JP4876257B2 - Cultivation environment diagnosis system by measuring plant root pressure - Google Patents

Cultivation environment diagnosis system by measuring plant root pressure Download PDF

Info

Publication number
JP4876257B2
JP4876257B2 JP2007000980A JP2007000980A JP4876257B2 JP 4876257 B2 JP4876257 B2 JP 4876257B2 JP 2007000980 A JP2007000980 A JP 2007000980A JP 2007000980 A JP2007000980 A JP 2007000980A JP 4876257 B2 JP4876257 B2 JP 4876257B2
Authority
JP
Japan
Prior art keywords
cultivation
plant
root
cultivation environment
root pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007000980A
Other languages
Japanese (ja)
Other versions
JP2008167662A (en
Inventor
英樹 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Original Assignee
NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY filed Critical NATIONAL UNIVERSITY CORPORATION YAMAGUCHI UNIVERSITY
Priority to JP2007000980A priority Critical patent/JP4876257B2/en
Publication of JP2008167662A publication Critical patent/JP2008167662A/en
Application granted granted Critical
Publication of JP4876257B2 publication Critical patent/JP4876257B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Description

本発明は、土壌をはじめとする栽培培地に植えられている植物の活性度を測定することにより栽培環境(土壌、肥料、周辺環境、害虫又は病原菌の有無等)の適正診断を行う栽培環境診断システムに関する。   The present invention is a cultivation environment diagnosis for performing an appropriate diagnosis of cultivation environment (soil, fertilizer, surrounding environment, presence or absence of pests or pathogens, etc.) by measuring the activity of plants planted in a cultivation medium including soil. About the system.

植物の良好な生育には栽培環境、特に土壌の温度や水分、肥料の状態、害虫又は病原菌の有無が密接に関係しており、従来から栽培環境の検査・評価方法はいくつか知られている。一般的な方法は、土壌の一部を採取し化学分析等を行う方法、あるいは温度センサや水分センサ等で植物を取り巻く物理的環境をモニターする、又は病原菌や害虫を単離する方法である。この方法により土壌の含有成分、温度や水分環境、害虫又は病原菌の有無はわかるが、含有成分割合や外環境要因と植物の生育との因果関係、あるいは植物病理学的病徴がわかっていないと、その土壌が植物の生育に対して良好な状態であるのか把握するのは難しい。異なる栽培条件で実際に植物を植えて、その生育状態から栽培環境の適正度を把握する方法もあるが、査定には通常数ヶ月〜数年かかるという問題があること、また植物の生育状態を客観的に評価するのは難しい。植物の活性度を短時間で直接測定する方法が望まれている。   Good growth of plants is closely related to the cultivation environment, especially soil temperature and moisture, fertilizer condition, presence of pests or pathogens, and several methods for inspecting and evaluating cultivation environment have been known. . A general method is a method of collecting a part of soil and performing chemical analysis or the like, or a method of monitoring a physical environment surrounding a plant with a temperature sensor or a moisture sensor, or a method of isolating pathogenic bacteria and pests. By this method, it is possible to know the components contained in the soil, the temperature and water environment, the presence of pests or pathogens, but the causal relationship between the proportion of the components and external environmental factors and plant growth, or the phytopathological symptoms are unknown It is difficult to figure out if the soil is in good condition for plant growth. Although there is a method of actually planting plants under different cultivation conditions and grasping the appropriateness of the cultivation environment from the growth state, there is a problem that the assessment usually takes several months to several years, and the growth state of the plant It is difficult to evaluate objectively. A method for directly measuring the activity of a plant in a short time is desired.

従来技術としては以下のものが挙げられる。
特許文献1には、異なる条件の土壌に種子又は苗を植設し、発芽状態を観察することで土壌の評価を行う方法が記載されている。発芽状態を観察しているものの、植物の活性度を直接測定するものではない。
特許文献2も、特許文献1と同様に、植物の生育状態から土壌の評価を行うものであるが、植物の活性度を直接測定はしていない。
特許文献3には、植物の生存率から植物の耐干性を評価する方法が記載されている。特許文献3は土壌の評価をするものではなく、また植物の活性度を直接測定するものでもない。
The following are mentioned as a prior art.
Patent Document 1 describes a method of evaluating soil by planting seeds or seedlings in soil under different conditions and observing the germination state. Although the germination state is observed, the activity of the plant is not directly measured.
Similarly to Patent Document 1, Patent Document 2 also evaluates the soil from the growth state of the plant, but does not directly measure the activity of the plant.
Patent Document 3 describes a method for evaluating drought tolerance of a plant from the survival rate of the plant. Patent Document 3 does not evaluate soil, nor does it directly measure plant activity.

特許文献4には、植物根の吸水速度の見積方法が記載されている。土壌の状態から植物根の吸水速度を数値計算により見積もる方法であるが、どのように植物の活性度を測定するか、どのように土壌の評価を行うかについては具体的に記載されていない。
特開2006−262792号公報 特開平10−123124号公報 特開2003−230318号公報 特開2003−166860号公報
Patent Document 4 describes a method for estimating the water absorption rate of plant roots. Although it is a method of estimating the water absorption rate of the plant root from the state of the soil by numerical calculation, it is not specifically described how to measure the activity of the plant and how to evaluate the soil.
JP 2006-262792 A JP-A-10-123124 Japanese Patent Laid-Open No. 2003-230318 JP 2003-166860 A

本発明は、土壌に植えられている植物の活性度、とくに根系や茎などの組織で発生する圧力を直接測定することにより、植物に対する栽培環境の適正診断を正確に行うことができるシステム及び方法を提供することを目的とする。   The present invention is a system and method that can accurately perform an appropriate diagnosis of a cultivation environment for a plant by directly measuring the activity of the plant planted in the soil, in particular, the pressure generated in tissues such as the root system and stem. The purpose is to provide.

前記目的を達成するため、本発明は以下の構成を有する。
栽培培地で栽培されている植物の活性度を測定することにより栽培管理又は栽培環境の適正診断を行う栽培環境診断システムであって、栽培培地に植えられ、根、茎又は枝が切断された検定植物と、前記検定植物の根、茎又は枝の切断部に取り付けられ、前記検定植物の根圧を一定期間モニタリングする根圧測定手段と、前記根圧測定工程によりモニタリングされた一定期間の根圧データに基づいて栽培管理又は栽培環境の適正診断を行う栽培環境診断手段と、を有する栽培環境診断システム。
In order to achieve the above object, the present invention has the following configuration.
A cultivation environment diagnostic system for performing cultivation management or appropriate diagnosis of cultivation environment by measuring the activity of a plant cultivated in a cultivation medium, which is planted in a cultivation medium and has a root, stem or branch cut. A plant, a root pressure measuring means attached to a cut portion of a root, a stem or a branch of the test plant, and monitoring a root pressure of the test plant for a certain period, and a root pressure of a certain period monitored by the root pressure measuring step. A cultivation environment diagnosis system having cultivation environment diagnosis means for performing cultivation management or cultivation environment appropriate diagnosis based on data.

栽培培地で栽培されている植物の活性度を測定することにより栽培管理又は栽培環境の適正診断を行う栽培環境診断方法であって、前記植物の根、茎又は枝を切断して、切断された部分に根圧測定手段を取り付け、前記植物の根圧を一定期間モニタリングする根圧測定工程と、前記根圧測定工程によりモニタリングされた一定期間の根圧データに基づいて栽培管理又は栽培環境の適正診断を行う栽培環境診断工程と、を有する栽培環境診断方法。
前記栽培環境には、土壌の状態、周囲の気温や湿度、日照状態、害虫や病原菌の有無などが含まれる。特に、本発明は、土壌の状態の適正診断に好適に用いられ得る。前記土壌の状態には、土壌の性質(土質)や含水量や肥料の状態なども含まれる。
A cultivation environment diagnosis method for performing cultivation management or appropriate diagnosis of cultivation environment by measuring the activity of a plant cultivated in a cultivation medium, wherein the root, stem or branch of the plant is cut and cut Root pressure measuring means is attached to the part, and the root pressure measuring step for monitoring the root pressure of the plant for a certain period, and the appropriateness of cultivation management or cultivation environment based on the root pressure data for a certain period monitored by the root pressure measuring step A cultivation environment diagnosis method comprising: a cultivation environment diagnosis step for performing diagnosis.
The cultivation environment includes soil conditions, ambient temperature and humidity, sunshine conditions, presence of pests and pathogens, and the like. In particular, the present invention can be suitably used for proper diagnosis of soil conditions. The soil condition includes soil properties (soil quality), water content, fertilizer condition, and the like.

また、以下の実施態様を有する。
前記検定植物として、前記栽培培地で栽培されている栽培植物の一部を用いる。
前記検定植物として、前記栽培培地で栽培されている栽培植物とは異なる植物であって、栽培環境に対する根圧の挙動が明らかになっている植物を用いる。
前記根圧測定手段は、前記検定植物の根、茎又は枝の切断部に取り付けられるコネクタ部と、前記コネクタ部に接続されるホースと、前記ホースに接続される圧力センサとを有し、前記コネクタ部と前記圧力センサとは略同一の高さに設置される。
前記ホースの途中に気泡除去手段を有する。
前記根圧測定手段は、前記検定植物の根、茎又は枝の切断部に取り付けられるコネクタ部と、前記コネクタ部に接続される抵抗値が既知のキャピラリー管とを有し、前記キャピラリー管内の流速を測定することにより前記根圧を測定する。
前記栽培環境診断手段(工程)は、一定期間モニタリングされた根圧データから、根圧の絶対値や日変化及び経時変化を加味して栽培管理又は栽培環境の適正診断を行う。前記モニタリング期間は、植物の種類、測定方法、栽培環境などに応じて適宜設定できるものであり、数時間から数日間程度が好ましい。
Moreover, it has the following embodiments.
As the test plant, a part of the cultivated plant cultivated in the cultivation medium is used.
As the test plant, a plant that is different from the cultivated plant cultivated in the cultivating medium and has a clarified root pressure behavior with respect to the cultivation environment is used.
The root pressure measuring means has a connector part attached to a cutting part of a root, stem or branch of the test plant, a hose connected to the connector part, and a pressure sensor connected to the hose, The connector part and the pressure sensor are installed at substantially the same height.
A bubble removing means is provided in the middle of the hose.
The root pressure measuring means has a connector part attached to a cutting part of a root, stem or branch of the test plant, and a capillary tube having a known resistance value connected to the connector part, and a flow rate in the capillary tube The root pressure is measured by measuring
The cultivation environment diagnosis means (process) performs an appropriate diagnosis of cultivation management or cultivation environment from the root pressure data monitored for a certain period in consideration of the absolute value of the root pressure, daily change, and change with time. The said monitoring period can be suitably set according to the kind of plant, a measuring method, cultivation environment, etc., and about several hours to several days are preferable.

本発明は、検定植物の切断部において圧力を測定することにより根圧をモニタリングすることができ、土壌に植えられたままの状態でも植物の活性度を直接測定することができる。本発明者らの実験により、植物の種類にもよるが、茎等を切断しても数日程度は根圧を測定できることが確認された。したがって、根圧をある程度の期間測定することで正確に植物の活性度を測定でき、植物の活性度から栽培環境(土壌、周辺環境等)の適正診断を行うことができる。植物の活性度の測定として、検定植物の切断部からあふれる導管液(溢泌液、出液)の流量を測定する方法も考えられるが、この方法だと根の張り具合や茎の太さなどにより導管液の流量が左右されてしまい正確に植物の活性度を測るのは難しい。また、根圧は負圧となる場合もあり、その場合当然導管液は出現してこないため、導管液の流量による活性度の評価はできない。本発明のように圧力を測定する方法であれば、圧力は場所に寄らず一定であるので根の張り具合や茎の太さなどに左右されずに圧力を正確に測定でき、根圧が正負圧のいずれを示す場合でも植物の活性度を測ることができる。これは、検定植物の切断部を圧力センサで塞ぐことにより根を含む植物内部が閉空間になり、パスカルの原理により閉空間内の圧力はどこでも一定なので、検定植物の切断部の圧力を測ることで茎の太さや根の張り具合などに左右されずに根圧、すなわち植物の活性度を測定できるからである。また、本発明は圧力を測定するので、植物の導管内の圧力を適正に保つことができ、より自然に近いかたちでの植物の活性度の測定が可能である。   In the present invention, the root pressure can be monitored by measuring the pressure at the cut portion of the test plant, and the activity of the plant can be directly measured even when the plant is still planted in the soil. According to the experiments by the present inventors, it was confirmed that the root pressure can be measured for several days even if the stem or the like is cut, depending on the type of plant. Therefore, the activity of the plant can be accurately measured by measuring the root pressure for a certain period, and an appropriate diagnosis of the cultivation environment (soil, surrounding environment, etc.) can be performed from the activity of the plant. As a measure of plant activity, it is possible to measure the flow rate of the conduit fluid (excess fluid, effluent) overflowing from the cut part of the test plant, but with this method the root tension and stem thickness etc. As a result, the flow rate of the conduit fluid is affected and it is difficult to accurately measure the activity of the plant. In some cases, the root pressure may be a negative pressure. In this case, naturally, the conduit fluid does not appear, and therefore the activity cannot be evaluated by the flow rate of the conduit fluid. With the method of measuring pressure as in the present invention, the pressure is constant regardless of the location, so that the pressure can be accurately measured regardless of the degree of root tension or stem thickness, and the root pressure is positive or negative. The activity of a plant can be measured when any pressure is indicated. This is because the inside of the plant including the root is closed by closing the cut part of the test plant with a pressure sensor, and the pressure in the closed space is constant everywhere according to Pascal's principle. This is because the root pressure, that is, the activity of the plant can be measured without being influenced by the thickness of the stem or the tension of the root. In addition, since the present invention measures pressure, the pressure in the plant conduit can be kept appropriate, and the activity of the plant can be measured in a more natural manner.

以下、図面を用いて本発明の実施形態について説明する。
図1は、本システムの概略図である。耕地土壌1に、野菜や穀物や果実などの栽培植物2が植えられている。栽培植物2は植物であれば何でも良い。栽培植物2と同種目又は異なる種目の検定植物3が、栽培植物2と同じ耕地土壌1に植えられている。検定植物3は、ある時期までは栽培植物2と同様に栽培されるが、ある程度成長した段階で茎又は枝が切断され、根圧測定用として用いられる。検定植物3の茎又は枝の切断部には、根圧測定手段4が取り付けられる。根圧測定手段4は、検定植物3の茎又は枝の切断部に取り付けられるコネクタ部5と、コネクタ部5に接続されるホース6と、ホース6に接続される気泡除去手段7と圧力センサ8とからなる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of the present system. Cultivated plants 2 such as vegetables, grains and fruits are planted in the cultivated soil 1. The cultivation plant 2 may be anything as long as it is a plant. A test plant 3 of the same or different type as the cultivated plant 2 is planted in the same cultivated land soil 1 as the cultivated plant 2. The test plant 3 is cultivated in the same manner as the cultivated plant 2 until a certain period, but the stem or branch is cut at a stage where it has grown to some extent, and is used for measuring the root pressure. A root pressure measuring means 4 is attached to the cutting part of the stem or branch of the test plant 3. The root pressure measuring means 4 includes a connector part 5 attached to a cutting part of a stem or a branch of the test plant 3, a hose 6 connected to the connector part 5, a bubble removing means 7 connected to the hose 6, and a pressure sensor 8. It consists of.

ホース6中には、脱気した水、あるいはシリコンオイルなど植物に化学的な損傷を与えない溶液を充填する。ホース6内に気泡が入っていると気泡の圧縮効果によりホース6内の圧力が正確に測れないので、圧力測定前に、逆止弁やバルブなどを用いた気泡除去手段7によりホース6内の気泡を除去する。圧力センサ8は公知の圧力センサを用いることができる。コネクタ部6と圧力センサ8とを略同一の高さにすることで、高度差による圧力の違いを補償できる。コネクタ部6と圧力センサ8の高さが異なる場合は、その高低差によって生じる圧力差を算出し、測定値を補正する。圧力センサ8による測定データは、栽培環境診断手段9(例えば、コンピュータ等)に送られる。   The hose 6 is filled with a solution that does not cause chemical damage to the plant, such as degassed water or silicon oil. If there are bubbles in the hose 6, the pressure in the hose 6 cannot be measured accurately due to the compression effect of the bubbles. Therefore, before the pressure measurement, the bubble removal means 7 using a check valve, a valve, etc. Remove bubbles. A known pressure sensor can be used as the pressure sensor 8. By making the connector part 6 and the pressure sensor 8 substantially the same height, it is possible to compensate for the pressure difference due to the height difference. When the heights of the connector 6 and the pressure sensor 8 are different, the pressure difference caused by the height difference is calculated and the measured value is corrected. The measurement data obtained by the pressure sensor 8 is sent to the cultivation environment diagnosis means 9 (for example, a computer).

栽培環境診断手段9は、様々な栽培種目や栽培環境における過去の根圧測定データを有しており、これらのデータと実際の測定データとを比較することにより、土壌の状態、肥料の適否、日照状態、気温、周辺環境、温室の状態などの栽培環境の適正診断を行う。測定データや診断結果は、表示手段により表示しても良いし、栽培環境診断手段9に記録しあとで解析・表示しても良い。また、測定データや診断結果を、無線やネットワークを通じて外部に送信しても良い。   The cultivation environment diagnosis means 9 has past root pressure measurement data in various cultivation items and cultivation environments, and by comparing these data with actual measurement data, the state of the soil, the suitability of the fertilizer, Appropriate diagnosis of cultivation environment such as sunshine condition, temperature, surrounding environment, greenhouse condition, etc. The measurement data and the diagnosis result may be displayed by the display means, or may be recorded in the cultivation environment diagnosis means 9 and analyzed / displayed later. Further, the measurement data and the diagnosis result may be transmitted to the outside through a wireless or network.

図2は、根圧測定手段4の詳細図である。検定植物3、コネクタ部5、ホース6、及び圧力センサ8については、図1の説明と同じであるので省略する。気泡除去手段7は、バルブ10及び気泡トラップ(水槽)11とからなる。圧力測定前に、しばらくの間バルブ10を開いておく。そうすると、気泡は検定植物3の切断部からの圧力(根圧)に押され、気泡トラップ(水槽)11に押し出される。根圧が低く気泡の移動が著しく遅い場合には、植物に取り付けたコネクタ5を若干緩めた後、トラップ(水槽)11にコンプレッサーなどの圧力源を用いて圧力をかけ、ホース6内の気泡を押し流す。気泡トラップ(水槽)11があることで、ホース6内の圧力が負圧になっても空気の逆流を防ぐことができる。ホース6内の気泡が除去されたらバルブ10を閉じ、圧力測定を開始する。図2は気泡除去手段7の一例であり、このほかに逆止弁を用いる、シリンジを用いる、などの方法も考えられる。   FIG. 2 is a detailed view of the root pressure measuring means 4. Since the test plant 3, the connector part 5, the hose 6 and the pressure sensor 8 are the same as those described with reference to FIG. The bubble removing means 7 includes a valve 10 and a bubble trap (water tank) 11. Before the pressure measurement, the valve 10 is opened for a while. Then, the bubbles are pushed by the pressure (root pressure) from the cut portion of the test plant 3 and pushed out to the bubble trap (water tank) 11. When the root pressure is low and the movement of bubbles is extremely slow, loosen the connector 5 attached to the plant slightly, and then apply pressure to the trap (water tank) 11 using a pressure source such as a compressor to remove the bubbles in the hose 6. Flush away. The presence of the bubble trap (water tank) 11 can prevent backflow of air even if the pressure in the hose 6 becomes negative. When the bubbles in the hose 6 are removed, the valve 10 is closed and pressure measurement is started. FIG. 2 shows an example of the bubble removing means 7, and other methods such as using a check valve and using a syringe are also conceivable.

図3は、根圧測定手段4の別の実施形態を表す図である。図2においては、圧力(根圧)の測定に圧力センサ(圧力トランスデューサ)を用いたが、本実施形態では圧力センサを用いなくても圧力(根圧)を測定することができる。図の符号は図1及び2と同じである。本実施形態においては、コネクタ部5に既知の抵抗値Rを有するキャピラリー管を接続する。キャピラリー管を流れる流速Fは、根圧が正圧ならばキャピラリー管から流出する液量、根圧が負圧ならばキャピラリー管に流入する液量を測定することで求めることができる。既知のキャピラリー管の抵抗値Rと、キャピラリー管を流れる流速Fから、コネクタ部の圧力P(すなわち根圧)は、
P=FR
で求めることができる。
FIG. 3 is a diagram showing another embodiment of the root pressure measuring means 4. In FIG. 2, a pressure sensor (pressure transducer) is used to measure pressure (root pressure), but in this embodiment, pressure (root pressure) can be measured without using a pressure sensor. The reference numerals in the figure are the same as those in FIGS. In the present embodiment, a capillary tube having a known resistance value R is connected to the connector unit 5. The flow velocity F flowing through the capillary tube can be obtained by measuring the amount of liquid flowing out from the capillary tube when the root pressure is positive, and measuring the amount of liquid flowing into the capillary tube when the root pressure is negative. From the known resistance value R of the capillary tube and the flow velocity F flowing through the capillary tube, the pressure P (that is, the root pressure) of the connector portion is
P = FR
Can be obtained.

次に、本システムの動作について説明する。耕地土壌1には、野菜や穀物や果実などの栽培植物2と、少数の検定植物3が栽培されている。検定植物3は、栽培植物2と同種目でも異なる種目でも、どちらでも構わない。検定植物3がある程度成長した段階で、根、茎又は枝を切断し、切断部に根圧測定手段4を取り付け、気泡除去手段7によりホース6内の気泡を除去してから、検定植物3の根圧を測定する。検定植物3の茎を切断したとしても、数日程度は根圧を測定できることを本発明者らは実験により確認している。したがって、長時間にわたって根圧を測定することで、日変化や経時変化などの影響を補正することができ、正確に検定植物3の活性度を測定できる。測定された根圧データは、栽培環境診断手段9において、様々な栽培環境において測定された過去の根圧データと比較され、その比較結果により栽培環境の適正診断がなされる。診断結果は、栽培環境診断手段9において記録又は表示しても良いし、外部に送信しても良い。   Next, the operation of this system will be described. Cultivated plants 2 such as vegetables, grains and fruits and a small number of test plants 3 are cultivated in the cultivated soil 1. The test plant 3 may be the same or different from the cultivated plant 2. At the stage where the test plant 3 has grown to some extent, the root, stem or branch is cut, the root pressure measuring means 4 is attached to the cut portion, the bubbles in the hose 6 are removed by the bubble removing means 7, and Measure root pressure. The present inventors have confirmed through experiments that the root pressure can be measured for several days even if the stem of the test plant 3 is cut. Therefore, by measuring the root pressure over a long period of time, it is possible to correct influences such as diurnal changes and changes with time, and the activity of the test plant 3 can be accurately measured. The measured root pressure data is compared with the past root pressure data measured in various cultivation environments in the cultivation environment diagnosis means 9, and an appropriate diagnosis of the cultivation environment is made based on the comparison result. The diagnosis result may be recorded or displayed in the cultivation environment diagnosis means 9, or may be transmitted to the outside.

以下に実験結果を示す。
図4は、トウガラシ(第15葉齢)について、適湿土壌条件下で、茎を切断してから5日間の根圧の変化を連続的に測定したグラフである。このグラフから、茎を切断しても5日程度は根圧を測定できることがわかる。また、根圧に日変化があることもわかる。
図5は、キュウリ(第12葉齢)について、土壌が適湿状態である場合(太線)と湛水状態である場合(細線)の根圧推移を比較したグラフである。グラフから適湿状態(太線)の方が湛水状態(細線)に比べて根圧が高い状態で推移することがわかり、根圧を測定することで土壌の状態が診断できることがわかる。
The experimental results are shown below.
FIG. 4 is a graph in which changes in root pressure were continuously measured for capsicum (15th leaf age) for 5 days after the stalk was cut under suitable wet soil conditions. From this graph, it can be seen that the root pressure can be measured for about 5 days even if the stem is cut. It can also be seen that the root pressure varies daily.
FIG. 5 is a graph comparing the changes in root pressure when cucumber (12th leaf age) is in a wet condition (thick line) and in a flooded condition (thin line). It can be seen from the graph that the appropriate humidity state (thick line) transitions to a higher root pressure than the flooded state (thin line), and that the soil condition can be diagnosed by measuring the root pressure.

図6は、ダイズ(第7葉齢)について、土壌が適湿状態である場合(太線)と湛水状態である場合(細線)の根圧推移を比較したグラフである。図5と同様に、根圧測定により土壌の状態が診断できることがわかる。
図7は、ダイズ(第7葉齢)について、標準的な土壌(標準区)、リン酸を欠乏させた土壌(-P区)、窒素を欠乏させた土壌(-N区)での根圧推移を比較したグラフである。グラフからリン酸欠乏や窒素欠乏の土壌に比べて標準的な土壌の方が根圧が高いことがわかり、根圧測定により土壌の水分量だけではなく、土壌含有成分の適否の診断もできることがわかる。
FIG. 6 is a graph comparing the changes in root pressure of soybean (seventh leaf age) when the soil is in an appropriate humidity state (thick line) and in a flooded state (thin line). As in FIG. 5, it can be seen that the soil condition can be diagnosed by measuring the root pressure.
Fig. 7 shows the root pressure of soybean (7th leaf age) in standard soil (standard zone), soil deficient in phosphate (-P zone), and soil deficient in nitrogen (-N zone). It is the graph which compared transition. The graph shows that standard soil has higher root pressure than phosphate-deficient or nitrogen-deficient soil, and it is possible to diagnose not only the water content of soil but also the suitability of soil components by measuring root pressure. Recognize.

図8は、キュウリ(第4葉齢)について、根の一部を切断した個体(断根あり)と処理を行わなかった個体(断根なし)での根圧推移を比較したグラフである。グラフから、根圧は根の構造的損傷によって急激に低下することがわかり、根圧測定が根の食害を起こす害虫(一般に根きり虫と呼ばれるカブラヤガとタマナヤガ等の幼虫)の発生状況を診断する上で有効なツールであることがわかる。同様に、根の生理機能を低下させる原菌の罹病状況を診断するツールにもなり得る。   FIG. 8 is a graph comparing the changes in root pressure between an individual with a part of the root cut (with root removal) and an individual with no treatment (no root removal) for cucumber (fourth leaf age). From the graph, it can be seen that the root pressure drops sharply due to structural damage of the roots, and the measurement of the occurrence of pests that cause root feeding damage (larvae such as cabrayaga and tamanayaga, which are generally called root-knot insects) is diagnosed You can see that this is an effective tool. Similarly, it can be a tool for diagnosing the disease state of a protozoa that reduces the physiological function of roots.

以上、本発明の実施形態の一例を説明したが、本発明はこれに限定されるものではなく、特許請求の範囲に記載された技術的思想の範疇において各種の変更が可能であることは言うまでもない。例えば、実施例においては本システムを土壌の状態の診断に用いているが、本システムは根圧により植物の活性度を直接測定できるので、他の栽培環境、例えば気温や日照状態などの診断にも用いることができる。   Although an example of the embodiment of the present invention has been described above, the present invention is not limited to this, and it goes without saying that various modifications can be made within the scope of the technical idea described in the claims. Yes. For example, in this embodiment, this system is used for diagnosing soil conditions, but since this system can directly measure plant activity by root pressure, it can be used for diagnosis of other cultivation environments such as temperature and sunshine conditions. Can also be used.

栽培環境診断システム概略図Schematic diagram of cultivation environment diagnosis system 根圧測定手段の詳細図Detailed view of root pressure measurement means 根圧測定手段の別の実施形態Another embodiment of the root pressure measuring means トウガラシの根圧の推移Change in root pressure of red pepper キュウリの根圧の推移Changes in root pressure of cucumber ダイズの根圧の推移Changes in root pressure of soybean 窒素とリン酸を欠乏させたダイズの根圧の推移Changes in root pressure of soybean deficient in nitrogen and phosphate キュウリ(断根有り・無し)の根圧の推移Changes in root pressure of cucumber (with or without root)

符号の説明Explanation of symbols

1 耕地土壌
2 栽培植物
3 検定植物
4 根圧測定手段
5 コネクタ部
6 ホース
7 気泡除去手段
8 圧力センサ
9 栽培環境診断手段
10 バルブ
11 気泡トラップ(水槽)
DESCRIPTION OF SYMBOLS 1 Cultivated soil 2 Cultivation plant 3 Test plant 4 Root pressure measurement means 5 Connector part 6 Hose 7 Bubble removal means 8 Pressure sensor 9 Cultivation environment diagnosis means 10 Valve 11 Bubble trap (water tank)

Claims (11)

栽培培地で栽培されている植物の活性度を測定することにより栽培管理又は栽培環境の適正診断を行う栽培環境診断システムであって、
栽培培地に植えられ、根、茎又は枝が切断された検定植物と、
前記検定植物の根、茎又は枝の切断部に取り付けられ、前記検定植物の根圧を一定期間モニタリングする根圧測定手段と、
前記根圧測定工程によりモニタリングされた一定期間の根圧データに基づいて栽培管理又は栽培環境の適正診断を行う栽培環境診断手段と、
を有する栽培環境診断システム。
A cultivation environment diagnostic system for performing cultivation management or cultivation environment appropriate diagnosis by measuring the activity of a plant cultivated in a cultivation medium,
An assay plant planted in a culture medium and having roots, stems or branches cut;
A root pressure measuring means attached to a cutting part of a root, a stem or a branch of the test plant, and monitoring a root pressure of the test plant for a certain period;
Cultivation environment diagnostic means for performing appropriate diagnosis of cultivation management or cultivation environment based on root pressure data of a certain period monitored by the root pressure measurement step;
Cultivation environment diagnostic system.
前記検定植物として、前記栽培培地で栽培されている栽培植物の一部を用いる、請求項1記載の栽培環境診断システム。   The cultivation environment diagnostic system according to claim 1, wherein a part of the cultivation plant cultivated in the cultivation medium is used as the test plant. 前記検定植物として、前記栽培培地で栽培されている栽培植物とは異なる植物であって、栽培環境に対する根圧の挙動が明らかになっている植物を用いる、請求項1記載の栽培環境診断システム。   The cultivation environment diagnostic system according to claim 1, wherein a plant that is different from the cultivation plant that is cultivated on the cultivation medium and has a clear behavior of root pressure with respect to the cultivation environment is used as the test plant. 前記根圧測定手段は、前記検定植物の根、茎又は枝の切断部に取り付けられるコネクタ部と、前記コネクタ部に接続されるホースと、前記ホースに接続される圧力センサとを有し、
前記コネクタ部と前記圧力センサとは略同一の高さに設置される、請求項1乃至3いずれか記載の栽培環境診断システム。
The root pressure measuring means has a connector part attached to a cutting part of a root, stem or branch of the test plant, a hose connected to the connector part, and a pressure sensor connected to the hose,
The cultivation environment diagnostic system according to claim 1, wherein the connector part and the pressure sensor are installed at substantially the same height.
前記ホースの途中に気泡除去手段を有する、請求項4記載の栽培環境診断システム。   The cultivation environment diagnostic system according to claim 4 which has a bubble removal means in the middle of said hose. 前記根圧測定手段は、前記検定植物の根、茎又は枝の切断部に取り付けられるコネクタ部と、前記コネクタ部に接続される抵抗値が既知のキャピラリー管とを有し、
前記キャピラリー管内の流速を測定することにより前記根圧を測定する、請求項1乃至3いずれか記載の栽培環境診断システム。
The root pressure measuring means has a connector part attached to a cutting part of the root, stem or branch of the test plant, and a capillary tube having a known resistance value connected to the connector part,
The cultivation environment diagnostic system according to claim 1, wherein the root pressure is measured by measuring a flow velocity in the capillary tube.
前記栽培環境診断手段は、一定期間モニタリングされた根圧データから、根圧の絶対値や日変化及び経時変化を加味して栽培管理又は栽培環境の適正診断を行う、請求項1乃至6いずれか記載の栽培環境診断システム。   The cultivation environment diagnosis means performs an appropriate diagnosis of cultivation management or cultivation environment from the root pressure data monitored for a certain period in consideration of an absolute value, daily change, and temporal change of root pressure. The cultivation environment diagnosis system described. 栽培培地で栽培されている植物の活性度を測定することにより栽培管理又は栽培環境の適正診断を行う栽培環境診断方法であって、
前記植物の根、茎又は枝を切断して、切断された部分に根圧測定手段を取り付け、前記植物の根圧を一定期間モニタリングする根圧測定工程と、
前記根圧測定工程によりモニタリングされた一定期間の根圧データに基づいて栽培管理又は栽培環境の適正診断を行う栽培環境診断工程と、
を有する栽培環境診断方法。
A cultivation environment diagnosis method for performing cultivation management or appropriate diagnosis of cultivation environment by measuring the activity of a plant cultivated in a cultivation medium,
Cutting the root, stem or branch of the plant, attaching a root pressure measuring means to the cut portion, and monitoring the root pressure of the plant for a certain period of time;
Cultivation environment diagnosis step for performing appropriate diagnosis of cultivation management or cultivation environment based on root pressure data of a certain period monitored by the root pressure measurement step;
A cultivation environment diagnosis method comprising:
前記植物として、前記栽培培地で栽培されている栽培植物の一部を用いる、請求項8記載の栽培環境診断方法。   The cultivation environment diagnosis method according to claim 8, wherein a part of the cultivation plant cultivated in the cultivation medium is used as the plant. 前記植物として、前記栽培培地で栽培されている栽培植物とは異なる植物であって、栽培環境に対する根圧の挙動が明らかになっている植物を用いる、請求項8記載の栽培環境診断方法。   The cultivation environment diagnostic method according to claim 8, wherein a plant that is different from the cultivation plant that is cultivated in the cultivation medium and has a clear root pressure behavior with respect to the cultivation environment is used as the plant. 前記栽培環境診断工程は、一定期間モニタリングされた根圧データから、根圧の絶対値や日変化及び経時変化を加味して栽培管理又は栽培環境の適正診断を行う、請求項8乃至10いずれか記載の栽培環境診断方法。   The cultivation environment diagnosis step performs appropriate diagnosis of cultivation management or cultivation environment from the root pressure data monitored for a certain period in consideration of an absolute value, daily change, and temporal change of root pressure. The cultivation environment diagnostic method as described.
JP2007000980A 2007-01-09 2007-01-09 Cultivation environment diagnosis system by measuring plant root pressure Active JP4876257B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000980A JP4876257B2 (en) 2007-01-09 2007-01-09 Cultivation environment diagnosis system by measuring plant root pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000980A JP4876257B2 (en) 2007-01-09 2007-01-09 Cultivation environment diagnosis system by measuring plant root pressure

Publications (2)

Publication Number Publication Date
JP2008167662A JP2008167662A (en) 2008-07-24
JP4876257B2 true JP4876257B2 (en) 2012-02-15

Family

ID=39696345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000980A Active JP4876257B2 (en) 2007-01-09 2007-01-09 Cultivation environment diagnosis system by measuring plant root pressure

Country Status (1)

Country Link
JP (1) JP4876257B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6434855B2 (en) * 2015-04-22 2018-12-05 Tdk株式会社 Plant growth state diagnosis apparatus and growth state diagnosis method
CN106483038A (en) * 2016-12-12 2017-03-08 甘肃农业大学 Plant roots pressure and transpiration pull analyzer and its assay method
CN109297632A (en) * 2018-11-19 2019-02-01 国家林业局竹子研究开发中心 Portable pressure measuring device of one kind and measurement method
JPWO2020136819A1 (en) * 2018-12-27 2021-09-09 株式会社オプティム Crop growth support system, crop growth support method and program
KR102231425B1 (en) * 2018-12-31 2021-03-24 주식회사 이콘비즈 Ginseng seedling cultivate system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0824489B2 (en) * 1992-08-03 1996-03-13 裕司 銅金 Ecology management method for plants
JP2000055702A (en) * 1998-08-12 2000-02-25 Agency Of Ind Science & Technol Measurement method for environment condition and device thereof, and measurement method for improvement of environment condition and device thereof
JP2000157047A (en) * 1998-11-20 2000-06-13 Japan Highway Public Corp Judgement of plant activity
JP4635272B2 (en) * 2004-07-26 2011-02-23 有限会社情報科学研究所 Plant root activity quantitative measurement method and measurement reagent

Also Published As

Publication number Publication date
JP2008167662A (en) 2008-07-24

Similar Documents

Publication Publication Date Title
Adhikari et al. Simulating future climate change impacts on seed cotton yield in the Texas High Plains using the CSM-CROPGRO-Cotton model
Goldhamer et al. Irrigation scheduling protocols using continuously recorded trunk diameter measurements
Ko et al. Determination of growth-stage-specific crop coefficients (Kc) of cotton and wheat
JP4876257B2 (en) Cultivation environment diagnosis system by measuring plant root pressure
Masin et al. Temperature and water potential as parameters for modeling weed emergence in central-northern Italy
Zapata et al. Estimation of the base temperature and growth phase duration in terms of thermal time for four grapevine cultivars
Burquez Leaf thickness and water deficit in plants: a tool for field studies
Rodriguez-Dominguez et al. Sensitivity of olive leaf turgor to air vapour pressure deficit correlates with diurnal maximum stomatal conductance
Guo et al. Annual ecosystem respiration of maize was primarily driven by crop growth and soil water conditions
Davis et al. Seed burial physical environment explains departures from regional hydrothermal model of giant ragweed (Ambrosia trifida) seedling emergence in US Midwest
CN111742793B (en) Sunflower leaf area exponential growth prediction method based on salt nitrogen influence
Ríos-Rojas et al. Use of plant woody species electrical potential for irrigation scheduling
Pagay Evaluating a novel microtensiometer for continuous trunk water potential measurements in field-grown irrigated grapevines
Schlaepfer et al. Modeling regeneration responses of big sagebrush (Artemisia tridentata) to abiotic conditions
Nunes et al. Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield
Simbeye et al. Plant water stress monitoring and control system
Sihombing et al. Detection of air temperature, humidity and soil pH by using DHT22 and pH sensor based Arduino nano microcontroller
Kisekka et al. Crop modeling applications in agricultural water management
Gaeta et al. Evaluation of three modelling approaches for almond blooming in Mediterranean climate conditions
Orlandi et al. New model to predict the timing of olive (Olea europaea) flowering: a case study in central Italy
Haun Determination of Wheat Growth‐Environment Relationships 1
Katerji et al. Modelling of actual evapotranspiration in open top chambers (OTC) at daily and seasonal scale: multi-annual validation on soybean in contrasted conditions of water stress and air ozone concentration
Sharma et al. Performance of AquaCrop model for predicting yield and biomass of okra (Abelmoschus esculentus) crop
Ferreira et al. Evapotranspiration estimates and water stress indicators for irrigation scheduling in woody plants
Cooley et al. Variability among forecast models for the apple sooty blotch/flyspeck disease complex

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111101

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150