JP4860960B2 - Power network control system - Google Patents

Power network control system Download PDF

Info

Publication number
JP4860960B2
JP4860960B2 JP2005239951A JP2005239951A JP4860960B2 JP 4860960 B2 JP4860960 B2 JP 4860960B2 JP 2005239951 A JP2005239951 A JP 2005239951A JP 2005239951 A JP2005239951 A JP 2005239951A JP 4860960 B2 JP4860960 B2 JP 4860960B2
Authority
JP
Japan
Prior art keywords
power
distributed power
control
supply
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005239951A
Other languages
Japanese (ja)
Other versions
JP2007060742A (en
Inventor
康宏 野呂
武 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba System Technology Corp
Original Assignee
Toshiba Corp
Toshiba System Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba System Technology Corp filed Critical Toshiba Corp
Priority to JP2005239951A priority Critical patent/JP4860960B2/en
Publication of JP2007060742A publication Critical patent/JP2007060742A/en
Application granted granted Critical
Publication of JP4860960B2 publication Critical patent/JP4860960B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、特定区域に設けられた複数の分散型電源と負荷との間を送配電線により接続し、大規模送配電網に対して、連系系統または単独系統として運用される比較的小規模の電力ネットワークの制御システムに関する。   The present invention connects a plurality of distributed power sources and loads provided in a specific area by transmission and distribution lines, and is relatively small operated as an interconnection system or a single system for a large-scale transmission and distribution network. The present invention relates to a scale power network control system.

近年、電力会社等の大規模な送配電網にとは別に、複数の分散型電源や負荷、これらを接続する自営の送配電線網等で構成される特定区域の比較的小規模な電力ネットワークが用いられるようになってきた。これは、地方自治体など、所定地域(コミュニティ)内の分散型電源を備えた電力需要家を含む複数の電力需要家への配電と、これら需要家間の電力供給を低コストで行うことができるシステムである。   In recent years, in addition to large-scale power distribution networks such as power companies, a relatively small-scale power network in a specific area composed of a plurality of distributed power sources and loads, and self-operated power distribution networks that connect them. Has come to be used. This can distribute power to a plurality of power consumers including a power consumer having a distributed power source in a predetermined area (community) such as a local government, and supply power between these consumers at low cost. System.

このようなシステムでは、所定地域(コミュニティ)内の分散型電源の供給電力合計とコミュニティ組織に加盟している需要家の需要合計をうまくバランスさせ、総合的な需給バランスを制御する必要がある。また、全需要に対して分散型電源の発電容量では補いきれない分は、他の売電事業者(例えば、電力会社等の電気事業者)からの高価な買電で補いつつ、コミュニティ組織が管轄する電力系統全体の需給バランスを取る。この場合、コミュニティ外部からの購入電力量は高価であるので、最低限の一定電力量で契約する方がコスト的に有利となる(例えば、特許文献1参照)。
特開2002−10500号公報
In such a system, it is necessary to balance the total supply power of distributed power sources in a predetermined area (community) and the total demand of consumers who are members of a community organization to control the overall supply-demand balance. In addition, if the power generation capacity of the distributed power supply cannot be compensated for the total demand, the community organization will make up for it with expensive power purchases from other power selling companies (for example, electric power companies such as electric power companies). Balance supply and demand of the entire power system under its jurisdiction. In this case, since the amount of power purchased from outside the community is expensive, it is advantageous in terms of cost to make a contract with a minimum amount of constant power (see, for example, Patent Document 1).
JP 2002-10500 A

しかしながら、従来方式では、複数の分散型電源や負荷を制御し、総合的に需給バランスを制御する方式であるため、制御対象機器が多くなり、需給情報や制御指令などやり取りする情報量が多くなる。これは、システム規模が大きくなる方向であり、システム規模が大きくなるとコスト面でも高くなり易く、また、メンテナンス性も悪くなり易い。   However, in the conventional method, a plurality of distributed power sources and loads are controlled to comprehensively control the supply and demand balance, so the number of devices to be controlled increases and the amount of information exchanged such as supply and demand information and control commands increases. . This is a direction in which the system scale increases, and as the system scale increases, the cost tends to increase and the maintainability tends to deteriorate.

本発明の目的は、なるべく少ない情報で電力ネットワークを構成する分散型電源の制御量を算出でき、かつ、各分散型電源が自律的に出力制御を行うことが可能な電力ネットワークの制御システムを提供することにある。   An object of the present invention is to provide a power network control system capable of calculating a control amount of a distributed power source constituting a power network with as little information as possible and allowing each distributed power source to autonomously perform output control. There is to do.

本発明の電力ネットワークの制御システムは、特定区域に設けられた慣性特性を持たない、発電手法が互いに異なる複数の分散型電源と負荷との間を送配電線により接続し、大規模送配電網とは切り離された単独系統として運用される比較的小規模の電力ネットワークの制御システムであって、前記各分散型電源に設けられ、前記電力ネットワークにおける系統周波数の変動の大きさを検出する周波数検出手段と、前記各分散型電源に設けられ、前記電力ネットワーク内での電力需要と供給との需給アンバランスと系統周波数の変動の大きさとの関係から、前記需給アンバランスを回復するために各分散型電源が分担可能な発生電力の制御量を予め求め、この求められた制御量と前記系統周波数の変動の大きさとが対応付けられ、かつ前記発電手法の違いに基づく前記制御量の出力変化特性を有する制御特性を記憶しており、この制御特性に基づいて前記検出された系統周波数の変動の大きさに対応する制御量を求める制御量演算手段とを備え、前記電力ネットワークにおける需給アンバランスにより系統周波数の変動が生じた場合、前記各分散型電源は、前記制御量演算手段で求めた制御量により、この変動を抑制するように各分散型電源自律的に発生電力を制御することを特徴とする。 A power network control system according to the present invention has a large-scale power distribution network in which a plurality of distributed power sources and loads having different inertial methods provided in a specific area and having different power generation methods are connected by power transmission and distribution lines. Is a control system for a relatively small-scale power network that is operated as a single isolated system, and is provided in each of the distributed power sources, and detects the magnitude of system frequency fluctuations in the power network. Means for recovering the supply and demand imbalance from the relationship between the supply and demand imbalance between the power demand and supply in the power network and the magnitude of the fluctuation of the grid frequency. previously determined type power control amount of sharing can occur power, thus determined control amount and the magnitude of fluctuation of the system frequency vignetting with corresponding, and the calling Stores the control characteristic having an output change characteristic of the control amount based on the difference in approach, the control amount calculation means for calculating a control amount corresponding to the magnitude of variation of the detected system frequency based on the control characteristics Each of the distributed power sources is controlled by the control amount obtained by the control amount calculation means so as to suppress the fluctuation when the system frequency varies due to supply and demand imbalance in the power network. power and controlling autonomously generating electric power.

本発明によれば、各分散型電源の制御量を算出する際に、演算に必要な計測量としては分散型電源自端で計測可能な系統周波数のみのため、演算に必要な情報量(計測量)が少なく、かつ、分散型電源が個々に自律的に出力制御を行える。   According to the present invention, when calculating the control amount of each distributed power source, only the system frequency that can be measured at the distributed power source itself is used as the measurement amount necessary for the calculation, so the amount of information necessary for the calculation (measurement) Quantity) and the distributed power supply can independently control the output.

また、大規模送配電網と連系する場合は、電力ネットワーク内で負荷脱落等による需給アンバランスが生じても、系統周波数はほとんど変化しないので、系統周波数を用いた分散型電源の制御量の算出は行なわずに、連系線潮流を用いて分散型電源の制御量の算出を行う。この場合、演算に必要な計測量としては連系線潮流のみでよく、演算に必要な情報量(計測量)が少なく、かつ、分散型電源が個々に自律的に出力制御を行える。   In addition, when connecting to a large-scale power transmission and distribution network, the system frequency hardly changes even if supply and demand imbalance occurs due to load drop in the power network. Without calculating, the control amount of the distributed power source is calculated using the interconnection power flow. In this case, the amount of measurement required for the calculation may be only the interconnected power flow, the amount of information (measurement amount) required for the calculation is small, and the distributed power supply can independently control the output.

更に、大規模送配電網との連系線接続状態情報を用いて、分散型電源の制御量の算出方法を切り換えることにより、連系状態によらず分散型電源の制御量を算出できる。   Furthermore, the control amount of the distributed power source can be calculated regardless of the interconnection state by switching the calculation method of the control amount of the distributed power source using the connection line connection state information with the large-scale power transmission and distribution network.

以下、本発明による電力ネットワークの制御システムの一実施の形態について図面を用いて詳細に説明する。   Hereinafter, an embodiment of a power network control system according to the present invention will be described in detail with reference to the drawings.

本発明が制御対象とする電力ネットワークの構成を、図1を用いて説明する。この電力ネットワーク1は、複数の分散型電源21,22,23,24,25と負荷14とが、送配電線11により相互に接続された特定区域における比較的小規模の電力ネットワークである。この電力ネットワーク1は、電力会社などによる大規模送配電網100と電気所10に設けられた連系線用遮断機・断路器(以下、連系線開閉器と呼ぶ)13により連系線12を介して連系可能に構成されている。ただし、この実施の形態では、連系線開閉器13が開いており、電力ネットワーク1は大規模送配電網100とは切り離された単独系統として運用されているものとする。   A configuration of a power network to be controlled by the present invention will be described with reference to FIG. The power network 1 is a relatively small-scale power network in a specific area where a plurality of distributed power sources 21, 22, 23, 24, 25 and a load 14 are connected to each other by a transmission / distribution line 11. This power network 1 is connected to a large-scale transmission / distribution network 100 by an electric power company or the like and a connection line breaker / disconnector (hereinafter referred to as a connection line switch) 13 provided in an electric station 10. It is configured to be interconnected via However, in this embodiment, it is assumed that the connection line switch 13 is open and the power network 1 is operated as a single system separated from the large-scale power transmission and distribution network 100.

また、前記分散型電源としては、例えば、二次電池21、マイクロガスタービン22、燃料電池23、風力発電24、同期発電機25などが用いられる。同期発電機25は、比較的大容量であり発電電力がそのまま出力されるため、周知のように慣性特性を有する。これに対し、それ以外の上記各電源21,22,23,24は、発電電力がインバータなどを介して出力されるため慣性特性を持たない。   As the distributed power source, for example, a secondary battery 21, a micro gas turbine 22, a fuel cell 23, a wind power generator 24, a synchronous generator 25, or the like is used. Since the synchronous generator 25 has a relatively large capacity and the generated power is output as it is, it has an inertia characteristic as is well known. On the other hand, each of the other power sources 21, 22, 23, and 24 does not have inertia characteristics because the generated power is output via an inverter or the like.

この実施の形態では、送配電線11に対して慣性特性を持たない上記各電源21,22,23,24のみが接続し、これらによって負荷14に電力を供給しており、慣性特性を有する同期発電機25は送配電網11には接続していないものとする。   In this embodiment, only the power sources 21, 22, 23, and 24 having no inertia characteristic are connected to the power transmission / distribution line 11, and power is supplied to the load 14 by these, and the synchronous characteristic having the inertia characteristic is provided. It is assumed that the generator 25 is not connected to the transmission and distribution network 11.

この実施の形態では、図1で示すように、電力ネットワーク1と電力会社等の大規模送配電網100とは非連系で、電力ネットワーク1が単独系統として運用される。このような電力ネットワーク1内において、負荷脱落3や分散型電源の緊急停止などの外乱が生じ、電力需要と供給が釣り合わずに需給アンバランスΔPが生じたとき、この実施の形態では需給アンバランスを系統周波数の変動の大きさでとらえ、需給アンバランスを回復させように制御する。   In this embodiment, as shown in FIG. 1, the power network 1 and the large-scale transmission / distribution network 100 such as an electric power company are not interconnected, and the power network 1 is operated as a single system. In this embodiment, when a disturbance such as a load drop 3 or an emergency stop of a distributed power source occurs in the power network 1 and a power supply / demand imbalance ΔP occurs because the power demand and the supply are not balanced, Is controlled by the magnitude of fluctuations in the system frequency so as to recover the supply-demand imbalance.

このために、各分散型電源21,22,23,24には、図3で示すように、電力ネットワーク1における系統周波数の変動の大きさΔfを検出する周波数検出手段31を設ける。すなわち、周波数検出手段31には基準周波数fと系統周波数f(図1では4)が入力されており、これらから周波数変動の大きさΔfが検出される。 For this purpose, each of the distributed power sources 21, 22, 23, and 24 is provided with frequency detection means 31 for detecting the magnitude Δf of system frequency fluctuation in the power network 1, as shown in FIG. That is, the reference frequency f 0 and the system frequency f is the frequency detection means 31 (in Fig. 1 4) is input, the size Δf of the frequency variation is detected.

また、系統周波数の変動の大きさΔfに対応する各分散型電源21,22,23,24の制御量ΔPGを求める制御量演算手段32を設けている。すなわち、制御量演算手段32には、系統周波数の変動の大きさΔfと、この系統周波数を所定値に回復させるための制御量ΔPGとの関係(Δf−ΔPG制御特性)が、各分散型電源21,22,23,24について設定されており、この設定関係(Δf−ΔPG制御特性)に基き、制御量ΔPGが求められる。   Further, there is provided a control amount calculation means 32 for obtaining a control amount ΔPG of each of the distributed power sources 21, 22, 23, 24 corresponding to the magnitude Δf of the system frequency fluctuation. In other words, the control amount calculation means 32 indicates the relationship (Δf−ΔPG control characteristic) between the magnitude Δf of the fluctuation of the system frequency and the control amount ΔPG for recovering the system frequency to a predetermined value. 21, 22, 23, and 24 are set, and the control amount ΔPG is obtained based on this setting relationship (Δf−ΔPG control characteristic).

そして、電力ネットワーク1における電力の需給アンバランスにより系統周波数の変動が生じた場合、この変動を抑制するように各分散型電源21,22,23,24で自律的に発生電力の制御を行う。   And when the fluctuation | variation of a system frequency arises by the electric power supply-and-demand imbalance in the electric power network 1, the generated electric power is controlled autonomously by each distributed power source 21,22,23,24 so that this fluctuation | variation may be suppressed.

以下、詳細に説明する。先ず、事前に各分散型電源21,22,23,24に記憶させる整定値を決める以下の作業を行う。   Details will be described below. First, the following work is performed to determine the set values to be stored in the distributed power sources 21, 22, 23, 24 in advance.

電力ネットワーク1内において、負荷脱落や分散型電源の緊急停止などの外乱により、電力需要と供給が釣り合わず需給アンバランスΔPが生じたとき、系統周波数fがどの程度変動するかを把握する。これを電力ネットワーク1におけるΔP−Δf特性と呼ぶ。   In the power network 1, it is grasped how much the system frequency f fluctuates when a power supply and demand are not balanced and a supply and demand imbalance ΔP occurs due to disturbance such as load drop or emergency stop of a distributed power source. This is called a ΔP-Δf characteristic in the power network 1.

このΔP−Δf特性、つまり、需給アンバランスΔPが生じたときの周波数変化Δfは、電源脱落時は以下の(1a)式により、負荷脱落時は(1b)式により求められる。この他の方法として、実測するか、あるいは、シミュレーション等により求めてもよい。

Figure 0004860960
Figure 0004860960
The ΔP-Δf characteristic, that is, the frequency change Δf when the supply / demand imbalance ΔP occurs is obtained by the following equation (1a) when the power supply is disconnected and by the equation (1b) when the load is removed. As other methods, actual measurement or simulation may be used.
Figure 0004860960
Figure 0004860960

ここで、Kは電源の周波数特性定数、Kは負荷の周波数特性定数で、単位は[%/Hz]。これは、周波数が1Hz変化したとき、電源あるいは負荷が何%変化するかを表すもので、この数値は経験的数値か既存の手法で求めた値を用いる。 Here, K G frequency characteristic constant of the power supply, the frequency characteristic constant of K L is the load, the unit is [% / Hz]. This represents how much the power supply or load changes when the frequency changes by 1 Hz, and this value is an empirical value or a value obtained by an existing method.

次に、需給アンバランスΔPを、どの分散型電源の出力PGを制御して解消するかを決定する。どの分散型電源を制御するかは、分散型電源の制御優先順位、出力特性、効率、発電予備力等を考慮して決定する。   Next, it is determined which distributed power supply output PG is controlled to eliminate the supply and demand imbalance ΔP. Which distributed power source is to be controlled is determined in consideration of the control priority of the distributed power source, output characteristics, efficiency, power reserve, and the like.

分散型電源の制御パターンの一例として、例えば、効率が良い分散型電源から制御する等の理由から、分散型電源の制御優先順位を決めて制御したい場合には、各分散型電源21,22,23,24の制御優先順位と、需給アンバランスΔPを解消するために各分散型電源が負担する量(出力増加できる最大量ΔPGmaxと出力低下できる最大量ΔPGmin)を決定する。そして、電力ネットワーク1におけるΔP−Δf特性と、分散型電源の制御優先順位と最大負担量(ΔPGmax、ΔPGmin)とから、周波数変動が発生したときの各分散型電源21,22,23,24の制御パターンを決定する。つまり、周波数変化Δfに対して、どの分散型電源の出力をいくら増減するか(出力増減量ΔPG)を決める。これは前述のように、各分散型電源21,22,23,24のΔf−ΔPG制御特性と呼ばれる。   As an example of the control pattern of the distributed power source, for example, when it is desired to control and determine the control priority of the distributed power source for the reason of controlling from the efficient distributed power source, each distributed power source 21, 22, 23 and 24, and the amount that each distributed power source bears in order to eliminate the supply and demand imbalance ΔP (the maximum amount ΔPGmax that can increase the output and the maximum amount ΔPGmin that can decrease the output) are determined. Then, based on the ΔP-Δf characteristic in the power network 1, the control priority of the distributed power source, and the maximum burden (ΔPGmax, ΔPGmin), each of the distributed power sources 21, 22, 23, 24 when the frequency fluctuation occurs is determined. Determine the control pattern. That is, it determines how much the output of the distributed power source is increased or decreased with respect to the frequency change Δf (output increase / decrease amount ΔPG). As described above, this is called the Δf-ΔPG control characteristic of each distributed power source 21, 22, 23, 24.

図4は、電力ネットワーク1におけるΔP−Δf特性と、各分散型電源の負担量の一例を示す図で、電力ネットワーク1において、需給アンバランスΔPが35kW(負荷脱落時=電力供給過剰側を正とし、電源脱落時=電力供給不足側を負とする)生じるとき、Δfは0.35Hz変化することを示している。また、需給アンバランスΔPを解消するための分散型電源の制御優先順位は、分散型電源21(2次電池:BTR)、分散型電源22(マイクロガスタービン:MGT)、分散型電源23(燃料電池:FC)の順とする。そして、各分散型電源の最大負担量(ΔPGmax,ΔPGmin)を、BTR21は、ΔPGmax=+10kW、ΔPGmin=−10kW、MGT22も同じくΔPGmax=+10kW、ΔPGmin=−10kW、FC23は、ΔPGmax=+15kW、ΔPGmin=−15kWとした例である。この場合の各分散型電源のΔf−ΔPG制御特性は、図5a、図5b、図5cに示す通りとなる。   FIG. 4 is a diagram showing an example of the ΔP-Δf characteristic in the power network 1 and the burden amount of each distributed power source. In the power network 1, the supply and demand imbalance ΔP is 35 kW (when the load is dropped = the power supply excess side is corrected). Δf changes 0.35 Hz when the power is lost = the power supply shortage side is negative). Also, the control priority of the distributed power source for eliminating the supply / demand imbalance ΔP is as follows: distributed power source 21 (secondary battery: BTR), distributed power source 22 (micro gas turbine: MGT), distributed power source 23 (fuel) Battery: FC). Then, the maximum burden amount (ΔPGmax, ΔPGmin) of each distributed power source is set as follows: BTR21: ΔPGmax = + 10 kW, ΔPGmin = −10 kW, MGT22: This is an example of -15 kW. The Δf-ΔPG control characteristics of each distributed power source in this case are as shown in FIGS. 5a, 5b, and 5c.

すなわち、周波数の変動の大きさΔfが+0.1、−0.1までの間は、優先順位「1」のBTR21が、−10kW〜+10kWの範囲で出力を変化させる。同様に、周波数の変動の大きさΔfが+0.1、−0.1を越えて+0.2、−0.2までの間は、優先順位「2」のMGT22が、−10kW〜+10kWの範囲で出力を変化させる。さらに、周波数の変動の大きさΔfが+0.2、−0.2を越えて+0.35、−0.35までの間は、優先順位「3」のFC23が、−15kW〜+15kWの範囲で出力を変化させる。   That is, while the magnitude Δf of the frequency fluctuation is between +0.1 and −0.1, the BTR 21 with the priority “1” changes the output in the range of −10 kW to +10 kW. Similarly, when the magnitude of the frequency variation Δf is between +0.1 and −0.1 to +0.2 and −0.2, the MGT 22 with the priority “2” is in the range of −10 kW to +10 kW. Change the output with. Further, when the frequency fluctuation magnitude Δf exceeds +0.2 and −0.2 to +0.35 and −0.35, the priority level “3” FC23 is in the range of −15 kW to +15 kW. Change the output.

以上のように求めた各分散型電源のΔf−ΔPG制御特性を、対応する分散型電源21,22,23,24の制御量演算手段32に事前に記憶させておく。   The Δf-ΔPG control characteristics of each distributed power source obtained as described above are stored in advance in the control amount calculation means 32 of the corresponding distributed power sources 21, 22, 23, 24.

なお、分散型電源の他の制御パターンとして、各分散型電源21,22,23を同時に制御したい場合には、各分散型電源21,22,23のΔf−ΔPG制御特性を、図6a、図6b、図6cのように設定する。周波数変動が発生したら、BTR、MGT、FCともに制御する(各分散型電源の最大負担量ΔPGmax、ΔPGminは図5の例と同じ)。各分散型電源の負担量を電力ネットワーク1におけるΔP−Δf特性上で表すと図7のようになる。   As another control pattern of the distributed power source, when it is desired to control the distributed power sources 21, 22, and 23 simultaneously, the Δf-ΔPG control characteristics of the distributed power sources 21, 22, and 23 are shown in FIG. 6b and set as shown in FIG. 6c. When frequency fluctuations occur, BTR, MGT, and FC are all controlled (maximum burden amounts ΔPGmax and ΔPGmin of each distributed power source are the same as in the example of FIG. 5). FIG. 7 shows the burden amount of each distributed power source on the ΔP-Δf characteristic in the power network 1.

更に、分散型電源の他の制御パターンとして、いち早く周波数変動を抑制したい場合には、制御優先順位や負担量を決めず、つまり、図5や図6のような制御特性を設定せずに、各分散型電源の出力応答特性に応じて動作するようにして、需給アンバランスを解消してもよい。この場合、応動の速い分散型電源が主体となって制御するとともに、最大出力あるいは最小出力まで出力を変化させることになる。   Furthermore, as another control pattern of the distributed power source, when it is desired to quickly suppress the frequency fluctuation, the control priority order and the burden amount are not determined, that is, without setting the control characteristics as shown in FIGS. Supply and demand imbalance may be eliminated by operating according to the output response characteristics of each distributed power source. In this case, control is performed mainly by a distributed power source with fast response, and the output is changed to the maximum output or the minimum output.

次に、実運用時の動作を図2のフローチャートを参照しながら説明する。まず、各分散型電源において、時々刻々と系統周波数fを計測し(ステップ201)、基準周波数fからの変化分Δfを算出する(ステップ202)。 Next, the operation during actual operation will be described with reference to the flowchart of FIG. First, in the distributed power, measured momentarily and system frequency f (step 201), calculates a variation Δf of the reference frequency f 0 (step 202).

ある時点で、負荷脱落や分散型電源の緊急停止などの外乱が発生すると、電力需要と供給が釣り合わずに需給アンバランスΔPが生じ、系統周波数fが大きく変動(Δf大)する(ステップ203)。このため、予め設定したΔf−ΔPG制御特性により周波数変化Δfに応じた分散型電源の出力増減量(制御量)ΔPGを算出する(ステップ204)。そして、その結果を基に分散型電源の出力PGを制御し(ステップ205)、電力ネットワーク1の需給アンバランスを解消して、系統周波数fを基準周波数fに回復させる。Δfに応じたΔPGの算出方法は、前記の通り求め各分散型電源に事前に記憶したΔf−ΔPG制御特性と、算出したΔfとから算出する。 When a disturbance such as a load drop or an emergency stop of a distributed power source occurs at a certain point in time, the supply and demand imbalance ΔP occurs without balancing the power demand and supply, and the system frequency f fluctuates greatly (large Δf) (step 203). . For this reason, the output increase / decrease amount (control amount) ΔPG of the distributed power source corresponding to the frequency change Δf is calculated by the preset Δf-ΔPG control characteristic (step 204). And thus controls the output PG of the distributed power supply based on (step 205), to eliminate the supply-demand imbalance in the power network 1, to recover the power system frequency f to the reference frequency f 0. The calculation method of ΔPG according to Δf is calculated from the Δf-ΔPG control characteristic obtained in advance as described above and stored in advance in each distributed power source and the calculated Δf.

上記説明は、分散型電源として慣性特性を持たない電源21,22,23,24のみを送配電網11に接続した場合についてであるが、次に、慣性特性を有する同期発電機25のみを送配電網に11に接続し、同期発電機25(図では1個示されているが複数個設けられているものとする)により負荷に電力を供給している場合を説明する。   The above description is for the case where only the power sources 21, 22, 23, and 24 having no inertia characteristic are connected to the transmission / distribution network 11 as the distributed power source. Next, only the synchronous generator 25 having the inertia characteristic is transmitted. A case will be described in which power is supplied to the load by the synchronous generator 25 (one is shown in the figure but a plurality is provided) connected to the distribution network 11.

この実施の形態は、電力ネットワーク1内において、負荷脱落3や分散型電源の緊急停止などの外乱が生じ、これにより、電力需要と供給が釣り合わず需給アンバランスΔPが生じたとき、これを系統周波数の変化率によりとらえ、需給アンバランスを解消させるものである。   In this embodiment, when a disturbance such as a load drop 3 or an emergency stop of a distributed power source occurs in the power network 1, the power demand and the supply are not balanced and a supply and demand imbalance ΔP is generated. This is based on the rate of change in frequency and eliminates the imbalance between supply and demand.

すなわち、需給アンバランスによる周波数変動が発生した場合、時々刻々と計測した系統周波数fの変化率df/dtを算出し、その変化率df/dtを用いて需給アンバランス量ΔPを推定し、ΔP推定値と周波数変動発生前の分散型電源出力PGとから出力増減量(制御量)ΔPGを算出する。 That is, when frequency fluctuations due to supply / demand imbalance occur, the rate of change df / dt of the system frequency f measured from time to time is calculated, the amount of supply / demand unbalance ΔP is estimated using the rate of change df / dt, and ΔP An output increase / decrease amount (control amount) ΔPG is calculated from the estimated value and the distributed power output PG 0 before occurrence of frequency fluctuation.

ここで、需給アンバランス量ΔPの推定方法と制御量ΔPGの算出方法は次のとおりである。すなわち、周波数変化率df/dt(=Δf)を用いて、以下の(2a)式により需給アンバランス量ΔPを推定し、このΔPと周波数変動発生前の分散型電源出力PGを用いて、(2b)式により制御量ΔPGを算出する。

Figure 0004860960
Figure 0004860960
Here, the estimation method of the supply and demand imbalance amount ΔP and the calculation method of the control amount ΔPG are as follows. That is, using the frequency change rate df / dt (= Δf c ), the supply and demand imbalance amount ΔP is estimated by the following equation (2a), and using this ΔP and the distributed power output PG 0 before the occurrence of the frequency fluctuation, , (2b) is used to calculate the control amount ΔPG.
Figure 0004860960
Figure 0004860960

ここで、Δfは周波数変化率df/dt、Mは等価縮約発電機の単位慣性定数[秒]で、電力ネットワーク1を一負荷一発電機の等価系統モデルに等価縮約したときの定数を、事前に求めて設定した値であり、電力ネットワーク内の各同期発電機の定格出力で加重平均した値である。PGは周波数変動発生前の各分散型電源の発電量[MW]である。 Constant Here, Delta] f c is the frequency change rate df / dt, M in the unit inertia constant of the equivalent contraction generator [sec] when a power network 1 promises equivalent reduced to an equivalent system model one load one generator Is a value obtained and set in advance, and a value obtained by weighted averaging with the rated output of each synchronous generator in the power network. PG 0 is the power generation amount [MW] of each distributed power source before frequency fluctuation occurs.

なお、(2a)式は、発電機の運動方程式から次のように導くことができる。電力ネットワーク1を一負荷一発電機の等価縮約系統モデルとして考え、同期発電機25の機械入力をP、電気出力をP(=負荷の消費電力P)、等価発電機の慣性定数をMとすると、発電機の運動方程式より以下の(3)式が成り立つ。

Figure 0004860960
The equation (2a) can be derived from the equation of motion of the generator as follows. Considering the power network 1 as an equivalent reduced system model of one generator with one load, the mechanical input of the synchronous generator 25 is P m , the electrical output is P e (= load power consumption P L ), and the inertia constant of the equivalent generator If M is M, the following equation (3) is established from the equation of motion of the generator.
Figure 0004860960

(3)式について、周波数変化率df/dt=Δf、需給アンバランス量(P−P)=ΔPとすると、ΔPは(2a)式で求めることができる。 With regard to equation (3), if frequency change rate df / dt = Δf c and supply / demand imbalance amount (P m −P e ) = ΔP, ΔP can be obtained by equation (2a).

(2a)式で推定される需給アンバランス量ΔPは、例えば、周波数低下側を例にとって説明すると、等価発電機モデルの定常時の電気出力Pe(=負荷の消費電力PL)を基準(1.0)としたときの発電量不足分である。周波数変化率df/dt=0.01(ここでは仮に周波数低下側を正とし、10ms間の変化分)、等価発電機モデルの単位慣性定数M=5秒とすると、需給アンバランス量ΔPは(2a)式から0.01×5.0=0.05で、電力ネットワーク1内の総負荷量に対して総発電量が5%不足していることになる。よって、電力ネットワーク1内の総発電量の5%を増加させる、つまり、各分散型電源25において5%出力を増加すれば、需給アンバランスが解消され周波数低下を抑制できる。   The supply and demand imbalance amount ΔP estimated by the equation (2a) will be described with reference to the electric power Pe (= load power consumption PL) at the time of steady operation of the equivalent generator model as an example. 0) is the amount of power generation deficient. Assuming that the frequency change rate df / dt = 0.01 (here, the frequency decrease side is positive and the change in 10 ms), and the unit inertia constant M = 5 seconds of the equivalent generator model, the supply and demand imbalance amount ΔP is ( From equation (2a), 0.01 × 5.0 = 0.05, and the total power generation amount is insufficient by 5% with respect to the total load amount in the power network 1. Therefore, if 5% of the total power generation amount in the power network 1 is increased, that is, if the output is increased by 5% in each distributed power source 25, the supply and demand imbalance is eliminated and the frequency reduction can be suppressed.

次に、ΔP推定値から各分散型電源の出力増減量ΔPGを算出する場合、例えば、分散型電源25の周波数変動発生前の出力PGが50kWの場合は、出力増減量ΔPGは、50kWの5%の+2.5kWとなる。 Next, when calculating the output increase / decrease amount ΔPG of each distributed power source from the ΔP estimated value, for example, when the output PG 0 before the frequency fluctuation of the distributed power source 25 is 50 kW, the output increase / decrease amount ΔPG is 50 kW. 5% +2.5 kW.

なお、電力ネットワーク1内の系統周波数は、ほぼ同じ様相で変動するので、各分散型電源端で推定したΔPはほぼ同じとなる。したがって、分散型電源25が電力ネットワーク1内に分散配置された構成でも、各分散型電源25において一律5%の制御を実施できるので、電力ネットワーク1全体として5%の出力増加を行える。   Since the system frequency in the power network 1 varies in substantially the same manner, ΔP estimated at each distributed power supply end is substantially the same. Therefore, even in a configuration in which the distributed power sources 25 are distributed in the power network 1, 5% control can be performed uniformly in each distributed power source 25, so that the output of the power network 1 as a whole can be increased by 5%.

次に、実運用時の動作を図8のフローチャートを参照しながら説明する。まず、各分散型電源25において、時々刻々と系統周波数fを計測する(ステップ801)とともに、基準周波数fからの変化分Δfを算出する(ステップ802)。 Next, operations during actual operation will be described with reference to the flowchart of FIG. First, in the distributed power supply 25, to measure constantly the system frequency f (step 801), calculates a variation Δf of the reference frequency f 0 (step 802).

ある時点で、負荷脱落や分散型電源の緊急停止などの外乱が発生すると、電力需要と供給が釣り合わず需給アンバランスが生じ、系統周波数fが大きく変動(Δf大)する(ステップ803)。このように周波数変動が発生した場合(Δf大)には、時々刻々と計測した系統周波数fの変化率df/dtを算出する(ステップ804)。さらに、その変化率df/dtを用いて需給アンバランス量ΔPを推定する(ステップ805)。そして、ΔP推定値と周波数変動発生前の分散型電源出力PGとから出力増減量ΔPGを算出する(ステップ806)。このようにして求めた出力増減量(制御量)ΔPGにより、分散型電源25の出力PGを制御し(ステップ807)、電力ネットワーク1の需給アンバランスを解消して、系統周波数fを基準周波数fに回復させる。 When a disturbance such as a load drop or an emergency stop of a distributed power source occurs at a certain point in time, the power demand and supply are not balanced and supply and demand imbalance occurs, and the system frequency f fluctuates greatly (large Δf) (step 803). When frequency fluctuations occur in this way (large Δf), the rate of change df / dt of the system frequency f measured every moment is calculated (step 804). Further, the supply / demand imbalance amount ΔP is estimated using the rate of change df / dt (step 805). Then, an output increase / decrease amount ΔPG is calculated from the estimated ΔP value and the distributed power output PG 0 before the occurrence of frequency fluctuation (step 806). The output increase / decrease amount (control amount) ΔPG determined in this way is used to control the output PG of the distributed power source 25 (step 807), the supply / demand imbalance of the power network 1 is eliminated, and the system frequency f is set to the reference frequency f. Restore to zero .

次に、電力ネットワーク1内の分散型電源として、慣性特性を有する同期発電機25とそれ以外の種類の発電機器21,22,23,24が混在する場合について説明する。   Next, a case where a synchronous generator 25 having inertia characteristics and other types of power generation devices 21, 22, 23, and 24 are mixed as a distributed power source in the power network 1 will be described.

この場合、同期発電機25以外の慣性特性を持たない分散型電源、例えば、2次電池21、マイクロガスタービン22、燃料電池23等では、図2で説明した手順で制御量を算出する。つまり、各分散型電源に事前に記憶したΔf−ΔPG制御特性と、算出したΔfとから、Δfに応じたΔPGを算出する。   In this case, in the distributed power source having no inertia characteristic other than the synchronous generator 25, for example, the secondary battery 21, the micro gas turbine 22, the fuel cell 23, etc., the control amount is calculated by the procedure described in FIG. That is, ΔPG corresponding to Δf is calculated from the Δf-ΔPG control characteristic stored in advance in each distributed power source and the calculated Δf.

一方、慣性特性を有する同期発電機25では、図8で説明した手順で制御量を算出する。つまり、周波数変化率df/dt(=Δf)を用いて、(2a)式によりΔPを推定し、ΔPと周波数変動発生前の分散型電源PGを用いて、(2b)式によりΔPGを算出する。 On the other hand, in the synchronous generator 25 having inertial characteristics, the control amount is calculated according to the procedure described in FIG. That is, ΔP is estimated by the equation (2a) using the frequency change rate df / dt (= Δf c ), and ΔPG is calculated by the equation (2b) using ΔP and the distributed power source PG 0 before the occurrence of the frequency fluctuation. calculate.

なお、各分散電源がΔPGの算出結果を基に出力PGを制御している間は、周波数は外乱発生前の値に戻る方向で変化し、最終的には外乱発生前の値(定格周波数)に戻るので、定常周波数に戻るまでは各分散電源はΔPGの算出結果分の出力制御のみを行う。但し、定常周波数に戻るまでの間や、定常周波数に戻った後に、新たな外乱が発生し、周波数変化Δfが大となれば、ΔPGの算出と出力制御を再度実施して、新たな外乱が発生しても常に周波数を定格周波数に制御する。   While each distributed power source controls the output PG based on the calculation result of ΔPG, the frequency changes in a direction to return to the value before the occurrence of the disturbance, and finally the value before the occurrence of the disturbance (rated frequency). Therefore, each distributed power source only performs output control for the calculation result of ΔPG until the steady frequency is restored. However, if a new disturbance occurs until the stationary frequency is returned or after returning to the stationary frequency and the frequency change Δf becomes large, ΔPG calculation and output control are performed again, and the new disturbance is generated. Even if it occurs, the frequency is always controlled to the rated frequency.

これらの実施の形態によれば、各分散型電源の制御量を算出する際に、演算に必要な計測量としては分散型電源自端で計測可能な系統周波数のみのため、演算に必要な情報量(計測量)が少なく、かつ、分散型電源が個々に自律的に出力制御を行える。   According to these embodiments, when calculating the control amount of each distributed power source, the measurement amount necessary for the calculation is only the system frequency that can be measured by the distributed power source itself. The amount (measurement amount) is small, and the distributed power supply can independently control the output.

次に、図9で示すように、電力ネットワーク1と電力会社等の大規模送配電網100とが、閉状態の連系線開閉器13により連系線12を介して接続し、連系系統として運用される場合について説明する。なお、平常時における連系線潮流量(連系線潮流基準値Pt)は、大規模送配電網100を運営する電力会社等の電気事業者との契約により決まり、零か、ある一定値以下とする。 Next, as shown in FIG. 9, the power network 1 and a large-scale power transmission / distribution network 100 such as a power company are connected via a connection line 12 by a connection line switch 13 in a closed state. Will be described. It should be noted that the interconnecting tide flow rate (the interconnecting tide reference value Pt 0 ) is determined by a contract with an electric power company such as an electric power company that operates the large-scale power distribution network 100, and is zero or a certain constant value. The following.

このような状態において、電力ネットワーク1内で、負荷脱落や分散型電源の緊急停止などの外乱により電力ネットワーク1内の電力需要と供給が変化し、不足分あるいは過剰分(需給アンバランス)が生じると、これらの電力が連系線12を介して大規模送配電網100との間で相互に授受される。このため、連系線潮流量は、前記連系線潮流基準値Ptに対して変化する。この場合、前述した電気事業者との契約条件から、連系線潮流量を外乱発生前の状態に早急に戻す必要がある。 In such a state, power demand and supply in the power network 1 change due to disturbance such as load drop or an emergency stop of the distributed power source in the power network 1, resulting in shortage or excess (supply / demand imbalance). These electric powers are exchanged between the large-scale power transmission / distribution network 100 via the interconnection line 12. Therefore, tie line power flow quantity changes with respect to the tie-line power flow reference value Pt 0. In this case, it is necessary to promptly return the interconnected tidal flow to the state before the occurrence of the disturbance based on the contract conditions with the electric power company described above.

また、電力ネットワーク1での前記外乱による需給アンバランス量は、大規模送配電網100の系統容量に対して絶対的に小さいため、系統周波数はほとんど変化しない。そこで、この実施の形態では、電力ネットワーク1における需給アンバランスを連系線潮流量の変化としてとらえている。   Further, since the supply and demand imbalance due to the disturbance in the power network 1 is absolutely small relative to the system capacity of the large-scale power transmission and distribution network 100, the system frequency hardly changes. Therefore, in this embodiment, supply and demand imbalance in the power network 1 is regarded as a change in the interconnected tidal flow.

このため、図9で示すように、連系線部分に連系線監視手段5を設け、電力ネットワーク1と大規模送配電網100との間の連系線12の接続有無(連系線開閉器13の開閉状態)及び連系線接続時における連系線潮流を検出し、この連系線12の接続有無及び連系線潮流量を各分散型電源21,22,23,24,25に通知するように構成している。   For this reason, as shown in FIG. 9, the connection line monitoring means 5 is provided in the connection line portion, and the presence / absence of connection of the connection line 12 between the power network 1 and the large-scale transmission / distribution network 100 (connection line switching) The open / close state of the device 13) and the connection line power flow at the time of connection of the connection line are detected, and the presence / absence of connection of the connection line 12 and the connection line flow rate are detected in each distributed power source 21, 22, 23, 24, 25. It is configured to notify.

また、各分散型電源21,22,23,24,25には、図11で示すように、連系線潮流基準値Ptと通知された連系線潮流量Ptとから連系線潮流の変化分ΔPtを求める変化分検出手段41を設けると共に制御量演算手段42を設けている。制御量演算手段42は、連系線潮流の変化分ΔPtを電力ネットワークの需給アンバランスΔPとみなして、この需給アンバランスΔPを回復するための発生電力の制御量ΔPGを、予め設定された関係(ΔPt−ΔPG制御特性)を用いて算出し、出力する。 In addition, as shown in FIG. 11, each distributed power source 21, 22, 23, 24, 25 has a connection line power flow from the connection line power flow reference value Pt 0 and the notified connection line power flow rate Pt. A change amount detecting means 41 for obtaining the change amount ΔPt is provided, and a control amount calculating means 42 is provided. The control amount calculation means 42 regards the change ΔPt in the interconnected power flow as the supply / demand imbalance ΔP of the power network, and sets the control amount ΔPG of the generated power for recovering the supply / demand imbalance ΔP to a preset relationship. Calculate and output using (ΔPt−ΔPG control characteristic).

これにより、電力ネットワーク1における電力の需給アンバランスΔPにより連系線潮流の変動(変化分ΔPt)が生じた場合、この変動を抑制するように各分散型電源21,22,23,24,25において自律的に発生電力の制御を行うことが出来る。   As a result, when a fluctuation (change ΔPt) in the interconnected line flow occurs due to power supply / demand imbalance ΔP in the power network 1, each distributed power source 21, 22, 23, 24, 25 is controlled so as to suppress this fluctuation. The generated power can be controlled autonomously.

以下、詳細に説明する。先ず、事前に各分散型電源21,22,23,24,25に記憶させる整定値を決める以下の作業を行う。   Details will be described below. First, the following work is performed to determine the set values to be stored in the distributed power sources 21, 22, 23, 24, and 25 in advance.

電力ネットワーク1内において、負荷脱落や分散型電源の緊急停止などの外乱が生じ、電力ネットワーク1内の電力需要と供給が変化すると、不足分あるは過剰分の電力、つまり、需給アンバランスΔP分の電力が連系線12を介して大規模送配電網100と授受される。需給アンバランスΔPと連系線潮流変化分ΔPtはほぼ等しいので、電力ネットワーク1内の分散型電源の出力PGをΔPt分変化させれば需給アンバランスは解消する。そこで、どの分散型電源の出力PGを制御して需給アンバランスを解消するかを決定する。どの分散型電源を制御するかは、分散型電源21,22,23,24,25の制御優先順位、出力特性、効率、発電予備力等を考慮して決定する。   When a disturbance such as a load drop or an emergency stop of a distributed power source occurs in the power network 1 and the power demand and supply in the power network 1 change, there is a shortage or excess of power, that is, supply and demand imbalance ΔP Power is exchanged with the large-scale power transmission and distribution network 100 via the interconnection line 12. Since the supply / demand imbalance ΔP and the interconnected power flow change ΔPt are substantially equal, if the output PG of the distributed power source in the power network 1 is changed by ΔPt, the supply / demand imbalance is eliminated. Therefore, it is determined which distributed power source output PG is to be controlled to eliminate supply and demand imbalance. Which distributed power source is controlled is determined in consideration of the control priority of the distributed power sources 21, 22, 23, 24, 25, output characteristics, efficiency, power generation reserve capacity, and the like.

分散型電源の制御パターンの一例として、例えば、効率が良い分散型電源から制御する等の理由から、分散型電源の制御優先順位を決めて制御したい場合には、各分散型電源の制御優先順位と、需給アンバランスΔPを解消するために各分散型電源が負担する量(出力増加できる最大量ΔPGmaxと出力低下できる最大量ΔPGmin)を決定する。   As an example of the control pattern of the distributed power supply, for example, when it is desired to control the control priority of the distributed power supply for the purpose of controlling from the efficient distributed power supply, etc., the control priority of each distributed power supply Then, the amount (maximum amount ΔPGmax that can increase the output and maximum amount ΔPGmin that can decrease the output) to be borne by each distributed power source in order to eliminate the supply and demand imbalance ΔP is determined.

そして、それを基に連系線潮流が変化したときの各分散型電源の制御パターンを決定する。つまり、連系線潮流変化分ΔPtに対して、どの分散型電源の出力をいくら増減するか、出力増減量ΔPGを決める。これは前述のように、各分散型電源のΔPt−ΔPG制御特性と呼ばれる。   Based on this, the control pattern of each distributed power source when the interconnection power flow changes is determined. That is, the output increase / decrease amount ΔPG is determined as to how much the output of the distributed power source is increased / decreased with respect to the interconnection power flow change ΔPt. As described above, this is called a ΔPt-ΔPG control characteristic of each distributed power source.

図12は、連系線潮流の変化分ΔPtに対する、各分散型電源の負担量の一例を示す図で、電力ネットワーク1における需給アンバランスΔPは、負荷脱落時=電力供給過剰側を正とし、電源脱落時=電力供給不足側を負とする。連系線潮流の変化分ΔPtは、大規模送配電網100に送電する向きの潮流を正とする。この例では、需給アンバランスΔPを解消するための分散型電源として、2次電池:BTR21、マイクロガスタービン:MGT22、燃料電池:FC23を用いており、これらの制御優先順位は、BTR、MGT、FCの順とする。そして、これら各分散型電源21,22,23の最大負担量(ΔPGmax、ΔPGmin)は、BTR21では、ΔPGmax=+10kW、ΔPGmin=−10kW、MGT22も同じくΔPGmax=+10kW、ΔPGmin=−10kW、FC23は、ΔPGmax=+15kW、ΔPGmin=−15kWとしている。この場合の各分散型電源21,22,23のΔPt−ΔPG制御特性は、図13a、図13b、図13cに示す通りとなる。   FIG. 12 is a diagram showing an example of the burden amount of each distributed power source with respect to the change ΔPt in the interconnection power flow. The supply and demand imbalance ΔP in the power network 1 is positive when the load is dropped = power supply excess side, When power is lost = Negative power supply is negative. For the change ΔPt in the interconnection line power flow, the power flow directed to the large-scale transmission / distribution network 100 is positive. In this example, a secondary battery: BTR21, a micro gas turbine: MGT22, and a fuel cell: FC23 are used as distributed power sources for eliminating the supply and demand imbalance ΔP, and these control priorities are BTR, MGT, The order is FC. The maximum burdens (ΔPGmax, ΔPGmin) of these distributed power sources 21, 22, 23 are ΔPGmax = + 10 kW, ΔPGmin = −10 kW, and MGT22 is also ΔPGmax = + 10 kW, ΔPGmin = −10 kW, FC23 in the BTR 21 ΔPGmax = + 15 kW and ΔPGmin = −15 kW. In this case, the ΔPt-ΔPG control characteristics of the respective distributed power sources 21, 22, and 23 are as shown in FIGS. 13a, 13b, and 13c.

以上のように求めた各分散型電源のΔPt−ΔPG制御特性を、各分散型電源21,22,23の制御量演算手段42に事前に記憶させておくものとする。   The ΔPt-ΔPG control characteristics of each distributed power source obtained as described above are stored in advance in the control amount calculation means 42 of each distributed power source 21, 22, 23.

なお、制御量の算出にΔPt−ΔPG制御特性を用いているので、分散型電源には慣性特性の有無にかかわらずどのようなものを用いてもよく、例えば、図12におけるFC23をSG25に置き換えても問題はない。   Since the ΔPt-ΔPG control characteristic is used to calculate the control amount, any distributed power source may be used regardless of the presence or absence of the inertia characteristic. For example, FC23 in FIG. 12 is replaced with SG25. There is no problem.

他の分散型電源の制御パターンとして、各分散型電源とも同時に制御したい場合には、各分散型電源のΔPt−ΔPG制御特性を、図14a、図14b、図14cのように設定する。連系線潮流が変化した場合には、BTR、MGT、FCともに制御する(各分散型電源の最大負担量ΔPGmax、ΔPGminは図13の例と同じ)。ΔPtに対する各分散型電源の負担量を表すと図15のようになる。   As a control pattern of other distributed power sources, when it is desired to control each distributed power source simultaneously, the ΔPt-ΔPG control characteristics of each distributed power source are set as shown in FIGS. 14a, 14b, and 14c. When the interconnection power flow changes, BTR, MGT, and FC are controlled (the maximum burden amounts ΔPGmax and ΔPGmin of each distributed power source are the same as in the example of FIG. 13). FIG. 15 shows the burden amount of each distributed power source with respect to ΔPt.

更に、他の分散型電源の制御パターンとして、いち早く連系線潮流量を外乱発生前の状態に戻したい場合には、制御優先順位や負担量を決めず、つまり、図13や図14のような制御特性を設定せずに、分散型電源の出力応答特性に応じて動作するようにして、需給アンバランスを解消してもよい。この場合、応動の速い分散型電源が主体となって制御するとともに、最大出力あるいは最小出力まで出力を変化させることになる。   Further, as a control pattern of other distributed power sources, when it is desired to quickly return the grid line flow rate to the state before the disturbance occurrence, the control priority order and the burden amount are not determined, that is, as shown in FIGS. The supply and demand imbalance may be eliminated by operating according to the output response characteristics of the distributed power supply without setting the appropriate control characteristics. In this case, control is performed mainly by a distributed power source with fast response, and the output is changed to the maximum output or the minimum output.

次に、実運用時の動作を図10のフローチャートにより説明する。まず、大規模送電網100との連系線の状態を監視する連系線監視装置5では、大規模送配電網100と電力ネットワーク1とが連系しているかを確認する(ステップ1001)。連系状態であれば連系線潮流Pt(連系線に流れる有効電力)を計測する(ステップ1002)。そして、この連系線接続状態(連系線開閉器13の閉状態)と連系線潮流Ptの計測結果を各分散型電源へ送信する(ステップ1003)。なお、非連系の場合は、連系線接続状態(連系線開閉器13の開状態)のみを各分散型電源へ送信する。   Next, the operation during actual operation will be described with reference to the flowchart of FIG. First, the interconnection monitoring device 5 that monitors the state of the interconnection line with the large-scale power transmission network 100 confirms whether the large-scale transmission / distribution network 100 and the power network 1 are linked (step 1001). If it is in the interconnecting state, the interconnecting line power flow Pt (effective power flowing through the interconnecting line) is measured (step 1002). And the measurement result of this connection line connection state (closed state of the connection line switch 13) and connection line power flow Pt is transmitted to each distributed power supply (step 1003). In the case of non-interconnection, only the connection line connection state (open state of the connection line switch 13) is transmitted to each distributed power source.

各分散型電源では、連系線監視装置5から送られてくる連系線接続状態、連系線潮流Ptを受信する(ステップ1011)とともに、連系線潮流基準値Ptからの変化分ΔPtを算出する(ステップ1012)。 Each distributed power, tie line connection state sent from the tie-line monitoring device 5 receives the tie-line power flow Pt (step 1011), the variation ΔPt from tie-line power flow reference value Pt 0 Is calculated (step 1012).

ある時点で、電力ネットワーク1内で、負荷脱落や分散型電源の緊急停止などの外乱が発生すると、電力ネットワーク1内の電力需要と供給が変化し、不足分あるは過剰分の電力(=需給アンバランスΔP)が連系線12を介して大規模送配電網100と授受される。このため、連系線潮流Ptが大きく変化(ΔPt大)する(ステップ1013)。この場合、連系線潮流の変化分ΔPtに応じた分散型電源の出力増減量ΔPGを、予め設定されたΔPt−ΔPG制御特性により算出し(ステップ1014)、その結果を基に分散型電源の出力PGを制御する(ステップ1015)。この結果、電力ネットワーク1の需給アンバランスを解消して、連系線潮流Ptを外乱発生前の状態に戻すことが出来る。   When a disturbance such as a load drop or an emergency stop of a distributed power source occurs in the power network 1 at a certain point in time, the power demand and supply in the power network 1 change, and a shortage or excess of power (= supply and demand) Unbalance ΔP) is exchanged with the large-scale power transmission / distribution network 100 via the interconnection line 12. For this reason, the interconnection line power flow Pt changes greatly (ΔPt large) (step 1013). In this case, an output increase / decrease amount ΔPG of the distributed power source corresponding to the change ΔPt of the interconnection power flow is calculated by a preset ΔPt−ΔPG control characteristic (step 1014), and based on the result, the distributed power source output ΔΔt is calculated. The output PG is controlled (step 1015). As a result, the supply and demand imbalance of the power network 1 can be eliminated, and the interconnection power flow Pt can be returned to the state before the occurrence of the disturbance.

このように、電力ネットワーク1が大規模送配電網100と連系する場合は、電力ネットワーク1内で負荷脱落等による需給アンバランスが生じても、系統周波数はほとんど変化しないので、系統周波数を用いた分散型電源の制御量の算出は行わずに、連系線潮流の変化分を用いるので、分散型電源の制御量の算出が可能となる。また、演算に必要な計測量としては連系線潮流のみのため、演算に必要な情報量(計測量)が少なく、かつ、分散型電源が個々に自律的に出力制御を行える。   As described above, when the power network 1 is connected to the large-scale transmission / distribution network 100, the system frequency hardly changes even if a supply / demand imbalance due to load drop occurs in the power network 1. Since the amount of change in the interconnection power flow is used without calculating the control amount of the distributed power source, the control amount of the distributed power source can be calculated. Moreover, since the amount of measurement required for the calculation is only the interconnection power flow, the amount of information (measurement amount) required for the calculation is small, and the distributed power supply can independently control the output.

上記説明は、電力ネットワーク1が連系線12により大規模送配電網100と連系されている場合に付いて行ったが、この電力ネットワーク1と大規模送配電網100とは、連系線12に設けた連系線開閉器13により任意に非連系状態に切り換えることが出来る。すなわち、電力ネットワーク1は、図9で示した電力会社等の大規模送配電網100との連系系統の場合と、図1に示した大規模送配電網100とは非連系で単独系統として運用される場合がある。   The above description has been given in the case where the power network 1 is connected to the large-scale transmission / distribution network 100 by the interconnection line 12. However, the power network 1 and the large-scale transmission / distribution network 100 are connected to each other. 12 can be arbitrarily switched to a non-interconnected state by the interconnecting line switch 13 provided in FIG. That is, the power network 1 is not connected to the large-scale transmission / distribution network 100 shown in FIG. 1 and the single-system connection with the large-scale transmission / distribution network 100 shown in FIG. May be operated as

そして、大規模送配電網100と非連系時は、連系線が開放されており潮流情報はなく、また、連系時は、電力ネットワーク1内において負荷脱落や分散型電源の緊急停止などの外乱が発生しても、系統容量が大きい大規模送配電網100と連系しているため、系統周波数はほとんど変動しない。これらの場合に付いては、それぞれ各分散型電源における制御量の適切な求め方について、前述のように提案しているので、連系の有無に応じて制御量の求め方を適切に選択すればよい。   When the large-scale power transmission / distribution network 100 is not connected, the connection line is open and there is no power flow information. When the connection is made, load drop in the power network 1 or emergency stop of the distributed power source, etc. Even if this disturbance occurs, the system frequency hardly fluctuates because it is connected to the large-scale power distribution network 100 having a large system capacity. In these cases, the appropriate method for obtaining the control amount for each distributed power source has been proposed as described above. Therefore, the method for obtaining the control amount should be selected appropriately according to the presence or absence of interconnection. That's fine.

すなわち、各分散型電源に図3で示した周波数検出手段31及びΔf−ΔP制御特性を設定した制御量演算手段32や図11で示した潮流変化分検出手段41及びΔPt−ΔP制御特性を設定した制御量演算手段42などを設け、これらを、連系線監視装置5から送信される連系線接続状態に応じて選択し、適用すればよい。   Specifically, the frequency detection means 31 and the control amount calculation means 32 set with the Δf-ΔP control characteristics shown in FIG. 3 and the tidal current change detection means 41 and the ΔPt-ΔP control characteristics shown in FIG. The control amount calculation means 42 and the like may be provided, and these may be selected and applied according to the connection line connection state transmitted from the connection line monitoring device 5.

以下、図16の処理フローを参照しながら説明する。まず、大規模送電網100との連系線の状態を監視する連系線監視装置5では、大規模送配電網100と電力ネットワーク1とが連系しているかを確認する(ステップ1601)。連系状態であれば連系線潮流Pt(連系線に流れる有効電力)を計測する(ステップ1602)。そして、この連系線接続状態(連系線開閉器13の閉状態)と連系線潮流Ptの計測結果を各分散型電源へ送信する(ステップ1603)。なお、非連系の場合は、連系線接続状態(連系線開閉器13の開状態)のみを各分散型電源へ送信する。   Hereinafter, a description will be given with reference to the processing flow of FIG. First, the interconnection monitoring device 5 that monitors the state of the interconnection line with the large-scale power transmission network 100 confirms whether the large-scale transmission / distribution network 100 and the power network 1 are linked (step 1601). If it is in the interconnecting state, the interconnecting line power flow Pt (effective power flowing in the interconnecting line) is measured (step 1602). And the measurement result of this connection line connection state (closed state of the connection line switch 13) and the connection line power flow Pt is transmitted to each distributed power supply (step 1603). In the case of non-interconnection, only the connection line connection state (open state of the connection line switch 13) is transmitted to each distributed power source.

各分散型電源では、時々刻々と系統周波数fを計測する(ステップ1611)とともに、連系線監視装置5から送られてくる連系線接続状態、連系線潮流Ptを受信する(ステップ1612)。   Each distributed power source measures the system frequency f every moment (step 1611), and receives the connection line connection state and the connection line power flow Pt sent from the connection line monitoring device 5 (step 1612). .

連系線接続状態情報により連系ありか非連系かを判断する(ステップ1613)。その結果、大規模送配電網100と非連系の場合には、周波数変化に基づき、分散型電源の制御量を算出する(ステップ1614,1615,1616)。これに対し、大規模送配電網100と連系している場合には、潮流の変化分に基づき分散型電源の制御量を算出する(ステップ1624,1625,1626)。そして、このようにして求めた制御量により、各分散型電源の出力制御を行う。   Whether the connection is present or not is determined based on the connection line connection state information (step 1613). As a result, in the case of non-interconnection with the large-scale transmission / distribution network 100, the control amount of the distributed power source is calculated based on the frequency change (steps 1614, 1615, 1616). On the other hand, when connected to the large-scale transmission / distribution network 100, the control amount of the distributed power source is calculated based on the change in the power flow (steps 1624, 1625, 1626). Then, output control of each distributed power source is performed with the control amount obtained in this way.

このように大規模送配電網100との連系線接続状態情報を用いて、分散型電源の制御量の算出方法を切り換えることにより、連系状態によらず分散型電源の制御量を算出できる。   In this way, by switching the calculation method of the control amount of the distributed power source using the connection line connection state information with the large-scale power transmission and distribution network 100, the control amount of the distributed power source can be calculated regardless of the connection state. .

本発明による電力ネットワークの制御システムの一実施の形態を示す系統図である。1 is a system diagram showing an embodiment of a power network control system according to the present invention. FIG. 同上一実施の形態の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of one Embodiment same as the above. 同上一実施の形態の要部機能を示す機能ブロック図である。It is a functional block diagram which shows the principal part function of one Embodiment same as the above. 同上一実施の形態における電力系統での電力需給アンバランスと系統周波数の変動の大きさとの関係を説明する特性図である。It is a characteristic figure explaining the relationship between the electric power supply-and-demand imbalance in the electric power grid | system in one Embodiment same as the above, and the magnitude | size of the fluctuation | variation of a system frequency. 同上一実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つである二次電池のΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows (DELTA) f- (DELTA) PG control characteristic of the secondary battery which is one of the distributed power supplies at the time of giving a priority to the several distributed power supply in one Embodiment same as the above. 同上一実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つであるマイクロガスタービンのΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) f- (DELTA) PG control characteristic of the micro gas turbine which is one of the distributed power sources at the time of giving a priority to the several distributed power sources in one embodiment same as the above. 同上一実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つである燃料電池のΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) f- (DELTA) PG control characteristic of the fuel cell which is one of the distributed power sources at the time of giving a priority to the several distributed power sources in one embodiment same as the above. 同上一実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つである二次電池のΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows (DELTA) f- (DELTA) PG control characteristic of the secondary battery which is one of the distributed power supplies in the case of controlling the several distributed power supply simultaneously in one embodiment same as the above. 同上一実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つであるマイクロガスタービンのΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows (DELTA) f- (DELTA) PG control characteristic of the micro gas turbine which is one of the distributed power supplies in the case of controlling the several distributed power supply simultaneously in one embodiment same as the above. 同上一実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つである燃料電池のΔf−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) f- (DELTA) PG control characteristic of the fuel cell which is one of the distributed power supplies in the case of controlling the several distributed power supply simultaneously in one embodiment same as the above. 同上一実施の形態における電力需給アンバランス対する系統周波数の変動を抑制すべく各分散型電源が出力制御する際の分担状況を表す特性図である。It is a characteristic view showing the sharing situation at the time of each distributed power supply controlling output in order to suppress the fluctuation | variation of the system frequency with respect to the electric power supply-and-demand imbalance in one Embodiment same as the above. 本発明の電力需給アンバランスを系統周波数の変化率により推定する実施の形態の動作を説明するフローチャートである。It is a flowchart explaining the operation | movement of embodiment which estimates the electric power supply-and-demand imbalance of this invention with the change rate of a system frequency. 本発明の、大規模送配電網と連携した場合の実施の形態を示す系統図である。It is a systematic diagram which shows embodiment at the time of cooperating with a large-scale power transmission and distribution network of this invention. 同上実施の形態の動作を説明するフローチャートである。It is a flowchart explaining operation | movement of embodiment same as the above. 同上実施の形態の要部機能を示す機能ブロック図である。It is a functional block diagram which shows the principal part function of embodiment same as the above. 同上実施の形態における電力系統での電力需給アンバランスと連系線潮流変化との関係を説明する特性図である。It is a characteristic view explaining the relationship between the electric power supply-and-demand imbalance in an electric power grid | system in embodiment same as the above, and interconnection line power flow change. 同上実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つである二次電池のΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows (DELTA) Pt- (DELTA) PG control characteristic of the secondary battery which is one of the distributed power supplies at the time of giving priority to the several distributed power supply in embodiment same as the above. 同上実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つであるマイクロガスタービンのΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) Pt- (DELTA) PG control characteristic of the micro gas turbine which is one of the distributed power sources at the time of giving a priority to the several distributed power sources in embodiment same as the above. 同上実施の形態における複数の分散型電源に優先順位を付けた場合の、分散型電源の1つである燃料電池のΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) Pt- (DELTA) PG control characteristic of the fuel cell which is one of the distributed power supplies at the time of giving priority to the some distributed power supply in embodiment same as the above. 同上実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つである二次電池のΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows (DELTA) Pt- (DELTA) PG control characteristic of the secondary battery which is one of the distributed power supplies when controlling the several distributed power supply simultaneously in embodiment same as the above. 同上実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つであるマイクロガスタービンのΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) Pt- (DELTA) PG control characteristic of the micro gas turbine which is one of the distributed power supplies in the case of controlling simultaneously the several distributed power supply in embodiment same as the above. 同上実施の形態における複数の分散型電源を同時に制御する場合の、分散型電源の1つである燃料電池のΔPt−ΔPG制御特性を示す特性図である。It is a characteristic view which shows the (DELTA) Pt- (DELTA) PG control characteristic of the fuel cell which is one of the distributed power supplies in the case of controlling the several distributed power supply simultaneously in embodiment same as the above. 同上実施の形態における電力需給アンバランス対する連系線潮流の変動を抑制すべく各分散型電源が出力制御する際の分担状況を表す特性図である。It is a characteristic view showing the sharing situation at the time of each distributed power supply controlling output in order to suppress the fluctuation | variation of the interconnection line power flow with respect to the electric power supply-and-demand imbalance in embodiment same as the above. 本発明の、連系線開閉器を任意に開閉できるようにした実施の形態における制御動作を説明するフローチャートである。It is a flowchart explaining the control operation | movement in embodiment which enabled it to open / close arbitrarily the interconnection line switch of this invention.

符号の説明Explanation of symbols

1 電力ネットワーク
3 負荷脱落
4 系統周波数
5 連系線監視装置
6 連系線接続状態及び連系線潮流
12 連系線
13 連系線開閉器
14 負荷
21 分散型電源の1つである二次電池
22 分散型電源の1つであるマイクロガスタービン
23 分散型電源の1つである燃料電池
24 分散型電源の1つである風力発電
25 分散型電源の1つである同期発電機
31 周波数検出手段
32 Δf−ΔPG制御特性を有する制御量演算手段
41 連系線潮流の変化分検出手段
42 ΔPt−ΔPG制御特性を有する制御量演算手段
100 大規模送配電網
DESCRIPTION OF SYMBOLS 1 Electric power network 3 Load drop 4 System frequency 5 Connection line monitoring apparatus 6 Connection line connection state and connection line power flow 12 Connection line 13 Connection line switch 14 Load 21 Secondary battery which is one of distributed power sources DESCRIPTION OF SYMBOLS 22 Micro gas turbine which is one of distributed power sources 23 Fuel cell which is one of distributed power sources 24 Wind power generation which is one of distributed power sources 25 Synchronous generator which is one of distributed power sources 31 Frequency detection means 32 Control amount calculation means having Δf-ΔPG control characteristics 41 Interconnection power flow change detection means 42 Control amount calculation means having ΔPt-ΔPG control characteristics 100 Large-scale power distribution network

Claims (1)

特定区域に設けられた慣性特性を持たない、発電手法が互いに異なる複数の分散型電源と負荷との間を送配電線により接続し、大規模送配電網とは切り離された単独系統として運用される比較的小規模の電力ネットワークの制御システムであって、
前記各分散型電源に設けられ、前記電力ネットワークにおける系統周波数の変動の大きさを検出する周波数検出手段と、
前記各分散型電源に設けられ、前記電力ネットワーク内での電力需要と供給との需給アンバランスと系統周波数の変動の大きさとの関係から、前記需給アンバランスを回復するために各分散型電源が分担可能な発生電力の制御量を予め求め、この求められた制御量と前記系統周波数の変動の大きさとが対応付けられ、かつ前記発電手法の違いに基づく前記制御量の出力変化特性を有する制御特性を記憶しており、この制御特性に基づいて前記検出された系統周波数の変動の大きさに対応する制御量を求める制御量演算手段とを備え、
前記電力ネットワークにおける需給アンバランスにより系統周波数の変動が生じた場合、前記各分散型電源は、前記制御量演算手段で求めた制御量により、この変動を抑制するように各分散型電源自律的に発生電力を制御することを特徴とする電力ネットワークの制御システム。
It is operated as a single system separated from a large-scale power distribution network by connecting multiple distributed power sources and loads with different power generation methods and loads connected to each other by power transmission / distribution lines, which do not have inertia characteristics provided in specific areas. A relatively small power network control system,
A frequency detection means provided in each of the distributed power sources, for detecting the magnitude of the fluctuation of the system frequency in the power network;
Each distributed power source is provided in each of the distributed power sources to recover the supply / demand imbalance from the relationship between the power supply / demand imbalance between the power demand and supply in the power network and the magnitude of the fluctuation of the system frequency. previously obtained control amount of sharing can occur power, thus determined control amount and the magnitude of fluctuation of the system frequency are correlated, and control having an output change characteristic of the control amount based on the difference of the power method A control amount calculating means for storing a characteristic, and obtaining a control amount corresponding to the magnitude of the detected fluctuation of the system frequency based on the control characteristic ,
When fluctuations in system frequency occur due to supply and demand imbalance in the power network, the distributed power sources are autonomously controlled so as to suppress this fluctuation by the control amount obtained by the control amount calculation means. A control system for a power network, characterized by controlling the generated power.
JP2005239951A 2005-08-22 2005-08-22 Power network control system Expired - Fee Related JP4860960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005239951A JP4860960B2 (en) 2005-08-22 2005-08-22 Power network control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005239951A JP4860960B2 (en) 2005-08-22 2005-08-22 Power network control system

Publications (2)

Publication Number Publication Date
JP2007060742A JP2007060742A (en) 2007-03-08
JP4860960B2 true JP4860960B2 (en) 2012-01-25

Family

ID=37923711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005239951A Expired - Fee Related JP4860960B2 (en) 2005-08-22 2005-08-22 Power network control system

Country Status (1)

Country Link
JP (1) JP4860960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505567A (en) * 2016-12-27 2017-03-15 华北电力大学 The uninterrupted power supply method of the three end flexible ring net arrangements based on constant voltage constant frequency control

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749375B2 (en) * 2007-04-11 2011-08-17 中国電力株式会社 Control device for adjusting power supply and demand in microgrids
JP5598896B2 (en) * 2008-11-25 2014-10-01 一般財団法人電力中央研究所 Frequency stabilization system for power system
JP5482141B2 (en) * 2009-11-25 2014-04-23 富士電機株式会社 Load frequency control method and load frequency control apparatus
JP5402566B2 (en) * 2009-11-25 2014-01-29 富士電機株式会社 Microgrid supply and demand control device and microgrid supply and demand control method
JP2011114945A (en) * 2009-11-26 2011-06-09 Fuji Electric Systems Co Ltd Power supply planning system, and program of the same
JP5547672B2 (en) * 2010-02-26 2014-07-16 株式会社コベルコ科研 Mesh material for screen printing
JP5306286B2 (en) * 2010-06-11 2013-10-02 中国電力株式会社 Power supply system control method and power supply system
CA2729772A1 (en) 2010-06-16 2011-12-16 Mitsubishi Heavy Industries, Ltd. Control device of wind turbine generator and control method thereof
DE102012203334A1 (en) * 2012-03-02 2013-09-05 Wobben Properties Gmbh Method for operating a combined cycle power plant or combined cycle power plant
EP2955811A4 (en) * 2013-02-08 2016-10-19 Nec Corp Battery control device, battery control system, battery control method, and recording medium
DE102013207255A1 (en) 2013-04-22 2014-10-23 Wobben Properties Gmbh Method for feeding electrical power into an electrical supply network
JP6113604B2 (en) * 2013-08-23 2017-04-12 株式会社日立製作所 Power supply monitoring and control device
CN103501004B (en) * 2013-10-25 2016-08-17 陕西省地方电力(集团)有限公司 The progress control method of a kind of power distribution network and device
GB2515358B (en) * 2013-11-06 2017-01-18 Reactive Tech Ltd Grid Frequency Response
KR101398400B1 (en) * 2014-03-06 2014-05-27 전북대학교산학협력단 Time-variant droop based inertial control method for wind power plant
US20220224118A1 (en) * 2019-08-30 2022-07-14 Vestas Wind Systems A/S Frequency support from a power plant with an electrical storage unit
RU2767184C1 (en) * 2020-12-28 2022-03-16 Алексей Вячеславович Зотов Distributed system of electric network stabilization

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119077B2 (en) * 1999-07-28 2008-07-16 関西電力株式会社 Frequency stabilizer for power system
JP2001177992A (en) * 1999-12-10 2001-06-29 Toshiba Corp Power system monitoring control system, and record medium for storing program for operating the same
JP2002209336A (en) * 2001-01-10 2002-07-26 Toshiba Corp Power system load frequency control method and system, and computer-readable storage medium
JP2003339118A (en) * 2002-05-22 2003-11-28 My Way Giken Kk Distributed power supply system
US7116010B2 (en) * 2002-09-17 2006-10-03 Wisconsin Alumni Research Foundation Control of small distributed energy resources
JP4616579B2 (en) * 2004-05-13 2011-01-19 株式会社四国総合研究所 Power supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505567A (en) * 2016-12-27 2017-03-15 华北电力大学 The uninterrupted power supply method of the three end flexible ring net arrangements based on constant voltage constant frequency control

Also Published As

Publication number Publication date
JP2007060742A (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP4860960B2 (en) Power network control system
Marzband et al. Adaptive load shedding scheme for frequency stability enhancement in microgrids
Karimi et al. Under-frequency load shedding scheme for islanded distribution network connected with mini hydro
US9887545B2 (en) Controlling an electrical energy distribution network
EP2036180B1 (en) Power compensator and method for providing a black start with that compensator
Cai et al. A hierarchical multi-agent control scheme for a black start-capable microgrid
JP2008125295A (en) Method and device for selecting/interrupting load in consumer
WO2015028840A1 (en) Composable method for explicit power flow control in electrical grids
Babaiahgari et al. Coordinated control and dynamic optimization in DC microgrid systems
JP5047278B2 (en) Power quality compensator
JP5576826B2 (en) Wind power generator group control system and control method
Benasla et al. Power system security enhancement by HVDC links using a closed-loop emergency control
JP6356517B2 (en) System monitoring and control device
JP2008125218A (en) Distributed power supply control system
Karimi et al. Smart integrated adaptive centralized controller for islanded microgrids under minimized load shedding
JP6540053B2 (en) Electric power system operating device, electric power system operating method and electric power system operating system
Riquelme-Dominguez et al. Improved harmony search algorithm to compute the underfrequency load shedding parameters
JP2005245136A (en) Reverse-tidal-current-preventing systematically interconnecting system
Vennelaganti et al. Controlled primary frequency support for asynchronous AC areas through an MTDC grid
Jurado et al. Effect of a SOFC plant on distribution system stability
Mditshwa et al. A review on sustaining power system frequency stability considering the integration of distributed energy resources (DERs)
Adiyabazar et al. Optimal ufls settings: An assessment of frequency system response indicators
JP5497216B1 (en) Distribution system control method and information processing apparatus
JP7005444B2 (en) Server equipment, control system, and control method
KR101734148B1 (en) Congestion Management System For Transmission Line Overload Mitigation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110812

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111011

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees