JP4818775B2 - Fire detector - Google Patents

Fire detector Download PDF

Info

Publication number
JP4818775B2
JP4818775B2 JP2006095591A JP2006095591A JP4818775B2 JP 4818775 B2 JP4818775 B2 JP 4818775B2 JP 2006095591 A JP2006095591 A JP 2006095591A JP 2006095591 A JP2006095591 A JP 2006095591A JP 4818775 B2 JP4818775 B2 JP 4818775B2
Authority
JP
Japan
Prior art keywords
amplification
signal
level
amplified
fire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006095591A
Other languages
Japanese (ja)
Other versions
JP2007272439A (en
Inventor
貴俊 山岸
英聖 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2006095591A priority Critical patent/JP4818775B2/en
Publication of JP2007272439A publication Critical patent/JP2007272439A/en
Application granted granted Critical
Publication of JP4818775B2 publication Critical patent/JP4818775B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、赤外線を感知して火災を判別する火災感知器に関するものである。   The present invention relates to, for example, a fire detector that detects infrared rays by detecting a fire.

従来の火災感知器には、煙濃度が低くなるとセンサ(散乱光式煙感知器)の感度を上げ、煙濃度が高くなるとその感度を下げるようにしたものがある。例えば、各感度で設定された範囲において煙濃度が変化し、その感度では後段側のA/D変換器などのダイナミックレンジを超える場合、これを閾値で判別し、次の感度設定データに切り替えることで、ダイナミックレンジを再び利用するようにしている(例えば、特許文献1参照)。
特公平5−10718号公報(第3頁、第1図−第3図)
Some conventional fire detectors increase the sensitivity of a sensor (scattered light smoke detector) when the smoke concentration is low, and decrease the sensitivity when the smoke concentration is high. For example, if the smoke density changes within the range set for each sensitivity, and that sensitivity exceeds the dynamic range of the A / D converter on the rear stage side, etc., this is discriminated by a threshold value and switched to the next sensitivity setting data Therefore, the dynamic range is used again (for example, see Patent Document 1).
Japanese Patent Publication No. 5-10718 (page 3, FIGS. 1 to 3)

前述した従来の技術では、感度を切り替えた後に状況を確認しなければならず、問題があれば感度を元に戻すなどの複雑な判断が必要となる。
本発明は、前述のような課題を解決するためになされたもので、センサの感度が変化しても連続的にセンサの感知信号を読み込むことのできる火災感知器を提供することを目的とする。
In the conventional technique described above, the situation must be confirmed after switching the sensitivity, and if there is a problem, a complicated determination such as returning the sensitivity to the original is required.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fire detector that can continuously read a sensor detection signal even if the sensitivity of the sensor changes. .

本発明に係る火災感知器は、火災の感知に基づいて信号を出力するセンサと、センサの出力信号を段階的に増幅し、増幅度の異なる複数の増幅信号を出力する、少なくとも第1増幅信号を出力する第1増幅部と該第1増幅部により増幅された第1増幅信号をさらに増幅して第2増幅信号を出力する第2増幅部とが含まれる複数段の増幅部と、第1増幅部により増幅された第1増幅信号と第2増幅部により増幅された第2増幅信号のうち一方の増幅信号を選択して火災の有無を判別する火災判別部とを備え、火災判別部は、第2増幅信号を選択して所定の切替レベルと比較し、第2増幅信号が切替レベルを超えるとき、第1増幅信号を使用して火災を判別し、第2増幅信号が切替レベルを超えないときは、それを使用して火災を判別し、さらに、火災判別部は、第1増幅信号が切替レベルを超えるとき、複数段の増幅部の増幅度を高から低に切り替えるとともに、複数段の増幅部の増幅度を低に切り替えた後、第1増幅信号が切替レベルよりも低い復帰レベルより低下したとき、複数段の増幅部の増幅度を低から高に復帰させる。 Fire detector according to the present invention includes a sensor which outputs a signal based on sensing a fire, the output signal of the sensor stepwise amplification, and outputs a plurality of amplified signals of different amplification degrees, at least a first amplified signal A plurality of amplification units including a first amplification unit that outputs a second amplification unit that further amplifies the first amplification signal amplified by the first amplification unit and outputs a second amplification signal; A fire discriminating unit that selects one of the first amplified signal amplified by the amplifying unit and the second amplified signal amplified by the second amplifying unit and discriminates whether or not there is a fire; The second amplified signal is selected and compared with a predetermined switching level. When the second amplified signal exceeds the switching level, a fire is determined using the first amplified signal, and the second amplified signal exceeds the switching level. If not, use it to determine the fire and further When the first amplification signal exceeds the switching level, the fire determination unit switches the amplification level of the multiple-stage amplification units from high to low, and switches the amplification level of the multiple-stage amplification units from low to 1st amplification. When the signal falls below a return level lower than the switching level, the amplification levels of the multiple stages of amplifiers are returned from low to high.

本発明に係る火災感知器は、複数段の増幅部の増幅度を高から低に切り替える前後、又は増幅度を低から高に復帰させる前後において、複数の増幅信号のうち1つが同じ増幅度である。 In the fire detector according to the present invention , one of a plurality of amplification signals has the same amplification level before and after switching the amplification level of the plurality of amplification units from high to low, or before and after returning the amplification level from low to high. is there.

本発明に係る火災感知器は、複数段の増幅部は、前記複数段の増幅部の増幅度が低いとき、前記第1増幅部から第1増幅信号が前記火災判別部及び前記第2増幅部にそれぞれ出力され、前記第2増幅部からはさらに2のn乗倍に増幅された第2増幅信号が前記火災判別部に出力され、また、前記複数段の増幅部の増幅度が高いときは、前記第1増幅部から第1増幅信号を2のn乗倍に増幅した第1増幅信号が前記火災判別部及び前記第2増幅部にそれぞれ出力され、前記第2増幅部からはさらに2のn乗倍に増幅された第2増幅信号が前記火災判別部に出力される。 In the fire detector according to the present invention, when the amplification unit of the plurality of stages has a low amplification degree of the amplification unit of the plurality of stages, the first amplification signal is transmitted from the first amplification unit to the fire determination unit and the second amplification unit. When the second amplification signal is output from the second amplification unit to the fire discrimination unit and the amplification level of the multiple-stage amplification units is high. A first amplified signal obtained by amplifying the first amplified signal from the first amplifying unit to the nth power of 2 is output to the fire discriminating unit and the second amplifying unit, respectively. A second amplified signal amplified to the power of n is output to the fire discrimination unit.

本発明においては、第2増幅信号を選択して所定の切替レベルと比較し、第2増幅信号が切替レベルを超えるとき、第1増幅信号を使用して火災を判別し、第2増幅信号が切替レベルを超えないときは、それを使用して火災を判別し、さらに、第1増幅信号が切替レベルを超えるとき、複数段の増幅部の増幅度を高から低に切り替えるとともに、複数段の増幅部の増幅度を低に切り替えた後、第1増幅信号が切替レベルよりも低い復帰レベルより低下したとき、複数段の増幅部の増幅度を低から高に復帰させる。これにより、センサの感知信号の変化に基づく増幅信号を連続的に読み込むことができるため、感知信号の変動パターンを認識し、所定の火災検出アルゴリズムにより正確に火災判別できる。
In the present invention, the second amplified signal is selected and compared with a predetermined switching level. When the second amplified signal exceeds the switching level, a fire is determined using the first amplified signal, and the second amplified signal is When the switching level is not exceeded, it is used to determine a fire. Further, when the first amplification signal exceeds the switching level, the amplification level of the plurality of amplification units is switched from high to low and After the amplification level of the amplification unit is switched to low, when the first amplification signal falls below the return level lower than the switching level, the amplification level of the multiple-stage amplification units is returned from low to high. As a result, the amplified signal based on the change in the sensing signal of the sensor can be read continuously, so that the fluctuation pattern of the sensing signal can be recognized and the fire can be accurately determined by a predetermined fire detection algorithm.

図1は本発明の実施の形態を示す火災感知器のブロック構成図、図2は火災感知器の増幅信号と信号切替レベル又は増幅度切替レベルとの対比に基づく増幅信号の出力パターンの遷移を示す図である。
図1に示すセンサ1は、例えば炭酸ガス共鳴帯のセンサからなり、予め設定された警戒区域内で出火すると、その炎の赤外線を感知し、赤外線量に基づく感知信号を出力する。なお、その赤外線は、炎のちらつきにより周波数帯域が1Hz〜10Hzとなっている。BPF(バンドパスフィルタ)2は、センサ1からの感知信号(1Hz〜10Hz)を通過させ、その他の周波数帯域の信号を減衰させる。1段目のアンプ3は、BPF2を通過した感知信号を例えば40倍に増幅する。BPF4は、アンプ3により増幅された感知信号を通過させる。
FIG. 1 is a block diagram of a fire detector showing an embodiment of the present invention, and FIG. 2 shows a transition of an output pattern of an amplified signal based on a comparison between an amplified signal of the fire detector and a signal switching level or an amplification switching level. FIG.
The sensor 1 shown in FIG. 1 is composed of, for example, a sensor in a carbon dioxide resonance band. When a fire breaks out in a preset alert area, the sensor 1 senses the infrared rays of the flame and outputs a sensing signal based on the amount of infrared rays. The infrared light has a frequency band of 1 Hz to 10 Hz due to flickering of flame. A BPF (band pass filter) 2 passes a sensing signal (1 Hz to 10 Hz) from the sensor 1 and attenuates signals in other frequency bands. The first-stage amplifier 3 amplifies the sense signal that has passed through the BPF 2 by, for example, 40 times. The BPF 4 passes the sense signal amplified by the amplifier 3.

第1増幅部である2段目のアンプ5は、BPF4からの感知信号が入力されると、例えば1段目のアンプ3と合わせて320倍の高増幅度で増幅し、3段目のアンプ6に出力すると共に、制御回路部10に増幅信号HAとして出力する。増幅度切替信号が入力されたときは、例えば1段目のアンプ3と合わせて20倍の低増幅度に切り替え、3段目のアンプ6に出力すると共に、制御回路部10に増幅信号LAとして出力する。また、増幅度復帰信号が入力されたときは、再び320倍の高増幅度に復帰して、前記と同様に3段目のアンプ6に出力すると共に、制御回路部10に増幅信号HAとして出力する。低増幅度から高増幅度への切り替え時の増幅度の変化分は16倍(2の4乗倍)となっている。   When the sense signal from the BPF 4 is input, the second-stage amplifier 5 that is the first amplification unit amplifies the amplifier with 320 times higher amplification together with the first-stage amplifier 3, for example. 6 and output to the control circuit unit 10 as an amplified signal HA. When the amplification switching signal is input, for example, the amplification is switched to a low amplification factor of 20 times together with the first-stage amplifier 3 and output to the third-stage amplifier 6, and the amplified signal LA is supplied to the control circuit unit 10. Output. Further, when the amplification level restoration signal is input, the amplification level is restored again to 320 times and output to the third stage amplifier 6 as described above, and also output to the control circuit unit 10 as the amplification signal HA. To do. The amount of change in amplification at the time of switching from low amplification to high amplification is 16 times (2 4 times).

第2増幅部である3段目のアンプ6は、2段目のアンプ5により増幅された感知信号を例えば16倍(2の4乗倍)に増幅する。1段目のアンプ3と2段目のアンプ5の増幅度が合わせて320倍のときは、アンプ全段の合計で5120倍に増幅して、制御回路部10に増幅信号HBとして出力し、1段目のアンプ3と2段目のアンプ5の増幅度が合わせて20倍のときは、アンプ全段の合計で320倍に増幅し、制御回路部10に増幅信号LBとして出力する。   The third-stage amplifier 6 that is the second amplification unit amplifies the sense signal amplified by the second-stage amplifier 5 by 16 times (2 to the fourth power), for example. When the amplification degree of the first-stage amplifier 3 and the second-stage amplifier 5 is 320 times in total, it is amplified 5120 times in total for all the amplifier stages, and is output to the control circuit unit 10 as an amplified signal HB. When the amplification degree of the first-stage amplifier 3 and the second-stage amplifier 5 is 20 times in total, it is amplified 320 times in total for all the amplifier stages, and is output to the control circuit unit 10 as an amplified signal LB.

制御回路部10は、増幅度の異なる複数の増幅信号HA、HB又はLA、LBを取り込んでデジタル変換するA/Dコンバータ11と、火災判別部の機能を有する例えばマイコン12とを備えている。このマイコン12には、例えば、2.25Vの増幅度切替レベル及び0.75Vの増幅度復帰レベルと、2.25Vの信号切替レベルとがそれぞれ設定されている。増幅度切替レベル(2.25V)は、高増幅度から低増幅度に切り替えするか否かを判定するための閾値であり、増幅度復帰レベル(0.75V)は、低増幅度から高増幅度に復帰させるか否かを判定するための閾値である。従って、増幅度切替レベルと増幅度復帰レベルは1.5Vの差を設けてあり、火災時の赤外線量の変動により増幅度が頻繁に切り替わることがなく、常に所定間隔毎にサンプリングすることができる。また、信号切替レベル(2.25V)は、増幅信号HBからHAに切り替えるか否かを判定するための閾値である。   The control circuit unit 10 includes an A / D converter 11 that takes in a plurality of amplified signals HA, HB or LA, LB having different amplification levels and converts them into a digital signal, and, for example, a microcomputer 12 having the function of a fire determination unit. For example, an amplification switching level of 2.25 V, an amplification return level of 0.75 V, and a signal switching level of 2.25 V are set in the microcomputer 12. The amplification level switching level (2.25V) is a threshold value for determining whether to switch from high amplification level to low amplification level, and the amplification level return level (0.75V) is low amplification level to high amplification level. This is a threshold value for determining whether or not to return at regular intervals. Therefore, there is a difference of 1.5 V between the amplification switching level and the amplification restoration level, and the amplification does not change frequently due to fluctuations in the amount of infrared rays at the time of fire, and can always be sampled at predetermined intervals. . The signal switching level (2.25V) is a threshold value for determining whether to switch from the amplified signal HB to HA.

マイコン12による火災判別については、動作説明時に詳述するが、図2に示すように各増幅信号を読み込んで選択し判別する。まず、増幅信号HB(5120倍)とHA(320倍)のデジタル値(電圧)を所定間隔(例えば20mS〜100mS)毎にそれぞれサンプリングする。そして、HBのデジタル値が信号切替レベル(2.25V)を超えない場合、増幅信号HBのデジタル値を選択する一方、HBのデジタル値が信号切替レベル(2.25V)を超えたときは、増幅信号HAのデジタル値をサンプリングする。さらに、HAのデジタル値が増幅度切替レベル(2.25V)を超えると、増幅度切替信号を2段目のアンプ5に出力して、低増幅度の増幅信号LB(320倍)とLA(20倍)のデジタル値をそれぞれサンプリングする。そして、LBのデジタル値が信号切替レベルを超えない場合、増幅信号LBのデジタル値をサンプリングする一方、LBのデジタル値が信号切替レベルを超えたときは、増幅信号LAのデジタル値を選択する。さらに、LAのデジタル値が減少して増幅度復帰レベル(0.75V)よりも低くなった場合は、即座に増幅度復帰信号を2段目のアンプ5に出力して、増幅信号HBとHAのデジタル値をそれぞれサンプリングする。そして、HBのデジタル値が信号切替レベルを超えない場合、増幅信号HBのデジタル値を選択する一方、HBのデジタル値が信号切替レベルを超えたときは、HAのデジタル値を選択する。このように、HBとHA又はLBとLAは常に同時にサンプリングされていて、これら2つの信号のうち、どちらを選んで残すかは信号切替レベルを用いて決めており、選択した増幅信号を用いて所定の火災検出アルゴリズムによって火災かどうかを判別する。   The fire discrimination by the microcomputer 12 will be described in detail when the operation is explained. As shown in FIG. 2, each amplified signal is read and selected and discriminated. First, the digital values (voltages) of the amplified signals HB (5120 times) and HA (320 times) are sampled at predetermined intervals (for example, 20 mS to 100 mS). When the digital value of HB does not exceed the signal switching level (2.25 V), the digital value of the amplified signal HB is selected, while when the digital value of HB exceeds the signal switching level (2.25 V), The digital value of the amplified signal HA is sampled. Further, when the digital value of HA exceeds the amplification level switching level (2.25V), the amplification level switching signal is output to the second stage amplifier 5, and the low amplification level amplification signals LB (320 times) and LA ( (20 times) digital values are sampled respectively. When the digital value of LB does not exceed the signal switching level, the digital value of the amplified signal LB is sampled. On the other hand, when the digital value of LB exceeds the signal switching level, the digital value of the amplified signal LA is selected. Further, when the digital value of LA decreases and becomes lower than the amplification level return level (0.75 V), the amplification level return signal is immediately output to the second-stage amplifier 5, and the amplified signals HB and HA are output. Each digital value is sampled. When the digital value of HB does not exceed the signal switching level, the digital value of the amplified signal HB is selected. On the other hand, when the digital value of HB exceeds the signal switching level, the digital value of HA is selected. In this way, HB and HA or LB and LA are always sampled at the same time, and which one of these two signals is left to be selected is determined using the signal switching level, and the selected amplified signal is used. Whether a fire is detected or not is determined by a predetermined fire detection algorithm.

増幅信号をHB→HA→LB→LAと増幅度の低い信号に切り替えているのは、炎の赤外線量の増加によって飽和状態になったときであり、また逆にLA→LB→HA→HBと増幅度の高い信号に切り替えているのは、赤外線量の減少によって炎と判別しにくくなったときであり、赤外線量の増減、つまり、炎のちらつきによる赤外線の強弱を連続的に認識するためである。   The amplification signal is switched to a signal with a low amplification degree, such as HB → HA → LB → LA, when the saturation state is caused by an increase in the amount of infrared rays of the flame, and conversely, LA → LB → HA → HB. The signal is switched to a signal with a high degree of amplification when it becomes difficult to distinguish it from flames due to a decrease in the amount of infrared rays. is there.

次に、前記のように構成された火災感知器において、火災感知時の増幅信号の選択タイミングについて図3を参照しながら説明する。図3は実施の形態の火災感知器における増幅信号の選択タイミングを説明するための波形図である。
予め設定された警戒区域内で出火すると、センサ1がその炎の赤外線を感知し、赤外線量に基づく感知信号をBPF2に出力する。このBPF2は、予め設定された周波数帯域1Hz〜10Hzの赤外線の感知信号を通過させ、1段目のアンプ3に出力する。アンプ3は、BPF2を介して入力された感知信号を例えば40倍に増幅し、BPF4を通じて2段目のアンプ5に出力する。そのアンプ5は、増幅度切替信号が入力されていないため、入力された感知信号を高増幅度の例えば320倍に増幅し、3段目のアンプ6に出力すると共に、制御回路部10のA/Dコンバータ11に増幅信号HAとして出力する。3段目のアンプ6は、320倍に増幅された感知信号をさらに16倍に増幅(5120倍)し、A/Dコンバータ11に増幅信号HBとして出力する。
Next, in the fire detector configured as described above, the amplification signal selection timing at the time of fire detection will be described with reference to FIG. FIG. 3 is a waveform diagram for explaining the selection timing of the amplified signal in the fire detector of the embodiment.
When a fire breaks out in a preset alert area, the sensor 1 senses the infrared rays of the flame and outputs a sensing signal based on the amount of infrared rays to the BPF 2. The BPF 2 passes an infrared sensing signal having a preset frequency band of 1 Hz to 10 Hz and outputs it to the first-stage amplifier 3. The amplifier 3 amplifies the sensing signal input through the BPF 2 by, for example, 40 times, and outputs the amplified signal to the second-stage amplifier 5 through the BPF 4. Since the amplification degree switching signal is not inputted to the amplifier 5, the inputted sensing signal is amplified to, for example, 320 times the high amplification degree, outputted to the third stage amplifier 6, and at the same time as A of the control circuit unit 10. / Output to the D converter 11 as an amplified signal HA. The third-stage amplifier 6 further amplifies the sense signal amplified by 320 times by 16 times (5120 times) and outputs the amplified signal to the A / D converter 11 as an amplified signal HB.

制御回路部10のマイコン12は、増幅信号HA、HBがA/Dコンバータ11に入力されると、それぞれデジタル値(電圧)を所定間隔(20ms〜100ms)毎にサンプリングすると共に、HBのデジタル値と信号切替レベル(2.25V)とを比較する。増幅信号HBのデジタル値と信号切替レベルとを比較して、デジタル値が信号切替レベルを超えると、飽和レベル(3V)を超える可能性があると判断して、増幅信号HBのデータを破棄し、増幅信号HAを選択する。これは、炎のちらつきによって赤外線量が増加し、これに伴って増幅信号HBのデジタル値が大きくなった場合である。   When the amplified signals HA and HB are input to the A / D converter 11, the microcomputer 12 of the control circuit unit 10 samples the digital values (voltages) at predetermined intervals (20 ms to 100 ms) and also digital values of HB. And the signal switching level (2.25V). The digital value of the amplified signal HB is compared with the signal switching level, and if the digital value exceeds the signal switching level, it is determined that there is a possibility of exceeding the saturation level (3V), and the data of the amplified signal HB is discarded. The amplified signal HA is selected. This is a case where the amount of infrared rays increases due to flickering of the flame, and the digital value of the amplified signal HB increases accordingly.

前記と同様に、増幅信号HAのデジタル値が増幅度切替レベルを超えると、マイコン12は、この場合も飽和レベル(3V)を超える可能性があると判断して、増幅度切替信号を2段目のアンプ5に出力する。増幅信号LBとHAは同じ増幅度なので低増幅度に切替後のサンプリングでは、感知信号の増加によりLBが信号切替レベルを超えるので、増幅信号LAが選択されることとなる。また、増幅度が低い状態で増幅信号LBのデジタル値が増幅度復帰レベルより低くなったときは、増幅度が低い状態での赤外線量による炎の判別が困難と判断して、増幅度復帰信号が出力され、高増幅度に切り替わる。高増幅度に切り替わった後のサンプリングで、増幅信号HBが信号切替レベルを超えるときは、増幅信号HAのデジタル値を選択し、信号切替レベルを超えないときは、増幅信号HBのデジタル値を選択する。選択された増幅信号のデジタル値は、LA、LB、HA、HBの何れかからサンプリングされたかに応じて、それぞれの増幅度の逆数に比例した補正係数をデジタル値に乗じて連続データを得る。   Similarly to the above, when the digital value of the amplified signal HA exceeds the amplification level switching level, the microcomputer 12 also determines that there is a possibility that the saturation level (3V) may be exceeded in this case, and the amplification level switching signal is set in two stages. Output to the amplifier 5 of the eye. Since the amplified signals LB and HA have the same amplification level, in the sampling after switching to a low amplification level, the LB exceeds the signal switching level due to an increase in the sensing signal, so the amplified signal LA is selected. Further, when the digital value of the amplified signal LB becomes lower than the amplification level return level when the amplification level is low, it is determined that it is difficult to discriminate the flame based on the amount of infrared rays when the amplification level is low. Is output and switched to high amplification. When sampling after switching to high amplification level, the amplified signal HB exceeds the signal switching level, the digital value of the amplified signal HA is selected, and when it does not exceed the signal switching level, the digital value of the amplified signal HB is selected. To do. Depending on whether the digital value of the selected amplified signal is sampled from LA, LB, HA, or HB, continuous data is obtained by multiplying the digital value by a correction coefficient proportional to the inverse of each amplification degree.

以上のように実施の形態によれば、センサ1が炎の赤外線を感知すると、最も増幅度の高い増幅信号HBで監視し、増幅信号HBが飽和したときは増幅度の一段低い増幅信号HAを読み込んで監視し、増幅信号HAが飽和したときは、増幅度を高から低に切り替えて、増幅度の最も低い増幅信号LAを読み込んで監視し、この増幅信号LAのデジタル値が低下して炎の判別がしにくくなったときは、前記と逆に増幅度を段階的に上げた増幅信号を選択するようにして、増幅をヒステリシス的に切り替えるようにしたので、増幅度切替レベル付近で炎のちらつきによる赤外線量が変化しても連続的に読み込むことが可能になり、感知信号の変動パターンを認識し、所定の火災検出アルゴリズムにより正確に火災判別できる。   As described above, according to the embodiment, when the sensor 1 senses the infrared rays of the flame, the sensor 1 monitors the amplified signal HB having the highest amplification degree, and when the amplified signal HB is saturated, the amplified signal HA that is one step lower in amplification degree is output. When the amplified signal HA is saturated, the amplification level is switched from high to low, and the amplification signal LA having the lowest amplification level is read and monitored. When it becomes difficult to discriminate, the amplification signal is selected in a stepwise manner, and the amplification is switched in a hysteresis manner. Even if the amount of infrared rays due to flickering changes, it can be read continuously, the fluctuation pattern of the sensing signal can be recognized, and the fire can be accurately determined by a predetermined fire detection algorithm.

なお、前述した実施の形態では、1つの赤外線センサを備える単波長式の火災感知器を示しているが、複数の赤外線センサを備える多波長式の火災感知器にも応用できる。   In the above-described embodiment, a single-wavelength fire detector including one infrared sensor is shown, but the present invention can also be applied to a multi-wavelength fire detector including a plurality of infrared sensors.

本発明の実施の形態を示す火災感知器のブロック構成図である。It is a block block diagram of the fire detector which shows embodiment of this invention. 火災感知器の増幅信号と信号切替レベル又は増幅度切替レベルとの対比に基づく増幅信号の出力パターンの遷移を示す図である。It is a figure which shows the transition of the output pattern of the amplification signal based on contrast with the amplification signal of a fire detector, and a signal switching level or an amplification degree switching level. 実施の形態の火災感知器における増幅信号の選択タイミングを説明するための波形図である。It is a wave form chart for explaining selection timing of an amplification signal in a fire detector of an embodiment.

符号の説明Explanation of symbols

1 センサ、2 BPF、3 1段目のアンプ、4 BPF、5 2段目のアンプ、6 3段目のアンプ、10 制御回路部、11 A/Dコンバータ、12 マイコン。
DESCRIPTION OF SYMBOLS 1 Sensor, 2 BPF, 3rd stage amplifier, 4 BPF, 5 2nd stage amplifier, 6 3rd stage amplifier, 10 control circuit part, 11 A / D converter, 12 microcomputer

Claims (3)

火災の感知に基づいて信号を出力するセンサと、
前記センサの出力信号を段階的に増幅し、増幅度の異なる複数の増幅信号を出力する、少なくとも第1増幅信号を出力する第1増幅部と該第1増幅部により増幅された第1増幅信号をさらに増幅して第2増幅信号を出力する第2増幅部とが含まれる複数段の増幅部と、
前記第1増幅部により増幅された第1増幅信号と前記第2増幅部により増幅された第2増幅信号のうち一方の増幅信号を選択して火災の有無を判別する火災判別部とを備え、
前記火災判別部は、第2増幅信号を選択して所定の切替レベルと比較し、第2増幅信号が前記切替レベルを超えるとき、第1増幅信号を使用して火災を判別し、第2増幅信号が前記切替レベルを超えないときは、それを使用して火災を判別し、
さらに、前記火災判別部は、第1増幅信号が前記切替レベルを超えるとき、前記複数段の増幅部の増幅度を高から低に切り替えるとともに、前記複数段の増幅部の増幅度を低に切り替えた後、第1増幅信号が前記切替レベルよりも低い復帰レベルより低下したとき、前記複数段の増幅部の増幅度を低から高に復帰させることを特徴とする火災感知器。
A sensor that outputs a signal based on a fire detection;
Amplifies the output signal of the sensor stepwise, and outputs a plurality of amplified signals of different amplification degrees, the first signal amplified by the first amplifying unit and the first amplifying section for outputting at least a first amplified signal A plurality of amplification units including a second amplification unit that further amplifies the signal and outputs a second amplified signal ;
A fire discriminating unit that selects one of the first amplified signal amplified by the first amplifying unit and the second amplified signal amplified by the second amplifying unit and discriminates the presence or absence of a fire;
The fire determination unit selects a second amplification signal and compares it with a predetermined switching level. When the second amplification signal exceeds the switching level, the fire determination unit uses the first amplification signal to determine a fire, If the signal does not exceed the switching level, use it to determine the fire,
In addition, when the first amplification signal exceeds the switching level, the fire determination unit switches the amplification level of the plurality of amplification units from high to low and switches the amplification level of the plurality of amplification units to low. After that, when the first amplified signal falls below a return level lower than the switching level, the amplification of the amplification units of the plurality of stages is returned from low to high.
前記複数段の増幅部の増幅度を高から低に切り替える前後、又は増幅度を低から高に復帰させる前後において、複数の増幅信号のうち1つが同じ増幅度であることを特徴とする請求項1に記載の火災感知器。   The one or more of the plurality of amplified signals have the same amplification level before and after switching the amplification level of the plurality of amplification units from high to low, or before and after returning the amplification level from low to high. The fire detector according to 1. 前記複数段の増幅部は、前記複数段の増幅部の増幅度が低いとき、前記第1増幅部から第1増幅信号が前記火災判別部及び前記第2増幅部にそれぞれ出力され、前記第2増幅部からはさらに2のn乗倍に増幅された第2増幅信号が前記火災判別部に出力され、また、前記複数段の増幅部の増幅度が高いときは、前記第1増幅部から第1増幅信号を2のn乗倍に増幅した第1増幅信号が前記火災判別部及び前記第2増幅部にそれぞれ出力され、前記第2増幅部からはさらに2のn乗倍に増幅された第2増幅信号が前記火災判別部に出力されることを特徴とする請求項1又は2記載の火災感知器。   When the amplification level of the plurality of amplification units is low, the plurality of amplification units output a first amplification signal from the first amplification unit to the fire determination unit and the second amplification unit, respectively. A second amplified signal further amplified to a power of 2 n is output from the amplifying unit to the fire determining unit, and when the amplification level of the plurality of amplifying units is high, the second amplifying unit outputs a second amplified signal from the first amplifying unit. A first amplified signal obtained by amplifying the 1 amplified signal to the nth power of 2 is output to the fire discriminating unit and the second amplifying unit, respectively, and the second amplifying unit further amplifies the first amplified signal to the nth power of 2 The fire detector according to claim 1 or 2, wherein two amplified signals are output to the fire discrimination unit.
JP2006095591A 2006-03-30 2006-03-30 Fire detector Active JP4818775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006095591A JP4818775B2 (en) 2006-03-30 2006-03-30 Fire detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006095591A JP4818775B2 (en) 2006-03-30 2006-03-30 Fire detector

Publications (2)

Publication Number Publication Date
JP2007272439A JP2007272439A (en) 2007-10-18
JP4818775B2 true JP4818775B2 (en) 2011-11-16

Family

ID=38675199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006095591A Active JP4818775B2 (en) 2006-03-30 2006-03-30 Fire detector

Country Status (1)

Country Link
JP (1) JP4818775B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5307606B2 (en) * 2009-04-16 2013-10-02 ホーチキ株式会社 Window open / close detection device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0650553B2 (en) * 1985-07-24 1994-06-29 ニッタン株式会社 Analog signal output type environmental information detector
JP2005292963A (en) * 2004-03-31 2005-10-20 Nohmi Bosai Ltd Flame sensor

Also Published As

Publication number Publication date
JP2007272439A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
US8681011B2 (en) Apparatus and method for detecting fires
US6856252B2 (en) Method for detecting fires
KR930011459A (en) FM receiver
US11113941B2 (en) Ambient light sensor in a hazard detector and a method of using the same
JPH08339488A (en) Apparatus and method for high sensitivity with dynamic adjustment with reference to noise
JP4818775B2 (en) Fire detector
JP2008042493A (en) Optical receiving circuit and its identification level control method
JP2008134708A (en) Method for identifying fire, fire alarm, and fire receiver
JP4460516B2 (en) Human body detection device
JP4999282B2 (en) Flame detector
JP3217585B2 (en) Fire detector and fire receiver
JP5724370B2 (en) Human body detection device and human body detection method
JP4781146B2 (en) Fire detector
KR102263031B1 (en) Flame Detection System For Amplifies Fire source To Detect Flames
JP3504017B2 (en) Detection device
JP5107613B2 (en) Human body detector
JPS62157997A (en) Sensor
JP3761142B2 (en) Fire detector
JP4615298B2 (en) Combined fire alarm
JP4842547B2 (en) Gas detector
JP2006146738A (en) Composit fire alarm apparatus
JP4393906B2 (en) Flame detector
JP2588080B2 (en) Environmental abnormality detection device and alarm device using the same
JP3319344B2 (en) Smoke detector and smoke detection system
JPH0894766A (en) Infrared human body detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818775

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150