通信では広く使用されている方法であり詳細な説明は省略する。   Prior to the start of data transmission, the transmission capacity selection unit 2 determines how much transmission capacity can be communicated according to the observation result of the transmission characteristic observation unit 1. This determination method is a method widely used in telecommunications modems and wireless communications, and will not be described in detail.

図8〜図13に、4値振幅変調(PAM)の送受信回路の模式構成例を示す。図8に示すように、2つの同期した2値のデータ列D1、D2に対し、0、1、2、3の4値のデータ列を発生させるDA(ディジタル→アナログ)変換器を通し、その4値の振幅で振幅変調器80により振幅変調を行えばよい。DA変換器の例として、D1の振幅を乗算器81により2倍したものに加算器82によりD2の振幅を足すことにより、0、1、2、3の4値のデータ列を得ることができる。   8 to 13 show schematic configuration examples of four-value amplitude modulation (PAM) transmission / reception circuits. As shown in FIG. 8, two synchronized binary data strings D1 and D2 are passed through a DA (digital to analog) converter that generates a four-valued data string of 0, 1, 2, and 3, Amplitude modulation may be performed by the amplitude modulator 80 with four amplitudes. As an example of the DA converter, a 4-value data string of 0, 1, 2, and 3 can be obtained by adding the amplitude of D2 by the adder 82 to the amplitude of D1 doubled by the multiplier 81. .

図9は、D1、D2に論理回路(XOR)83を入れてプリコードを行った例である。受信側ではこの4値の振幅を判定し、ディジタル信号に復元するAD(アナログ→ディジタル)変換を行う。その例が図12および図13である。レベル弁別回路84ではD1は判定電圧th2より小さい場合は“0”、その他の場合は“1”と判定できる。すなわち、D1は判定電圧th1およびth3には依存しない。   FIG. 9 shows an example in which a logic circuit (XOR) 83 is inserted into D1 and D2, and precoding is performed. The receiving side determines the amplitude of these four values and performs AD (analog-to-digital) conversion to restore the digital signal. Examples thereof are shown in FIGS. In the level discriminating circuit 84, D1 can be determined to be “0” if it is smaller than the determination voltage th2, and “1” otherwise. That is, D1 does not depend on the determination voltages th1 and th3.

D2は図8の場合には判定電圧th1より小さい、あるいは、判定電圧th2より大きく、かつ、判定電圧th3より小さい場合に“0”、その他の場合に“1”と判定できる。また、図9の場合には判定電圧th1より小さい、あるいは、判定電圧th3より大きい場合に“0”、その他の場合に“1”と判定でき、図9の場合にはD2の判定の際に判定電圧th2の依存性を無くすことができる。このようなコーディングはグレイ符号としてよく知られているものである。図10にデータ列と振幅との相応関係を示し、図11に信号点配置を示す。   In the case of FIG. 8, D2 can be determined to be “0” when it is smaller than the determination voltage th1, or larger than the determination voltage th2 and smaller than the determination voltage th3, and “1” in other cases. Further, in the case of FIG. 9, it can be judged as “0” if it is smaller than the judgment voltage th1 or larger than the judgment voltage th3, and “1” in other cases, and in the case of FIG. The dependency of the determination voltage th2 can be eliminated. Such a coding is well known as a Gray code. FIG. 10 shows the corresponding relationship between the data string and the amplitude, and FIG. 11 shows the signal point arrangement.

図8の場合はD1およびD2に同じデータを入れることにより、データは“00”もしくは“11”となる。4状態の中から振幅の変化が最も大きい2状態のみを使用することができ、雑音など伝送状態の劣化に強くなる。   In the case of FIG. 8, the data becomes "00" or "11" by putting the same data in D1 and D2. Of the four states, only the two states having the largest amplitude change can be used, and the transmission state is strongly deteriorated such as noise.

図9の場合はD2のデータを常に“0”に固定することにより4状態の中から振幅の変化が最も大きい2状態のみを使用することができ、雑音など伝送状態の劣化に強くなる。   In the case of FIG. 9, by always fixing the data of D2 to “0”, it is possible to use only the two states having the largest amplitude change among the four states, and it is strong against deterioration of the transmission state such as noise.

どちらの場合も受信回路に特別な工夫を行うこと無く、光伝送路に雑音が少ない場合には変調方式を大容量の4値ASK、雑音が多い場合には雑音に強い2値ASKと変更することができ、光伝送路の状態が悪い場合にも4値ASKに比較して良好な伝送特性を確保できる。   In both cases, the modulation scheme is changed to a large-capacity four-value ASK when there is little noise in the optical transmission line, and to a two-value ASK that is resistant to noise when there is a lot of noise, without special measures on the receiving circuit. Even when the state of the optical transmission line is bad, it is possible to secure good transmission characteristics as compared with the four-value ASK.

(第二の実施形態)
本実施形態は4値PAMで正負を含めた4振幅値を使用する例である。例えば、図14に示すように、第一の実施形態で得られた0、1、2、3の4値から減算器85により各々1.5を引く(バイアスをかける)ことで発生させることができる。
(Second embodiment)
This embodiment is an example in which four amplitude values including positive and negative values are used in a four-value PAM. For example, as shown in FIG. 14, it is generated by subtracting 1.5 (by applying a bias) each of the four values 0, 1, 2, and 3 obtained in the first embodiment by a subtractor 85. it can.

また、負の振幅は位相反転でもあるので、図15のように位相変調器86および強度変調器87により発生することもできる。ここで位相変調器86と強度変調器87の順序は逆になってもよい。   Further, since the negative amplitude is also a phase inversion, it can be generated by the phase modulator 86 and the intensity modulator 87 as shown in FIG. Here, the order of the phase modulator 86 and the intensity modulator 87 may be reversed.

受信側では位相の判別が必要であることから、図16のように受信光と同じ周波数を持つ局発光88を使用したホモダイン受信を行う。図17のようにDPSK方式として局発光を用いないこともできる。DPSK方式の場合には識別後のデータをデコードするか送信時にプリコーダを使用することにより、元の送信データを復元する(例えば、非特許文献7参照)。   Since it is necessary to determine the phase on the receiving side, homodyne reception using local light 88 having the same frequency as the received light is performed as shown in FIG. As shown in FIG. 17, local light emission may not be used as the DPSK method. In the case of the DPSK method, the original transmission data is restored by decoding the data after identification or by using a precoder at the time of transmission (for example, see Non-Patent Document 7).

本実施形態の場合の振幅レベルを図18に、また、信号点配置を図19に示す。光伝送路の状態が悪い場合は、この中で最も符号間距離の離れている−3と+3の符号位置を使用すればよい。この符号位置を使用するためには図14の場合には、第一の実施形態と同様に、D1、D2に同じデータを入力すればよく、また、図15の場合には振幅変調部のD2に、常に最大透過率となる符号を入力し、データはD1にのみ乗せればよい。   The amplitude level in this embodiment is shown in FIG. 18, and the signal point arrangement is shown in FIG. When the state of the optical transmission line is bad, the code positions of -3 and +3 that are the most distant from each other among the codes may be used. In order to use this code position, in the case of FIG. 14, the same data may be input to D1 and D2 as in the first embodiment, and in the case of FIG. 15, D2 of the amplitude modulation unit. In this case, a code that always has the maximum transmittance is input, and the data only needs to be placed on D1.

また、図14で第一の実施形態のときに使用したグレイコードでコーディングされているならば、第一の実施形態と同様にD1にのみデータを乗せればよい。それらの場合には、変調方式は2値のPSKと等価となり、伝送路の状態が悪い場合にも4値PAMに比較して良好な伝送特性を確保できる。   Further, if it is coded with the Gray code used in the first embodiment in FIG. 14, it is sufficient to place data only on D1 as in the first embodiment. In these cases, the modulation method is equivalent to binary PSK, and even when the transmission path is in a poor state, it is possible to secure good transmission characteristics as compared with the 4-value PAM.

(第三の実施形態)
第三の実施形態は4値位相変調(QPSK)あるいは4値直交振幅変調(QAM)を使用する例である。
(Third embodiment)
The third embodiment is an example using quaternary phase modulation (QPSK) or quaternary quadrature amplitude modulation (QAM).

QPSKあるいは4値QAMを使用した場合には、一つの対角線上の2状態のみを使用すれば、2値のPSK(BPSK)となる。4QAMの場合には符号間距離の遠い対角線を用いる。これは信号点配置に応じて、片方にのみデータを乗せるあるいは双方に同じデータを乗せることにより実現できる。   When QPSK or quaternary QAM is used, binary PSK (BPSK) is obtained if only two states on one diagonal are used. In the case of 4QAM, a diagonal line with a long intersymbol distance is used. This can be realized by putting data on only one side or putting the same data on both sides according to the signal point arrangement.

図20にQPSK変調器の例を示し、図21〜図23に信号点配置の例を示す。なお、図21および図22はQPSKの信号点配置の例であり、図23はQAMの信号点配置の例である。図20のQPSK変調器は、マッハツェンダ干渉計を利用した例である。伝送路の状態が悪い場合にも4値QAM、QPSKに比較して良好な伝送特性を確保できる。   FIG. 20 shows an example of a QPSK modulator, and FIGS. 21 to 23 show examples of signal point arrangement. 21 and 22 show examples of QPSK signal point arrangement, and FIG. 23 shows an example of QAM signal point arrangement. The QPSK modulator of FIG. 20 is an example using a Mach-Zehnder interferometer. Even when the state of the transmission line is bad, it is possible to ensure good transmission characteristics as compared with the four-value QAM and QPSK.

(その他の実施形態)
上述した実施形態において伝送信号はRZパルス化してもよい。また、上述した実施形態では4値のみを示したが、より多値の伝送においても同様の構成を考えることが可能である。例えば、8PSKを伝送路の状態に応じて順次QPSK、BPSKと変調方式を変更していくことなどが可能である。
(Other embodiments)
In the embodiment described above, the transmission signal may be RZ-pulsed. In the above-described embodiment, only four values are shown, but a similar configuration can be considered for multi-value transmission. For example, 8PSK can be sequentially changed to QPSK, BPSK, and the modulation method in accordance with the state of the transmission path.

本発明によれば、光ディジタル伝送システムにおいて光伝送路の伝送特性の変化に対応することができるため、様々な環境下における光ネットワークの構築に寄与することができる。   According to the present invention, since it is possible to cope with a change in transmission characteristics of an optical transmission line in an optical digital transmission system, it is possible to contribute to the construction of an optical network under various environments.

本実施形態の伝送容量選択機能のブロック構成図。The block block diagram of the transmission capacity selection function of this embodiment. 本実施形態の伝送容量選択機能の動作を示すフローチャート。The flowchart which shows operation | movement of the transmission capacity selection function of this embodiment. 伝送容量選択装置を備えた本実施形態の光ディジタル伝送システムの全体構成図。1 is an overall configuration diagram of an optical digital transmission system according to an embodiment including a transmission capacity selection device. 伝送容量選択部を備えた送信機を有する本実施形態の光ディジタル伝送システムの全体構成図。The whole block diagram of the optical digital transmission system of this embodiment which has a transmitter provided with the transmission capacity selection part. 伝送容量選択部を備えた受信機を有する本実施形態の光ディジタル伝送システムの全体構成図。The whole block diagram of the optical digital transmission system of this embodiment which has a receiver provided with the transmission capacity selection part. 多値光ディジタル伝送の模式構成を示す図。The figure which shows the model structure of multi-value optical digital transmission. 本発明の模式構成例を示す図。The figure which shows the schematic structural example of this invention. 第一の実施形態のDA変換器の構成図(その1)。The block diagram of the DA converter of 1st embodiment (the 1). 第一の実施形態のDA変換器の構成図(その2)。The block diagram of the DA converter of 1st embodiment (the 2). データ列と振幅との相応関係を示す図。The figure which shows the corresponding relationship of a data sequence and an amplitude. 信号点配置を示す図。The figure which shows signal point arrangement | positioning. 第一の実施形態のAD変換器の構成例(その1)。1 shows a configuration example (1) of an AD converter according to a first embodiment. 第一の実施形態のAD変換器の構成例(その2)。Configuration example of the AD converter according to the first embodiment (part 2). 第二の実施形態のDA変換器の構成例(その1)。The structural example (the 1) of the DA converter of 2nd embodiment. 第二の実施形態のDA変換器の構成例(その2)。The structural example (the 2) of the DA converter of 2nd embodiment. 第二の実施形態のAD変換器の構成例(その1)。The example of a structure of the AD converter of 2nd embodiment (the 1). 第二の実施形態のAD変換器の構成例(その2)。The structural example (the 2) of AD converter of 2nd embodiment. データ列と振幅との相関関係を示す図。The figure which shows the correlation of a data sequence and an amplitude. 信号点配置を示す図。The figure which shows signal point arrangement | positioning. 第三の実施形態のQPSK変調器の例を示す図。The figure which shows the example of the QPSK modulator of 3rd embodiment. QPSKの信号点配置の例を示す図(その1)The figure which shows the example of the signal point arrangement | positioning of QPSK (the 1) QPSKの信号点配置の例を示す図(その2)。FIG. 5 is a diagram illustrating an example of signal point arrangement of QPSK (part 2); QAMの信号点配置の例を示す図(その3)。FIG. 6 is a diagram illustrating an example of signal point arrangement of QAM (part 3);

符号の説明Explanation of symbols

1 伝送特性観測部
2 伝送容量選択部
10 伝送容量選択装置
11、20、40 送信機
12、30、50 受信機
21、51 伝送容量選択部
22 送信機部
52 受信機部
60 光伝送路
70 プリコーダ
71 変調器
72 復調器
73 デコーダ
80 振幅変調器
81 乗算器
82 加算器
83 論理回路
84 レベル弁別回路
85 減算器
86 位相変調器
87 強度変調器
88 局発光
DESCRIPTION OF SYMBOLS 1 Transmission characteristic observation part 2 Transmission capacity selection part 10 Transmission capacity selection apparatus 11, 20, 40 Transmitter 12, 30, 50 Receiver 21, 51 Transmission capacity selection part 22 Transmitter part 52 Receiver part 60 Optical transmission path 70 Precoder 71 Modulator 72 Demodulator 73 Decoder 80 Amplitude Modulator 81 Multiplier 82 Adder 83 Logic Circuit 84 Level Discriminator 85 Subtractor 86 Phase Modulator 87 Intensity Modulator 88 Local Light

Claims (6)

キャリアを、正負を含めた4値振幅変調、または4値位相変調、または4値直交振幅変調を行う変調手段によって、多値符号化されたディジタルデータで変調して送信する送信機と、
前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機と
を備えた光ディジタル伝送システムにおいて、
前記送信機と前記受信機との間の光伝送路の伝送特性が劣化した場合に、前記変調手段において使用する符号の信号点を、前記4値振幅変調を行う変調手段の場合には、該変調の信号点配置図中の最も符号間距離が離れている2状態のみとし、前記4値位相変調または前記4値直交振幅変調を行う変調手段の場合には、該変調の信号点配置図中の一つの対角線上の2状態のみとする変調方式に変更する手段を備えた
ことを特徴とする光ディジタル伝送システム。
A transmitter for modulating and transmitting an optical carrier with multi-value encoded digital data by modulation means for performing quaternary amplitude modulation including positive and negative, quaternary phase modulation, or quaternary quadrature amplitude modulation;
An optical digital transmission system comprising: a receiver for identifying a received signal using a plurality of identification values corresponding to the multi-level encoding;
When the transmission characteristic of the optical transmission line between the transmitter and the receiver is deteriorated , the signal point of the code used in the modulation unit is changed to the modulation unit that performs the four-value amplitude modulation. In the modulation signal point arrangement diagram, in the case of the modulation means for performing the quaternary phase modulation or the quaternary quadrature amplitude modulation only in the two states where the inter-symbol distance is farthest in the modulation signal point arrangement diagram, An optical digital transmission system comprising means for changing to a modulation system that has only two states on one diagonal line .
前記変更する手段は、一つまたは複数の前記送信機および前記受信機に対して選択した伝送容量を通知する伝送容量選択装置に設けられた請求項1記載の光ディジタル伝送システム。   2. The optical digital transmission system according to claim 1, wherein the changing means is provided in a transmission capacity selection device for notifying one or a plurality of the transmitters and the receivers of the selected transmission capacity. 前記変更する手段は、前記送信機または前記受信機に設けられた請求項1記載の光ディジタル伝送システム。   The optical digital transmission system according to claim 1, wherein the changing unit is provided in the transmitter or the receiver. 多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機に対し、光キャリアを、正負を含めた4値振幅変調、または4値位相変調、または4値直交振幅変調を行う変調手段によって、多値符号化されたディジタルデータで変調して送信する送信機において、
自送信機と前記受信機との間の光伝送路の伝送特性が劣化した場合に、前記変調手段において使用する符号の信号点を、前記4値振幅変調を行う変調手段の場合には、該変調の信号点配置図中の最も符号間距離が離れている2状態のみとし、前記4値位相変調または前記4値直交振幅変調を行う変調手段の場合には、該変調の信号点配置図中の一つの対角線上の2状態のみとする変調方式に変更する手段を備えた
ことを特徴とする送信機。
For a receiver that identifies a received signal using a plurality of identification values corresponding to multi-level encoding , optical carrier is subjected to quaternary amplitude modulation including positive and negative, quaternary phase modulation, or quaternary quadrature amplitude modulation. In a transmitter for modulating and transmitting with multi-value encoded digital data by a modulating means to perform,
When the transmission characteristic of the optical transmission path between the own transmitter and the receiver is deteriorated , the signal point of the code used in the modulation means is changed to the modulation means for performing the quaternary amplitude modulation. In the modulation signal point arrangement diagram, in the case of the modulation means for performing the quaternary phase modulation or the quaternary quadrature amplitude modulation only in the two states where the inter-symbol distance is farthest in the modulation signal point arrangement diagram, A transmitter characterized by comprising means for changing to a modulation system that has only two states on one diagonal line .
キャリアを、正負を含めた4値振幅変調、または4値位相変調、または4値直交振幅変調を行う変調手段によって、多値符号化されたディジタルデータで変調して送信する送信機から送信された送信信号を受信し、前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機において、
前記送信機と自受信機との間の光伝送路の伝送特性が劣化した場合に、前記変調手段において使用する符号の信号点を、前記4値振幅変調を行う変調手段の場合には、該変調の信号点配置図中の最も符号間距離が離れている2状態のみとし、前記4値位相変調または前記4値直交振幅変調を行う変調手段の場合には、該変調の信号点配置図中の一つの対角線上の2状態のみとする変調方式に変更する手段を備えた
ことを特徴とする受信機。
The optical carrier is transmitted from a transmitter that modulates and transmits digital data that has been encoded with multilevel data by a modulation means that performs quaternary amplitude modulation including positive or negative, quaternary phase modulation, or quaternary quadrature amplitude modulation. In a receiver that receives the transmitted signal and identifies the received signal using a plurality of identification values corresponding to the multi-level encoding,
When the transmission characteristic of the optical transmission path between the transmitter and the receiver is deteriorated , the signal point of the code used in the modulation means is changed to the modulation means for performing the quaternary amplitude modulation. In the modulation signal point arrangement diagram, in the case of the modulation means for performing the quaternary phase modulation or the quaternary quadrature amplitude modulation only in the two states where the inter-symbol distance is farthest in the modulation signal point arrangement diagram, A receiver characterized by comprising means for changing to a modulation scheme that has only two states on one diagonal line .
キャリアを、正負を含めた4値振幅変調、または4値位相変調、または4値直交振幅変調を行う変調手段によって、多値符号化されたディジタルデータで変調して送信する送信機と、
前記多値符号化に対応した複数の識別値を用いて受信信号を識別する受信機と
を備えた光ディジタル伝送システムに適用される光ディジタル伝送方法において、
一つまたは複数の前記送信機および前記受信機を管理する装置または前記送信機または前記受信機が、前記送信機と前記受信機との間の光伝送路の伝送特性が劣化した場合に、前記変調手段において使用する符号の信号点を、前記4値振幅変調を行う変調手段の場合には、該変調の信号点配置図中の最も符号間距離が離れている2状態のみとし、前記4値位相変調または前記4値直交振幅変調を行う変調手段の場合には、該変調の信号点配置図中の一つの対角線上の2状態のみとする変調方式に変更する
ことを特徴とする光ディジタル伝送方法。
A transmitter for modulating and transmitting an optical carrier with multi-value encoded digital data by modulation means for performing quaternary amplitude modulation including positive and negative, quaternary phase modulation, or quaternary quadrature amplitude modulation;
In an optical digital transmission method applied to an optical digital transmission system comprising a receiver for identifying a received signal using a plurality of identification values corresponding to the multi-level encoding,
When the transmission characteristic of the optical transmission line between the transmitter and the receiver is deteriorated, the transmitter or the apparatus that manages the transmitter and the receiver or the receiver or the receiver, or the receiver, In the case of the modulation means for performing the quaternary amplitude modulation, the signal point of the code used in the modulation means is set to only the two states where the inter-symbol distance is farthest in the modulation signal point arrangement diagram. In the case of a modulation means that performs phase modulation or quaternary quadrature amplitude modulation, the optical digital transmission is changed to a modulation system that has only two states on one diagonal line in the modulation signal point arrangement diagram. Method.
JP2006353949A 2006-12-28 2006-12-28 Optical digital transmission system and method Expired - Fee Related JP4884959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353949A JP4884959B2 (en) 2006-12-28 2006-12-28 Optical digital transmission system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353949A JP4884959B2 (en) 2006-12-28 2006-12-28 Optical digital transmission system and method

Publications (2)

Publication Number Publication Date
JP2008167126A JP2008167126A (en) 2008-07-17
JP4884959B2 true JP4884959B2 (en) 2012-02-29

Family

ID=39695967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353949A Expired - Fee Related JP4884959B2 (en) 2006-12-28 2006-12-28 Optical digital transmission system and method

Country Status (1)

Country Link
JP (1) JP4884959B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7986878B2 (en) * 2008-02-05 2011-07-26 Opnext Subsystems, Inc. Adjustable bit rate optical transmission using programmable signal modulation
EP2405620A1 (en) * 2009-03-02 2012-01-11 Hitachi, Ltd. Optical multi-level transmission system
JP4678443B2 (en) 2009-03-24 2011-04-27 沖電気工業株式会社 Optical signal generator
FR2946206B1 (en) * 2009-05-29 2015-02-27 Alcatel Lucent MULTI-FORMAT DATA TRANSMITTER
WO2011030897A1 (en) 2009-09-14 2011-03-17 日本電信電話株式会社 Band-variable communication method, band-variable communication apparatus, transmission band deciding apparatus, transmission band deciding method, node apparatus, communication path setting system, and communication path setting method
JP5644375B2 (en) * 2010-10-28 2014-12-24 富士通株式会社 Optical transmission device and optical transmission system
EP2959614A1 (en) * 2013-02-25 2015-12-30 Alcatel Lucent Level spacing for m-pam optical systems with coherent detection
JP6539951B2 (en) * 2014-06-26 2019-07-10 富士通株式会社 Communication device, relay device and communication system
US9673907B1 (en) * 2016-03-29 2017-06-06 Fujitsu Limited Constellation shaping of modulation formats for optical communication systems
JP6665682B2 (en) 2016-05-20 2020-03-13 富士通株式会社 Optical receiver and determination method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3620563B2 (en) * 1997-12-25 2005-02-16 ソニー株式会社 Modulation / demodulation method of control device and control device
JP3798314B2 (en) * 2001-12-25 2006-07-19 富士通株式会社 Transmission system

Also Published As

Publication number Publication date
JP2008167126A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP4884959B2 (en) Optical digital transmission system and method
CA2658148C (en) A receiver structure and method for the demodulation of a quadrature-modulated signal
JP5213991B2 (en) Method and apparatus for generation and detection of optical difference variable multilevel phase shift keying (ODVMPSK / PAM) signal by pulse amplitude modulation
KR20140123764A (en) Method and apparatus for bit to simbol mapping in wireless communication system
CN111181651A (en) Four-dimensional coding modulation system for improving transmission rate
JP4927617B2 (en) Data transmission apparatus and transmission code generation method
JP5653561B2 (en) Optical modulation / demodulation method and optical transceiver
US11444694B2 (en) Optical transmission system
JP2011223258A (en) Optical transmission method, optical transmission system, optical transmitter, and optical receiver
US11581944B2 (en) Optical transmission system
US20230071063A1 (en) Optical transmission system, optical transmitting apparatus and optical receiving apparatus
EP3440813B1 (en) Apparatus and method for recovering clock data from an m-level signal
JP4843650B2 (en) Optical transmission equipment
CN109565337B (en) Optical transmission method, device and system
EP3334065A1 (en) Block constellation selection modulation for overlaid information transmission
Ogunyanda et al. Adaptive permutation coded differential OFDM system for power line communications
WO2011083015A1 (en) Method for transmitting data on an optical channel
CN109565436B (en) Clock and data recovery in PAM-4 transmission systems
JP2016144198A (en) Optical transmitter, optical receiver, optical transfer device, optical transfer system, optical transmission method, optical reception method and optical transfer method
JP6103610B2 (en) QAM mapping apparatus and mapping method
WO2020207691A1 (en) Encoding and decoding communications traffic in a pulse amplitude modulation format and optical apparatus for same
Johannisson et al. Practical Detection Schemes for Power Efficient Modulation Formats
JP2019092100A (en) Optical receiving device
Gidlund A novel combined packet retransmisison diversity and multilevel modulation scheme
CN101582701A (en) Method for modulating and demodulating ultrashort wave advanced mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20090527

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090527

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4884959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees