JP4849238B2 - Vehicle travel control device - Google Patents

Vehicle travel control device Download PDF

Info

Publication number
JP4849238B2
JP4849238B2 JP2006283836A JP2006283836A JP4849238B2 JP 4849238 B2 JP4849238 B2 JP 4849238B2 JP 2006283836 A JP2006283836 A JP 2006283836A JP 2006283836 A JP2006283836 A JP 2006283836A JP 4849238 B2 JP4849238 B2 JP 4849238B2
Authority
JP
Japan
Prior art keywords
vehicle
target
control means
control
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006283836A
Other languages
Japanese (ja)
Other versions
JP2008100579A (en
Inventor
将人 鈴村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006283836A priority Critical patent/JP4849238B2/en
Publication of JP2008100579A publication Critical patent/JP2008100579A/en
Application granted granted Critical
Publication of JP4849238B2 publication Critical patent/JP4849238B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Regulating Braking Force (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Vehicle Body Suspensions (AREA)
  • Power Steering Mechanism (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the traveling movement of a vehicle optimally by optimizing the controlled variable of each control means while restraining any increase in operation load and consumption energy, in a vehicle including a steering control means, a braking/driving force control means, and a grounding load control means. <P>SOLUTION: When the vehicle requires urgent traveling movement control (440, 450), evaluation functions of all control means are computed to allot a target traveling movement controlled variable of the whole vehicle to all control means, thereby computing a target controlled variable of each control means (700). When the vehicle does not require urgent traveling movement control, a target controlled variable of a specified control means is computed based on the traveling state of the vehicle, a change amount of physical quantity of the vehicle due to the control of the specified control mens is computed based on the target controlled variable of the specified control means, thereby computing a target controlled variable of another control means based on the target traveling movement controlled variable of the whole vehicle and the change amount of physical quantity (500, 600). <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、車両の走行制御装置に係り、更に詳細には互いに協調して車輌の挙動を制御する複数の挙動制御手段を備えた車輌の走行制御装置に係る。   The present invention relates to a vehicle travel control device, and more particularly, to a vehicle travel control device including a plurality of behavior control means for controlling the behavior of a vehicle in cooperation with each other.

自動車等の車輌の走行制御装置の一つとして、例えば下記の特許文献1に記載されている如く、互いに異なる作用により互いに協調して車輌の挙動を制御する複数の挙動制御手段と、車輌を安定的に走行させるための車輌全体の目標挙動制御量を演算する手段と、複数の挙動制御手段の挙動制御特性に応じて車輌全体の目標挙動制御量を複数の挙動制御手段に配分し、配分結果に基づき複数の挙動制御手段を制御する配分制御手段とを有する走行制御装置は既に知られている。   As one of travel control devices for vehicles such as automobiles, for example, as described in Patent Document 1 below, a plurality of behavior control means for controlling the behavior of a vehicle in cooperation with each other by different actions, and stabilizing the vehicle For calculating the target behavior control amount for the entire vehicle for the purpose of traveling, and allocating the target behavior control amount for the entire vehicle to the plurality of behavior control means according to the behavior control characteristics of the plurality of behavior control means. A travel control device having distribution control means for controlling a plurality of behavior control means based on the above is already known.

下記の特許文献1に記載された走行制御装置に於いては、複数の挙動制御手段は運転者による操舵操作とは無関係に車輪を操舵する操舵制御手段及び運転者による制駆動操作とは無関係に各車輪の制駆動力を個別に制御可能な制駆動力制御手段であり、配分制御手段は車両の前後力、横力、ヨーモーメントについて設定された評価関数を0に近付ける解として各車輪のスリップ率及びスリップ角の修正量を演算し、それらの修正量に基づいて各車輪の目標スリップ率及び目標スリップ角を演算し、目標スリップ率及び目標スリップ角に基づいて操舵制御手段及び制駆動力制御手段を制御する。
特開2003−159966号公報
In the travel control device described in Patent Document 1 below, the plurality of behavior control means are independent of the steering control means for steering the wheels regardless of the steering operation by the driver and the braking / driving operation by the driver. The braking / driving force control means that can control the braking / driving force of each wheel individually. The distribution control means slips each wheel as a solution that brings the evaluation function set for the longitudinal force, lateral force, and yaw moment of the vehicle closer to zero. The target slip rate and the target slip angle of each wheel are calculated based on the correction amount and the steering control means and the braking / driving force control based on the target slip rate and the target slip angle. Control means.
JP 2003-159966 A

一般に、自動車等の車輌に於いては、アクティブサスペンション装置等により各車輪の接地荷重を制御することが可能であり、各車輪の接地荷重を制御することによっても車両の走行運動を制御可能である。また操舵制御手段及び制駆動力制御手段による車両の走行運動の制御効果は各車輪の接地荷重の影響を受ける。   Generally, in a vehicle such as an automobile, the ground load of each wheel can be controlled by an active suspension device or the like, and the traveling motion of the vehicle can also be controlled by controlling the ground load of each wheel. . In addition, the control effect of the traveling motion of the vehicle by the steering control means and the braking / driving force control means is affected by the ground load of each wheel.

しかるに上記公開公報に記載された走行制御装置に於いては、複数の挙動制御手段は操舵制御手段及び制駆動力制御手段であり、配分制御手段は評価関数の演算によって車輌全体の目標挙動制御量を操舵制御手段及び制駆動力制御手段に配分するようになっており、複数の挙動制御手段として操舵制御手段及び制駆動力制御手段に加えてアクティブサスペンション装置の如く各車輪の接地荷重を制御可能な接地荷重制御手段が搭載された車両に於いて、車両の走行運動を最適に制御するために車輌全体の目標挙動制御量を操舵制御手段、制駆動力制御手段、接地荷重制御手段に如何に配分すべきかについては検討がなされておらず、従って操舵制御手段、制駆動力制御手段、接地荷重制御手段が搭載された車両に上記公開公報に記載された走行制御装置を適用することができない。   However, in the travel control device described in the above publication, the plurality of behavior control means are a steering control means and a braking / driving force control means, and the distribution control means is a target behavior control amount for the entire vehicle by calculating an evaluation function. Is distributed to the steering control means and the braking / driving force control means. In addition to the steering control means and the braking / driving force control means, the ground load of each wheel can be controlled as an active suspension device as a plurality of behavior control means. In order to optimally control the running motion of a vehicle, the target behavior control amount of the entire vehicle is applied to the steering control means, braking / driving force control means, and ground load control means. No investigation has been made as to whether or not the vehicle should be distributed. Accordingly, the vehicle described in the above-mentioned publication is applied to a vehicle equipped with steering control means, braking / driving force control means, and ground load control means. It can not be applied a control device.

また操舵制御手段、制駆動力制御手段、接地荷重制御手段には車両の走行運動を制御する上でそれぞれに特徴があり、車両の走行状況によっては車輌全体の目標挙動制御量を操舵制御手段、制駆動力制御手段、接地荷重制御手段の全てに配分するのではなく、車両の走行状況及び各制御手段の特徴に着目して特定の制御手段を優先して制御することが好ましい。   Further, the steering control means, the braking / driving force control means, and the ground load control means each have a characteristic in controlling the traveling motion of the vehicle, and depending on the traveling state of the vehicle, the target behavior control amount of the entire vehicle is controlled by the steering control means, Rather than distributing the braking / driving force control means and the ground load control means to all, it is preferable to control by giving priority to a specific control means by paying attention to the traveling state of the vehicle and the characteristics of each control means.

また操舵制御手段、制駆動力制御手段、接地荷重制御手段の全てについての評価関数を演算することにより、車輌全体の目標挙動制御量を常に全ての制御手段に配分しようとすると、演算パラメータが多いことに起因して演算負荷が常時大きくなることが避けられず、また上記特許文献1に記載された走行制御装置の場合の如く制御手段が二種類である場合に比して各制御手段の制御量は少なくなるが、全ての制御手段を作動させることに起因して消費エネルギが大きくなるという問題がある。   In addition, there are many calculation parameters when trying to always distribute the target behavior control amount of the entire vehicle to all the control means by calculating the evaluation function for all of the steering control means, the braking / driving force control means, and the ground load control means. As a result, it is inevitable that the calculation load is constantly increased, and the control of each control means is compared to the case where there are two types of control means as in the case of the travel control device described in Patent Document 1. Although the amount is reduced, there is a problem that energy consumption increases due to the operation of all the control means.

本発明は、評価関数の演算によって車輌全体の目標挙動制御量を操舵制御手段及び制駆動力制御手段に配分するよう構成された従来の車両の走行制御装置に於ける上述の如き問題に鑑みてなされたものであり、本発明の主要な課題は、複数の走行運動制御手段として操舵制御手段、制駆動力制御手段、接地荷重制御手段を備えた車両に於いて、車両の走行状況を判定し、車両の走行状況及び各制御手段の特徴に応じて操舵制御手段、制駆動力制御手段、接地荷重制御手段に対する車輌全体の目標挙動制御量の配分態様を変更することにより、演算負荷や消費エネルギの増大を抑制しつつ各制御手段の制御量を最適化し、車両の走行運動を最適に制御することである。   The present invention has been made in view of the above-described problems in the conventional vehicle travel control device configured to distribute the target behavior control amount of the entire vehicle to the steering control means and the braking / driving force control means by calculating the evaluation function. The main object of the present invention is to determine a traveling state of a vehicle in a vehicle including a steering control unit, a braking / driving force control unit, and a ground load control unit as a plurality of traveling motion control units. By changing the distribution mode of the target behavior control amount of the entire vehicle with respect to the steering control means, braking / driving force control means, and ground load control means according to the running conditions of the vehicle and the characteristics of each control means, the calculation load and energy consumption In other words, the control amount of each control means is optimized while suppressing the increase of the vehicle, and the running motion of the vehicle is optimally controlled.

〔課題を解決するための手段及び発明の効果〕
上述の主要な課題は、本発明によれば、請求項1の構成、即ち互いに異なる作用により互いに協調して車両の走行運動を制御する複数の走行運動制御手段と、車両を安定的に走行させるための車両の目標走行運動状態量を演算する手段と、車両の走行運動状態量を前記目標走行運動状態量にするための車両全体の目標走行運動制御量を演算する手段と、前記車両全体の目標走行運動制御量に基づいて前記複数の走行運動制御手段の各々について目標制御量を演算し、前記複数の走行運動制御手段をそれぞれ対応する前記目標制御量に基づいて制御する制御手段とを有する車両の走行制御装置に於いて、前記複数の走行運動制御手段は各車輪の接地荷重を制御する接地荷重制御手段と、運転者による操舵操作とは無関係に車輪を操舵可能な操舵制御手段と、運転者による制駆動操作とは無関係に各車輪の制駆動力を個別に制御可能な制駆動力制御手段とを含み、前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態であるか否かを判定し、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記複数の走行運動制御手段について予め設定された評価関数を演算することによって前記車両全体の目標走行運動制御量を前記複数の走行運動制御手段に配分することにより前記複数の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないときには、車両の走行状態に基づいて前記複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の走行運動制御手段の目標制御量を演算することを特徴とする車両の走行制御装置によって達成される。
[Means for Solving the Problems and Effects of the Invention]
According to the present invention, the main problem described above is the structure of claim 1, that is, a plurality of traveling motion control means for controlling the traveling motion of the vehicle in cooperation with each other by different actions, and the vehicle is allowed to travel stably. Means for calculating a target travel motion state quantity for the vehicle, means for calculating a target travel motion control amount for the entire vehicle for making the travel motion state quantity of the vehicle the target travel motion state quantity, Control means for calculating a target control amount for each of the plurality of traveling motion control means based on the target traveling motion control amount, and controlling the plurality of traveling motion control means based on the corresponding target control amounts. In the vehicle travel control device, the plurality of travel motion control means includes a ground load control means for controlling a ground load of each wheel, and a steering capable of steering the wheels regardless of a steering operation by a driver. Control means, and braking / driving force control means capable of individually controlling the braking / driving force of each wheel regardless of the braking / driving operation by the driver, the control means performing running motion control when the running state of the vehicle is urgent. It is determined whether or not the driving state is necessary, and when the driving state of the vehicle is a driving state that requires urgent driving motion control, an evaluation function set in advance for the plurality of driving motion control means is calculated. By distributing the target travel motion control amount of the entire vehicle to the plurality of travel motion control means, the target control amount of the plurality of travel motion control means is calculated, and the travel state of the vehicle is an emergency travel motion control. When the driving state is not necessary, a target control amount of a specific traveling motion control unit among the plurality of traveling motion control units is calculated based on the traveling state of the vehicle, and the specific traveling motion control is calculated. The amount of change in the physical quantity of the vehicle by the control of the specific travel motion control means is calculated based on the target control amount of the means, and the other amount of change in the target travel motion control amount of the entire vehicle and the amount of change in the physical quantity of the vehicle This is achieved by a vehicle travel control device that calculates a target control amount of the travel motion control means.

上記請求項1の構成によれば、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、複数の走行運動制御手段について予め設定された評価関数を演算することによって車両全体の目標走行運動制御量を複数の走行運動制御手段に配分することにより複数の走行運動制御手段の目標制御量が演算されるので、操舵制御手段、制駆動力制御手段、接地荷重制御手段の全てを使用して緊急の走行運動制御を行い、これにより車両の走行状態を確実に且つ効果的に安定化させることができる。   According to the configuration of the first aspect, when the traveling state of the vehicle is a traveling state that requires urgent traveling motion control, the vehicle as a whole is calculated by calculating a preset evaluation function for the plurality of traveling motion control means. Since the target control amount of the plurality of travel motion control means is calculated by allocating the target travel motion control amount to the plurality of travel motion control means, all of the steering control means, the braking / driving force control means, and the ground load control means Is used to perform emergency running motion control, and thereby the running state of the vehicle can be reliably and effectively stabilized.

また車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないときには、車両の走行状態に基づいて複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量が演算され、特定の走行運動制御手段の目標制御量に基づいて特定の走行運動制御手段の制御による車両の物理量の変化量が演算され、車両全体の目標走行運動制御量及び車両の物理量の変化量に基づいて他の走行運動制御手段の目標制御量が演算されるので、特定の走行運動制御手段を優先させて車両の走行状態を安定化させる制御を行うと共に、特定の走行運動制御手段の制御による車両の物理量の変化量及び車両全体の目標走行運動制御量に基づいて他の走行運動制御手段を補助的に制御することができ、これにより車両全体の目標走行運動制御量を同時に複数の走行運動制御手段の全てに配分する場合に比して容易に且つ確実に各走行運動制御手段を制御することができる。   Further, when the vehicle traveling state is not a traveling state requiring urgent traveling motion control, a target control amount of a specific traveling motion control unit among the plurality of traveling motion control units is calculated based on the traveling state of the vehicle. The change amount of the physical quantity of the vehicle by the control of the specific travel motion control means is calculated based on the target control amount of the specific travel motion control means, and based on the target travel motion control amount of the entire vehicle and the change amount of the physical quantity of the vehicle Since the target control amount of the other travel motion control means is calculated, the specific travel motion control means is preferentially controlled to stabilize the travel state of the vehicle, and the vehicle is controlled by the specific travel motion control means. The other travel motion control means can be supplementarily controlled based on the amount of change in the physical quantity of the vehicle and the target travel motion control amount of the entire vehicle. It can be controlled easily and reliably the vehicle dynamics control means as compared with the case of allocating all of the plurality of driving dynamics control means.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1の構成に於いて、前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態又は車輌の挙動悪化の虞れがある走行状態であるか否かを判定し、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記複数の走行運動制御手段について予め設定された第一の評価関数を演算することによって前記車両全体の目標走行運動制御量を前記複数の走行運動制御手段に配分することにより前記複数の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて前記複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の走行運動制御手段について予め設定された第二の評価関数を演算することにより前記他の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて前記特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の一つの走行運動制御手段の目標制御量を演算し、前記車両全体の目標走行運動制御量を低減補正し、低減補正された車両全体の目標走行運動制御量に基づいて残りの走行運動制御手段の目標制御量を演算するよう構成される(請求項2の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration of claim 1, the control means is a traveling state in which the traveling state of the vehicle requires emergency traveling motion control. Alternatively, it is determined whether or not the vehicle is in a traveling state in which the behavior of the vehicle may be deteriorated, and when the traveling state of the vehicle is a traveling state that requires emergency traveling motion control, the plurality of traveling motion control means By calculating the set first evaluation function, the target travel motion control amount of the entire vehicle is distributed to the plurality of travel motion control means, thereby calculating the target control amount of the plurality of travel motion control means, When the traveling state of the vehicle is not a traveling state that requires urgent traveling motion control but is a traveling state in which the behavior of the vehicle is likely to deteriorate, among the plurality of traveling motion control means based on the traveling state of the vehicle Calculating a target control amount of a specific travel motion control means, calculating a change amount of a physical quantity of the vehicle by control of the specific travel motion control means based on the target control amount of the specific travel motion control means, The target control amount of the other travel motion control means is calculated by calculating a second evaluation function preset for the other travel motion control means based on the overall target travel motion control amount and the amount of change in the physical quantity of the vehicle. When the vehicle traveling state is a traveling state that does not require urgent traveling motion control and there is no fear of deterioration of the behavior of the vehicle, the target control of the specific traveling motion control means is performed based on the traveling state of the vehicle. And a change amount of the physical quantity of the vehicle by the control of the specific travel motion control means is calculated based on the target control amount of the specific travel motion control means, and the target travel motion control of the entire vehicle is calculated. A target control amount of the other one of the travel motion control means is calculated based on the amount and the change amount of the physical quantity of the vehicle, the target travel motion control amount of the entire vehicle is reduced and corrected, and the target of the entire vehicle subjected to the reduction correction is calculated. A target control amount of the remaining travel motion control means is calculated based on the travel motion control amount (configuration of claim 2).

上記請求項2の構成によれば、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、複数の走行運動制御手段について予め設定された第一の評価関数を演算することによって車両全体の目標走行運動制御量を複数の走行運動制御手段に配分することにより複数の走行運動制御手段の目標制御量が演算されるので、車両全体の目標走行運動制御量を複数の走行運動制御手段の全てに配分し、全ての制御手段を使用して緊急の走行運動制御を行い、これにより車両の走行状態を確実に且つ効果的に安定化させることができる。   According to the configuration of the second aspect, when the traveling state of the vehicle is a traveling state that requires emergency traveling motion control, the first evaluation function set in advance for the plurality of traveling motion control means is calculated. Since the target control amount of the plurality of travel motion control means is calculated by allocating the target travel motion control amount of the entire vehicle to the plurality of travel motion control means, the target travel motion control amount of the entire vehicle is It is distributed to all of the control means, and urgent running motion control is performed using all the control means, whereby the running state of the vehicle can be reliably and effectively stabilized.

また車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量が演算され、特定の走行運動制御手段の目標制御量に基づいて特定の走行運動制御手段の制御による車両の物理量の変化量が演算され、車両全体の目標走行運動制御量及び車両の物理量の変化量に基づいて他の走行運動制御手段について予め設定された第二の評価関数を演算することにより他の走行運動制御手段の目標制御量が演算されるので、特定の走行運動制御手段を優先させて車両の走行状態を安定化させる制御を行うと共に、特定の走行運動制御手段の制御による車両の物理量の変化量及び車両全体の目標走行運動制御量に基づいて他の走行運動制御手段を補助的に制御することができ、これにより複数の走行運動制御手段の全てについて予め設定された評価関数を演算する場合に比して容易に且つ確実に各走行運動制御手段を制御することができる。   Further, when the vehicle traveling state is not a traveling state requiring urgent traveling motion control but is a traveling state in which the behavior of the vehicle may be deteriorated, a plurality of traveling motion control means are selected based on the traveling state of the vehicle. The target control amount of the specific travel motion control means is calculated, and the change amount of the physical quantity of the vehicle by the control of the specific travel motion control means is calculated based on the target control amount of the specific travel motion control means. The target control amount of the other travel motion control means is calculated by calculating a second evaluation function set in advance for the other travel motion control means based on the target travel motion control amount and the amount of change in the physical quantity of the vehicle. Therefore, priority is given to the specific traveling motion control means to control the vehicle to stabilize the traveling state, and the amount of change in the physical quantity of the vehicle and the overall view of the vehicle controlled by the specific traveling motion control means are controlled. Other travel motion control means can be controlled in an auxiliary manner based on the travel motion control amount, which makes it easier than calculating a preset evaluation function for all of the plurality of travel motion control means. And each traveling motion control means can be controlled reliably.

また車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて特定の走行運動制御手段の目標制御量が演算され、特定の走行運動制御手段の目標制御量に基づいて特定の走行運動制御手段の制御による車両の物理量の変化量が演算され、車両全体の目標走行運動制御量及び車両の物理量の変化量に基づいて他の一つの走行運動制御手段の目標制御量が演算され、車両全体の目標走行運動制御量が低減補正され、低減補正された車両全体の目標走行運動制御量に基づいて残りの走行運動制御手段の目標制御量が演算されるので、複数の走行運動制御手段の全てについて予め設定された評価関数を演算することなく、各走行運動制御手段の制御の優先順位を明確にして車両の走行運動を制御することができ、従って複数の走行運動制御手段の全てについて予め設定された評価関数を演算することにより車両全体の目標走行運動制御量を同時に複数の走行運動制御手段の全てに配分する場合や、複数の評価関数を演算することにより車両全体の目標走行運動制御量を各走行運動制御手段に配分する場合に比して、容易に且つ確実に各走行運動制御手段を制御することができる。   In addition, when the vehicle traveling state is a traveling state that does not require urgent traveling motion control and there is no risk of deterioration of the behavior of the vehicle, a target control amount of a specific traveling motion control means is calculated based on the traveling state of the vehicle. The change amount of the physical quantity of the vehicle by the control of the specific travel motion control means is calculated based on the target control amount of the specific travel motion control means, and based on the target travel motion control amount of the entire vehicle and the change amount of the physical quantity of the vehicle The target control amount of the other one of the travel motion control means is calculated, the target travel motion control amount of the entire vehicle is reduced and corrected, and the remaining travel motion control is performed based on the corrected target travel motion control amount of the entire vehicle. Since the target control amount of the means is calculated, the priority of the control of each traveling motion control means is clarified without calculating the preset evaluation function for all of the plurality of traveling motion control means. Therefore, by calculating a preset evaluation function for all of the plurality of travel motion control means, the target travel motion control amount of the entire vehicle is simultaneously applied to all of the plurality of travel motion control means. Each traveling motion control means is controlled easily and reliably compared with the case where the target traveling motion control amount of the entire vehicle is distributed to each traveling motion control means by calculating a plurality of evaluation functions. be able to.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1又は2の構成に於いて、前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記接地荷重制御手段、前記操舵制御手段、前記制駆動力制御手段について予め設定された評価関数を演算することによって前記車両全体の目標走行運動制御量を前記接地荷重制御手段、前記操舵制御手段、前記制駆動力制御手段に配分することにより前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重、前記操舵制御手段の目標制御量としての各車輪の目標スリップ角、前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算するよう構成される(請求項3の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 1 or 2, the control means requires a running motion control in which the running state of the vehicle is urgent. When the vehicle is in a running state, the target load motion control amount of the entire vehicle is calculated by calculating a preset evaluation function for the ground load control means, the steering control means, and the braking / driving force control means. , By distributing to the steering control means and the braking / driving force control means, the target ground load of each wheel as the target control amount of the ground load control means, and the target slip of each wheel as the target control amount of the steering control means A target slip ratio of each wheel as a target control amount of the corner and the braking / driving force control means is calculated (configuration of claim 3).

上記請求項3の構成によれば、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、接地荷重制御手段、操舵制御手段、制駆動力制御手段について予め設定された評価関数を演算することによって車両全体の目標走行運動制御量を接地荷重制御手段、操舵制御手段、制駆動力制御手段に配分することにより接地荷重制御手段の目標制御量としての各車輪の目標接地荷重、操舵制御手段の目標制御量としての各車輪の目標スリップ角、制駆動力制御手段の目標制御量としての各車輪の目標スリップ率が演算されるので、車両全体の目標走行運動制御量を接地荷重制御手段、操舵制御手段、制駆動力制御手段の全てに最適に配分して各車輪の目標接地荷重、各車輪の目標スリップ角、各車輪の目標スリップ率を演算し、接地荷重制御手段、操舵制御手段、制駆動力制御手段の全てを有効に使用して緊急の走行運動制御を確実に且つ効果的に行うことができる。   According to the third aspect of the present invention, when the traveling state of the vehicle is a traveling state that requires emergency traveling motion control, the ground load control means, the steering control means, and the braking / driving force control means are set in advance. By calculating the function, the target running motion control amount of the entire vehicle is distributed to the ground load control means, the steering control means, and the braking / driving force control means, thereby the target ground load of each wheel as the target control amount of the ground load control means. Since the target slip angle of each wheel as the target control amount of the steering control means and the target slip ratio of each wheel as the target control amount of the braking / driving force control means are calculated, the target travel motion control amount of the entire vehicle is grounded. It is optimally distributed to all of the load control means, steering control means, and braking / driving force control means to calculate the target ground load of each wheel, the target slip angle of each wheel, the target slip ratio of each wheel, and Load control means, the steering control means, control the effective driving dynamics control of an emergency by using all of the drive force control means may be reliably performed and effectively.

また本発明によれば、上記請求項1乃至3の何れかの構成に於いて、前記特定の走行運動制御手段は前記接地荷重制御手段であるよう構成される(請求項4の構成)。   According to the invention, in the configuration of any one of claims 1 to 3, the specific traveling motion control means is configured to be the ground load control means (configuration of claim 4).

上記請求項4の構成によれば、特定の走行運動制御手段は接地荷重制御手段であるので、操舵制御手段及び制駆動力制御手段よりも接地荷重制御手段を優先させることができ、これにより操舵制御手段若しくは制駆動力制御手段が特定の走行運動制御手段とされる場合に比して操舵制御手段及び制駆動力制御手段の制御量を低減し、運転者による操舵操作とは無関係に車輪が操舵されたり、運転者による制駆動操作とは無関係に各車輪の制駆動力が制御されることによる違和感を抑制しつつ車両を安定的に走行させることができる。   According to the configuration of the fourth aspect, since the specific traveling motion control means is the ground load control means, the ground load control means can be prioritized over the steering control means and the braking / driving force control means. Compared to the case where the control means or the braking / driving force control means is a specific traveling motion control means, the control amount of the steering control means and the braking / driving force control means is reduced, so that the wheels are independent of the steering operation by the driver. The vehicle can be stably driven while suppressing a sense of discomfort caused by steering or controlling the braking / driving force of each wheel regardless of the braking / driving operation by the driver.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項4の構成に於いて、前記制御手段は車両の走行状態が緊急の走行運動制御を必要としないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重を演算し、前記目標接地荷重に基づいて前記接地荷重制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて前記操舵制御手段及び前記制駆動力制御手段について予め設定された評価関数を演算することにより前記操舵制御手段の目標制御量としての各車輪の目標スリップ角及び前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算するよう構成される(請求項5の構成)。   According to the present invention, in order to effectively achieve the above main problem, in the configuration of claim 4, the control means does not require emergency traveling motion control in the vehicle traveling state. When the vehicle is in a traveling state in which the behavior of the vehicle may be deteriorated, a target grounding load of each wheel is calculated as a target control amount of the grounding load control means based on the traveling state of the vehicle, and based on the target grounding load, The change amount of the physical quantity of the vehicle by the control of the ground load control means is calculated, and the steering control means and the braking / driving force control means are preliminarily determined based on the target travel motion control quantity of the entire vehicle and the change quantity of the physical quantity of the vehicle. By calculating the set evaluation function, the target slip angle of each wheel as the target control amount of the steering control means and the target slip ratio of each wheel as the target control amount of the braking / driving force control means Configured to calculate (Configuration of Claim 5).

上記請求項5の構成によれば、車両の走行状態が緊急の走行運動制御を必要としないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて接地荷重制御手段の目標制御量としての各車輪の目標接地荷重が演算され、目標接地荷重に基づいて接地荷重制御手段の制御による車両の物理量の変化量が演算され、車両全体の目標走行運動制御量及び車両の物理量の変化量に基づいて操舵制御手段及び制駆動力制御手段について予め設定された評価関数を演算することにより操舵制御手段の目標制御量としての各車輪の目標スリップ角及び制駆動力制御手段の目標制御量としての各車輪の目標スリップ率が演算される。   According to the fifth aspect of the present invention, when the traveling state of the vehicle does not require emergency traveling motion control but is a traveling state in which the behavior of the vehicle may be deteriorated, the ground load control is performed based on the traveling state of the vehicle. The target ground load of each wheel as the target control amount of the means is calculated, the change amount of the physical quantity of the vehicle by the control of the ground load control means is calculated based on the target ground load, and the target travel motion control amount of the entire vehicle and the vehicle The target slip angle of each wheel and the braking / driving force control means as the target control amount of the steering control means by calculating a preset evaluation function for the steering control means and the braking / driving force control means based on the change amount of the physical quantity of The target slip ratio of each wheel as the target control amount is calculated.

従って操舵制御手段及び制駆動力制御手段よりも接地荷重制御手段を優先させることができると共に、車両全体の目標走行運動制御量及び接地荷重制御手段の制御による車両の物理量の変化量に基づいて操舵制御手段の目標制御量としての各車輪の目標スリップ角及び制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を最適に演算し、運転者による操舵操作とは無関係に車輪が操舵されたり、運転者による制駆動操作とは無関係に各車輪の制駆動力が制御されることによる違和感を抑制しつつ車輌の挙動悪化の虞れを確実に且つ効果的に低減することができる。   Therefore, the ground load control means can be prioritized over the steering control means and the braking / driving force control means, and the steering is performed based on the target travel motion control amount of the entire vehicle and the change amount of the physical quantity of the vehicle by the control of the ground load control means. The target slip angle of each wheel as the target control amount of the control means and the target slip ratio of each wheel as the target control amount of the braking / driving force control means are optimally calculated, and the wheels are steered regardless of the steering operation by the driver. In addition, it is possible to reliably and effectively reduce the possibility of deterioration in the behavior of the vehicle while suppressing the uncomfortable feeling caused by controlling the braking / driving force of each wheel regardless of the braking / driving operation by the driver.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項4又は5の構成に於いて、前記制御手段は車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重を演算し、前記目標接地荷重に基づいて前記接地荷重制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて前記操舵制御手段の目標制御量としての各車輪の目標スリップ角を演算し、前記車両全体の目標走行運動制御量を低減補正し、低減補正された車両全体の目標走行運動制御量に基づいて前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算するよう構成される(請求項6の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration of claim 4 or 5, the control means does not require an emergency running motion control when the vehicle is running. When the vehicle is in a travel state in which there is no risk of deterioration in the behavior of the vehicle, the target ground load of each wheel as a target control amount of the ground load control means is calculated based on the travel state of the vehicle, and based on the target ground load Each wheel as a target control amount of the steering control means is calculated based on the amount of change in the physical amount of the vehicle by the control of the ground load control means and based on the target travel motion control amount of the entire vehicle and the change amount of the physical quantity of the vehicle The target slip angle of the vehicle as a target control amount of the braking / driving force control means is calculated based on the target travel motion control amount of the vehicle as a whole. Wheel Configured to calculate the target slip rate (Configuration of Claim 6).

上記請求項6の構成によれば、車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて接地荷重制御手段の目標制御量としての各車輪の目標接地荷重が演算され、目標接地荷重に基づいて接地荷重制御手段の制御による車両の物理量の変化量が演算され、車両全体の目標走行運動制御量及び車両の物理量の変化量に基づいて操舵制御手段の目標制御量としての各車輪の目標スリップ角が演算され、車両全体の目標走行運動制御量が低減補正され、低減補正された車両全体の目標走行運動制御量に基づいて制駆動力制御手段の目標制御量としての各車輪の目標スリップ率が演算される。   According to the configuration of the sixth aspect, when the running state of the vehicle is a running state that does not require urgent running motion control and there is no risk of deterioration of the behavior of the vehicle, the ground load control means is based on the running state of the vehicle. The target ground load of each wheel as a target control amount of the vehicle is calculated, and the amount of change in the physical quantity of the vehicle by the control of the ground load control means is calculated based on the target ground load, and the target travel motion control amount of the entire vehicle and the vehicle The target slip angle of each wheel as the target control amount of the steering control means is calculated based on the change amount of the physical quantity, the target travel motion control amount of the entire vehicle is reduced and corrected, and the target travel motion control of the entire vehicle is reduced and corrected. Based on the amount, the target slip ratio of each wheel as the target control amount of the braking / driving force control means is calculated.

従って接地荷重制御手段の制御を最優先し、その次に操舵制御手段の制御を優先して車両の走行運動を制御することができるだけでなく、車両全体の目標走行運動制御量及び接地荷重制御手段の制御による車両の物理量の変化量に基づいて操舵制御手段の目標制御量としての各車輪の目標スリップ角を最適に演算し、また低減補正された車両全体の目標走行運動制御量に基づいて制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を容易に演算することができる。   Accordingly, not only can the control of the ground load control means be given top priority, but then the control of the steering control means can be prioritized to control the traveling motion of the vehicle, the target travel motion control amount of the entire vehicle and the ground load control means. The target slip angle of each wheel as the target control amount of the steering control means is optimally calculated based on the change amount of the physical quantity of the vehicle by the control of the vehicle, and is controlled based on the target travel motion control amount of the entire vehicle that is reduced and corrected. The target slip ratio of each wheel as the target control amount of the driving force control means can be easily calculated.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項6の構成に於いて、前記低減補正された車両全体の目標走行運動制御量に基づいて前記制駆動力制御手段について予め設定された評価関数を演算することにより前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算するよう構成される(請求項7の構成)。   According to the present invention, in order to effectively achieve the above main problem, the braking / driving force according to the configuration of claim 6 is based on the target travel motion control amount of the entire vehicle corrected for reduction. A target slip ratio of each wheel as a target control amount of the braking / driving force control unit is calculated by calculating a preset evaluation function for the control unit (configuration of claim 7).

上記請求項7の構成によれば、低減補正された車両全体の目標走行運動制御量に基づいて制駆動力制御手段について予め設定された評価関数を演算することにより制駆動力制御手段の目標制御量としての各車輪の目標スリップ率が演算されるので、低減補正された車両全体の目標走行運動制御量に基づいて各車輪の目標スリップ率を容易に演算することができる。   According to the configuration of the seventh aspect, the target control of the braking / driving force control unit is performed by calculating the evaluation function set in advance for the braking / driving force control unit based on the target travel motion control amount of the entire vehicle that has been corrected for reduction. Since the target slip ratio of each wheel as an amount is calculated, the target slip ratio of each wheel can be easily calculated based on the target travel motion control amount of the entire vehicle that has been corrected for reduction.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2乃至7の何れかの構成に於いて、前記車両の物理量の変化量は接地荷重の変化に伴う車輪タイヤの特性値の変化量であるよう構成される(請求項8の構成)。   According to the present invention, in order to effectively achieve the main problem described above, in the configuration according to any one of claims 2 to 7, the change amount of the physical quantity of the vehicle is a wheel according to the change of the ground load. It is comprised so that it may be the variation | change_quantity of the characteristic value of a tire (structure of Claim 8).

上記請求項8の構成によれば、車両の物理量の変化量は接地荷重の変化に伴う車輪タイヤの特性値の変化量であるので、接地荷重の変化に伴う車輪タイヤの特性値の変化量を考慮して操舵制御手段の目標制御量としての各車輪の目標スリップ角や制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を最適に演算することができる。   According to the configuration of the above aspect 8, since the change amount of the physical quantity of the vehicle is the change amount of the characteristic value of the wheel tire accompanying the change of the contact load, the change amount of the characteristic value of the wheel tire accompanying the change of the contact load is determined. In consideration, the target slip angle of each wheel as the target control amount of the steering control means and the target slip ratio of each wheel as the target control amount of the braking / driving force control means can be optimally calculated.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至8の何れかの構成に於いて、前記制御手段は車両がスピン状態又はドリフトアウト状態にあるとき又は車両が障害物に衝突する虞れが高いときに、車両の走行状態が緊急の走行運動制御を必要とする走行状態であると判定するよう構成される(請求項9の構成)。   According to the present invention, in order to effectively achieve the above-mentioned main problems, in the configuration according to any one of the above-described claims, the control means is provided when the vehicle is in a spin state or a drift-out state. Alternatively, when there is a high possibility that the vehicle will collide with an obstacle, the vehicle traveling state is determined to be a traveling state requiring urgent traveling motion control (structure of claim 9).

上記請求項9の構成によれば、車両がスピン状態又はドリフトアウト状態にあるとき又は車両が障害物に衝突する虞れが高いときに、車両の走行状態が緊急の走行運動制御を必要とする走行状態であると判定されるので、車両がスピン状態又はドリフトアウト状態にあるとき又は車両が障害物に衝突する虞れが高いときには、操舵制御手段、制駆動力制御手段、接地荷重制御手段の全てを使用して車両の走行運動制御を行い、これにより車両の走行状態を確実に且つ効果的に安定化させたり、車両が障害物に衝突する虞れを確実に且つ効果的に低減したりすることができる。   According to the configuration of the ninth aspect, when the vehicle is in a spin state or a drift-out state or when the vehicle is highly likely to collide with an obstacle, the traveling state of the vehicle requires emergency traveling motion control. Since it is determined that the vehicle is in a running state, when the vehicle is in a spin state or a drift-out state or when there is a high possibility that the vehicle will collide with an obstacle, the steering control means, braking / driving force control means, All of them are used to control the running motion of the vehicle, thereby reliably and effectively stabilizing the running state of the vehicle, and reliably and effectively reducing the possibility of the vehicle colliding with an obstacle. can do.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項2乃至9の何れかの構成に於いて、前記制御手段は車両がスピン状態又はドリフトアウト状態になる虞れがあるときに、車両の走行状態が車輌の挙動悪化の虞れがある走行状態であると判定するよう構成される(請求項10の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 2 to 9, the control means may cause the vehicle to be in a spin state or a drift-out state. When there is such a situation, the vehicle is judged to be in a running state in which there is a risk of deterioration in the behavior of the vehicle (configuration of claim 10).

上記請求項10の構成によれば、車両がスピン状態又はドリフトアウト状態になる虞れがあるときに、車両の走行状態が車輌の挙動悪化の虞れがある走行状態であると判定されるので、車両がスピン状態又はドリフトアウト状態になる虞れがあるときには、特定の走行運動制御手段を優先させて車両の走行状態を安定化させる制御を行うと共に、特定の走行運動制御手段の制御による車両の物理量の変化量及び車両全体の目標走行運動制御量に基づいて他の走行運動制御手段を補助的に制御し、これにより複数の走行運動制御手段の全てについて予め設定された評価関数を演算する場合に比して容易に且つ確実に各走行運動制御手段を制御することができると共に、車両がスピン状態又はドリフトアウト状態になる虞れを確実に且つ効果的に低減することができる。   According to the configuration of claim 10, when the vehicle may be in a spin state or a drift-out state, it is determined that the vehicle traveling state is a traveling state in which the behavior of the vehicle may be deteriorated. When there is a possibility that the vehicle is in a spin state or a drift-out state, the vehicle is controlled by giving priority to the specific traveling motion control means to stabilize the traveling state of the vehicle, and by controlling the specific traveling motion control means. Based on the change amount of the physical quantity of the vehicle and the target travel motion control amount of the entire vehicle, other travel motion control means are controlled in an auxiliary manner, thereby calculating a preset evaluation function for all of the plurality of travel motion control means. Each traveling motion control means can be controlled easily and surely as compared to the case, and the possibility that the vehicle will be in a spin state or a drift-out state reliably and effectively. It can be reduced.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至10の何れかの構成に於いて、前記操舵制御手段は前輪用操舵制御手段と後輪用操舵制御手段とよりなり、前記制御手段は車両の走行状態が後輪の横滑り状態にあるときには、前記評価関数に於ける後輪についての重みを0に設定するよう構成される(請求項11の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 1 to 10, the steering control means includes a front wheel steering control means and a rear wheel steering. The control means is configured to set the weight for the rear wheel in the evaluation function to 0 when the running state of the vehicle is a side slip state of the rear wheel. ).

上記請求項11の構成によれば、車両の走行状態が後輪の横滑り状態にあるときには、評価関数に於ける後輪についての重みが0に設定されるので、各制御手段の後輪についての制御量を0にし、これにより後輪の横力が低下することに起因して後輪の横滑り状態が更に悪化することを確実に防止することができる。   According to the structure of the above-mentioned claim 11, when the running state of the vehicle is the side slip state of the rear wheel, the weight for the rear wheel in the evaluation function is set to 0. It is possible to reliably prevent the side slip state of the rear wheel from further deteriorating due to a decrease in the lateral force of the rear wheel by setting the control amount to zero.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項1乃至11の何れかの構成に於いて、前記操舵制御手段は前輪用操舵制御手段と後輪用操舵制御手段とよりなり、前記制御手段は車両の走行状態が前輪の横滑り状態にあるときには、前記評価関数に於ける前輪についての重みを0に設定するよう構成される(請求項12の構成)。   According to the present invention, in order to effectively achieve the above main problems, in the configuration according to any one of claims 1 to 11, the steering control means includes a front wheel steering control means and a rear wheel steering. The control means is configured to set the weight for the front wheel in the evaluation function to 0 when the vehicle is running in the side slip state of the front wheel (structure of claim 12).

上記請求項12の構成によれば、車両の走行状態が前輪の横滑り状態にあるときには、評価関数に於ける前輪についての重みが0に設定されるので、各制御手段の前輪についての制御量を0にし、これにより前輪の横力が低下することに起因して前輪の横滑り状態が更に悪化することを確実に防止することができる。   According to the structure of the above-mentioned claim 12, when the running state of the vehicle is the side slip state of the front wheel, the weight for the front wheel in the evaluation function is set to 0, so the control amount for the front wheel of each control means is Thus, it is possible to reliably prevent the side slip state of the front wheels from further deteriorating due to the decrease in the lateral force of the front wheels.

また本発明によれば、上述の主要な課題を効果的に達成すべく、上記請求項5乃至12の何れかの構成に於いて、前記制御手段は運転者の運転操作量及び車両の走行状態に基づいて少なくとも車両の姿勢を目標姿勢にするために必要な各車輪の接地荷重として各車輪の目標接地荷重を演算するよう構成される(請求項13の構成)。   According to the present invention, in order to effectively achieve the main problems described above, in the configuration according to any one of claims 5 to 12, the control means is configured such that the driving operation amount of the driver and the traveling state of the vehicle. The target ground load of each wheel is calculated as the ground load of each wheel necessary to at least change the posture of the vehicle to the target posture (configuration of claim 13).

上記請求項13の構成によれば、運転者の運転操作量及び車両の走行状態に基づいて少なくとも車両の姿勢を目標姿勢にするために必要な各車輪の接地荷重として各車輪の目標接地荷重が演算されるので、車両の姿勢を運転者の運転操作量及び車両の走行状態に応じた目標姿勢に確実に制御することができる。   According to the structure of the above-mentioned claim 13, the target ground load of each wheel is obtained as the ground load of each wheel necessary for setting the vehicle posture to the target posture based on the driving operation amount of the driver and the running state of the vehicle. Since the calculation is performed, the posture of the vehicle can be reliably controlled to the target posture corresponding to the driving operation amount of the driver and the traveling state of the vehicle.

〔課題解決手段の好ましい態様〕
本発明の一つの好ましい態様によれば、上記請求項1乃至13の何れかの構成に於いて、車輌全体の目標走行運動制御量を演算する手段は運転者の車輌運転操作量に基づく車輌の目標走行運動に対応する車輌の目標走行運動状態量と車輌の走行状態に基づく車輌の実際の走行運動状態量との偏差に基づいて車輌全体の目標走行運動制御量を演算するよう構成される(好ましい態様1)。
[Preferred embodiment of problem solving means]
According to one preferred aspect of the present invention, in the configuration according to any one of the above claims 1 to 13, the means for calculating the target travel motion control amount of the entire vehicle is a vehicle operation based on the driver's vehicle driving operation amount. It is configured to calculate a target travel motion control amount for the entire vehicle based on a deviation between a target travel motion state amount of the vehicle corresponding to the target travel motion and an actual travel motion state amount of the vehicle based on the travel state of the vehicle ( Preferred embodiment 1).

本発明の他の一つの好ましい態様によれば、上記好ましい態様1の構成に於いて、車輌の目標走行運動状態量は車輌の目標前後加速度、目標横加速度、目標ヨーレートであり、車両全体の目標走行運動制御量は車輌の目標前後力、目標横力、目標ヨーモーメントであるよう構成される(好ましい態様2)。   According to another preferred aspect of the present invention, in the configuration of the preferred aspect 1, the target running motion state quantity of the vehicle is a target longitudinal acceleration, a target lateral acceleration, and a target yaw rate of the vehicle, The travel motion control amount is configured to be a target longitudinal force, a target lateral force, and a target yaw moment of the vehicle (preferred aspect 2).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至13又は上記好ましい態様1又は2の何れかの構成に於いて、接地荷重制御手段は各車輪に対応して設けられ、減衰力を発生すると共に車輪の接地荷重を増減する電磁式のショックアブソーバであるよう構成される(好ましい態様3)。   According to another preferred aspect of the present invention, in the configuration of any one of the first to thirteenth aspects or the preferred aspect 1 or 2, the ground load control means is provided corresponding to each wheel, and is damped. The electromagnetic shock absorber is configured to generate a force and increase / decrease the ground contact load of the wheel (preferred aspect 3).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至13又は上記好ましい態様1乃至3の何れかの構成に於いて、操舵制御手段は運転者による操舵操作とは無関係に前輪を操舵可能な前輪用操舵制御手段と、運転者による操舵操作とは無関係に後輪を操舵可能な後輪用操舵制御手段とよりなるよう構成される(好ましい態様4)。   According to another preferred aspect of the present invention, in any one of the first to thirteenth aspects or the preferred aspects 1 to 3, the steering control means controls the front wheels regardless of the steering operation by the driver. The front wheel steering control means can be steered and the rear wheel steering control means can steer the rear wheels irrespective of the steering operation by the driver (preferred aspect 4).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至13又は上記好ましい態様1乃至3の何れかの構成に於いて、操舵制御手段は運転者による操舵操作とは無関係に前輪を操舵可能であるよう構成される(好ましい態様5)。   According to another preferred aspect of the present invention, in any one of the first to thirteenth aspects or the preferred aspects 1 to 3, the steering control means controls the front wheels regardless of the steering operation by the driver. It is configured to be steerable (preferred aspect 5).

本発明の他の一つの好ましい態様によれば、上記請求項1乃至13又は上記好ましい態様1乃至3の何れかの構成に於いて、操舵制御手段は運転者による操舵操作とは無関係に後輪を操舵可能であるよう構成される(好ましい態様6)。   According to another preferred aspect of the present invention, in any one of the first to thirteenth aspects and the preferred aspects 1 to 3, the steering control means is a rear wheel regardless of the steering operation by the driver. Is configured to be steerable (preferred aspect 6).

本発明の他の一つの好ましい態様によれば、上記請求項2乃至13又は上記好ましい態様1乃至6の何れかの構成に於いて、車両全体の目標走行運動制御量は車輌の目標前後力、目標横力、目標ヨーモーメントであり、制御手段は車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、低減補正された車両全体の目標走行運動制御量としての車輌の目標前後力に基づいて残りの走行運動制御手段の目標制御量を演算するよう構成される(好ましい態様7)。   According to another preferred aspect of the present invention, in the configuration according to any one of claims 2 to 13 or preferred aspects 1 to 6, the target travel motion control amount of the entire vehicle is a target longitudinal force of the vehicle, The target lateral force and the target yaw moment, and when the vehicle traveling state is a traveling state that does not require urgent traveling motion control and there is no fear of deterioration of the behavior of the vehicle, the reduction target of the entire vehicle is corrected. The target control amount of the remaining travel motion control means is calculated based on the target longitudinal force of the vehicle as the travel motion control amount (preferred aspect 7).

本発明の他の一つの好ましい態様によれば、上記請求項3乃至13又は上記好ましい態様1乃至7の何れかの構成に於いて、制御手段は接地荷重制御手段、操舵制御手段、制駆動力制御手段について予め設定された評価関数を演算することによって各車輪の接地荷重の目標修正量、各車輪のスリップ角の目標修正量、各車輪のスリップ率の目標修正量を演算し、各車輪の接地荷重とその目標修正量との和として各車輪の目標接地荷重を演算し、各車輪のスリップ角とその目標修正量との和として各車輪の目標スリップ角を演算し、各車輪のスリップ率とその目標修正量との和として各車輪の目標スリップ率を演算するよう構成される(好ましい態8)。   According to another preferred embodiment of the present invention, in the structure according to any one of claims 3 to 13 or preferred embodiments 1 to 7, the control means is a ground load control means, a steering control means, a braking / driving force. By calculating a preset evaluation function for the control means, the target correction amount of the ground load of each wheel, the target correction amount of the slip angle of each wheel, and the target correction amount of the slip ratio of each wheel are calculated, Calculate the target ground load of each wheel as the sum of the ground load and its target correction amount, calculate the target slip angle of each wheel as the sum of the slip angle of each wheel and its target correction amount, and the slip rate of each wheel And the target correction amount are calculated so as to calculate the target slip ratio of each wheel (preferred mode 8).

本発明の他の一つの好ましい態様によれば、上記請求項4乃至13又は上記好ましい態様1乃至7の何れかの構成に於いて、制御手段は操舵制御手段及び制駆動力制御手段について予め設定された評価関数を演算することによって各車輪のスリップ角の目標修正量及び各車輪のスリップ率の目標修正量を演算し、各車輪のスリップ角とその目標修正量との和として各車輪の目標スリップ角を演算し、各車輪のスリップ率とその目標修正量との和として各車輪の目標スリップ率を演算するよう構成される(好ましい態様9)。   According to another preferred embodiment of the present invention, in any one of the above-described claims 4 to 13 or the preferred embodiments 1 to 7, the control means is preset with respect to the steering control means and the braking / driving force control means. The target correction amount of the slip angle of each wheel and the target correction amount of the slip ratio of each wheel are calculated by calculating the calculated evaluation function, and the target of each wheel is calculated as the sum of the slip angle of each wheel and the target correction amount. The slip angle is calculated, and the target slip ratio of each wheel is calculated as the sum of the slip ratio of each wheel and the target correction amount (preferred aspect 9).

本発明の他の一つの好ましい態様によれば、上記請求項7乃至13又は上記好ましい態様1乃至7の何れかの構成に於いて、制御手段は制駆動力制御手段について予め設定された評価関数を演算することによって各車輪のスリップ率の目標修正量を演算し、各車輪のスリップ率とその目標修正量との和として各車輪の目標スリップ率を演算するよう構成される(好ましい態様10)。   According to another preferred aspect of the present invention, in any one of the above-described claims 7 to 13 or the preferred aspects 1 to 7, the control means is an evaluation function preset for the braking / driving force control means. By calculating the target correction amount of the slip ratio of each wheel and calculating the target slip ratio of each wheel as the sum of the slip ratio of each wheel and the target correction amount (preferred aspect 10). .

本発明の他の一つの好ましい態様によれば、上記請求項8乃至13又は上記好ましい態様1乃至10の何れかの構成に於いて、車輪タイヤの特性値の変化量は等価コーナリングパワーの変化量であるよう構成される(好ましい態様11)。   According to another preferred aspect of the present invention, in the configuration of any one of claims 8 to 13 or preferred aspects 1 to 10, the change amount of the characteristic value of the wheel tire is the change amount of the equivalent cornering power. (Preferred aspect 11).

本発明の他の一つの好ましい態様によれば、上記好ましい態様8乃至11の何れかの構成に於いて、車両の目標前後力をFxtとし、目標横力をFytとし、目標ヨーモーメントをMztとし、各車輪のスリップ角をαiとし、スリップ率をκiとし、前後力をFxiとし、横力をFyiとし、ヨーモーメントをMziとし、Wx、Wy、Wmをそれぞれ車両の前後力、横力、ヨーモーメントについての重みとし、Wk及びWdkをそれぞれスリップ率κi及びその目標修正量δκtiについての重みとし、Waf及びWdafをそれぞれ前輪のスリップ角αf及びその目標修正量δαftについての重みとし、War及びWdarをそれぞれ後輪のスリップ角αr及びその目標修正量δαrtについての重みとし、Wfzf及びWdfzfをそれぞれ前輪のFzfl、Fzfr及びその目標修正量δFztfl、δFztfrについての重みとし、Wfzr及びWdfzrをそれぞれ後輪のFzrl、Fzrr及びその目標修正量δFztrl、δFztrrについての重みとし、Σを左右前輪及び左右後輪についての和として、制御手段は下記の式
L1=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf
+Warαr+Wdarδαtr
+WfzfFzfl+WdfzfδFztfl
+WfzfFzfr+WdfzfδFztfr
+WfzrFzrl+WdfzrδFztrl
+WfzrFzrr+WdfzrδFztrr
の評価関数L1を演算することにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκti、各車輪の接地荷重の目標修正量δFztiを演算するよう構成される(好ましい態様12)。
According to another preferred aspect of the present invention, in any one of the preferred aspects 8 to 11, the target longitudinal force of the vehicle is Fxt, the target lateral force is Fyt, and the target yaw moment is Mzt. The slip angle of each wheel is αi, the slip ratio is κi, the longitudinal force is Fxi, the lateral force is Fyi, the yaw moment is Mzi, and Wx, Wy, and Wm are the vehicle longitudinal force, lateral force, and yaw, respectively. Weight for moment, Wk and Wdk as weight for slip rate κi and target correction amount δκti, Waf and Wdaf as weight for front wheel slip angle αf and target correction amount δαft, respectively, War and Wdar The weights for the slip angle αr of the rear wheel and the target correction amount δαrt are set as Wfzf and Wdfzf for the front wheels Fzfl and Fzfr and the target correction amounts δFztfl and δFztfr, respectively. Wfzr and Wdfzr are weights for the rear wheels Fzrl and Fzrr and their target correction amounts δFztrl and δFztrr, respectively, and Σ is the sum of the left and right front wheels and the left and right rear wheels. Fxt-ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2
+ Warαr 2 + Wdarδαtr 2
+ WfzfFzfl 2 + WdfzfδFztfl 2
+ WfzfFzfr 2 + WdfzfδFztfr 2
+ WfzrFzrl 2 + WdfzrδFztrl 2
+ WfzrFzrr 2 + WdfzrδFztrr 2
By calculating the evaluation function L1, the target correction amount δαft of the front wheel slip angle, the target correction amount δαrt of the rear wheel slip angle, the target correction amount δκti of each wheel slip rate, and the target correction of the ground load of each wheel It is arranged to calculate the quantity δFzti (preferred aspect 12).

本発明の他の一つの好ましい態様によれば、上記好ましい態様9乃至11の何れかの構成に於いて、制御手段は下記の式
L2=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf
+Warαr+Wdarδαtr
の評価関数L2の演算を行うことにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκtiを演算するよう構成される(好ましい態様13)。
According to another preferred embodiment of the present invention, in any one of the preferred embodiments 9 to 11, the control means has the following formula: L2 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2
+ Warαr 2 + Wdarδαtr 2
By calculating the evaluation function L2, the target correction amount δαft for the slip angle of the front wheels, the target correction amount δαrt for the slip angle of the rear wheels, and the target correction amount δκti for the slip ratio of each wheel are calculated ( Preferred embodiment 13).

本発明の他の一つの好ましい態様によれば、上記好ましい態様10又は11の構成に於いて、制御手段は下記の式
L3=Wx(Fxt−ΣFxi)
+Σ(Wkκi+Σ(Wdkδκti
の評価関数L3の演算を行うことにより、各車輪のスリップ率の目標修正量δκtiを演算するよう構成される(好ましい態様14)。
According to another preferred embodiment of the present invention, in the preferred embodiment 10 or 11, the control means is represented by the following formula: L3 = Wx (Fxt−ΣFxi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
By calculating the evaluation function L3, the target correction amount δκti of the slip ratio of each wheel is calculated (preferred aspect 14).

以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施例について詳細に説明する。
[第一の実施例]
The present invention will now be described in detail with reference to a few preferred embodiments with reference to the accompanying drawings.
[First embodiment]

図1は本発明による車両の走行制御装置の第一の実施例の前輪用操舵制御装置、後輪用操舵制御装置、制動力制御装置を示す概略構成図、図2は第一の実施例の駆動力制御装置及び接地荷重制御装置を示す概略構成図である。   FIG. 1 is a schematic configuration diagram showing a front wheel steering control device, a rear wheel steering control device, and a braking force control device of a first embodiment of a vehicle travel control device according to the present invention, and FIG. 2 is a diagram of the first embodiment. It is a schematic block diagram which shows a driving force control apparatus and a ground load control apparatus.

図1に於いて、走行制御装置10は車両12に搭載され、前輪用操舵制御装置14と、後輪用操舵制御装置16と、制動力制御装置18と、駆動力制御装置20と、接地荷重制御装置22とを有している。前輪用操舵制御装置14及び後輪用操舵制御装置16はそれぞれ運転者の操舵操作とは無関係に前輪及び後輪を操舵可能な操舵制御手段を構成しており、制動力制御装置18及び駆動力制御装置20は互いに共働して運転者の制駆動操作とは無関係に各車輪の制駆動力を個別に制御可能な制駆動力制御手段を構成している。   In FIG. 1, a travel control device 10 is mounted on a vehicle 12, and includes a front wheel steering control device 14, a rear wheel steering control device 16, a braking force control device 18, a driving force control device 20, a ground load. And a control device 22. The front wheel steering control device 14 and the rear wheel steering control device 16 constitute steering control means capable of steering the front wheels and the rear wheels irrespective of the steering operation of the driver, respectively, and the braking force control device 18 and the driving force. The control device 20 constitutes a braking / driving force control means capable of individually controlling the braking / driving force of each wheel independently of the driver's braking / driving operation in cooperation with each other.

また図1に於いて、24FL及び24FRはそれぞれ車両12の操舵輪である左右の前輪を示し、24RL及び24RRはそれぞれ左右の後輪を示している。操舵輪である左右の前輪24FL及び24FRは運転者によるステアリングホイール26の操作に応答して駆動されるラック・アンド・ピニオン型のパワーステアリング装置28によりラックバー30及びタイロッド32L及び32Rを介して転舵される。   In FIG. 1, 24FL and 24FR indicate left and right front wheels, which are the steering wheels of the vehicle 12, respectively, and 24RL and 24RR indicate left and right rear wheels, respectively. The left and right front wheels 24FL and 24FR, which are steering wheels, are rotated via a rack bar 30 and tie rods 32L and 32R by a rack-and-pinion type power steering device 28 driven in response to an operation of the steering wheel 26 by a driver. Steered.

ステアリングホイール26はアッパステアリングシャフト34、転舵角可変装置36、ロアステアリングシャフト38、ユニバーサルジョイント40を介してパワーステアリング装置28のピニオンシャフト42に駆動接続されている。図示の第一の実施例に於いては、転舵角可変装置36はハウジング36Aの側にてアッパステアリングシャフト34の下端に連結され、回転子36Bの側にてロアステアリングシャフト38の上端に連結された補助転舵駆動用の電動機44を含んでいる。   The steering wheel 26 is drivingly connected to a pinion shaft 42 of the power steering device 28 via an upper steering shaft 34, a turning angle varying device 36, a lower steering shaft 38, and a universal joint 40. In the illustrated first embodiment, the turning angle varying device 36 is connected to the lower end of the upper steering shaft 34 on the housing 36A side, and connected to the upper end of the lower steering shaft 38 on the rotor 36B side. The auxiliary steering drive motor 44 is included.

かくして転舵角可変装置36はアッパステアリングシャフト34に対し相対的にロアステアリングシャフト38を回転駆動することにより、左右の前輪24FL及び24FRをステアリングホイール26に対し相対的に補助転舵駆動し運転者の操舵操作とは無関係に前輪を操舵可能な前輪用操舵制御装置14の主要な装置として機能し、後に詳細に説明する如く電子制御装置46により制御される。   Thus, the turning angle varying device 36 rotationally drives the lower steering shaft 38 relative to the upper steering shaft 34 to drive auxiliary steering of the left and right front wheels 24FL and 24FR relative to the steering wheel 26. It functions as the main device of the front wheel steering control device 14 that can steer the front wheels regardless of the steering operation of the vehicle, and is controlled by the electronic control device 46 as will be described in detail later.

他方、左右の後輪24RL及び24RRは、運転者による左右の前輪24FL及び24FRの操舵とは無関係に、後輪操舵装置48の油圧式又は電動式のパワーステアリング装置50によりタイロッド52L及び52Rを介して操舵される。後輪操舵装置48は後輪用操舵制御装置16の主要な装置として機能し、後に詳細に説明する如く電子制御装置46により制御される。   On the other hand, the left and right rear wheels 24RL and 24RR are connected via tie rods 52L and 52R by the hydraulic or electric power steering device 50 of the rear wheel steering device 48 regardless of the steering of the left and right front wheels 24FL and 24FR by the driver. Steered. The rear wheel steering device 48 functions as a main device of the rear wheel steering control device 16 and is controlled by the electronic control device 46 as described in detail later.

またパワーステアリング装置28は油圧式パワーステアリング装置及び電動式パワーステアリング装置の何れであってもよいが、転舵角可変装置36による前輪の補助転舵駆動により発生されステアリングホイール26に伝達される操舵反力トルクの変動を低減する補助操舵トルクが発生されるよう、例えば電動機と、電動機の回転トルクをラックバー30の往復動方向の力に変換するボールねじ式の如き変換機構とを有するラック同軸型の電動式パワーステアリング装置であることが好ましい。   The power steering device 28 may be either a hydraulic power steering device or an electric power steering device, but the steering generated by the auxiliary wheel driving of the front wheels by the turning angle varying device 36 and transmitted to the steering wheel 26. A rack coaxial having, for example, an electric motor and a conversion mechanism such as a ball screw type that converts the rotational torque of the electric motor into a force in the reciprocating direction of the rack bar 30 so as to generate an auxiliary steering torque that reduces fluctuations in the reaction torque. The electric power steering device of the type is preferable.

各車輪の制動力は制動装置54の油圧回路56によりホイールシリンダ58FL、58FR、58RL、58RR内の圧力Pi(i=fl、fr、rl、rr)、即ち制動圧が制御されることによって制御されるようになっている。図1には示されていないが、油圧回路56はオイルリザーバ、オイルポンプ、種々の弁装置等を含み、各ホイールシリンダの制動圧は通常時には運転者によるブレーキペダル60の踏み込み操作に応じて駆動されるマスタシリンダ62により制御され、また必要に応じて電子制御装置46により個別に制御される。   The braking force of each wheel is controlled by controlling the pressure Pi (i = fl, fr, rl, rr) in the wheel cylinders 58FL, 58FR, 58RL, 58RR, that is, the braking pressure, by the hydraulic circuit 56 of the braking device 54. It has become so. Although not shown in FIG. 1, the hydraulic circuit 56 includes an oil reservoir, an oil pump, various valve devices, and the like, and the braking pressure of each wheel cylinder is normally driven according to the depression operation of the brake pedal 60 by the driver. Are controlled by the master cylinder 62, and are individually controlled by the electronic control unit 46 as necessary.

かくして制動装置54は運転者の制動操作とは無関係に各車輪の制動力を個別に制御可能な制動力制御装置18の主要な装置として機能し、後に詳細に説明する如く電子制御装置46により制御される。   Thus, the braking device 54 functions as a main device of the braking force control device 18 capable of individually controlling the braking force of each wheel regardless of the driver's braking operation, and is controlled by the electronic control device 46 as described in detail later. Is done.

また図示の実施例に於いては、図2に示されている如く、例えばエンジン及びトランスミッションよりなる駆動装置64の駆動トルクはセンターディファレンシャル66により前輪プロペラシャフト68及び後輪プロペラシャフト70へ伝達される。前輪プロペラシャフト68へ伝達された駆動トルクは前輪ディファレンシャル72により左前輪車軸74L及び右前輪車軸74Rへ伝達され、これにより左右の前輪24FL及び24FRが回転駆動される。また後輪プロペラシャフト70へ伝達された駆動トルクは後輪ディファレンシャル76により左後輪車軸78L及び右後輪車軸78Rへ伝達され、これにより左右の後輪24RL及び24RRが回転駆動される。   In the illustrated embodiment, as shown in FIG. 2, the driving torque of the driving device 64 comprising, for example, an engine and a transmission is transmitted to the front wheel propeller shaft 68 and the rear wheel propeller shaft 70 by the center differential 66. . The driving torque transmitted to the front wheel propeller shaft 68 is transmitted to the left front wheel axle 74L and the right front wheel axle 74R by the front wheel differential 72, thereby rotating the left and right front wheels 24FL and 24FR. Further, the driving torque transmitted to the rear wheel propeller shaft 70 is transmitted to the left rear wheel axle 78L and the right rear wheel axle 78R by the rear wheel differential 76, whereby the left and right rear wheels 24RL and 24RR are rotationally driven.

センターディファレンシャル66は電子制御装置46によって制御されることにより、前輪プロペラシャフト68及び後輪プロペラシャフト70に対する駆動トルクの伝達比を制御可能である。また前輪ディファレンシャル72は電子制御装置46によって制御されることにより、左前輪車軸74L及び右前輪車軸74Rに対する駆動トルクの伝達比を制御可能であり、後輪ディファレンシャル76は電子制御装置46によって制御されることにより、左後輪車軸78L及び右後輪車軸78Rに対する駆動トルクの伝達比を制御可能である。   The center differential 66 is controlled by the electronic control unit 46 so that the transmission ratio of the drive torque to the front wheel propeller shaft 68 and the rear wheel propeller shaft 70 can be controlled. Further, the front wheel differential 72 is controlled by the electronic control unit 46, whereby the transmission ratio of the drive torque to the left front wheel axle 74L and the right front wheel axle 74R can be controlled, and the rear wheel differential 76 is controlled by the electronic control unit 46. As a result, the transmission ratio of the drive torque to the left rear wheel axle 78L and the right rear wheel axle 78R can be controlled.

かくして駆動装置64、センターディファレンシャル66、前輪ディファレンシャル72、後輪ディファレンシャル76は運転者の駆動操作とは無関係に各車輪の駆動力を個別に制御可能な駆動制御装置20の主要な装置として機能し、後に詳細に説明する如く電子制御装置46により制御される。   Thus, the drive device 64, the center differential 66, the front wheel differential 72, and the rear wheel differential 76 function as main devices of the drive control device 20 capable of individually controlling the driving force of each wheel regardless of the driving operation of the driver. As will be described in detail later, it is controlled by the electronic control unit 46.

また図2に示されている如く、左右の前輪24FL、24FR及び左右の後輪24RL、24RRのサスペンションにはそれぞれ電磁式のショックアブソーバ80FL、80FR、80RL、80RRが設けられている。ショックアブソーバ80FL〜80RRは例えば特開2005−96587号公開公報に記載されている如き公知の構造を有し、電子制御装置46によって制御されることにより、減衰力を発生すると共に、対応する車輪の接地荷重を増減する接地荷重制御装置22の主要な装置として機能する。   Further, as shown in FIG. 2, electromagnetic shock absorbers 80FL, 80FR, 80RL, and 80RR are provided on the suspensions of the left and right front wheels 24FL and 24FR and the left and right rear wheels 24RL and 24RR, respectively. The shock absorbers 80FL to 80RR have a known structure as described in, for example, Japanese Patent Application Laid-Open No. 2005-96587, and are controlled by the electronic control unit 46 to generate a damping force and It functions as a main device of the ground load control device 22 that increases or decreases the ground load.

図3に示されている如く、電子制御装置46は転舵角可変装置36及びパワーステアリング装置50を制御する操舵制御用電子制御装置84と、パワーステアリング装置28を制御するアシストトルク制御用電子制御装置86と、制御装置54の油圧回路56を制御することにより各車輪の制動力を制御する制動力制御用電子制御装置88と、駆動装置64の駆動トルク及び各ディファレンシャル(DFT)66、72、76を制御する駆動力制御用電子制御装置90と、ショックアブソーバ80FL〜80RRを制御する接地荷重制御用電子制御装置92と、車両12が障害物に衝突する虞れがあるときには衝突防止制御を行う衝突防止制御用電子制御装置94と、これらの電子制御装置84〜94を統合的に制御する統合制御用電子制御装置96とを含んでいる。   As shown in FIG. 3, the electronic control unit 46 includes a steering control electronic control unit 84 that controls the turning angle varying unit 36 and the power steering unit 50, and an assist torque control electronic control that controls the power steering unit 28. A braking force control electronic control device 88 for controlling the braking force of each wheel by controlling the hydraulic circuit 56 of the device 86, the control device 54, the driving torque of the driving device 64 and each differential (DFT) 66, 72, The electronic control device 90 for controlling the driving force for controlling 76, the electronic control device for grounding load control 92 for controlling the shock absorbers 80FL to 80RR, and the collision prevention control when the vehicle 12 may collide with an obstacle. Collision prevention control electronic control unit 94 and integrated control electronic control unit 9 for controlling these electronic control units 84 to 94 in an integrated manner 6 is included.

上述の各電子制御装置84〜96はそれぞれCPUとROMとRAMと入出力ポート装置とを有し、これらが双方向性のコモンバスにより互いに接続されたマイクロコンピュータ及び駆動回路よりなっていてよい。また各電子制御装置84〜96は必要に応じてCAN98を経て相互に必要な情報を示す信号の授受を行う。   Each of the electronic control devices 84 to 96 described above may include a CPU, a ROM, a RAM, and an input / output port device, which are composed of a microcomputer and a drive circuit connected to each other by a bidirectional common bus. The electronic control devices 84 to 96 send and receive signals indicating necessary information to each other through the CAN 98 as necessary.

図示の実施例に於いては、図1及び図3に示されている如く、アッパステアリングシャフト34には該アッパステアリングシャフトの回転角度を操舵角θとして検出する操舵角センサ100が設けられており、転舵角可変装置36にはハウジング36A及び回転子36Bの相対回転角度をアッパステアリングシャフト34に対するロアステアリングシャフト38の相対回転角度θreとして検出する回転角度センサ102が設けられており、これらのセンサの出力はCAN98を経て操舵制御用電子制御装置84等へ供給される。   In the illustrated embodiment, as shown in FIGS. 1 and 3, the upper steering shaft 34 is provided with a steering angle sensor 100 for detecting the rotation angle of the upper steering shaft as the steering angle θ. The turning angle varying device 36 is provided with a rotation angle sensor 102 for detecting the relative rotation angle of the housing 36A and the rotor 36B as the relative rotation angle θre of the lower steering shaft 38 with respect to the upper steering shaft 34, and these sensors. Is supplied to the steering control electronic control unit 84 and the like via the CAN 98.

図1及び図2には示されていないが、車両12の前部には車両12の前方を撮影するCCDカメラ104と、探知波としてのミリ波を車両前方へ放射するミリ波レーダの如きレーダセンサ106とが設けられている。CCDカメラ104は車両12の前方の画像情報を示す信号をCAN98を経て衝突防止制御用電子制御装置94等へ出力し、レーダセンサ106は前方の車両や道路標識等の障害物を検出すると共に、その障害物と車両12との相対距離Lre及び相対速度Vreを検出し、それらの検出値を示す信号を衝突防止制御用電子制御装置94等へ出力するようになっている(例えば特開2005−31967号公報を参照)。   Although not shown in FIGS. 1 and 2, a CCD camera 104 that captures the front of the vehicle 12 at the front of the vehicle 12 and a radar such as a millimeter wave radar that emits a millimeter wave as a detection wave to the front of the vehicle. A sensor 106 is provided. The CCD camera 104 outputs a signal indicating image information ahead of the vehicle 12 to the electronic control unit 94 for collision prevention control via the CAN 98, and the radar sensor 106 detects obstacles such as the vehicle ahead and road signs, A relative distance Lre and a relative speed Vre between the obstacle and the vehicle 12 are detected, and signals indicating the detected values are output to the collision prevention control electronic control device 94 or the like (for example, Japanese Patent Laid-Open No. 2005-2005). (See 31967).

衝突防止制御用電子制御装置94はCCDカメラ104よりの情報に基づき車両の前方に障害物が存在すると判定される状況に於いて、相対距離Lreを相対速度Vreにて除算することにより衝突予測時間Ta(衝突までの余裕時間)を演算する。そして衝突防止制御用電子制御装置94は衝突予測時間Taが基準値Ta1(正の定数)以下であるときには、車両が障害物に衝突の虞れがあると判定すると共に、衝突を防止するための目標減速度Gxtcを演算し、これらを示す信号を統合制御用電子制御装置96等へ出力する。   In a situation where it is determined that there is an obstacle ahead of the vehicle based on information from the CCD camera 104, the collision prevention control electronic control unit 94 divides the relative distance Lre by the relative speed Vre to predict the collision time. Ta (allowance time until collision) is calculated. When the collision prediction time Ta is equal to or less than the reference value Ta1 (a positive constant), the collision prevention control electronic control unit 94 determines that the vehicle is likely to collide with an obstacle and prevents the collision. The target deceleration Gxtc is calculated, and a signal indicating these is output to the integrated control electronic control device 96 and the like.

また図3に示されている如く、車両の前後加速度Gxを検出する前後加速度センサ108、車両の横加速度Gyを検出する横加速度センサ110、車速Vを検出する車速センサ112、車両のヨーレートγを検出するヨーレートセンサ114、マスタシリンダ圧力Pmを検出する圧力センサ116、各車輪の制動圧Pi(i=fl、fr、rl、rr)を検出する圧力センサ118FL〜118RR、アクセルペダル120の踏み込み量としてのアクセル開度αを検出するアクセル開度センサ122、操舵トルクTsを検出するトルクセンサ124が接続されており、これらのセンサにより検出された値を示す信号も必要に応じてCAN98を経て統合制御用電子制御装置96等へ出力される。   Further, as shown in FIG. 3, the longitudinal acceleration sensor 108 for detecting the longitudinal acceleration Gx of the vehicle, the lateral acceleration sensor 110 for detecting the lateral acceleration Gy of the vehicle, the vehicle speed sensor 112 for detecting the vehicle speed V, and the yaw rate γ of the vehicle. As a yaw rate sensor 114 to detect, a pressure sensor 116 to detect the master cylinder pressure Pm, pressure sensors 118FL to 118RR to detect the braking pressure Pi (i = fl, fr, rl, rr) of each wheel, and the depression amount of the accelerator pedal 120 An accelerator opening sensor 122 for detecting the accelerator opening α of the vehicle and a torque sensor 124 for detecting the steering torque Ts are connected. A signal indicating the value detected by these sensors is also integratedly controlled via the CAN 98 as necessary. Is output to the electronic control device 96 and the like.

尚操舵角センサ100、横加速度センサ110、ヨーレートセンサ114、トルクセンサ124はそれぞれ車両の左旋回時に生じる値を正として操舵角θ、横加速度Gy、ヨーレートγ、操舵トルクTsを検出し、回転角度センサ102は左旋回方向への左右前輪の相対転舵の場合を正として相対回転角度θreを検出する。   The steering angle sensor 100, the lateral acceleration sensor 110, the yaw rate sensor 114, and the torque sensor 124 detect the steering angle θ, the lateral acceleration Gy, the yaw rate γ, and the steering torque Ts with positive values generated when the vehicle turns to the left. The sensor 102 detects the relative rotation angle θre with the case of relative turning of the left and right front wheels in the left turn direction as positive.

統合制御用電子制御装置96は、図4に示されたフローチャートに従って、車両の目標運動状態量として車両の目標ヨーレートγt、車両の目標横加速度Gyt、車両の目標前後加速度Gxtを演算し、車両の前後加速度Gxを目標前後加速度Gxtにするための車両の目標前後力Fxt、車両の横加速度Gyを目標横加速度Gytにするための車両の目標横力Fyt、車両のヨーレートγを目標ヨーレートγtにするための車両の目標ヨーモーメントMztを車両全体の目標走行運動制御量として演算する。   The integrated control electronic control unit 96 calculates the target yaw rate γt of the vehicle, the target lateral acceleration Gyt of the vehicle, and the target longitudinal acceleration Gxt of the vehicle according to the flowchart shown in FIG. The target longitudinal force Fxt of the vehicle for setting the longitudinal acceleration Gx to the target longitudinal acceleration Gxt, the target lateral force Fyt of the vehicle for setting the lateral acceleration Gy of the vehicle to the target lateral acceleration Gyt, and the yaw rate γ of the vehicle to the target yaw rate γt. The target yaw moment Mzt of the vehicle is calculated as a target travel motion control amount for the entire vehicle.

また統合制御用電子制御装置96は、車両の走行状態がスピン状態やドリフトアウト状態の如き不安定な状態であるか否かの判別を行い、車両の走行状態が不安定な状態ではないときには、衝突防止制御用電子制御装置94により車両が障害物に衝突の虞れがあると判定されているか否かの判別を行う。そして統合制御用電子制御装置96は、車両の走行状態が不安定な状態にあるか又は車両が障害物に衝突の虞れがあるときには、即ち車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、緊急時の走行運動制御を行う。   Further, the integrated control electronic control device 96 determines whether or not the vehicle running state is an unstable state such as a spin state or a drift-out state. When the vehicle traveling state is not an unstable state, It is determined whether or not the collision prevention control electronic control unit 94 has determined that the vehicle may collide with an obstacle. The integrated control electronic control unit 96 requires an emergency running motion control when the running state of the vehicle is unstable or when the vehicle may collide with an obstacle. When the vehicle is in a running state, the running motion control in an emergency is performed.

緊急時の走行運動制御に於いては、統合制御用電子制御装置96は、図7に示されたフローチャートに従って、後に詳細に説明する如く、車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMzt及び各車輪のスリップ角αi、スリップ率κi、前後力Fxi、横力Fyi、ヨーモーメントMzi(i=fl、fr、rl、rr)を演算し、これらに基づき前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20、接地荷重制御装置22について予め設定された下記の式1の第一の評価関数L1の演算を行うことにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκti、各車輪の接地荷重の目標修正量δFzti(i=fl、fr、rl、rr)を演算する。   In an emergency running motion control, the integrated control electronic control unit 96 follows the flowchart shown in FIG. 7 and, as will be described in detail later, the target longitudinal force Fxt, the target lateral force Fyt, the target yaw force of the vehicle. The moment Mzt, the slip angle αi of each wheel, the slip ratio κi, the longitudinal force Fxi, the lateral force Fyi, and the yaw moment Mzi (i = fl, fr, rl, rr) are calculated, and based on these, the front wheel steering control device 14, By calculating the first evaluation function L1 of the following equation 1 for the rear wheel steering control device 16, the braking force control device 18, the driving force control device 20, and the ground load control device 22, the front wheel Slip angle target correction amount δαft, rear wheel slip angle target correction amount δαrt, slip rate target correction amount δκti, each wheel ground load target correction amount δFzti (i = fl, fr, rl, rr) ) Is calculated.

L1=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf
+Warαr+Wdarδαtr
+WfzfFzfl+WdfzfδFztfl
+WfzfFzfr+WdfzfδFztfr
+WfzrFzrl+WdfzrδFztrl
+WfzrFzrr+WdfzrδFztrr ……(1)
L1 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2
+ Warαr 2 + Wdarδαtr 2
+ WfzfFzfl 2 + WdfzfδFztfl 2
+ WfzfFzfr 2 + WdfzfδFztfr 2
+ WfzrFzrl 2 + WdfzrδFztrl 2
+ WfzrFzrr 2 + WdfzrδFztrr 2 (1)

尚上記式1に於いて、Wx、Wy、Wmはそれぞれ車両の前後力、横力、ヨーモーメントについての重みであり、Wk及びWdkはそれぞれスリップ率κi及びその目標修正量δκtiについての重みであり、Waf及びWdafはそれぞれ前輪のスリップ角αf及びその目標修正量δαftについての重みであり、War及びWdarはそれぞれ後輪のスリップ角αr及びその目標修正量δαrtについての重みである。またWfzf及びWdfzfはそれぞれ前輪のFzfl、Fzfr及びその目標修正量δFztfl、δFztfrについての重みであり、Wfzr及びWdfzrはそれぞれ後輪のFzrl、Fzrr及びその目標修正量δFztrl、δFztrrについての重みであり、Σは左右前輪及び左右後輪についての和を意味する。   In the above equation 1, Wx, Wy, and Wm are weights for the longitudinal force, lateral force, and yaw moment of the vehicle, respectively, and Wk and Wdk are weights for the slip ratio κi and the target correction amount δκti, respectively. Waf and Wdaf are weights for the front wheel slip angle αf and its target correction amount δαft, respectively, and War and Wdar are weights for the rear wheel slip angle αr and its target correction amount δαrt, respectively. Wfzf and Wdfzf are weights for the front wheels Fzfl and Fzfr and their target correction amounts δFztfl and δFztfr, respectively. Wfzr and Wdfzr are weights for the rear wheels Fzrl and Fzrr and their target correction amounts δFztrl and δFztrr, respectively. Σ means the sum of the left and right front wheels and the left and right rear wheels.

そして統合制御用電子制御装置96は左右前輪のスリップ角αfl及びαfrの平均値αfと前輪のスリップ角の目標修正量δαftとの和として前輪の目標スリップ角αftを演算し、左右後輪のスリップ角αrl及びαrrの平均値αrと後輪のスリップ角の目標修正量δαrtとの和として後輪の目標スリップ角αrtを演算し、スリップ率κiとスリップ率の目標修正量δκtiとの和として各車輪の目標スリップ率κtiを演算し、各車輪の接地荷重Fziと接地荷重の目標修正量δFztiとの和として各車輪の目標接地荷重Fzti(i=fl、fr、rl、rr)を演算する。   The integrated control electronic control unit 96 calculates the front wheel target slip angle αft as the sum of the average value αf of the slip angles αfl and αfr of the left and right front wheels and the target correction amount δαft of the front wheels, and slips the left and right rear wheels. The target slip angle αrt of the rear wheel is calculated as the sum of the average value αr of the angles αrl and αrr and the target correction amount δαrt of the rear wheel slip angle, and each of the sums of the slip ratio κi and the target correction amount δκti of the slip ratio is calculated. The wheel target slip ratio κti is calculated, and the target ground load Fzti (i = fl, fr, rl, rr) of each wheel is calculated as the sum of the ground load Fzi of each wheel and the target correction amount δFzti of the ground load.

また統合制御用電子制御装置96は、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないときには、車両の走行状態がスピン状態やドリフトアウト状態の如き不安定な状態に悪化する虞れがあるか否かの判別、車両の挙動悪化の虞れがあるか否かの判別を行う。そして統合制御用電子制御装置96は、車両の挙動悪化の虞れがあるときには、準安定時の走行運動制御を行い、車両の挙動悪化の虞れがないときには、通常の走行運動制御を行う。   Further, the integrated control electronic control unit 96 deteriorates the vehicle running state into an unstable state such as a spin state or a drift-out state when the vehicle running state is not a running state that requires emergency running motion control. It is determined whether or not there is a fear, and whether or not there is a possibility of deterioration of the behavior of the vehicle. The electronic control device 96 for integrated control performs traveling motion control during metastable when there is a possibility of deterioration of the behavior of the vehicle, and performs normal traveling motion control when there is no possibility of deterioration of the behavior of the vehicle.

準安定時の走行運動制御に於いては、統合制御用電子制御装置96は、図6に示されたフローチャートに従って、車両の良好な乗り心地性を確保しつつ車体及び車輪の振動を減衰させると共に加減速や旋回等による車体の姿勢変化を抑制するための各車輪の目標接地荷重Fzti(i=fl、fr、rl、rr)を演算し、目標接地荷重Fztiに基づいて各車輪の等価コーナリングパワーCpi(i=fl、fr、rl、rr)を演算する。   In the metastable running motion control, the integrated control electronic control unit 96 attenuates the vibrations of the vehicle body and the wheels while ensuring good riding comfort of the vehicle according to the flowchart shown in FIG. Calculates the target ground load Fzti (i = fl, fr, rl, rr) of each wheel to suppress the change in the posture of the vehicle body due to acceleration / deceleration, turning, etc., and equivalent cornering power of each wheel based on the target ground load Fzti Cpi (i = fl, fr, rl, rr) is calculated.

そして統合制御用電子制御装置96は、各車輪のスリップ角αi(i=fl、fr、rl、rr)及びスリップ率κi(i=fl、fr、rl、rr)を演算し、各車輪のスリップ角αi、スリップ率κi、等価コーナリングパワーCpi等に基づき各車輪の前後力Fxi及び横力Fyi(i=fl、fr、rl、rr)及び車両のヨーモーメントMzi(i=fl、fr、rl、rr)を演算し、車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMzt及び各車輪の前後力Fxi、横力Fyi、ヨーモーメントMziに基づき、前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20について予め設定された下記の式2の第二の評価関数L2の演算を行うことにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκtiを演算する。   The integrated control electronic control unit 96 calculates the slip angle αi (i = fl, fr, rl, rr) and the slip ratio κi (i = fl, fr, rl, rr) of each wheel, and slips each wheel. Based on the angle αi, slip ratio κi, equivalent cornering power Cpi, etc., the longitudinal force Fxi and lateral force Fyi (i = fl, fr, rl, rr) of each wheel and the yaw moment Mzi (i = fl, fr, rl, rr) is calculated and the front wheel steering control device 14 and the rear wheel are calculated based on the target longitudinal force Fxt, the target lateral force Fyt, the target yaw moment Mzt of the vehicle, and the longitudinal force Fxi, lateral force Fyi, and yaw moment Mzi of each wheel. By calculating the second evaluation function L2 of the following equation 2 set in advance for the steering control device 16, the braking force control device 18, and the driving force control device 20, the target correction amount δαft of the front wheel slip angle is calculated as follows. Target correction amount δαrt of wheel slip angle, slip ratio target of each wheel To calculate the Seiryo δκti.

L2=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf
+Warαr+Wdarδαtr ……(2)
L2 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2
+ Warαr 2 + Wdarδαtr 2 (2)

通常時の走行運動制御に於いては、統合制御用電子制御装置96は、図5に示されたフローチャートに従って、準安定時の走行運動制御の場合と同様の要領にて各車輪の目標接地荷重Fzti(i=fl、fr、rl、rr)を演算し、目標接地荷重Fztiに基づいて各車輪の等価コーナリングパワーCpi(i=fl、fr、rl、rr)を演算する。   In the normal running motion control, the integrated control electronic control unit 96 follows the flowchart shown in FIG. 5 in the same manner as in the case of the metastable running motion control. Fzti (i = fl, fr, rl, rr) is calculated, and the equivalent cornering power Cpi (i = fl, fr, rl, rr) of each wheel is calculated based on the target ground load Fzti.

そして統合制御用電子制御装置96は、操舵角θ及び車速Vに基づき車輌の目標スリップ角βt及び目標ヨーレートγtを演算し、目標スリップ角βt及び目標ヨーレートγtに基づき前輪の目標切れ角δft及び後輪の目標切れ角δrtを演算する。また統合制御用電子制御装置96は、前輪の目標切れ角δft及び後輪の目標切れ角δrtに基づき車両の横力Fy及びヨーモーメントMzをそれぞれ目標横力Fyt及び目標ヨーモーメントMztにするための前輪の目標スリップ角及び後輪の目標スリップ角と等価な値として前輪の目標スリップ角αft及び後輪の目標スリップ角αrtを演算する。更に統合制御用電子制御装置96は、各車輪のスリップ率κi(i=fl、fr、rl、rr)、前後力Fxi、車両の目標前後力Fxtに基づき、制動力制御装置18及び駆動力制御装置20について予め設定された下記の式3の第三の評価関数L3の演算を行うことにより、各車輪のスリップ率の目標修正量δκtiを演算し、スリップ率κiと目標修正量δκtiとの和として各車輪の目標スリップ率κtiを演算する。
L3=Wx(Fxt−ΣFxi)
+Σ(Wkκi+Σ(Wdkδκti) ……(3)
Then, the integrated control electronic control unit 96 calculates the target slip angle βt and the target yaw rate γt of the vehicle based on the steering angle θ and the vehicle speed V, and the target cutting angle δft and the rear wheel of the front wheel based on the target slip angle βt and the target yaw rate γt. The target cutting angle δrt of the wheel is calculated. The integrated control electronic control unit 96 is used to change the lateral force Fy and yaw moment Mz of the vehicle to the target lateral force Fyt and the target yaw moment Mzt based on the target turning angle δft of the front wheels and the target turning angle δrt of the rear wheels, respectively. The target slip angle αft of the front wheel and the target slip angle αrt of the rear wheel are calculated as values equivalent to the target slip angle of the front wheel and the target slip angle of the rear wheel. Further, the integrated control electronic control device 96 is based on the slip rate κi (i = fl, fr, rl, rr) of each wheel, the longitudinal force Fxi, and the target longitudinal force Fxt of the vehicle, and the braking force control device 18 and the driving force control. By calculating the preset third evaluation function L3 of the following equation 3 for the device 20, the target correction amount δκti of the slip ratio of each wheel is calculated, and the sum of the slip ratio κi and the target correction amount δκti is calculated. As a result, the target slip ratio κti of each wheel is calculated.
L3 = Wx (Fxt−ΣFxi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 ) (3)

統合制御用電子制御装置96は、前輪の目標スリップ角αft及び後輪の目標スリップ角αrt、各車輪の目標スリップ率κti、各車輪の目標接地荷重Fztiを演算すると、それらを示す信号をそれぞれ操舵制御用電子制御装置84、制動力制御用電子制御装置88及び駆動力制御用電子制御装置90、接地荷重制御用電子制御装置92へ出力する。   When the electronic control device 96 for integrated control calculates the target slip angle αft of the front wheels, the target slip angle αrt of the rear wheels, the target slip ratio κti of each wheel, and the target ground load Fzti of each wheel, the signals indicating them are respectively steered. The control output is output to the control electronic control device 84, the braking force control electronic control device 88, the driving force control electronic control device 90, and the ground load control electronic control device 92.

操舵制御用電子制御装置84は、前輪のスリップ角αf及び後輪のスリップ角αrがそれぞれ目標スリップ角αft及びαrtになるよう転舵角可変装置36及びパワーステアリング装置50を制御し、制動力制御用電子制御装置88及び駆動力制御用電子制御装置90は互いに共働して各車輪のスリップ率κiが目標スリップ率κtiになるよう制御装置54及び駆動装置64を制御し、接地荷重制御用電子制御装置92は各車輪の接地荷重Fziが目標接地荷重Fztiになるようショックアブソーバ80FL〜80RRを制御する。   The steering control electronic control device 84 controls the turning angle variable device 36 and the power steering device 50 so that the front wheel slip angle αf and the rear wheel slip angle αr become the target slip angles αft and αrt, respectively, and the braking force control. The electronic control device 88 and the driving force control electronic control device 90 cooperate with each other to control the control device 54 and the driving device 64 so that the slip ratio κi of each wheel becomes the target slip ratio κti. The control device 92 controls the shock absorbers 80FL to 80RR so that the ground load Fzi of each wheel becomes the target ground load Fzti.

尚アシストトルク制御用電子制御装置86は、運転者の操舵負担を軽減するよう当技術分野に於いて公知の要領にてパワーステアリング装置28を制御すると共に、転舵角可変装置36による前輪のスリップ角αfの制御に伴う操舵反力の変化を低減するようパワーステアリング装置28を制御する。   The electronic control device 86 for assist torque control controls the power steering device 28 in a manner known in the art so as to reduce the steering burden on the driver, and the front wheel slip by the turning angle varying device 36. The power steering device 28 is controlled so as to reduce the change in the steering reaction force accompanying the control of the angle αf.

次に図4に示されたフローチャートを参照して第一の実施例に於いて統合制御用電子制御装置96により達成される車両の走行制御のメインルーチンについて説明する。尚図4に示されたフローチャートによる制御は図には示されていないイグニッションスイッチの閉成により開始され、所定の時間毎に繰返し実行される。   Next, a main routine of vehicle travel control achieved by the integrated control electronic control unit 96 in the first embodiment will be described with reference to the flowchart shown in FIG. The control according to the flowchart shown in FIG. 4 is started by closing an ignition switch (not shown), and is repeatedly executed at predetermined time intervals.

まずステップ410に於いては操舵角θを示す信号等の読み込みが行われ、ステップ420に於いては車速V等に基づき車両を安定的に走行させるための車両の目標運動状態量として車両の目標ヨーレートγt、車両の目標横加速度Gyt、車両の目標前後加速度Gxtが演算される。   First, at step 410, a signal indicating the steering angle .theta. Is read, and at step 420, the vehicle target motion state quantity for making the vehicle run stably based on the vehicle speed V or the like is used. The yaw rate γt, the target lateral acceleration Gyt of the vehicle, and the target longitudinal acceleration Gxt of the vehicle are calculated.

例えば目標ヨーレートγtは操舵制御用電子制御装置84より入力されるステアリングギヤ比をNとし、車両のホイールベースをLとし、スタビリティファクタをKhとし、操舵−ヨーレート過渡伝達関数をH(s)として下記の式4に従って演算され、目標横加速度Gytはヨーレート−横加速度過渡伝達関数をG(s)として下記の式5により演算される。
γt=θ・V/{N・L(1+Kh・V)}H(s) ……(4)
Gyt=γt・V・G(s) ……(5)
For example, for the target yaw rate γt, the steering gear ratio input from the steering control electronic control unit 84 is N, the vehicle wheelbase is L, the stability factor is Kh, and the steering-yaw rate transient transfer function is H (s). The target lateral acceleration Gyt is calculated according to the following equation (4), and the yaw rate-lateral acceleration transient transfer function is G (s) and is calculated according to the following equation (5).
γt = θ · V / {N · L (1 + Kh · V 2 )} H (s) (4)
Gyt = γt ・ V ・ G (s) (5)

また目標前後加速度Gxtは制駆動力制御用電子制御装置86より入力されるエンジン回転数Ne、スロットル開度Ta、トランスミッションのシフトポジションPsに基づく駆動系のギヤ比Rd、マスタシリンダ圧力Pm、衝突防止のための目標減速度Gxtcに基づき、車両の目標前後加速度を演算するための関数F(Ne,Ta,Rd,Pm,Gxtc)により下記の式6に従って演算される。
Gxt=F(Ne,Ta,Rd,Pm,Gxtc) ……(6)
The target longitudinal acceleration Gxt is the engine speed Ne, throttle opening degree Ta, transmission gear ratio Rd based on the transmission shift position Ps, master cylinder pressure Pm, collision prevention. On the basis of the target deceleration Gxtc for, the function F (Ne, Ta, Rd, Pm, Gxtc) for calculating the target longitudinal acceleration of the vehicle is calculated according to the following equation (6).
Gxt = F (Ne, Ta, Rd, Pm, Gxtc) (6)

ステップ430に於いては車両の前後加速度Gxを目標前後加速度Gxtにするための車両の目標前後力Fxt、車両の横加速度Gyを目標横加速度Gytにするための車両の目標横力Fyt、車両のヨーレートγを目標ヨーレートγtにするための車両の目標ヨーモーメントMztが車両を安定的に走行させるための車両全体の目標走行運動制御量として演算される。   In step 430, the target longitudinal force Fxt of the vehicle for making the longitudinal acceleration Gx of the vehicle the target longitudinal acceleration Gxt, the target lateral force Fyt of the vehicle for making the lateral acceleration Gy of the vehicle the target lateral acceleration Gyt, A target yaw moment Mzt of the vehicle for setting the yaw rate γ to the target yaw rate γt is calculated as a target travel motion control amount for the entire vehicle for stably traveling the vehicle.

特に車両の目標前後力Fxt及び目標横力Fytは車両の質量をMvとしてそれぞれ下記の式7及び8に従って演算され、目標ヨーモーメントMztは車両のヨー慣性モーメントをIyとし、車両の目標ヨーレートγtの微分値をγtdとして下記の式9に従って演算される。
Fxt=Mv・Gxt ……(7)
Fyt=Mv・Gyt ……(8)
Mzt=Iy・γtd ……(9)
In particular, the target longitudinal force Fxt and the target lateral force Fyt of the vehicle are calculated according to the following equations 7 and 8, respectively, where the vehicle mass is Mv. The target yaw moment Mzt is the vehicle yaw inertia moment Iy, and the vehicle target yaw rate γt The differential value is calculated according to the following equation 9 with γtd.
Fxt = Mv · Gxt (7)
Fyt = Mv · Gyt (8)
Mzt = Iy · γtd (9)

ステップ440に於いては例えば目標ヨーレートγtと車両の実際のヨーレートγとの偏差Δγが演算されると共に、ヨーレート偏差Δγの絶対値が挙動悪化判定の基準値γ1(正の定数)以上であるか否かの判別により車両の走行状態がスピン状態やドリフトアウト状態の如き不安定な状態であるか否かの判別が行われ、肯定判別が行われたときにはステップ700へ進み、否定判別が行われたときにはステップ450へ進む。   In step 440, for example, a deviation Δγ between the target yaw rate γt and the actual yaw rate γ of the vehicle is calculated, and whether the absolute value of the yaw rate deviation Δγ is greater than or equal to a reference value γ1 (positive constant) for behavior deterioration determination. It is determined whether or not the running state of the vehicle is an unstable state such as a spin state or a drift-out state by determining whether or not, and if an affirmative determination is made, the process proceeds to step 700 and a negative determination is made. If YES, go to step 450.

ステップ450に於いては衝突防止制御用電子制御装置94より入力される情報に基づき、車両の進行方向前方に障害物が存在し、衝突予測時間Taが衝突の虞れ判定の基準値Ta1以下であり衝突の虞れがあるか否かの判別が行われ、肯定判別が行われたときにはステップ700へ進み、否定判別が行われたときにはステップ460へ進む。   In step 450, based on information input from the electronic control unit 94 for collision prevention control, there is an obstacle ahead in the traveling direction of the vehicle, and the predicted collision time Ta is less than the reference value Ta1 for determining the possibility of collision. It is determined whether or not there is a possibility of a collision. If an affirmative determination is made, the process proceeds to step 700. If a negative determination is made, the process proceeds to step 460.

ステップ460に於いては例えばヨーレート偏差Δγの絶対値が挙動悪化の虞れ判定の基準値γ2(γ1よりも小さい正の定数)以上であるか否かの判別により車両の走行状態がスピン状態やドリフトアウト状態の如き不安定な状態に悪化する虞れがあるか否かの判別が行われ、肯定判別が行われたときにはステップ600へ進み、否定判別が行われたときにはステップ500へ進む。   In step 460, for example, by determining whether or not the absolute value of the yaw rate deviation Δγ is equal to or greater than a reference value γ2 (a positive constant smaller than γ1) for determining the possibility of behavior deterioration, A determination is made as to whether there is a possibility of deterioration to an unstable state such as a drift-out state. If an affirmative determination is made, the process proceeds to step 600, and if a negative determination is made, the process proceeds to step 500.

ステップ500に於いては図5に示されたルーチンに従って後述の如く通常時の車両の走行制御が行われ、ステップ600に於いては図6に示されたルーチンに従って後述の如く準不安定時の車両の走行制御が行われ、ステップ700に於いては図7に示されたルーチンに従って後述の如く緊急時の車両の走行制御が行われる。   In step 500, vehicle running control during normal time is performed as described later in accordance with the routine shown in FIG. 5, and in step 600, the vehicle in a quasi-unstable state as described later in accordance with the routine shown in FIG. In step 700, the vehicle travel control in an emergency is performed as will be described later in accordance with the routine shown in FIG.

次に図5に示されたフローチャートを参照して第一の実施例に於ける通常時の車両の走行制御について説明する。   Next, normal vehicle travel control in the first embodiment will be described with reference to the flowchart shown in FIG.

まずステップ510に於いては図8に示されたフローチャートに従って車両の良好な乗り心地性を確保しつつ車体及び車輪の振動を減衰させると共に加減速や旋回等による車体の姿勢変化を抑制するための各車輪の目標接地荷重Fzti(i=fl、fr、rl、rr)が演算され、ステップ520に於いては目標接地荷重Fztiを示す信号が接地荷重制御用電子制御装置92へ出力される。接地荷重制御用電子制御装置92は目標接地荷重Fztiを示す信号を受信すると、各車輪の接地荷重Fzi(i=fl、fr、rl、rr)がそれぞれ対応する目標接地荷重Fztiになるよう電磁式のショックアブソーバ80FL〜80RRを制御し、これにより各車輪の接地荷重Fziが制御される。   First, in step 510, the vehicle body and wheel vibrations are attenuated and the change in the posture of the vehicle body due to acceleration / deceleration, turning, etc. is suppressed while ensuring good riding comfort of the vehicle according to the flowchart shown in FIG. The target ground load Fzti (i = fl, fr, rl, rr) of each wheel is calculated, and in step 520, a signal indicating the target ground load Fzti is output to the ground load control electronic control unit 92. When the ground load control electronic control unit 92 receives the signal indicating the target ground load Fzti, the ground load Fzi (i = fl, fr, rl, rr) of each wheel is electromagnetically controlled so as to become the corresponding target ground load Fzti. The shock absorbers 80FL to 80RR are controlled so that the ground load Fzi of each wheel is controlled.

ステップ530に於いては目標接地荷重Fztiと各車輪の標準の接地荷重(例えば車両の停止時の値)Fz0i(i=fl、fr、rl、rr)との偏差として各車輪の接地荷重の偏差ΔFzi(i=fl、fr、rl、rr)が演算され、ステップ540に於いては接地荷重の偏差ΔFziに基づいて図には示されていないマップより各車輪の等価コーナリングパワーの変化量ΔCpi(i=fl、fr、rl、rr)が演算され、各車輪の等価コーナリングパワーの標準値Cp0i(正の定数)と変化量ΔCpiとの和として各車輪の等価コーナリングパワーCpi(i=fl、fr、rl、rr)が演算される。   In step 530, the deviation of the ground load of each wheel as the deviation between the target ground load Fzti and the standard ground load of each wheel (for example, the value when the vehicle is stopped) Fz0i (i = fl, fr, rl, rr). ΔFzi (i = fl, fr, rl, rr) is calculated. In step 540, based on the ground load deviation ΔFzi, the amount of change ΔCpi (equivalent cornering power of each wheel) from a map not shown in the figure. i = fl, fr, rl, rr) is calculated, and the equivalent cornering power Cpi (i = fl, fr) of each wheel is calculated as the sum of the standard value Cp0i (positive constant) of the equivalent cornering power of each wheel and the amount of change ΔCpi. , Rl, rr) are calculated.

ステップ550に於いては操舵角θ、車速V、各車輪の等価コーナリングパワーCpiに基づき、車両の横力Fy及びヨーモーメントMzをそれぞれ目標横力Fyt及び目標ヨーモーメントMztにするための前輪の目標スリップ角及び後輪の目標スリップ角と等価な値として前輪の目標スリップ角αft及び後輪の目標スリップ角αrtが演算される。   In step 550, based on the steering angle θ, the vehicle speed V, and the equivalent cornering power Cpi of each wheel, the front wheel target for setting the lateral force Fy and yaw moment Mz of the vehicle to the target lateral force Fyt and target yaw moment Mzt, respectively. The front wheel target slip angle αft and the rear wheel target slip angle αrt are calculated as values equivalent to the slip angle and the rear wheel target slip angle.

例えば操舵角θ及び車速Vに基づき車輌の目標スリップ角βt及び目標ヨーレートγtが演算され、車輌の重心と前輪車軸及び後輪車軸との間の車輌前後方向の距離をそれぞれLf及びLrとし、左右前輪の等価コーナリングパワーCpfl、Cpfrの平均値を前輪の等価コーナリングパワーCpfとし、左右後輪の等価コーナリングパワーCprl、Cprfrの平均値を後輪の等価コーナリングパワーCprとし、sをラプラス演算子として、目標スリップ角βt及び目標ヨーレートγtに基づき下記の式10に従って前輪の目標切れ角δft及び後輪の目標切れ角δrtが演算される。

Figure 0004849238
For example, the target slip angle βt and the target yaw rate γt of the vehicle are calculated based on the steering angle θ and the vehicle speed V, and the distances in the vehicle front-rear direction between the center of gravity of the vehicle and the front wheel axle and the rear wheel axle are Lf and Lr, respectively. The average value of the equivalent cornering powers Cpfl and Cpfr of the front wheels is the equivalent cornering power Cpf of the front wheels, the average value of the equivalent cornering powers Cprl and Cprfr of the left and right rear wheels is the equivalent cornering power Cpr of the rear wheels, and s is the Laplace operator. Based on the target slip angle βt and the target yaw rate γt, the target cutting angle δft of the front wheels and the target cutting angle δrt of the rear wheels are calculated according to the following equation 10.
Figure 0004849238

そして前輪の目標切れ角δft及び後輪の目標切れ角δrtに基づきそれぞれ下記の式11及び12に従って前輪の目標スリップ角αft及び後輪の目標スリップ角αrtが演算される。

Figure 0004849238
Then, based on the target cutting angle δft of the front wheel and the target cutting angle δrt of the rear wheel, the target slip angle αft of the front wheel and the target slip angle αrt of the rear wheel are calculated according to the following equations 11 and 12, respectively.
Figure 0004849238

ステップ570に於いては当技術分野に於いて公知の要領にて車体のスリップ角βが推定され、前輪の目標スリップ角αft、後輪の目標スリップ角αrt、車体のスリップ角β等に基づきそれぞれ上記式11及び12に対応する下記の式13及び14に従って前輪の目標舵角δft及び後輪の目標舵角δrtが演算され、目標舵角δft及びδrtを示す信号が操舵制御用電子制御装置84へ出力される。尚目標舵角δft及びδrtは上記式10に従って演算された値であってもよい。

Figure 0004849238
In step 570, the slip angle β of the vehicle body is estimated in a manner known in the art, and based on the target slip angle αft of the front wheels, the target slip angle αrt of the rear wheels, the slip angle β of the vehicle body, etc. The front wheel target rudder angle δft and the rear wheel target rudder angle δrt are calculated according to the following equations 13 and 14 corresponding to the above equations 11 and 12, and signals indicating the target rudder angles δft and δrt are calculated as the steering control electronic control unit 84. Is output. The target rudder angles δft and δrt may be values calculated according to the above equation 10.
Figure 0004849238

操舵制御用電子制御装置84は目標舵角δft及びδrtを示す信号を受信すると、目標舵角δft及びδrt、操舵角θ、目標ステアリングギヤ比Rgt等に基づき前輪の舵角制御量Δδf及び後輪の舵角制御量Δδrを演算し、舵角制御量Δδf及びΔδrに基づいて前輪用操舵制御装置14の転舵角可変装置36及び後輪用操舵制御装置16のパワーステアリング装置50を制御し、これにより左右前輪の舵角δf及び左右後輪の舵角δrがそれぞれ目標舵角δft及びδrtになるよう制御される。   When the steering control electronic control unit 84 receives the signals indicating the target steering angles δft and δrt, the steering angle control amount Δδf of the front wheels and the rear wheels based on the target steering angles δft and δrt, the steering angle θ, the target steering gear ratio Rgt, and the like. A steering angle control amount Δδr of the steering wheel, the steering angle variable device 36 of the front wheel steering control device 14 and the power steering device 50 of the rear wheel steering control device 16 are controlled based on the steering angle control amounts Δδf and Δδr, Thus, the steering angle δf of the left and right front wheels and the steering angle δr of the left and right rear wheels are controlled to be the target steering angles δft and δrt, respectively.

ステップ575に於いては操舵制御用電子制御装置84より入力される情報に基づき各車輪のスリップ角αi(i=fl、fr、rl、rr)が演算され、各車輪の車輪速度Vwiに基づき各車輪のスリップ率κi(i=fl、fr、rl、rr)が演算される。また各車輪のスリップ角αi、スリップ率κi、等価コーナリングパワーCpi等に基づき例えば前述の特許文献1の式31〜40の如く当技術分野に於いて公知の要領にて各車輪の前後力Fxi及び横力Fyi(i=fl、fr、rl、rr)が演算され、前後力Fxi及び横力Fyiによる車両のヨーモーメントMzi(i=fl、fr、rl、rr)が演算される。   In step 575, the slip angle αi (i = fl, fr, rl, rr) of each wheel is calculated based on the information input from the steering control electronic control unit 84, and each wheel is determined based on the wheel speed Vwi of each wheel. The wheel slip ratio κi (i = fl, fr, rl, rr) is calculated. Further, based on the slip angle αi, the slip ratio κi, the equivalent cornering power Cpi, etc. of each wheel, for example, the longitudinal force Fxi of each wheel and the like in the manner known in the art as shown in Equations 31-40 of the above-mentioned Patent Document 1. The lateral force Fyi (i = fl, fr, rl, rr) is calculated, and the yaw moment Mzi (i = fl, fr, rl, rr) of the vehicle due to the longitudinal force Fxi and the lateral force Fyi is calculated.

ステップ580に於いては各車輪のスリップ率κi、前後力Fxi、車両の目標前後力Fxtに基づき、制動力制御装置18及び駆動力制御装置20について予め設定された上記式3の評価関数L3の演算が行われることにより、各車輪のスリップ率の目標修正量δκti(i=fl、fr、rl、rr)が演算され、スリップ率κiと目標修正量δκtiとの和として各車輪の目標スリップ率κti(i=fl、fr、rl、rr)が演算される。   In step 580, the evaluation function L3 of the above equation 3 set in advance for the braking force control device 18 and the driving force control device 20 based on the slip ratio κi of each wheel, the longitudinal force Fxi, and the target longitudinal force Fxt of the vehicle. By performing the calculation, the target correction amount δκti (i = fl, fr, rl, rr) of the slip ratio of each wheel is calculated, and the target slip ratio of each wheel is calculated as the sum of the slip ratio κi and the target correction amount δκti. κti (i = fl, fr, rl, rr) is calculated.

ステップ590に於いては各車輪の目標スリップ率κti、各車輪の車輪速度Vwi、車両の前後加速度Gxに基づき各車輪の目標制駆動力Fxti(i=fl、fr、rl、rr)が演算される。また車両の目標前後力Fxtが駆動力であるときには、各車輪の目標制動力Fbti(i=fl、fr、rl、rr)が0に設定されると共に、車両の目標前後力Fxtに基づき駆動装置64の目標出力Fdtが演算され、各車輪の目標制駆動力Fxtiに基づきセンターディファレンシャル66、前輪ディファレンシャル72、後輪ディファレンシャル76の目標制御量が演算される。   In step 590, the target braking / driving force Fxti (i = fl, fr, rl, rr) of each wheel is calculated based on the target slip ratio κti of each wheel, the wheel speed Vwi of each wheel, and the longitudinal acceleration Gx of the vehicle. The When the target longitudinal force Fxt of the vehicle is a driving force, the target braking force Fbti (i = fl, fr, rl, rr) of each wheel is set to 0, and the driving device is based on the target longitudinal force Fxt of the vehicle. 64 target outputs Fdt are calculated, and the target control amounts of the center differential 66, front wheel differential 72, and rear wheel differential 76 are calculated based on the target braking / driving force Fxti of each wheel.

これに対し車両の目標前後力Fxtが制動力であるときには、駆動装置64の目標出力Fdt及びセンターディファレンシャル66等の目標制御量が0に設定されると共に、各車輪の目標制駆動力Fxtiに基づき各車輪の目標制動力Fbtiが演算される。そして目標出力Fdt及びセンターディファレンシャル66等の目標制御量を示す信号が駆動力制御用電子制御装置90へ出力され、各車輪の目標制動力Fbtiを示す信号が制動力制御用電子制御装置88へ出力される。   On the other hand, when the target longitudinal force Fxt of the vehicle is a braking force, the target output Fdt of the drive device 64 and the target control amount such as the center differential 66 are set to 0, and based on the target braking / driving force Fxti of each wheel. A target braking force Fbti for each wheel is calculated. A signal indicating the target control amount such as the target output Fdt and the center differential 66 is output to the driving force control electronic control device 90, and a signal indicating the target braking force Fbti of each wheel is output to the braking force control electronic control device 88. Is done.

駆動力制御用電子制御装置90は目標出力Fdtに基づき駆動装置64の出力を制御すると共に、センターディファレンシャル66、前輪ディファレンシャル72、後輪ディファレンシャル76をそれぞれ対応する目標制御量に基づいて制御し、制動力制御用電子制御装置88は各車輪の制動力がそれぞれ対応する目標制動力Fbtiになるよう制動装置54を制御し、これにより各車輪の制駆動力Fxiが対応する目標制駆動力Fxtiになるよう制御される。   The driving force control electronic control unit 90 controls the output of the driving unit 64 based on the target output Fdt, and controls the center differential 66, the front wheel differential 72, and the rear wheel differential 76 based on the corresponding target control amounts. The power control electronic control device 88 controls the braking device 54 so that the braking force of each wheel becomes the corresponding target braking force Fbti, and thereby the braking / driving force Fxi of each wheel becomes the corresponding target braking / driving force Fxti. It is controlled as follows.

次に図6に示されたフローチャートを参照して第一の実施例に於ける準不安定時の車両の走行制御について説明する。   Next, with reference to a flowchart shown in FIG. 6, the vehicle travel control in the semi-unstable state in the first embodiment will be described.

ステップ610乃至645はそれぞれ上述の通常時の車両の走行制御に於けるステップ510乃至540及びステップ575の場合と同様に実行され、ステップ670及び690はそれぞれ上述の通常時の車両の走行制御に於けるステップ570及び590の場合と同様に実行される。   Steps 610 to 645 are respectively performed in the same manner as in steps 510 to 540 and step 575 in the above-described normal vehicle travel control, and steps 670 and 690 are respectively performed in the above-described normal vehicle travel control. Steps 570 and 590 are performed in the same manner.

ステップ650に於いては車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMzt及び各車輪の前後力Fxi、横力Fyi、ヨーモーメントMziに基づき、前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20について予め設定された上記式2の評価関数L2の演算が行われることにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκtiが演算される。   In step 650, based on the target longitudinal force Fxt, the target lateral force Fyt, the target yaw moment Mzt of the vehicle, and the longitudinal force Fxi, lateral force Fyi, and yaw moment Mzi of each wheel, the front wheel steering controller 14 and the rear wheel By calculating the evaluation function L2 of the above-described formula 2 for the steering control device 16, the braking force control device 18, and the driving force control device 20, the front wheel slip angle target correction amount δαft, the rear wheel slip A target correction amount Δαrt for the corner and a target correction amount Δκti for the slip ratio of each wheel are calculated.

そして左右前輪のスリップ角αfl及びαfrの平均値を前輪のスリップ角αfとし、左右後輪のスリップ角αrl及びαrrの平均値を後輪のスリップ角αrとして、スリップ角の平均値αfと前輪のスリップ角の目標修正量δαftとの和として前輪の目標スリップ角αftが演算され、スリップ角の平均値αrと後輪のスリップ角の目標修正量δαrtとの和として後輪の目標スリップ角αrtが演算され、スリップ率κiとスリップ率の目標修正量δκtiとの和として各車輪の目標スリップ率κtiが演算される。   The average value of the left and right front wheel slip angles αfl and αfr is the front wheel slip angle αf, the left and right rear wheel slip angles αrl and αrr is the rear wheel slip angle αr, and the average slip angle αf and the front wheel The target slip angle αft of the front wheel is calculated as the sum of the target correction amount δαft of the slip angle, and the target slip angle αrt of the rear wheel is calculated as the sum of the average value αr of the slip angle and the target correction amount δαrt of the rear wheel slip angle. The target slip ratio κti of each wheel is calculated as the sum of the slip ratio κi and the target correction amount Δκti of the slip ratio.

次に図7に示されたフローチャートを参照して第一の実施例に於ける緊急時の車両の走行制御について説明する。   Next, the vehicle travel control in an emergency in the first embodiment will be described with reference to the flowchart shown in FIG.

まずステップ730に於いては1サイクル前の各車輪の目標接地荷重Fzti(i=fl、fr、rl、rr)と標準の接地荷重Fz0iとの偏差として各車輪の接地荷重の偏差ΔFziが演算され、ステップ740に於いては上述のステップ540及び640の場合と同様の要領にて各車輪の等価コーナリングパワーCpiが演算され、ステップ745に於いては上述のステップ575、645の場合と同様の要領にて各車輪のスリップ角αi、各車輪のスリップ率κi、各車輪の前後力Fxi及び横力Fyi、前後力Fxi及び横力Fyiによる車両のヨーモーメントMziが演算されると共に、当技術分野に於いて公知の要領にて各車輪の接地荷重Fzi(i=fl、fr、rl、rr)が演算される。   First, in step 730, the ground contact load deviation ΔFzi of each wheel is calculated as the difference between the target ground load Fzti (i = fl, fr, rl, rr) of each wheel one cycle before and the standard ground load Fz0i. In step 740, the equivalent cornering power Cpi of each wheel is calculated in the same manner as in steps 540 and 640 described above. In step 745, the same procedure as in steps 575 and 645 described above is calculated. In this technical field, the slip angle αi of each wheel, the slip rate κi of each wheel, the longitudinal force Fxi and lateral force Fyi of each wheel, the yaw moment Mzi of the vehicle by the longitudinal force Fxi and lateral force Fyi are calculated. Then, the ground load Fzi (i = fl, fr, rl, rr) of each wheel is calculated in a known manner.

ステップ750に於いては図9に示されたフローチャートに従って車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMzt及び各車輪のスリップ角αi、スリップ率κi、前後力Fxi、横力Fyi、ヨーモーメントMziに基づき、前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κti、各車輪の目標接地荷重Fztiが演算される。   In step 750, according to the flowchart shown in FIG. 9, the target longitudinal force Fxt, the target lateral force Fyt, the target yaw moment Mzt, the slip angle αi of each wheel, the slip rate κi, the longitudinal force Fxi, the lateral force Fyi, Based on the yaw moment Mzi, the target slip angle αft of the front wheels, the target slip angle αrt of the rear wheels, the target slip ratio κti of each wheel, and the target ground load Fzti of each wheel are calculated.

ステップ750が完了すると、ステップ760、770、790がそれぞれ上述の通常時の車両の走行制御に於けるステップ520、570、590の場合と同様に順次実行され、これにより各車輪の接地荷重Fzi、前輪の舵角δf及び後輪の舵角δr、各車輪の制駆動力Fxiがそれぞれ対応する目標値になるよう制御される。   When step 750 is completed, steps 760, 770, and 790 are sequentially executed in the same manner as in steps 520, 570, and 590 in the above-described normal vehicle traveling control, whereby the ground load Fzi, Control is performed so that the steering angle δf of the front wheels, the steering angle δr of the rear wheels, and the braking / driving force Fxi of each wheel have corresponding target values.

次に図8に示されたフローチャートを参照して上述のステップ510に於ける目標接地荷重Fztiの演算制御について説明する。   Next, calculation control of the target ground load Fzti in step 510 described above will be described with reference to the flowchart shown in FIG.

まずステップ511に於いては図11に示されている如く、各車輪について上下加速度Gzbiの積分により車輪位置に於ける車体12Bの上下速度Zbdiが演算され、上下速度Zbdiの積分により車輪位置に於ける車体12Bの上下変位量Zbiが演算される。また各車輪24について上下加速度Gzwiの積分により車輪24の上下速度Zwdiが演算され、上下速度Zwdiの積分により車輪24の上下変位量Zwiが演算される。そしてKbd、Kb、Kwd、Kwをそれぞれ上下速度Zbdi、上下変位量Zbi、上下速度Zwdi、上下変位量Zwiについてのフィードバックゲインとし、Tをトランスフォーマとして下記の式15に従って車両の良好な乗り心地性を確保しつつ車体及び車輪の振動を減衰させるための接地荷重のフィードバック目標制御量Fz1tiが演算される。尚図11に於いて、80はショックアブソーバを示し、81はサスペンションスプリングを示している。
Fz1ti=[Kbd Kwd Kb Kw][Zbdi Zwdi Zbi Zwi] ……(15)
First, at step 511, as shown in FIG. 11, the vertical speed Zbdi of the vehicle body 12B at the wheel position is calculated for each wheel by integration of the vertical acceleration Gzbi, and at the wheel position by integration of the vertical speed Zbdi. A vertical displacement amount Zbi of the vehicle body 12B is calculated. For each wheel 24, the vertical speed Zwdi of the wheel 24 is calculated by integrating the vertical acceleration Gzwi, and the vertical displacement amount Zwi of the wheel 24 is calculated by integrating the vertical speed Zwdi. Kbd, Kb, Kwd, Kw are the feedback gains for the vertical speed Zbdi, the vertical displacement Zbi, the vertical speed Zwdi, and the vertical displacement Zwi, respectively, and T is a transformer to give a good ride comfort according to the following equation 15. A grounding load feedback target control amount Fz1ti for attenuating the vibrations of the vehicle body and the wheel while ensuring is calculated. In FIG. 11, 80 indicates a shock absorber and 81 indicates a suspension spring.
Fz1ti = [Kbd Kwd Kb Kw] [Zbdi Zwdi Zbi Zwi] T (15)

ステップ512に於いては操舵角θ、アクセル開度Ta、マスタシリンダ圧力Pmの如き運転者の運転操作量或いは車速Vの如き車両の状態量に基づき車両の目標モデルより当技術分野に於いて公知の要領にて車両のロール方向、ピッチ方向、上下方向の3方向の目標運動状態量、即ち車両の目標ロール量Rt、目標ピッチ量Pt、目標ヒーブ量Htが演算される。   In step 512, it is known in the art from the target model of the vehicle based on the driving operation amount of the driver such as the steering angle θ, the accelerator opening degree Ta, the master cylinder pressure Pm, or the vehicle state amount such as the vehicle speed V. In this manner, the target motion state quantity in the three directions of the vehicle roll direction, pitch direction, and vertical direction, that is, the target roll quantity Rt, target pitch quantity Pt, and target heave quantity Ht of the vehicle are calculated.

ステップ513に於いては運転者の運転操作量若しくは車両の横加速度Gy、前後加速度Gx、各車輪位置に於ける上下変位量Zbi及び上下変位量Zwiの如き車両の状態量に基づき車両の実モデルより当技術分野に於いて公知の要領にて車両の3方向の推定運動状態量、即ち車両の推定ロール量Ra、推定ピッチ量Pa、推定ヒーブ量Haが演算される。   In step 513, the actual model of the vehicle based on the amount of driving operation of the driver or the vehicle's lateral acceleration Gy, longitudinal acceleration Gx, vertical displacement amount Zbi and vertical displacement amount Zwi at each wheel position. Further, the estimated motion state quantity in the three directions of the vehicle, that is, the estimated roll quantity Ra, the estimated pitch quantity Pa, and the estimated heave quantity Ha of the vehicle are calculated in a manner known in the art.

ステップ514に於いては各目標運動状態量と推定運動状態量の偏差として3方向の運動状態量の偏差、即ちロール量偏差ΔR、ピッチ量偏差ΔP、ヒーブ量偏差ΔHが演算され、ステップ515に於いてはロール量偏差ΔR、ピッチ量偏差ΔP、ヒーブ量偏差ΔHに基づいて車両の逆モデルより当技術分野に於いて公知の要領にて加減速や旋回等による車体の姿勢変化を抑制するための車両の3方向の目標制御量、即ち目標アンチロールモーメントMrt、目標アンチピッチモーメントMpt、目標アンチヒーブ力Fztが演算される。   In step 514, the deviations of the motion state quantities in the three directions, that is, the roll quantity deviation ΔR, the pitch quantity deviation ΔP, and the heave quantity deviation ΔH are calculated as deviations between each target motion state quantity and the estimated movement state quantity. Therefore, based on the roll amount deviation ΔR, the pitch amount deviation ΔP, and the heave amount deviation ΔH, in order to suppress the change in the posture of the vehicle body due to acceleration / deceleration, turning, etc. in a manner known in the art from the inverse model of the vehicle. The target control amounts in three directions of the vehicle, that is, the target anti-roll moment Mrt, the target anti-pitch moment Mpt, and the target anti-heave force Fzt are calculated.

ステップ516に於いては目標アンチロールモーメントMrt、目標アンチピッチモーメントMpt、目標アンチヒーブ力Fztに基づいて当技術分野に於いて公知の要領にて各車輪の接地荷重のフィードフォワード目標制御量Fz2tiが演算され、ステップ517に於いてはフィードバック目標制御量Fz1tiとフィードフォワード目標制御量Fz2tiとの和として各車輪の目標接地荷重Fztiが演算される。   In step 516, the feedforward target control amount Fz2ti of the ground load of each wheel is calculated based on the target anti-roll moment Mrt, the target anti-pitch moment Mpt, and the target anti-heave force Fzt in a manner known in the art. In step 517, the target ground load Fzti of each wheel is calculated as the sum of the feedback target control amount Fz1ti and the feedforward target control amount Fz2ti.

次に図9に示されたフローチャートを参照して上述のステップ750に於ける目標接地荷重Fztiの演算制御について説明する。   Next, calculation control of the target ground load Fzti in step 750 described above will be described with reference to the flowchart shown in FIG.

まずステップ511に於いては例えば前述の特許文献1に記載された要領と同一の要領にて前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20、接地荷重制御装置22の制御応答周波数が求められると共に、制御応答周波数の逆数に比例する値として上記式1の重みWx、Wy、Wm、Wk、Wdk、Waf、Wdaf、War、Wdar、Wfzf、Wfzr、Wdfzf、Wdfzrが演算される。   First, in step 511, for example, the front wheel steering control device 14, the rear wheel steering control device 16, the braking force control device 18, and the driving force control device 20 are performed in the same manner as described in the above-mentioned Patent Document 1. , The control response frequency of the ground load control device 22 is obtained, and the values Wx, Wy, Wm, Wk, Wdk, Waf, Wdaf, War, Wdar, Wfzf, Wfzr, Wdfzf, and Wdfzr are calculated.

ステップ752に於いては上述のステップ450の場合と同様、車両がその進行方向前方の障害物に衝突する虞れがあると判定されているか否かの判別が行われ、肯定判別が行われたときにはステップ757aへ進み、否定判別が行われたときにはステップ753へ進む。   In step 752, as in the case of step 450 described above, it is determined whether or not it is determined that the vehicle may collide with an obstacle ahead in the traveling direction, and an affirmative determination is made. Sometimes, the process proceeds to step 757a, and when a negative determination is made, the process proceeds to step 753.

ステップ753に於いては車両のヨーモーメントの制御が効果的に行われ車両の走行状態が効果的に安定化されるよう、重みWmが増大補正されると共に、重みWx、Wyが低減補正される。尚この場合車両の減速制御もある程度効果的に行われるよう、重みWxの低減量はWyの低減量よりも小さく設定される。   In step 753, the weight Wm is corrected to be increased and the weights Wx and Wy are corrected to be reduced so that the yaw moment of the vehicle is effectively controlled and the running state of the vehicle is effectively stabilized. . In this case, the reduction amount of the weight Wx is set to be smaller than the reduction amount of Wy so that the deceleration control of the vehicle is performed to some extent effectively.

ステップ754に於いては後輪が横滑り状態にあるか否かの判別、即ち車両の走行状態がスピン状態であるか否かの判別が行われ、肯定判別が行われたときにはステップ755へ進み、否定判別が行われたときには、即ち車両の走行状態がドリフトアウト状態であり前輪が横滑り状態にあると判別されたときにはステップ756へ進む。   In step 754, it is determined whether or not the rear wheel is in a skid state, that is, whether or not the vehicle is in a spin state. If an affirmative determination is made, the process proceeds to step 755. When a negative determination is made, that is, when it is determined that the traveling state of the vehicle is in a drift-out state and the front wheels are in a skidding state, the routine proceeds to step 756.

ステップ755に於いては上記式1に於ける後輪の舵角制御量演算の重みWar及びWdarがそれぞれ0に設定されると共に、後輪の接地荷重制御量演算の重みWfzr及びWdfzrがそれぞれ0に設定され、ステップ756に於いては上記式1に於ける前輪の舵角制御量演算の重みWaf及びWdafがそれぞれ0に設定されると共に、前輪の接地荷重制御量演算の重みWfzf及びWdfzfがそれぞれ0に設定される。   In step 755, the weights War and Wdar for calculating the steering angle control amount for the rear wheel in the above equation 1 are set to 0, and the weights Wfzr and Wdfzr for calculating the ground load control amount for the rear wheel are each 0. In step 756, the weights Waf and Wdaf for calculating the steering angle control amount for the front wheels in the above equation 1 are set to 0, and the weights Wfzf and Wdfzf for calculating the ground load control amount for the front wheels are set to 0, respectively. Each is set to 0.

ステップ757aに於いては車両のヨーモーメントの制御車両の減速制御が効果的に行われ車両の衝突の虞れが効果的に低下されるよう、重みWxが増大補正されると共に、重みWy、Wmが低減補正される。尚この場合運転者の操舵操作による車両の衝突回避も効果的に行われるよう、重みWmの低減量はWyの低減量よりも小さく設定される。   In step 757a, the weight Wx is increased and corrected, and the weights Wy and Wm are adjusted so that the vehicle yaw moment control and the vehicle deceleration control are effectively performed to reduce the possibility of a vehicle collision. Is reduced and corrected. In this case, the reduction amount of the weight Wm is set smaller than the reduction amount of Wy so that the collision avoidance of the vehicle by the steering operation of the driver is effectively performed.

ステップ757bに於いては運転者の操舵操作による車両の衝突回避が効果的に行われるよう、上記式4及び5に於ける操舵−ヨーレート過渡伝達関数H(s)及びヨーレート−横加速度過渡伝達関数G(s)が増大補正される。   In step 757b, the steering-yaw rate transient transfer function H (s) and the yaw rate-lateral acceleration transient transfer function in the above equations 4 and 5 are used so that the collision avoidance of the vehicle by the steering operation of the driver is effectively performed. G (s) is corrected to increase.

ステップ757cに於いては運転者の操舵操作による車両の衝突回避が効果的に行われるよう、上記式1に於ける舵角制御量演算の重みWaf、Wdaf、War、Wdarが増大補正されると共に、他の重み、即ち接地荷重制御量演算の重みWfzf、Wdfzf、Wfzr、Wdfzrが低減補正される。   In step 757c, the weights Waf, Wdaf, War, and Wdar for calculating the steering angle control amount in the above equation 1 are increased and corrected so that the collision avoidance of the vehicle by the steering operation of the driver is effectively performed. The other weights, that is, the weights Wfzf, Wdfzf, Wfzr, and Wdfzr of the ground load control amount calculation are reduced and corrected.

ステップ758に於いては車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMzt及び各車輪のスリップ角αi、スリップ率κi、前後力Fxi、横力Fyi、ヨーモーメントMziに基づき、前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20、接地荷重制御装置22について予め設定された上記式1の評価関数L1の演算が行われることにより、前輪のスリップ角の目標修正量δαft、後輪のスリップ角の目標修正量δαrt、各車輪のスリップ率の目標修正量δκti、各車輪の接地荷重の目標修正量δFzti(i=fl、fr、rl、rr)が演算される。   In step 758, based on the target longitudinal force Fxt, the target lateral force Fyt, the target yaw moment Mzt of the vehicle, the slip angle αi of each wheel, the slip ratio κi, the longitudinal force Fxi, the lateral force Fyi, and the yaw moment Mzi, By performing the calculation of the evaluation function L1 of the above-described formula 1 in advance for the steering control device 14, the rear wheel steering control device 16, the braking force control device 18, the driving force control device 20, and the ground load control device 22, Front wheel slip angle target correction amount δαft, rear wheel slip angle target correction amount δαrt, each wheel slip rate target correction amount δκti, each wheel ground load target correction amount δFzti (i = fl, fr, rl) , Rr) is calculated.

ステップ759に於いては左右前輪のスリップ角αfl及びαfrの平均値αfと前輪のスリップ角の目標修正量δαftとの和として前輪の目標スリップ角αftが演算され、左右後輪のスリップ角αrl及びαrrの平均値αrと後輪のスリップ角の目標修正量δαrtとの和として後輪の目標スリップ角αrtが演算され、スリップ率κiとスリップ率の目標修正量δκtiとの和として各車輪の目標スリップ率κtiが演算され、各車輪の接地荷重Fziと接地荷重の目標修正量δFztiとの和として各車輪の目標接地荷重Fztiが演算される。   In step 759, the target slip angle αft of the front wheel is calculated as the sum of the average value αf of the slip angles αfl and αfr of the left and right front wheels and the target correction amount δαft of the front wheel slip angle. The target slip angle αrt of the rear wheel is calculated as the sum of the average value αr of αrr and the target correction amount δαrt of the rear wheel slip angle, and the target of each wheel is calculated as the sum of the slip ratio κi and the target correction amount δκti of the slip ratio. The slip ratio κti is calculated, and the target ground load Fzti of each wheel is calculated as the sum of the ground load Fzi of each wheel and the target correction amount δFzti of the ground load.

以上の説明より解る如く、ステップ420及び430に於いて運転者の運転操作量及び車両の状態量に応じて車両の走行状態を最適な走行状態にするための車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMztが演算され、ステップ440乃至700に於いて車両の前後力Fx、横力Fyt、ヨーモーメントMzがそれぞれ目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMztになるよう、車両の走行状態に応じて電磁式のショックアブソーバ80FL〜80RR、前輪用操舵制御装置14の転舵角可変装置36及び後輪用操舵制御装置16のパワーステアリング装置50、駆動装置64、制動装置54等が適宜に制御される。
次に上述の如く構成された実施例1の作動を、(1)通常走行時、(2)準不安定時、(3)緊急時の各場合について説明する。
As will be understood from the above description, in steps 420 and 430, the vehicle target longitudinal force Fxt and the target lateral force for making the vehicle traveling state the optimum traveling state in accordance with the driving operation amount of the driver and the vehicle state amount. The force Fyt and the target yaw moment Mzt are calculated, and in steps 440 to 700, the vehicle longitudinal force Fx, lateral force Fyt, and yaw moment Mz become the target longitudinal force Fxt, target lateral force Fyt, and target yaw moment Mzt, respectively. The electromagnetic shock absorbers 80FL to 80RR, the steering angle varying device 36 of the front wheel steering control device 14, and the power steering device 50 of the rear wheel steering control device 16, the driving device 64, and the braking device according to the traveling state of the vehicle 54 etc. are controlled appropriately.
Next, the operation of the first embodiment configured as described above will be described for (1) normal running, (2) quasi-unstable, and (3) emergency.

(1)車両の通常走行時
車両の走行状態が安定であり、車両が障害物に衝突する虞れもない通常走行時には、図4に示されたフローチャートのステップ440乃至460に於いて否定判別が行われ、図5に示されたフローチャートに従って車両の通常走行時の走行制御が行われる。
(1) During normal running of the vehicle During normal running when the running state of the vehicle is stable and the vehicle may not collide with an obstacle, a negative determination is made in steps 440 to 460 of the flowchart shown in FIG. The travel control during normal travel of the vehicle is performed according to the flowchart shown in FIG.

即ちステップ511に於いて車両の良好な乗り心地性を確保しつつ車体及び車輪の振動を減衰させるための接地荷重のフィードバック目標制御量Fz1tiが演算され、ステップ512乃至516に於いて加減速や旋回等による車体の姿勢変化を抑制するための接地荷重のフィードフォワード目標制御量Fz2tiが演算され、ステップ517に於いてフィードバック目標制御量Fz1tiとフィードフォワード目標制御量Fz2tiとの和として各車輪の目標接地荷重Fztiが演算され、ステップ520に於いて各車輪の接地荷重Fziがそれぞれ対応する目標接地荷重Fztiになるよう電磁式のショックアブソーバ80FL〜80RRが制御される。   That is, in step 511, the feedback target control amount Fz1ti of the ground load for attenuating the vibrations of the vehicle body and the wheels while ensuring good riding comfort of the vehicle is calculated. In steps 512 to 516, acceleration / deceleration and turning The feedforward target control amount Fz2ti of the ground load for suppressing the change in the posture of the vehicle body due to the above is calculated, and in step 517, the target grounding of each wheel is obtained as the sum of the feedback target control amount Fz1ti and the feedforward target control amount Fz2ti. The load Fzti is calculated, and in step 520, the electromagnetic shock absorbers 80FL to 80RR are controlled so that the ground contact load Fzi of each wheel becomes the corresponding target ground load Fzti.

またステップ530及び540に於いて各車輪の接地荷重に基づいて各車輪の等価コーナリングパワーCpiが演算され、ステップ550に於いて各車輪の等価コーナリングパワーCpi等に基づき前輪の目標スリップ角αft及び後輪の目標スリップ角αrtが演算され、ステップ570に於いて左右前輪の舵角δf及び左右後輪の舵角δrがそれぞれ目標スリップ角αft及びαrtを達成するための目標舵角δft及びδrtになるよう転舵角可変装置36及びパワーステアリング装置50が制御される。   In steps 530 and 540, the equivalent cornering power Cpi of each wheel is calculated based on the ground contact load of each wheel. In step 550, the target slip angle αft and the rear of the front wheel are calculated based on the equivalent cornering power Cpi of each wheel. The target slip angle αrt of the wheel is calculated, and in step 570, the steering angle δf of the left and right front wheels and the steering angle δr of the left and right rear wheels become the target steering angles δft and δrt for achieving the target slip angles αft and αrt, respectively. Thus, the turning angle varying device 36 and the power steering device 50 are controlled.

またステップ575及び580に於いて各車輪のスリップ率κi、前後力Fxi、横力Fyi、ヨーモーメントMzi及び車両の目標前後力Fxtに基づき上記式3の評価関数L3の演算により各車輪の目標スリップ率κti(i=fl、fr、rl、rr)が演算され、ステップ590に於いて各車輪の目標制駆動力Fxtiが演算されると共に、目標制駆動力Fxtiに基づいて車両の前後力Fxを目標前後力Fxtにするための駆動装置64の目標出力Fdt、センターディファレンシャル66等の目標制御量、各車輪の目標制動力Fbtiが演算され、各車輪の制駆動力Fxiが目標制駆動力Fxtiになるよう制動装置54等が制御される。   In steps 575 and 580, the target slip of each wheel is calculated by calculating the evaluation function L3 of the above equation 3 based on the slip ratio κi, the longitudinal force Fxi, the lateral force Fyi, the yaw moment Mzi and the target longitudinal force Fxt of the vehicle. The rate κti (i = fl, fr, rl, rr) is calculated, and in step 590, the target braking / driving force Fxti of each wheel is calculated, and the longitudinal force Fx of the vehicle is calculated based on the target braking / driving force Fxti. The target output Fdt of the driving device 64 for setting the target longitudinal force Fxt, the target control amount of the center differential 66, etc., the target braking force Fbti of each wheel are calculated, and the braking / driving force Fxi of each wheel is converted into the target braking / driving force Fxti. Thus, the braking device 54 and the like are controlled.

(2)準不安定時
車両が障害物に衝突する虞れはないが、車両の走行状態が不安定になる虞れがある準不安定時には、図4に示されたフローチャートのステップ440及び450に於いて否定判別が行われるが、ステップ460に於いて肯定判別が行われ、これにより図6に示されたフローチャートに従って車両の準不安定時の走行制御が行われる。
(2) When quasi-unstable When there is no possibility that the vehicle will collide with an obstacle, but when the quasi-unstable state where the running state of the vehicle may become unstable, steps 440 and 450 of the flowchart shown in FIG. In step 460, an affirmative determination is made. Thus, according to the flowchart shown in FIG. 6, traveling control when the vehicle is quasi-unstable is performed.

即ちステップ610乃至645がそれぞれ上述の通常時の車両の走行制御に於けるステップ510乃至540及びステップ575の場合と同様に実行されることにより、ステップ650に於いて各車輪の接地荷重Fziがそれぞれ対応する目標接地荷重Fztiになるよう電磁式のショックアブソーバ80FL〜80RRが制御される。   That is, Steps 610 to 645 are executed in the same manner as in Steps 510 to 540 and Step 575 in the above-described normal vehicle traveling control, so that in Step 650, the ground load Fzi of each wheel is set. The electromagnetic shock absorbers 80FL to 80RR are controlled so as to achieve the corresponding target ground load Fzti.

またステップ650に於いて上記式2の評価関数L2の演算により前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κtiが演算される。そしてステップ670及び690がそれぞれ上述の通常時の車両の走行制御に於けるステップ570及び590の場合と同様に実行され、これにより左右前輪の舵角δf及び左右後輪の舵角δrがそれぞれ目標スリップ角αft及びαrtを達成するための目標舵角δft及びδrtになるよう転舵角可変装置36及びパワーステアリング装置50が制御されると共に、各車輪の制駆動力Fxiが目標制駆動力Fxtiになるよう制動装置54等が制御される。   In step 650, the target slip angle αft of the front wheels, the target slip angle αrt of the rear wheels, and the target slip ratio κti of each wheel are calculated by the calculation of the evaluation function L2 of Equation 2 above. Steps 670 and 690 are respectively performed in the same manner as in steps 570 and 590 in the above-described normal vehicle traveling control, whereby the steering angle δf of the left and right front wheels and the steering angle δr of the left and right rear wheels are respectively set as the target The steered angle varying device 36 and the power steering device 50 are controlled so as to achieve the target steering angles δft and δrt for achieving the slip angles αft and αrt, and the braking / driving force Fxi of each wheel becomes the target braking / driving force Fxti. Thus, the braking device 54 and the like are controlled.

(3)緊急時
車両の走行状態が不安定であるか又は車両が障害物に衝突する虞れがある車両の緊急走行時には、図4に示されたフローチャートのステップ440又は450に於いて肯定判別が行われ、これにより図7に示されたフローチャートに従って車両の緊急時の走行制御が行われる。
(3) Emergency In the case of emergency driving of a vehicle in which the driving state of the vehicle is unstable or the vehicle may collide with an obstacle, an affirmative determination is made in step 440 or 450 of the flowchart shown in FIG. As a result, the vehicle travel control in an emergency is performed according to the flowchart shown in FIG.

即ちステップ730及び740に於いて各車輪の接地荷重Fziに基づき各車輪の等価コーナリングパワーCpiが演算され、ステップ745に於いて上述のステップ575、645の場合と同様の要領にて各車輪のスリップ角αi、各車輪のスリップ率κi、各車輪の前後力Fxi及び横力Fyi、前後力Fxi及び横力Fyiによる車両のヨーモーメントMziが演算される。   That is, in steps 730 and 740, the equivalent cornering power Cpi of each wheel is calculated based on the ground load Fzi of each wheel. In step 745, the slip of each wheel is performed in the same manner as in steps 575 and 645 described above. The yaw moment Mzi of the vehicle is calculated by the angle αi, the slip ratio κi of each wheel, the longitudinal force Fxi and lateral force Fyi of each wheel, and the longitudinal force Fxi and lateral force Fyi.

そしてステップ750に於いて上記式1の評価関数L1の演算により前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κti、各車輪の目標接地荷重Fztiが演算され、ステップ760、770、790に於いてそれぞれ上述の通常時の車両の走行制御に於けるステップ520、570、590の場合と同様の制御が順次実行され、これにより各車輪の接地荷重Fzi、前輪の舵角δf及び後輪の舵角δr、各車輪の制駆動力Fxiがそれぞれ対応する目標値になるよう、電磁式のショックアブソーバ80FL〜80RR、転舵角可変装置36及びパワーステアリング装置50、制動装置54等が制御される。   In step 750, the target slip angle αft of the front wheels, the target slip angle αrt of the rear wheels, the target slip ratio κti of each wheel, and the target ground load Fzti of each wheel are calculated by calculating the evaluation function L1 of the above equation 1. In steps 760, 770, and 790, the same control as that in steps 520, 570, and 590 in the above-described normal vehicle traveling control is sequentially executed, whereby the ground load Fzi of each wheel, the front wheel The electromagnetic shock absorbers 80FL to 80RR, the turning angle variable device 36 and the power steering device 50, braking so that the steering angle δf, the steering angle δr of the rear wheels, and the braking / driving force Fxi of each wheel have corresponding target values. The device 54 and the like are controlled.

かくして図示の第一の実施例によれば、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、操舵制御手段としての前輪用操舵制御装置14及び後輪用操舵制御装置16、制駆動力制御手段としての制動力制御装置18及び駆動力制御装置20、接地荷重制御手段としての接地荷重制御装置22について予め設定された第一の評価関数L1を演算することによって車両全体の目標走行運動制御量としての車両の目標前後力Fxt、目標横力Fyt、目標ヨーモーメントMztを複数の走行運動制御手段の全てに配分することにより全ての走行運動制御手段の目標制御量として前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κti、各車輪の目標接地荷重Fztiが演算される。   Thus, according to the first embodiment shown in the drawing, when the vehicle traveling state is a traveling state requiring urgent traveling motion control, the front wheel steering control device 14 and the rear wheel steering control device as steering control means. 16. Calculate the first evaluation function L1 set in advance for the braking force control device 18 and the driving force control device 20 as the braking / driving force control means and the ground load control device 22 as the ground load control means. By distributing the target longitudinal force Fxt, the target lateral force Fyt, and the target yaw moment Mzt of the vehicle as the target travel motion control amount to all of the plurality of travel motion control means, the front wheel is set as the target control amount of all the travel motion control means. Target slip angle αft, rear wheel target slip angle αrt, target slip ratio κti of each wheel, and target ground load Fzti of each wheel.

従って車両の走行状態が不安定であるか又は車両が障害物に衝突する虞れがある車両の緊急走行時には、車両全体の目標走行運動制御量を複数の走行運動制御手段の全てに配分し、全ての制御手段を使用して緊急の走行運動制御を行い、これにより車両の走行状態を確実に且つ効果的に安定化させることができる。   Therefore, when the vehicle is in an unstable traveling state or the vehicle may collide with an obstacle, the target traveling motion control amount of the entire vehicle is distributed to all of the plurality of traveling motion control means, An emergency running motion control is performed using all the control means, whereby the running state of the vehicle can be reliably and effectively stabilized.

また車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないが車輌の挙動悪化の虞れがある走行状態であるときには、接地荷重制御装置22を複数の走行運動制御手段のうちの特定の走行運動制御手段として、車両の走行状態に基づいて接地荷重制御装置22の目標制御量である目標接地荷重Fztiが演算され、目標接地荷重Fztiに基づいて接地荷重制御装置22の制御による車両の物理量の変化量として各車輪の等価コーナリングパワーCpiの変化量が演算され、車両全体の目標走行運動制御量及び各車輪の等価コーナリングパワーCpiに基づいて他の走行運動制御手段である前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20について予め設定された第二の評価関数L2を演算することによりこれらの走行運動制御手段の目標制御量である前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κtiが演算される。   Further, when the vehicle is not in a driving state that requires urgent driving motion control but in a driving state in which the behavior of the vehicle may be deteriorated, the ground load control device 22 is set to one of a plurality of driving motion control means. As specific traveling motion control means, a target ground load Fzti, which is a target control amount of the ground load control device 22, is calculated based on the traveling state of the vehicle, and the vehicle is controlled by the ground load control device 22 based on the target ground load Fzti. The amount of change in the equivalent cornering power Cpi of each wheel is calculated as the amount of change in the physical quantity of the vehicle, and the front wheel steering, which is another running motion control means, is calculated based on the target running motion control amount of the entire vehicle and the equivalent cornering power Cpi of each wheel. A second evaluation function L2 set in advance for the control device 14, the rear wheel steering control device 16, the braking force control device 18, and the driving force control device 20 is calculated. Front wheel target slip angle Arufaft, the rear wheel target slip angle Arufart, the target slip ratio κti of each wheel is calculated which is a target control amount of the driving dynamics control means by.

従って接地荷重制御装置22の制御を優先させて車両の走行状態を安定化させる制御を行うと共に、接地荷重制御装置22の制御による各車輪の等価コーナリングパワーCpiの変化量及び車両全体の目標走行運動制御量に基づいて他の走行運動制御手段としての前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20を補助的に制御することができ、これにより複数の走行運動制御手段の全てについて予め設定された評価関数を演算する場合に比して容易に且つ確実に各走行運動制御手段を制御することができる。   Accordingly, the control of the ground load control device 22 is prioritized to control the vehicle running state, and the change amount of the equivalent cornering power Cpi of each wheel and the target travel motion of the entire vehicle controlled by the ground load control device 22 are controlled. Based on the control amount, the front wheel steering control device 14, the rear wheel steering control device 16, the braking force control device 18, and the driving force control device 20 as other traveling motion control means can be supplementarily controlled. Thus, each traveling motion control means can be controlled easily and reliably as compared to the case where the preset evaluation function is calculated for all of the plurality of traveling motion control means.

また車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて接地荷重制御装置22の目標制御量である目標接地荷重Fztiが演算され、目標接地荷重Fztiに基づいて接地荷重制御装置22の制御による車両の物理量の変化量として各車輪の等価コーナリングパワーCpiの変化量が演算され、車両全体の目標走行運動制御量及び各車輪の等価コーナリングパワーCpiに基づいて他の一つの走行運動制御手段としての前輪用操舵制御装置14及び後輪用操舵制御装置16の目標制御量である前輪の目標スリップ角αft及び後輪の目標スリップ角αrtが演算され、低減補正された車両全体の目標走行運動制御量である車両の目標前後力Fxt及び各車輪のスリップ率κi、前後力Fxiに基づいて残りの走行運動制御手段としての制動力制御装置18及び駆動力制御装置20の目標制御量である各車輪の目標スリップ率κtiが演算される。   Further, when the vehicle traveling state is a traveling state that does not require urgent traveling motion control and there is no possibility of deterioration of the behavior of the vehicle, the target ground contact that is the target control amount of the ground load control device 22 based on the traveling state of the vehicle. The load Fzti is calculated, and the change amount of the equivalent cornering power Cpi of each wheel is calculated as the change amount of the physical quantity of the vehicle by the control of the contact load control device 22 based on the target contact load Fzti, and the target running motion control amount of the entire vehicle is calculated. The front wheel target slip angle αft and the rear wheel, which are target control amounts of the front wheel steering control device 14 and the rear wheel steering control device 16 as another traveling motion control means based on the equivalent cornering power Cpi of each wheel. The target longitudinal force Fxt of the vehicle, which is the target travel motion control amount of the entire vehicle, which is calculated and reduced and corrected, the slip ratio κi of each wheel, and the longitudinal force Fxi are calculated. Based on the above, the target slip ratio κti of each wheel, which is the target control amount of the braking force control device 18 and the driving force control device 20 as the remaining traveling motion control means, is calculated.

従って接地荷重制御装置22の制御を最優先し、その次に前輪用操舵制御装置14及び後輪用操舵制御装置16の制御を優先して車両の走行運動を制御することができるだけでなく、車両全体の目標走行運動制御量及び接地荷重の制御による各車輪の等価コーナリングパワーCpiの変化量に基づいて前輪用操舵制御装置14及び後輪用操舵制御装置16の目標制御量としての前輪の目標スリップ角αft及び後輪の目標スリップ角αrtを最適に演算し、また車両の目標前後力Fxt及び各車輪のスリップ率κi、前後力Fxiに基づいて制動力制御装置18及び駆動力制御装置20の目標制御量としての各車輪の目標スリップ率κtiを容易に演算することができる。   Accordingly, not only can the control of the ground load control device 22 be given the highest priority, but then the control of the front wheel steering control device 14 and the rear wheel steering control device 16 can be given priority to control the running motion of the vehicle. The target slip of the front wheel as the target control amount of the front wheel steering control device 14 and the rear wheel steering control device 16 based on the total target running motion control amount and the change amount of the equivalent cornering power Cpi of each wheel by controlling the ground load. The angle αft and the rear wheel target slip angle αrt are optimally calculated, and the targets of the braking force control device 18 and the driving force control device 20 are based on the target longitudinal force Fxt of the vehicle, the slip ratio κi of each wheel, and the longitudinal force Fxi. The target slip ratio κti of each wheel as a control amount can be easily calculated.

また図示の第一の実施例によれば、特定の走行運動制御手段は接地荷重制御装置22であるので、操舵制御手段としての前輪用操舵制御装置14及び後輪用操舵制御装置16や制駆動力制御手段としての制動力制御装置18及び駆動力制御装置20の制御よりも接地荷重制御装置22の制御を優先させることができ、これにより操舵制御手段若しくは制駆動力制御手段が特定の走行運動制御手段とされる場合に比して操舵制御量及び制駆動力制御量を低減し、運転者による操舵操作とは無関係に車輪が操舵されたり、運転者による制駆動操作とは無関係に各車輪の制駆動力が制御されることによる違和感を抑制しつつ車両を安定的に走行させることができる。   Further, according to the first embodiment shown in the figure, since the specific traveling motion control means is the ground load control device 22, the front wheel steering control device 14 and the rear wheel steering control device 16 as the steering control means and the braking / driving operation are performed. The control of the ground load control device 22 can be prioritized over the control of the braking force control device 18 and the driving force control device 20 as force control means, whereby the steering control means or the braking / driving force control means can perform a specific traveling motion. The steering control amount and the braking / driving force control amount are reduced as compared with the control means, and the wheels are steered regardless of the steering operation by the driver, or each wheel regardless of the braking / driving operation by the driver. The vehicle can be stably driven while suppressing a sense of incongruity due to the braking / driving force being controlled.

また図示の第一の実施例によれば、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないが車輌の挙動悪化の虞れがある走行状態であるときには、目標接地荷重Fztiに基づいて接地荷重制御装置22の制御による車両の物理量の変化量として各車輪の等価コーナリングパワーCpiの変化量が演算され、車両全体の目標走行運動制御量及び各車輪の等価コーナリングパワーCpiに基づいて第二の評価関数L2の演算により前輪用操舵制御装置14、後輪用操舵制御装置16、制動力制御装置18、駆動力制御装置20の目標制御量である前輪の目標スリップ角αft、後輪の目標スリップ角αrt、各車輪の目標スリップ率κtiが演算されるので、接地荷重制御装置22の制御による各車輪の等価コーナリングパワーCpiの変化が考慮されない場合に比して、各車輪の目標スリップ角及び目標スリップ率を正確に演算し、各車輪のスリップ角及びスリップ率を正確に制御することができる。   Further, according to the first embodiment shown in the drawing, when the vehicle traveling state is not a traveling state requiring urgent traveling motion control, but the traveling state is likely to deteriorate the behavior of the vehicle, the target ground load Fzti The amount of change in the equivalent cornering power Cpi of each wheel is calculated as the amount of change in the physical quantity of the vehicle under the control of the ground load control device 22, and is based on the target running motion control amount of the entire vehicle and the equivalent cornering power Cpi of each wheel. By calculating the second evaluation function L2, the front wheel target slip angle αft, which is the target control amount of the front wheel steering control device 14, the rear wheel steering control device 16, the braking force control device 18, and the driving force control device 20, is calculated. Since the target slip angle αrt of the wheel and the target slip ratio κti of each wheel are calculated, the change of the equivalent cornering power Cpi of each wheel under the control of the ground load control device 22 is not taken into consideration. As compared with the case where the wheel is not connected, the target slip angle and the target slip ratio of each wheel can be accurately calculated, and the slip angle and the slip ratio of each wheel can be accurately controlled.

同様に、車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、目標接地荷重Fztiに基づいて接地荷重制御装置22の制御による車両の物理量の変化量として各車輪の等価コーナリングパワーCpiの変化量が演算され、車両全体の目標走行運動制御量及び各車輪の等価コーナリングパワーCpiに基づいて前輪の目標スリップ角αft及び後輪の目標スリップ角αrtが演算されるので、接地荷重制御装置22の制御による各車輪の等価コーナリングパワーCpiの変化が考慮されない場合に比して、各車輪の目標スリップ角を正確に演算し、各車輪のスリップ角を正確に制御することができる。   Similarly, when the traveling state of the vehicle is a traveling state that does not require urgent traveling motion control and there is no possibility of deterioration of the behavior of the vehicle, the physical quantity of the vehicle by the control of the ground load control device 22 based on the target ground load Fzti. The amount of change in the equivalent cornering power Cpi of each wheel is calculated as the amount of change in the front wheel, and the target slip angle αft of the front wheel and the target slip angle of the rear wheel are calculated based on the target running motion control amount of the entire vehicle and the equivalent cornering power Cpi of each wheel. Since αrt is calculated, the target slip angle of each wheel is accurately calculated and the slip angle of each wheel is compared with the case where the change in the equivalent cornering power Cpi of each wheel under the control of the ground load control device 22 is not taken into consideration. Can be controlled accurately.

また図示の第一の実施例によれば、ステップ440に於いて肯定判別が行われた場合、即ち車両がスピン状態又はドリフトアウト状態にあるとき、又はステップ450に於いて肯定判別が行われた場合、即ち車両が障害物に衝突する虞れが高いときに、ステップ700に於いて緊急時の走行運動制御が行われるので、車両がスピン状態又はドリフトアウト状態にあるときにはスピン状態又はドリフトアウト状態を確実に且つ効果的に低減して車両の走行運動を確実に且つ効果的に安定化させることができ、車両が障害物に衝突する虞れが高いときには車両の走行運動を悪化させることなく車両を確実に且つ効果的に減速して車両が障害物に衝突する虞れを確実に且つ効果的に低下させることができる。   Also, according to the first embodiment shown in the figure, when an affirmative determination is made at step 440, that is, when the vehicle is in a spin state or a drift-out state, or an affirmative determination is made at step 450. In this case, that is, when there is a high possibility that the vehicle will collide with an obstacle, the emergency running motion control is performed in step 700. Therefore, when the vehicle is in the spin state or the drift out state, the spin state or the drift out state is performed. Can reliably and effectively stabilize the traveling motion of the vehicle, and when the vehicle is highly likely to collide with an obstacle, the traveling motion of the vehicle is not deteriorated. Can be reliably and effectively decelerated to reliably and effectively reduce the possibility of the vehicle colliding with an obstacle.

また図示の第一の実施例によれば、ステップ460に於いて肯定判別が行われた場合、即ち車両がスピン状態又はドリフトアウト状態になる虞れがあるときは、ステップ600に於いて準不安定時の走行運動制御が行われるので、車両がスピン状態又はドリフトアウト状態になる虞れを確実に且つ効果的に低減して車両の安定的な走行運動を継続させることができる。   Further, according to the first embodiment shown in the figure, if an affirmative determination is made in step 460, that is, if there is a possibility that the vehicle will be in a spin state or a drift-out state, a quasi-anxiety is made in step 600. Since the regular running motion control is performed, it is possible to reliably and effectively reduce the possibility that the vehicle will be in the spin state or the drift-out state, and to continue the stable running motion of the vehicle.

特に図示の第一の実施例によれば、操舵制御手段としての前輪用操舵制御装置14及び後輪用操舵制御装置16が設けられ、前輪及び後輪のスリップ角が制御されるので、前輪又は後輪の一方のみのスリップ角しか制御されない場合に比して、車輪の舵角の制御による車両の走行運動の制御を確実に且つ効果的に行うことができる。   In particular, according to the first embodiment shown in the drawing, the front wheel steering control device 14 and the rear wheel steering control device 16 are provided as steering control means, and the slip angles of the front wheels and the rear wheels are controlled. Compared to the case where only one of the rear wheels is controlled, the vehicle traveling motion can be reliably and effectively controlled by controlling the steering angle of the wheels.

また図示の第一の実施例によれば、車両が障害物に衝突する虞れが高い場合に於いて、車両の走行状態が後輪の横滑り状態にあるときには、図9のステップ754に於いて肯定判別が行われ、ステップ755に於いて第三の評価関数L3に於ける後輪の舵角制御量演算の重みWar及びWdarがそれぞれ0に設定されると共に、後輪の接地荷重制御量演算の重みWfzr及びWdfzrがそれぞれ0に設定されるので、後輪についての舵角制御量及び接地荷重制御量を0にし、これにより後輪の横力が低下することに起因して後輪の横滑り状態が更に悪化することを確実に防止することができる。   Further, according to the first embodiment shown in the figure, when there is a high possibility that the vehicle will collide with an obstacle, when the vehicle is in a skidding state of the rear wheel, in step 754 of FIG. An affirmative determination is made, and in step 755, the weights War and Wdar of the rear wheel steering angle control amount calculation in the third evaluation function L3 are set to 0, and the rear wheel ground load control amount calculation is performed. Since the weights Wfzr and Wdfzr are set to 0 respectively, the steering angle control amount and the ground load control amount for the rear wheels are set to 0, thereby causing the lateral force of the rear wheels to decrease, thereby causing the rear wheels to slip. It is possible to reliably prevent the state from getting worse.

また図示の第一の実施例によれば、車両が障害物に衝突する虞れが高い場合に於いて、車両の走行状態が前輪の横滑り状態にあるときには、図9のステップ754に於いて否定判別が行われ、ステップ756に於いて前輪の舵角制御量演算の重みWaf及びWdafがそれぞれ0に設定されると共に、前輪の接地荷重制御量演算の重みWfzf及びWdfzfがそれぞれ0に設定されるので、前輪についての舵角制御量及び接地荷重制御量を0にし、これにより前輪の横力が低下することに起因して前輪の横滑り状態が更に悪化することを確実に防止することができる。   Further, according to the first embodiment shown in the figure, when there is a high possibility that the vehicle will collide with an obstacle, when the vehicle is in a skidding state, the result is negative in step 754 of FIG. In step 756, the steering wheel control amount calculation weights Waf and Wdaf are each set to 0, and the front wheel contact load control amount calculation weights Wfzf and Wdfzf are each set to 0. Therefore, the steering angle control amount and the ground load control amount for the front wheels can be set to 0, thereby reliably preventing the side slip state of the front wheels from further deteriorating due to the decrease in the lateral force of the front wheels.

また図示の第一の実施例によれば、車両が障害物に衝突する虞れが高い場合に於いて、車両の走行状態が後輪の横滑り状態にあり、後輪についての重みWar等が0に設定されるとき、及び車両が障害物に衝突する虞れが高い場合に於いて、車両の走行状態が前輪の横滑り状態にあり、前輪についての重みWaf等が0に設定されるときは、ステップ753に於いて重みWmが増大補正されると共に、重みWx、Wyが低減補正されるので、これらの重みの修正が行われない場合に比して、車両のヨーモーメントの制御を効果的に行うことができると共に車両の走行状態を効果的に安定化させることができる。
[第二の実施例]
Further, according to the first embodiment shown in the figure, when there is a high possibility that the vehicle will collide with an obstacle, the running state of the vehicle is a skidding state of the rear wheel, and the weight War or the like for the rear wheel is 0. And when the vehicle is in a high risk of colliding with an obstacle, the vehicle is in a skidding state of the front wheels, and the weight Waf or the like for the front wheels is set to 0, In step 753, the weight Wm is corrected to increase, and the weights Wx and Wy are corrected to decrease. Therefore, the control of the yaw moment of the vehicle is more effective than when the weights are not corrected. This can be performed and the running state of the vehicle can be effectively stabilized.
[Second Example]

図10は本発明による車輌の走行制御装置の第二の実施例に於ける車輌の走行制御のメインルーチンを示すフローチャートである。尚図10に於いて、図4に示されたステップと同一のステップには図4に於いて付されたステップ番号と同一のステップ番号が付されている。   FIG. 10 is a flowchart showing a main routine of vehicle travel control in the second embodiment of the vehicle travel control apparatus according to the present invention. In FIG. 10, the same steps as those shown in FIG. 4 are assigned the same step numbers as those shown in FIG.

この二の実施例に於いては、ステップ450に於いて否定判別が行われるとそのままステップ500へ進み、従って上述の第一の実施例に於けるステップ460の判別及びステップ600の制御は行われず、他のステップは上述の第一の実施例の場合と同様に実行される。   In these two embodiments, if a negative determination is made in step 450, the process proceeds directly to step 500. Therefore, the determination in step 460 and the control in step 600 in the first embodiment are not performed. The other steps are executed in the same manner as in the first embodiment described above.

従って図示の二の実施例によれば、車両の走行状態が安定であり、車両が障害物に衝突する虞れもない通常走行時には、図10に示されたフローチャートのステップ440乃至460に於いて否定判別が行われ、これにより上述の実施例1に於ける「(1)車両の通常走行時」の場合と同様の要領にて車両の通常走行時の走行制御が行われる。   Therefore, according to the two embodiments shown in the drawings, during normal driving in which the driving state of the vehicle is stable and there is no possibility of the vehicle colliding with an obstacle, steps 440 to 460 in the flowchart shown in FIG. A negative determination is made, whereby travel control during normal travel of the vehicle is performed in the same manner as in “(1) During normal travel of the vehicle” in the first embodiment.

また車両の走行状態が不安定であるか又は車両が障害物に衝突する虞れがある車両の緊急走行時には、図10に示されたフローチャートのステップ440又は450に於いて肯定判別が行われ、これにより上述の実施例1に於ける「(3)緊急時」の場合と同様の要領にて車両の緊急時の走行制御が行われる。   Further, when the vehicle is in an unstable traveling state or the vehicle is likely to collide with an obstacle, an affirmative determination is made in step 440 or 450 of the flowchart shown in FIG. As a result, the vehicle travel control in an emergency is performed in the same manner as in “(3) Emergency” in the first embodiment.

従って図示の二の実施例によれば、上述の実施例1に於ける(1)車両の通常走行時の制御又は(3)緊急時の制御が行われ、(2)準不安定時の制御は行われない点を除き、上述の実施例1の場合と同様の作用効果を得ることができ、また上述の実施例1の場合に比して車両の走行制御を単純化することができる。   Therefore, according to the two embodiments shown in the drawings, (1) control during normal driving of the vehicle or (3) emergency control is performed in the above-described first embodiment, and (2) control during quasi-unstable is performed. Except for the fact that it is not performed, it is possible to obtain the same operational effects as in the case of the above-described first embodiment, and it is possible to simplify the traveling control of the vehicle as compared with the case of the above-described first embodiment.

以上に於いては本発明を特定の実施例について詳細に説明したが、本発明は上述の実施例に限定されるものではなく、本発明の範囲内にて他の種々の実施例が可能であることは当業者にとって明らかであろう。   Although the present invention has been described in detail with reference to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.

例えば上述の各実施例に於いては、操舵手段として前輪用操舵制御装置14及び後輪用操舵制御装置16が設けられているが、本発明の走行制御装置は前輪用操舵制御装置14又は後輪用操舵制御装置16の一方のみを有する車両に適用されてもよい。   For example, in each of the above-described embodiments, the front wheel steering control device 14 and the rear wheel steering control device 16 are provided as the steering means. However, the traveling control device of the present invention is the front wheel steering control device 14 or the rear wheel steering control device 14. The present invention may be applied to a vehicle having only one of the wheel steering control devices 16.

特に本発明の走行制御装置が前輪用操舵制御装置14のみを有する車両に適用される場合には、ステップ550、650、750に於いて前輪の目標スリップ角αftのみが演算され、ステップ575、645、745に於いて左右前輪のスリップ角αfl、αfrのみが演算される。また第一の評価関数L1及び第二の評価関数L2はそれぞれ下記の式16及び17の通り修正される。   In particular, when the travel control device of the present invention is applied to a vehicle having only the front wheel steering control device 14, only the target slip angle αft of the front wheels is calculated in steps 550, 650, and 750, and steps 575 and 645 are performed. , 745, only the slip angles αfl, αfr of the left and right front wheels are calculated. Further, the first evaluation function L1 and the second evaluation function L2 are corrected as shown in the following equations 16 and 17, respectively.

L1=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf
+WfzfFzfl+WdfzfδFztfl
+WfzfFzfr+WdfzfδFztfr
+WfzrFzrl+WdfzrδFztrl
+WfzrFzrr+WdfzrδFztrr ……(16)
L2=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Wafαf+Wdafδαtf ……(17)
L1 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2
+ WfzfFzfl 2 + WdfzfδFztfl 2
+ WfzfFzfr 2 + WdfzfδFztfr 2
+ WfzrFzrl 2 + WdfzrδFztrl 2
+ WfzrFzrr 2 + WdfzrδFztrr 2 (16)
L2 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Wafαf 2 + Wdafδαtf 2 (17)

本発明の走行制御装置が後輪用操舵制御装置16のみを有する車両に適用される場合には、ステップ550、650、750に於いて後輪の目標スリップ角αrtのみが演算され、ステップ575、645、745に於いて左右後輪のスリップ角αrl、αrrのみが演算される。また第一の評価関数L1及び第二の評価関数L2はそれぞれ下記の式18及び19の通り修正される。   When the travel control device of the present invention is applied to a vehicle having only the rear wheel steering control device 16, only the target slip angle αrt of the rear wheels is calculated in steps 550, 650, 750, and step 575, In 645 and 745, only the slip angles αrl and αrr of the left and right rear wheels are calculated. Further, the first evaluation function L1 and the second evaluation function L2 are corrected as shown in the following equations 18 and 19, respectively.

L1=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Warαr+Wdarδαtr
+WfzfFzfl+WdfzfδFztfl
+WfzfFzfr+WdfzfδFztfr
+WfzrFzrl+WdfzrδFztrl
+WfzrFzrr+WdfzrδFztrr ……(18)
L1 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Warαr 2 + Wdarδαtr 2
+ WfzfFzfl 2 + WdfzfδFztfl 2
+ WfzfFzfr 2 + WdfzfδFztfr 2
+ WfzrFzrl 2 + WdfzrδFztrl 2
+ WfzrFzrr 2 + WdfzrδFztrr 2 (18)

L2=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti
+Warαr+Wdarδαtr ……(19)
L2 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 )
+ Warαr 2 + Wdarδαtr 2 (19)

また上述の各実施例に於いては、車両は障害物に衝突する虞れがあるときには衝突防止制御を行うための衝突防止制御用電子制御装置94、CCDカメラ104、レーダセンサ106を備えているが、本発明の走行制御装置は衝突防止用の装置を備えていない車両に適用されてもよく、その場合にはステップ450の判別は省略される。   In each of the above-described embodiments, the vehicle includes the collision prevention control electronic control device 94, the CCD camera 104, and the radar sensor 106 for performing the collision prevention control when there is a possibility of collision with the obstacle. However, the travel control device of the present invention may be applied to a vehicle that does not include a collision prevention device, in which case the determination in step 450 is omitted.

また上述の各実施例に於いては、ステップ540、640、740に於いて接地荷重の変化に伴う車輪タイヤの特性値の変化量として各車輪の等価コーナリングパワーの変化量ΔCpiが演算され、各車輪の等価コーナリングパワーの標準値Cp0iと変化量ΔCpiとの和として各車輪の等価コーナリングパワーCpiが演算されるようになっているが、各車輪の等価コーナリングパワーCpiに加えて、接地荷重の変化に伴う車輪タイヤの特性値の変化量として各車輪のドライビングスティフネスの変化量ΔKdi(i=fl、fr、rl、rr)が演算され、各車輪のドライビングスティフネスの標準値Kd0i(正の定数)と変化量ΔKdiとの和として各車輪のドライビングスティフネスKdi(i=fl、fr、rl、rr)が演算され、ステップ575、645、745に於いて等価コーナリングパワーCpi及びドライビングスティフネスKdiに基づいて各車輪の前後力Fxi、横力Fyi、ヨーモーメントMziが演算されるよう修正されてもよい。   Further, in each of the above-described embodiments, in steps 540, 640, and 740, the change amount ΔCpi of the equivalent cornering power of each wheel is calculated as the change amount of the characteristic value of the wheel tire with the change of the ground load. The equivalent cornering power Cpi of each wheel is calculated as the sum of the standard value Cp0i of the equivalent cornering power of the wheel and the amount of change ΔCpi. In addition to the equivalent cornering power Cpi of each wheel, the change in ground load is also calculated. As a change amount of the characteristic value of the wheel tire due to the change, a change amount ΔKdi (i = fl, fr, rl, rr) of each wheel driving stiffness is calculated, and a standard value Kd0i (a positive constant) of the driving stiffness of each wheel is calculated. The driving stiffness Kdi (i = fl, fr, rl, rr) of each wheel is calculated as the sum of the change amount ΔKdi, and in steps 575, 645, 745, etc. Cornering power Cpi and longitudinal force Fxi on each wheel based on the driving stiffness Kdi, lateral force Fyi, may be modified such that the yaw moment Mzi is calculated.

また上述の各実施例に於いては、車両の通常走行時にはステップ580に於いて上記式3の第三の評価関数L3の演算が行われることにより、各車輪のスリップ率の目標修正量δκtiが演算され、スリップ率κiと目標修正量δκtiとの和として各車輪の目標スリップ率κtiが演算されるようになっているが、スリップ角αiに基づいて各車輪の舵角の制御による各車輪の横力Fyi及びヨーモーメントMziが演算され、それぞれ横力Fyiの和ΣFyi及びヨーモーメントMziの和ΣMziにて低減補正された車両の目標横力Fyt及び目標ヨーモーメントMztに基づいて下記の式20の第三の評価関数L3の演算が行われることにより、各車輪のスリップ率の目標修正量δκtiが演算されるよう修正されてもよい。   In each of the above-described embodiments, when the vehicle normally travels, the third evaluation function L3 of the above equation 3 is calculated in step 580, so that the target correction amount δκti of the slip ratio of each wheel is obtained. The target slip rate κti of each wheel is calculated as the sum of the slip rate κi and the target correction amount δκti, but each wheel is controlled by controlling the steering angle of each wheel based on the slip angle αi. The lateral force Fyi and the yaw moment Mzi are calculated, and based on the vehicle target lateral force Fyt and the target yaw moment Mzt, which are reduced and corrected by the sum ΣFyi of the lateral force Fyi and the sum ΣMzi of the yaw moment Mzi, respectively, By calculating the third evaluation function L3, the target correction amount δκti of the slip ratio of each wheel may be corrected so as to be calculated.

L3=Wx(Fxt−ΣFxi)
+Wy(Fyt−ΣFyi)
+Wm(Mzt−ΣMzi)
+Σ(Wkκi+Σ(Wdkδκti) ……(20)
L3 = Wx (Fxt−ΣFxi) 2
+ Wy (Fyt-ΣFyi) 2
+ Wm (Mzt-ΣMzi) 2
+ Σ (Wkκi 2 ) 2 + Σ (Wdkδκti 2 ) (20)

また上述の各実施例に於いては、ステップ755及び756に於いてそれぞれ後輪及び前輪の重みが0に低減されるようになっているが、それぞれ後輪の横滑り状態でない場合及び前輪の横滑り状態でない場合の値よりも小さい限り、これらの重みは0以外の正の値に低減されるよう修正されてもよい。   In each of the above-described embodiments, the weights of the rear wheels and the front wheels are reduced to 0 in steps 755 and 756, respectively. These weights may be modified to be reduced to positive values other than 0, as long as they are smaller than the non-state values.

また上述の各実施例に於いては、車両の通常走行時にはステップ511乃至517に於いて特定の要領にて各車輪の目標接地荷重Fztiが演算されるようになっているが、車両の良好な乗り心地性を確保しつつ車体及び車輪の振動を減衰させると共に加減速や旋回等による車体の姿勢変化を抑制するための値である限り、各車輪の目標接地荷重Fztiは当技術分野に於いて公知の任意の要領にて演算されてよい。   In each of the above-described embodiments, the target ground load Fzti of each wheel is calculated in a specific manner in steps 511 to 517 during normal driving of the vehicle. The target ground load Fzti of each wheel is used in this technical field as long as it is a value for attenuating the vibration of the vehicle body and the wheel while ensuring the ride comfort and suppressing the posture change of the vehicle body due to acceleration / deceleration or turning. The calculation may be performed in any known manner.

また上述の各実施例に於いては、前輪用操舵制御装置14の主要な装置としての転舵角可変装置36はアッパステアリングシャフト34に対し相対的にロアステアリングシャフト38を回転させることにより運転者の操舵操作に依存せずに左右の前輪24FL及び24FRを自動的に操舵するようになっており、また後輪用操舵制御装置16の後輪操舵装置48はパワーステアリング装置50により左右のタイロッド52L及び52Rを駆動することにより左右の後輪24RL及び24RRを自動的に操舵するようになっているが、前輪用操舵制御装置14及び後輪用操舵制御装置16は運転者の操舵操作とは独立に車輪を操舵し得る限り、例えばタイロッドを伸縮させる型式の操舵装置の如く当技術分野に於いて公知の任意の構成のものであってよい。   Further, in each of the above-described embodiments, the turning angle varying device 36 as the main device of the front wheel steering control device 14 rotates the lower steering shaft 38 relative to the upper steering shaft 34 to thereby provide the driver. The left and right front wheels 24FL and 24FR are automatically steered without depending on the steering operation of the rear wheel, and the rear wheel steering device 48 of the rear wheel steering control device 16 is controlled by the power steering device 50 to the left and right tie rods 52L. And 52R are driven to automatically steer the left and right rear wheels 24RL and 24RR. The front wheel steering control device 14 and the rear wheel steering control device 16 are independent of the driver's steering operation. As long as the wheel can be steered, any configuration known in the art may be used, such as a steering device of a type that expands and contracts a tie rod.

また上述の各実施例に於いては、接地荷重制御装置22の主要な装置はショックアブソーバ80FL〜80RRであるが、車輪の接地荷重を制御し得る限り当技術分野に於いて公知の任意の構成のものであってよく、例えばアクティブスタビライザ装置であってもよい。   In each of the above-described embodiments, the main device of the contact load control device 22 is the shock absorbers 80FL to 80RR. However, any configuration known in the art can be used as long as the wheel contact load can be controlled. For example, an active stabilizer device may be used.

本発明による車輌の走行制御装置の第一の実施例の前輪用操舵制御装置、後輪用操舵制御装置、制動力制御装置を示す概略構成図である。1 is a schematic configuration diagram showing a front wheel steering control device, a rear wheel steering control device, and a braking force control device of a first embodiment of a vehicle travel control device according to the present invention; FIG. 第一の実施例の駆動力制御装置及び接地荷重制御装置を示す概略構成図である。It is a schematic block diagram which shows the driving force control apparatus and grounding load control apparatus of a 1st Example. 第一の実施例に於ける制御系を示すブロック線図である。It is a block diagram which shows the control system in a 1st Example. 第一の実施例に於いて統合制御用電子制御装置により達成される車輌の走行制御のメインルーチンを示すフローチャートである。3 is a flowchart showing a main routine of vehicle travel control achieved by the integrated control electronic control unit in the first embodiment. 第一の実施例に於ける通常時の車輌の走行制御ルーチンを示すフローチャートである。3 is a flowchart showing a normal vehicle travel control routine in the first embodiment. 第一の実施例に於ける準不安定時の車輌の走行制御ルーチンを示すフローチャートである。3 is a flowchart showing a vehicle travel control routine during quasi-unstable in the first embodiment. 第一の実施例に於ける緊急時の車輌の走行制御ルーチンを示すフローチャートである。It is a flowchart which shows the traveling control routine of the vehicle in emergency in a 1st Example. 図5に示されたフローチャートのステップ510に於ける目標接地荷重Fztiの演算制御ルーチンを示すフローチャートである。FIG. 6 is a flowchart showing a calculation control routine of a target ground load Fzti in step 510 of the flowchart shown in FIG. 5. 図7に示されたフローチャートのステップ750に於ける目標接地荷重Fztiの演算制御ルーチンを示すフローチャートである。It is a flowchart which shows the calculation control routine of the target ground load Fzti in step 750 of the flowchart shown by FIG. 第二の実施例に於いて統合制御用電子制御装置により達成される車輌の走行制御のメインルーチンを示すフローチャートである。It is a flowchart which shows the main routine of the traveling control of the vehicle achieved by the electronic controller for integrated control in a 2nd Example. 車両のモデルを示す説明図である。It is explanatory drawing which shows the model of a vehicle.

符号の説明Explanation of symbols

10…走行制御装置、14…前輪用操舵制御装置、16…後輪用操舵制御装置、18…制動力制御装置、20…駆動力制御装置、22…接地荷重制御装置、28…パワーステアリング装置、36…転舵角可変装置、46…電子制御装置、48…後輪操舵制御装置、50…パワーステアリング装置、54…制動装置、64…駆動装置、80FL〜80RR…ショックアブソーバ、84…操舵制御用電子制御装置、86…アシストトルク制御用電子制御装置、88…制動力制御用電子制御装置、90…駆動力制御用電子制御装置、92…接地荷重制御用電子制御装置、94…衝突防止制御用電子制御装置、96…統合制御用電子制御装置、100…操舵角センサ、102…回転角度センサ、104…CCDカメラ、106…レーダセンサ、108…前後加速度センサ、110…横加速度センサ、112…車速センサ、114…ヨーレートセンサ、116…圧力センサ、118FL〜118RR…圧力センサ、122…アクセル開度センサ、124…トルクセンサ   DESCRIPTION OF SYMBOLS 10 ... Driving control device, 14 ... Steering control device for front wheels, 16 ... Steering control device for rear wheels, 18 ... Braking force control device, 20 ... Driving force control device, 22 ... Ground load control device, 28 ... Power steering device, 36 ... Steering angle variable device, 46 ... Electronic control device, 48 ... Rear wheel steering control device, 50 ... Power steering device, 54 ... Braking device, 64 ... Drive device, 80FL-80RR ... Shock absorber, 84 ... For steering control Electronic control device 86 ... Electronic control device for assist torque control, 88 ... Electronic control device for braking force control, 90 ... Electronic control device for driving force control, 92 ... Electronic control device for ground load control, 94 ... For collision prevention control Electronic control device 96 ... Electronic control device for integrated control, 100 ... Steering angle sensor, 102 ... Rotation angle sensor, 104 ... CCD camera, 106 ... Radar sensor, 108 ... Front and rear Acceleration sensor, 110 ... Lateral acceleration sensor, 112 ... Vehicle speed sensor, 114 ... Yaw rate sensor, 116 ... Pressure sensor, 118FL-118RR ... Pressure sensor, 122 ... Accelerator opening sensor, 124 ... Torque sensor

Claims (13)

互いに異なる作用により互いに協調して車両の走行運動を制御する複数の走行運動制御手段と、車両を安定的に走行させるための車両の目標走行運動状態量を演算する手段と、車両の走行運動状態量を前記目標走行運動状態量にするための車両全体の目標走行運動制御量を演算する手段と、前記車両全体の目標走行運動制御量に基づいて前記複数の走行運動制御手段の各々について目標制御量を演算し、前記複数の走行運動制御手段をそれぞれ対応する前記目標制御量に基づいて制御する制御手段とを有する車両の走行制御装置に於いて、前記複数の走行運動制御手段は各車輪の接地荷重を制御する接地荷重制御手段と、運転者による操舵操作とは無関係に車輪を操舵可能な操舵制御手段と、運転者による制駆動操作とは無関係に各車輪の制駆動力を個別に制御可能な制駆動力制御手段とを含み、前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態であるか否かを判定し、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記複数の走行運動制御手段について予め設定された評価関数を演算することによって前記車両全体の目標走行運動制御量を前記複数の走行運動制御手段に配分することにより前記複数の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないときには、車両の走行状態に基づいて前記複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の走行運動制御手段の目標制御量を演算することを特徴とする車両の走行制御装置。   A plurality of traveling motion control means for controlling the traveling motion of the vehicle in cooperation with each other by different actions, a means for calculating a target traveling motion state quantity for the vehicle to stably travel, and the traveling motion state of the vehicle A means for calculating a target travel motion control amount for the entire vehicle for setting the amount to the target travel motion state amount, and a target control for each of the plurality of travel motion control means based on the target travel motion control amount for the entire vehicle. And a plurality of travel motion control means for controlling the plurality of travel motion control means based on the corresponding target control amounts, respectively. The ground load control means for controlling the ground load, the steering control means capable of steering the wheels regardless of the steering operation by the driver, and the control of each wheel regardless of the braking / driving operation by the driver. Braking / driving force control means capable of individually controlling power, wherein the control means determines whether or not the traveling state of the vehicle is a traveling state that requires emergency traveling motion control, and the traveling state of the vehicle is When the traveling state requires urgent traveling motion control, the target traveling motion control amount of the entire vehicle is calculated by calculating a preset evaluation function for the plurality of traveling motion control means. The target control amount of the plurality of traveling motion control means is calculated by distributing the means, and when the traveling state of the vehicle is not a traveling state requiring urgent traveling motion control, the plurality of the plurality of traveling motion control means are calculated based on the traveling state of the vehicle. A target control amount of a specific travel motion control means is calculated, and the specific travel motion control means of the specific travel motion control means is calculated based on the target control amount of the specific travel motion control means. The amount of change in the physical quantity of the vehicle due to the control is calculated, and the target control amount of the other travel movement control means is calculated based on the target travel movement control quantity of the entire vehicle and the change amount of the physical quantity of the vehicle. Vehicle travel control device. 前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態又は車輌の挙動悪化の虞れがある走行状態であるか否かを判定し、車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記複数の走行運動制御手段について予め設定された第一の評価関数を演算することによって前記車両全体の目標走行運動制御量を前記複数の走行運動制御手段に配分することにより前記複数の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とする走行状態ではないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて前記複数の走行運動制御手段のうちの特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の走行運動制御手段について予め設定された第二の評価関数を演算することにより前記他の走行運動制御手段の目標制御量を演算し、車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて前記特定の走行運動制御手段の目標制御量を演算し、前記特定の走行運動制御手段の目標制御量に基づいて前記特定の走行運動制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて他の一つの走行運動制御手段の目標制御量を演算し、前記車両全体の目標走行運動制御量を低減補正し、低減補正された車両全体の目標走行運動制御量に基づいて残りの走行運動制御手段の目標制御量を演算することを特徴とする請求項1に記載の車両の走行制御装置。   The control means determines whether the vehicle traveling state is a traveling state requiring emergency traveling motion control or a traveling state in which the vehicle behavior may be deteriorated, and the vehicle traveling state is an emergency traveling motion. When the driving state requires control, a target evaluation value of the vehicle as a whole is calculated by calculating a first evaluation function set in advance for the plurality of traveling motion control means. To calculate the target control amount of the plurality of running motion control means, and the running state of the vehicle is not a running state that requires emergency running motion control, but the running state of the vehicle may deteriorate. Is calculated based on the running state of the vehicle, the target control amount of the specific travel motion control means among the plurality of travel motion control means is calculated, and the target control amount of the specific travel motion control means is calculated. Accordingly, the amount of change in the physical quantity of the vehicle under the control of the specific running movement control means is calculated, and the other running movement control means is preliminarily determined based on the target running movement control amount of the entire vehicle and the amount of change in the physical quantity of the vehicle. By calculating the set second evaluation function, the target control amount of the other traveling motion control means is calculated, and the traveling state of the vehicle does not require urgent traveling motion control, and the behavior of the vehicle may be deteriorated. When there is no traveling state, a target control amount of the specific traveling motion control means is calculated based on the traveling state of the vehicle, and the specific traveling motion control means is calculated based on the target control amount of the specific traveling motion control means. The amount of change in the physical quantity of the vehicle due to the control of the vehicle is calculated, and the target amount of control of the other movement control means is calculated based on the target amount of movement control of the entire vehicle and the amount of change of the physical quantity of the vehicle The target travel motion control amount for the entire vehicle is reduced and corrected, and the target control amount for the remaining travel motion control means is calculated based on the target travel motion control amount for the entire vehicle subjected to the reduction correction. The vehicle travel control device according to claim 1. 前記制御手段は車両の走行状態が緊急の走行運動制御を必要とする走行状態であるときには、前記接地荷重制御手段、前記操舵制御手段、前記制駆動力制御手段について予め設定された評価関数を演算することによって前記車両全体の目標走行運動制御量を前記接地荷重制御手段、前記操舵制御手段、前記制駆動力制御手段に配分することにより前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重、前記操舵制御手段の目標制御量としての各車輪の目標スリップ角、前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算することを特徴とする請求項1又は2に記載の車両の走行制御装置。   The control means calculates a preset evaluation function for the ground load control means, the steering control means, and the braking / driving force control means when the running state of the vehicle is a traveling state that requires emergency traveling motion control. By distributing the target running motion control amount of the entire vehicle to the ground load control means, the steering control means, and the braking / driving force control means, the target of each wheel as the target control amount of the ground load control means The ground contact load, the target slip angle of each wheel as a target control amount of the steering control means, and the target slip ratio of each wheel as a target control amount of the braking / driving force control means are calculated. 3. A vehicle travel control apparatus according to 2. 前記特定の走行運動制御手段は前記接地荷重制御手段であることを特徴とする請求項1乃至3の何れかに記載の車両の走行制御装置。   4. The vehicle travel control apparatus according to claim 1, wherein the specific travel motion control means is the ground load control means. 前記制御手段は車両の走行状態が緊急の走行運動制御を必要としないが車輌の挙動悪化の虞れがある走行状態であるときには、車両の走行状態に基づいて前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重を演算し、前記目標接地荷重に基づいて前記接地荷重制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて前記操舵制御手段及び前記制駆動力制御手段について予め設定された評価関数を演算することにより前記操舵制御手段の目標制御量としての各車輪の目標スリップ角及び前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算することを特徴とする請求項4に記載の車両の走行制御装置。   When the vehicle traveling state does not require urgent traveling motion control but there is a possibility that the behavior of the vehicle may deteriorate, the target control amount of the ground load control unit is based on the traveling state of the vehicle. And calculating the amount of change in the physical quantity of the vehicle under the control of the ground load control means based on the target ground load, and calculating the target travel motion control amount of the entire vehicle and the vehicle By calculating a preset evaluation function for the steering control means and the braking / driving force control means based on the amount of change in physical quantity, the target slip angle of each wheel as the target control amount of the steering control means and the braking / driving are calculated. 5. The vehicle travel control apparatus according to claim 4, wherein a target slip ratio of each wheel is calculated as a target control amount of the force control means. 前記制御手段は車両の走行状態が緊急の走行運動制御を必要とせず車輌の挙動悪化の虞れもない走行状態であるときには、車両の走行状態に基づいて前記接地荷重制御手段の目標制御量としての各車輪の目標接地荷重を演算し、前記目標接地荷重に基づいて前記接地荷重制御手段の制御による車両の物理量の変化量を演算し、前記車両全体の目標走行運動制御量及び前記車両の物理量の変化量に基づいて前記操舵制御手段の目標制御量としての各車輪の目標スリップ角を演算し、前記車両全体の目標走行運動制御量を低減補正し、前記低減補正された車両全体の目標走行運動制御量に基づいて前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算することを特徴とする請求項4又は5に記載の車両の走行制御装置。   When the vehicle traveling state is a traveling state that does not require urgent traveling motion control and there is no fear of deterioration of the vehicle behavior, the control means determines the target control amount of the ground load control unit based on the traveling state of the vehicle. And calculating a change amount of a physical quantity of the vehicle by the control of the ground load control means on the basis of the target ground load, and calculating a target travel motion control quantity of the entire vehicle and a physical quantity of the vehicle. The target slip angle of each wheel as a target control amount of the steering control means is calculated based on the change amount of the steering control means, the target travel motion control amount of the entire vehicle is reduced and corrected, and the target travel of the entire vehicle subjected to the reduction correction is corrected. 6. The vehicle travel control apparatus according to claim 4, wherein a target slip ratio of each wheel as a target control amount of the braking / driving force control means is calculated based on a motion control amount. 前記低減補正された車両全体の目標走行運動制御量に基づいて前記制駆動力制御手段について予め設定された評価関数を演算することにより前記制駆動力制御手段の目標制御量としての各車輪の目標スリップ率を演算することを特徴とする請求項6に記載の車両の走行制御装置。   A target of each wheel as a target control amount of the braking / driving force control means is calculated by calculating a preset evaluation function for the braking / driving force control means based on the reduction-corrected target traveling motion control amount of the entire vehicle. The vehicle travel control apparatus according to claim 6, wherein a slip ratio is calculated. 前記車両の物理量の変化量は接地荷重の変化に伴う車輪タイヤの特性値の変化量であることを特徴とする請求項2乃至7の何れかに記載の車両の走行制御装置。   The vehicle travel control apparatus according to claim 2, wherein the change amount of the physical quantity of the vehicle is a change amount of the characteristic value of the wheel tire according to the change of the ground load. 前記制御手段は車両がスピン状態又はドリフトアウト状態にあるとき又は車両が障害物に衝突する虞れが高いときに、車両の走行状態が緊急の走行運動制御を必要とする走行状態であると判定することを特徴とする請求項1乃至8の何れかに記載の車両の走行制御装置。   The control means determines that the traveling state of the vehicle is a traveling state requiring emergency traveling motion control when the vehicle is in a spin state or a drift-out state or when the vehicle is highly likely to collide with an obstacle. The vehicle travel control device according to claim 1, wherein the vehicle travel control device is a vehicle travel control device. 前記制御手段は車両がスピン状態又はドリフトアウト状態になる虞れがあるときに、車両の走行状態が車輌の挙動悪化の虞れがある走行状態であると判定することを特徴とする請求項2乃至9の何れかに記載の車両の走行制御装置。   3. The control unit according to claim 2, wherein when the vehicle is likely to be in a spin state or a drift-out state, the vehicle traveling state is determined to be a traveling state in which the behavior of the vehicle may be deteriorated. The vehicle travel control device according to any one of claims 9 to 9. 前記操舵制御手段は前輪用操舵制御手段と後輪用操舵制御手段とよりなり、前記制御手段は車両の走行状態が後輪の横滑り状態にあるときには、前記評価関数に於ける後輪についての重みを0に設定することを特徴とする請求項1乃至10の何れかに記載の車両の走行制御装置。   The steering control means includes a front wheel steering control means and a rear wheel steering control means, and the control means is a weight for the rear wheel in the evaluation function when the vehicle is running in a side slip state. 11. The vehicle travel control device according to claim 1, wherein the vehicle travel control device is set to 0. 前記操舵制御手段は前輪用操舵制御手段と後輪用操舵制御手段とよりなり、前記制御手段は車両の走行状態が前輪の横滑り状態にあるときには、前記評価関数に於ける前輪についての重みを0に設定することを特徴とする請求項1乃至11の何れかに記載の車両の走行制御装置。   The steering control means comprises a front wheel steering control means and a rear wheel steering control means, and the control means sets the weight for the front wheels in the evaluation function to 0 when the vehicle is running in a skidding state. The vehicle travel control apparatus according to claim 1, wherein the vehicle travel control apparatus is set to 前記制御手段は運転者の運転操作量及び車両の走行状態に基づいて少なくとも車両の姿勢を目標姿勢にするために必要な各車輪の接地荷重として各車輪の目標接地荷重を演算することを特徴とする請求項5乃至12の何れかに記載の車両の走行制御装置。   The control means calculates a target grounding load of each wheel as a grounding load of each wheel necessary to at least change the vehicle posture to the target posture based on the driving operation amount of the driver and the running state of the vehicle. The vehicle travel control device according to any one of claims 5 to 12.
JP2006283836A 2006-10-18 2006-10-18 Vehicle travel control device Expired - Fee Related JP4849238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006283836A JP4849238B2 (en) 2006-10-18 2006-10-18 Vehicle travel control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006283836A JP4849238B2 (en) 2006-10-18 2006-10-18 Vehicle travel control device

Publications (2)

Publication Number Publication Date
JP2008100579A JP2008100579A (en) 2008-05-01
JP4849238B2 true JP4849238B2 (en) 2012-01-11

Family

ID=39435248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006283836A Expired - Fee Related JP4849238B2 (en) 2006-10-18 2006-10-18 Vehicle travel control device

Country Status (1)

Country Link
JP (1) JP4849238B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104594B2 (en) * 2008-06-27 2012-12-19 トヨタ自動車株式会社 Vehicle control device
JP5206404B2 (en) * 2008-12-26 2013-06-12 トヨタ自動車株式会社 Vehicle control apparatus and vehicle control method
JP5347499B2 (en) * 2008-12-27 2013-11-20 日産自動車株式会社 Vehicle control apparatus and vehicle control method
JP4842335B2 (en) * 2009-02-12 2011-12-21 日立建機株式会社 Electric vehicle turning assist device
CN102612456B (en) * 2010-04-14 2014-12-31 丰田自动车株式会社 Vehicle control device
JP5455802B2 (en) * 2010-06-11 2014-03-26 日立建機株式会社 Pitching control device for electric vehicle
JP5706130B2 (en) * 2010-10-29 2015-04-22 株式会社アドヴィックス Vehicle behavior control apparatus and vehicle behavior control method
JP5621572B2 (en) * 2010-12-15 2014-11-12 株式会社ジェイテクト Vehicle behavior control device
JP5445693B2 (en) * 2010-12-20 2014-03-19 トヨタ自動車株式会社 Vehicle steering control device
JP5862273B2 (en) * 2011-12-19 2016-02-16 トヨタ自動車株式会社 Vehicle behavior control device
JP5962559B2 (en) * 2013-03-22 2016-08-03 トヨタ自動車株式会社 Vehicle behavior control device
JP2013226052A (en) * 2013-08-09 2013-10-31 Hitachi Constr Mach Co Ltd Pitching control device of electric vehicle
JP6011587B2 (en) * 2014-08-07 2016-10-19 トヨタ自動車株式会社 Vehicle travel control device
KR20170084830A (en) 2016-01-13 2017-07-21 현대자동차주식회사 Yawing motion control method and apparatus for a vehicle using a suspension
JP6748619B2 (en) 2017-09-20 2020-09-02 日立オートモティブシステムズ株式会社 Vehicle control device, vehicle control method, and vehicle control system
CN113895437B (en) * 2021-10-28 2023-03-07 浙江大学 Vehicle autonomous drift control method based on LQR optimal control

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2964366B2 (en) * 1991-12-03 1999-10-18 トヨタ自動車株式会社 Control device at the time of vehicle deceleration
JP2002104104A (en) * 2001-06-11 2002-04-10 Hitachi Ltd Cooperative control device for automobile
JP3878840B2 (en) * 2001-11-27 2007-02-07 トヨタ自動車株式会社 Vehicle travel control device
JP4476575B2 (en) * 2003-06-06 2010-06-09 富士通テン株式会社 Vehicle status determination device

Also Published As

Publication number Publication date
JP2008100579A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
JP4849238B2 (en) Vehicle travel control device
US10005455B2 (en) Method in order to control vehicle behaviour
JP3546830B2 (en) Vehicle roll behavior control device
EP1941413B1 (en) Enhanced yaw stability control to mitigate a vehicle&#39;s abnormal yaw motion due to a disturbance force applied to vehicle body
WO2018105399A1 (en) Vehicle motion state estimation apparatus
US7647148B2 (en) Roll stability control system for an automotive vehicle using coordinated control of anti-roll bar and brakes
JP3972913B2 (en) Vehicle travel control device
EP1510438B1 (en) Control device for vehicle power steering
JP4821490B2 (en) Driving control device and driving control method during straight braking of vehicle
JP2006335171A (en) Driving/braking force control device for vehicle
US20070124051A1 (en) Vehicle drive control system and method
KR20120126071A (en) Method and braking system for influencing driving dynamics by means of braking and driving operations
US11912351B2 (en) Steering control device and steering device
US11318945B2 (en) Vehicle control system
JP7056489B2 (en) Vehicle turning behavior control device
JP2007008450A (en) Automobile driving dynamics adjusting method
JP4164691B2 (en) Integrated control device for vehicle
US11325599B2 (en) Vehicle control system for adjusting longtitudinal motion to reduce deviation of lateral motion
JP4797586B2 (en) Vehicle braking / driving force control device
US20230241940A1 (en) Suspension control device, vehicle, and suspension control method
JP4140611B2 (en) Vehicle behavior control device
CN114559914B (en) Vehicle control device and vehicle control program
US20210061041A1 (en) Steering control device and steering device
CN110281911B (en) Vehicle stability control device
WO2023127444A1 (en) Vehicle control device, vehicle control method, and vehicle control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111004

R151 Written notification of patent or utility model registration

Ref document number: 4849238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141028

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees