JP4817729B2 - Flame retardant stretched polyester film - Google Patents

Flame retardant stretched polyester film Download PDF

Info

Publication number
JP4817729B2
JP4817729B2 JP2005193800A JP2005193800A JP4817729B2 JP 4817729 B2 JP4817729 B2 JP 4817729B2 JP 2005193800 A JP2005193800 A JP 2005193800A JP 2005193800 A JP2005193800 A JP 2005193800A JP 4817729 B2 JP4817729 B2 JP 4817729B2
Authority
JP
Japan
Prior art keywords
film
layer
flame
polyester film
stretched polyester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005193800A
Other languages
Japanese (ja)
Other versions
JP2007009111A (en
Inventor
哲男 吉田
大 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin DuPont Films Japan Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2005193800A priority Critical patent/JP4817729B2/en
Publication of JP2007009111A publication Critical patent/JP2007009111A/en
Application granted granted Critical
Publication of JP4817729B2 publication Critical patent/JP4817729B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、難燃性を有する延伸ポリエステルフィルムに関するものであり、さらに詳しくは、難燃性、高温下での寸法安定性、機械特性及び耐加水分解性に優れた、ポリエチレン−2,6−ナフタレンジカルボキシレート樹脂からなる延伸ポリエステルフィルムに関するものである。   The present invention relates to a stretched polyester film having flame retardancy, and more specifically, polyethylene-2,6-, which is excellent in flame retardancy, dimensional stability at high temperatures, mechanical properties and hydrolysis resistance. The present invention relates to a stretched polyester film made of naphthalene dicarboxylate resin.

ポリエステルフィルム、特にポリエチレンテレフタレートやポリエチレンナフタレートの二軸延伸フィルムは、優れた機械的性質、耐熱性、耐薬品性を有するため、磁気テープ、強磁性薄膜テープ、写真フィルム、包装用フィルム、電子部品用フィルム、電気絶縁フィルム、金属ラミネート用フィルムおよび保護用フィルム等の素材として広く用いられている。
近年、製造物責任法の施行に伴い、火災に対する安全性を確保するため、樹脂の難燃化が強く要望されている。
Polyester films, especially biaxially stretched films of polyethylene terephthalate and polyethylene naphthalate, have excellent mechanical properties, heat resistance, and chemical resistance. Therefore, magnetic tape, ferromagnetic thin film tape, photographic film, packaging film, electronic parts It is widely used as a material such as a film for electric use, an electrical insulating film, a metal laminating film and a protective film.
In recent years, with the enforcement of the Product Liability Act, there has been a strong demand for flame retarding of resins in order to ensure safety against fire.

従来用いられている有機ハロゲン化合物、ハロゲン含有有機リン化合物等のハロゲン系難燃剤は、難燃効果は高いものの、成形・加工時にハロゲンが遊離し、腐食性のハロゲン化水素ガスを発生して、成形・加工機器を腐食させ、また作業環境を悪化させる可能性が指摘されている。また前記難燃剤は、火災などの燃焼に際してハロゲン化水素等のガスを発生するという報告もある。そのため、近年ハロゲン系難燃剤に替わり、ハロゲンを含まない難燃剤を用いることが強く要望されている。   Halogen-based flame retardants such as organic halogen compounds and halogen-containing organophosphorus compounds that have been used in the past have a high flame-retardant effect, but halogen is liberated during molding and processing, generating corrosive hydrogen halide gas, It has been pointed out that it may corrode molding and processing equipment and worsen the working environment. There is also a report that the flame retardant generates a gas such as hydrogen halide upon combustion such as a fire. Therefore, in recent years, there has been a strong demand for using a flame retardant containing no halogen in place of the halogen flame retardant.

ハロゲンを含まない難燃剤による難燃化方法としては、水酸化マグネシウムに代表される無機化合物、赤リンに代表される無機リン化合物、リン酸エステルやホスホン酸化合物およびホスフィン酸化合物などのリン化合物が知られている。
これらのうち、無機リン化合物、無機化合物等の無機系難燃剤は、ハロゲン系難燃剤のような毒性はないものの、樹脂との相溶性に乏しく、また樹脂の透明性を著しく損なうことがある。また、リン酸エステル化合物を用いた難燃化方法は、重合後のポリエステルに難燃剤を添加して練りこむ、いわゆるブレンド法に関する技術であり、多量に添加すると耐ブリードアウト性が低下することがあった。
Examples of flame retardant methods using flame retardants that do not contain halogen include inorganic compounds typified by magnesium hydroxide, inorganic phosphorus compounds typified by red phosphorus, phosphorus compounds such as phosphate esters, phosphonic acid compounds, and phosphinic acid compounds. Are known.
Among these, inorganic flame retardants such as inorganic phosphorus compounds and inorganic compounds are not as toxic as halogen flame retardants, but have poor compatibility with the resin and may significantly impair the transparency of the resin. The flame retardant method using a phosphoric ester compound is a technique related to a so-called blending method in which a flame retardant is added to a polyester after polymerization and kneaded. When added in a large amount, the bleed-out resistance may be lowered. there were.

一方、リン化合物をポリエステルに共重合化させる方法も検討されており、例えば特開昭59−91122号公報にはリン化合物としてホスホン酸を共重合する方法、特開平1−40521号公報にはホスフィンオキシド誘導体を共重合する方法、また特開昭53−13479号公報にはポリエチレンテレフタレートにカルボキシホスフィン酸を共重合する方法が開示されている。しかしながら、これらのリン化合物を単独で使用し、より高い難燃性を得ようとすると多量の添加を要するため、ホスホン酸を含む場合には製造工程でリン化合物飛散量が多くなることがあり、ホスフィンオキシド誘導体を多量に共重合する場合、ポリエステルの機械特性が低下することがあり、またカルボキシホスフィン酸を多量に共重合する場合は耐加水分解性が低下することがあるなど、それぞれ難燃性と他の特性との両立が難しかった。   On the other hand, a method of copolymerizing a phosphorus compound with polyester has also been studied. For example, JP-A-59-91122 discloses a method of copolymerizing phosphonic acid as a phosphorus compound, and JP-A-1-40521 discloses a phosphine. A method of copolymerizing an oxide derivative and a method of copolymerizing carboxyphosphinic acid with polyethylene terephthalate are disclosed in JP-A No. 53-13479. However, since these phosphorus compounds are used alone and a large amount of addition is required to obtain higher flame retardancy, the amount of phosphorus compounds scattered in the production process may increase when phosphonic acid is included. When copolymerizing a large amount of phosphine oxide derivatives, the mechanical properties of the polyester may decrease. When copolymerizing a large amount of carboxyphosphinic acid, the hydrolysis resistance may decrease. It was difficult to achieve compatibility with other characteristics.

このように、ポリエステル樹脂は、その可燃性ゆえ、より高い難燃性を得るために上述のようなリン化合物を難燃剤として多量配合させると難燃性以外の特性が低下することから、複数のリン化合物を組み合わせることで、難燃性を確保しつつ難燃性以外の特性の低下を抑えているのが現状である。例えば特開平7−268088号公報にはポリエステルにホスフィンオキシド誘導体とカルボキシホスフィン酸誘導体の2種類のリン化合物を併用するポリエステル樹脂組成物が、また特開平9−272734号公報にはジカルボン酸タイプのホスフィンオキシドを含む層とリン酸エステルを含む層とを積層させた積層ポリエステルフィルムが開示されている。   As described above, since the polyester resin, due to its flammability, when a large amount of the above phosphorus compound is blended as a flame retardant in order to obtain higher flame retardancy, properties other than flame retardancy are reduced. By combining the phosphorus compound, the present situation is that deterioration of properties other than the flame retardancy is suppressed while ensuring the flame retardancy. For example, Japanese Patent Application Laid-Open No. 7-268088 discloses a polyester resin composition in which two types of phosphorus compounds of a phosphine oxide derivative and a carboxyphosphinic acid derivative are used in combination with polyester, and Japanese Patent Application Laid-Open No. 9-272734 discloses a dicarboxylic acid type phosphine. A laminated polyester film in which an oxide-containing layer and a phosphate-containing layer are laminated is disclosed.

ところで、特に、携帯電話などの電子機器あるいは自動車に搭載される電子機器の技術進歩に伴い需要が伸びているフレキシブルプリント回路基板(以下、FPCと略記することがある)に着目した場合、基材フィルムとしてポリイミドが主として用いられている。しかしながら、ポリイミドはその素材の性質上フィルムの薄肉化が難しく、また吸水しやすいために寸法変化や形状変化が生じることがある。そこでポリイミドに代わる樹脂として、耐熱性、機械的特性、吸湿性などに優れるポリエチレンナフタレートが検討されるようになってきた。しかしながらポリエチレンナフタレートはポリイミドに較べて難燃性が低いため、難燃性の改良が求められているが、前述のように難燃性以外の特性の低下を抑制しつつポリエステルを難燃化させることは難しく、難燃性と同時にFPCの使用環境や製造条件に耐え得るより一層の耐熱寸法安定性、機械特性および加水分解性を兼ね備えることが求められているのが現状である。   By the way, in particular, when attention is paid to a flexible printed circuit board (hereinafter sometimes abbreviated as FPC) whose demand is increasing with technological progress of electronic devices such as mobile phones or electronic devices mounted on automobiles, Polyimide is mainly used as the film. However, due to the nature of the material of polyimide, it is difficult to reduce the thickness of the film, and it is easy to absorb water, so that dimensional change and shape change may occur. Accordingly, polyethylene naphthalate having excellent heat resistance, mechanical properties, hygroscopicity and the like has been studied as a resin to replace polyimide. However, since polyethylene naphthalate has low flame retardancy compared to polyimide, improvement in flame retardancy is required. However, as described above, polyester is made flame retardant while suppressing deterioration of properties other than flame retardancy. It is difficult to achieve this, and the present situation is that it is required to have further heat-resistant dimensional stability, mechanical properties, and hydrolyzability that can withstand the use environment and manufacturing conditions of FPC.

特開昭59−91122号公報JP 59-91122 A 特開昭64−40521号公報JP-A 64-40521 特開昭53−13479号公報Japanese Patent Laid-Open No. 53-13479 特開平7−268088号公報Japanese Patent Laid-Open No. 7-268088 特開平9−272734号公報JP-A-9-272734

本発明の目的は、かかる従来技術の課題を解消し、高い難燃性を有しながら、かつ高温下での耐熱寸法安定性、機械特性および耐加水分解性を兼ね備える難燃延伸ポリエステルフィルムを提供することにある。また、本発明の他の目的は、高い難燃性、耐熱寸法安定性、機械特性および加水分解性に優れ、さらに金属箔と高い接着性を有するフレキシブルプリント回路基板に好適な難燃延伸ポリエステルフィルムおよびフレキシブルプリント回路基板を提供することにある。   The object of the present invention is to provide a flame-retardant stretched polyester film that eliminates the problems of the prior art and has high flame resistance and also has heat-resistant dimensional stability at high temperatures, mechanical properties, and hydrolysis resistance. There is to do. Another object of the present invention is to provide a flame-retardant stretched polyester film suitable for a flexible printed circuit board having high flame retardancy, heat-resistant dimensional stability, mechanical properties and hydrolyzability, and having high adhesion to a metal foil. And providing a flexible printed circuit board.

本発明者らは、前記課題を解決するために鋭意検討した結果、カルボキシホスフィン酸化合物の中でも、下記一般式(I)で表わされる、Rが炭素数6〜18のアリール基である特定のカルボキシホスフィン酸化合物を用いることにより、他のリン化合物を併用しなくても少量でポリエチレン−2,6−ナフタレンジカルボキシレートに高い難燃性を付与でき、しかもポリエチレン−2,6−ナフタレンジカルボキシレートが本来有する耐熱寸法安定性、機械特性および耐加水分解性の低下を抑制できることを見出し、これらの諸特性が必要とされるフレキシブルプリント回路基板、すなわち加工時に薄肉の基材フィルム自体が十分な機械特性を有すること、製造工程や使用環境において高温で寸法安定性に優れること、パターン形成やエッチング工程など水を使用する製造工程が多く、また高温多湿の使用環境下にも置かれることから十分な加水分解性を有することが求められるフレキシブルプリント回路基板の基材フィルムとして特に好適であることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that among carboxyphosphinic acid compounds, R 1 represented by the following general formula (I) is an aryl group having 6 to 18 carbon atoms. By using a carboxyphosphinic acid compound, high flame retardancy can be imparted to polyethylene-2,6-naphthalenedicarboxylate in a small amount without using another phosphorus compound, and polyethylene-2,6-naphthalenedicarboxyl can be imparted. It is found that the heat resistance dimensional stability, mechanical properties and hydrolysis resistance inherent in the rate can be suppressed, and a flexible printed circuit board in which these properties are required, that is, a thin base film itself during processing is sufficient. Have mechanical properties, excellent dimensional stability at high temperatures in the manufacturing process and usage environment, pattern formation and It is particularly suitable as a base film for flexible printed circuit boards that are required to have sufficient hydrolyzability because it has many manufacturing processes that use water, such as a etching process, and is also placed in a hot and humid environment. As a result, the present invention has been completed.

Figure 0004817729
(式中、Rは炭素数6〜18のアリール基、R及びRは炭素数1〜18のアルキル基、アリール基、モノヒドロキシアルキル基または水素原子、Xは炭素数1〜18の2価の炭化水素基をそれぞれ表わし、R〜Rはそれぞれ同一でも異なっていてもよい。)
Figure 0004817729
(In the formula, R 1 is an aryl group having 6 to 18 carbon atoms, R 2 and R 3 are an alkyl group having 1 to 18 carbon atoms, an aryl group, a monohydroxyalkyl group or a hydrogen atom, and X is an alkyl group having 1 to 18 carbon atoms. Each represents a divalent hydrocarbon group, and R 1 to R 3 may be the same or different.)

すなわち本発明によれば、本発明の目的は、リン化合物として下記式(I)で表わされるカルボキシホスフィン酸化合物を含み、主たる構成成分がエチレン−2,6−ナフタレンジカルボキシレートであるポリエステルからなる少なくとも1層からなり、かかる層におけるリン量が、該層の重量に対しリン原子として0.01重量%以上3重量%以下であり、かつ全リン量が式(I)で表わされるカルボキシホスフィン酸化合物に由来する、金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルムによって達成される。 That is, according to the present invention, an object of the present invention consists of a polyester containing a carboxyphosphinic acid compound represented by the following formula (I) as a phosphorus compound, the main constituent being ethylene-2,6-naphthalenedicarboxylate. Carboxyphosphinic acid comprising at least one layer, wherein the amount of phosphorus in the layer is 0.01% by weight or more and 3% by weight or less as phosphorus atoms with respect to the weight of the layer, and the total phosphorus amount is represented by the formula (I) It is achieved by a flame-retardant stretched polyester film for a flexible printed circuit board derived from a compound and laminated with a metal foil .

Figure 0004817729
(式中、Rは炭素数6〜18のアリール基、R及びRは炭素数1〜18のアルキル基、アリール基、モノヒドロキシアルキル基または水素原子、Xは炭素数1〜18の2価の炭化水素基をそれぞれ表わし、R〜Rはそれぞれ同一でも異なっていてもよい。)
Figure 0004817729
(In the formula, R 1 is an aryl group having 6 to 18 carbon atoms, R 2 and R 3 are an alkyl group having 1 to 18 carbon atoms, an aryl group, a monohydroxyalkyl group or a hydrogen atom, and X is an alkyl group having 1 to 18 carbon atoms. Each represents a divalent hydrocarbon group, and R 1 to R 3 may be the same or different.)

また、本発明の難燃延伸ポリエステルフィルムは、その好ましい態様として、カルボキシホスフィン酸化合物が、下記式(II)及び下記式(III)で表される化合物からなる群より選ばれる少なくとも1種であること、

Figure 0004817729
Figure 0004817729
ポリエチレン−2,6−ナフタレンジカルボキシレート樹脂を主たる成分としてなる層をさらに有すること、200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも−3〜3%であること、カルボキシホスフィン酸化合物の30〜100モル%が共重合化していること、の少なくともいずれかを具備するものを好ましい態様として包含する。 In the flame-retardant stretched polyester film of the present invention, as a preferred embodiment, the carboxyphosphinic acid compound is at least one selected from the group consisting of compounds represented by the following formula (II) and the following formula (III). thing,
Figure 0004817729
Figure 0004817729
It further has a layer mainly composed of polyethylene-2,6-naphthalene dicarboxylate resin, and the thermal shrinkage at 200 ° C. for 10 minutes is −3 to 3% in both the longitudinal direction and the width direction of the film. A preferable embodiment includes those having at least one of 30 to 100 mol% of a carboxyphosphinic acid compound.

さらに本発明によれば、本発明の難燃延伸ポリエステルフィルムは、フレキシブルプリント回路基板の基材フィルムに用いられること、本発明の難燃延伸ポリエステルフィルムのカルボキシホスフィン酸化合物を含む層の一方の面に金属箔が積層された構成を含むフレキシブルプリント回路基板も包含される。   Furthermore, according to this invention, the flame-retardant stretched polyester film of this invention is used for the base film of a flexible printed circuit board, One side of the layer containing the carboxyphosphinic acid compound of the flame-retardant stretched polyester film of this invention Also included is a flexible printed circuit board including a structure in which metal foils are laminated on each other.

本発明によれば、ポリエチレン−2,6−ナフタレンジカルボキシレートに、リン化合物として特定のカルボキシホスフィン酸化合物が少量含まれる難燃延伸ポリエステルフィルムは、他のリン化合物を併用しなくても高い難燃性を有し、しかも耐熱寸法安定性、機械特性および耐加水分解性にも優れることから、フレキシブルプリント回路基板の基材フィルムに好適な難燃延伸ポリエステルフィルムを提供することができ、その工業的価値は極めて高い。   According to the present invention, a flame-retardant stretched polyester film in which polyethylene-2,6-naphthalene dicarboxylate contains a small amount of a specific carboxyphosphinic acid compound as a phosphorus compound is highly difficult without using another phosphorus compound in combination. Since it has flammability and is excellent in heat-resistant dimensional stability, mechanical properties and hydrolysis resistance, it is possible to provide a flame-retardant stretched polyester film suitable for a base film of a flexible printed circuit board. Value is extremely high.

さらに本発明によれば、本発明の難燃延伸ポリエステルフィルムの、カルボキシホスフィン酸化合物を含む層の一方の面に金属箔が積層された構成を含むフレキシブルプリント回路基板は、難燃性、耐熱寸法安定性、機械特性および耐加水分解性に優れ、さらに基材フィルムと金属箔との接着性が高いことから、ポリイミド代替が可能で、さらに接着剤層を設けない二層タイプのフレキシブルプリント回路基板としても好適である。   Furthermore, according to the present invention, a flexible printed circuit board including a structure in which a metal foil is laminated on one surface of a layer containing a carboxyphosphinic acid compound of the flame retardant stretched polyester film of the present invention has a flame retardant, heat resistant dimension. Two-layer type flexible printed circuit board that is excellent in stability, mechanical properties and hydrolysis resistance, and has high adhesiveness between the base film and metal foil. It is also suitable.

以下、本発明を詳しく説明する。
<カルボキシホスフィン酸化合物>
本発明の難燃延伸ポリエステルフィルムは、難燃性を付与する成分として下記式(I)で表わされるカルボキシホスフィン酸化合物を含有する。

Figure 0004817729
(式中、Rは炭素数6〜18のアリール基、R及びRは炭素数1〜18のアルキル基、アリール基、モノヒドロキシアルキル基または水素原子、Xは炭素数1〜18の2価の炭化水素基をそれぞれ表わし、R〜Rはそれぞれ同一でも異なっていてもよい。) The present invention will be described in detail below.
<Carboxyphosphinic acid compound>
The flame-retardant stretched polyester film of the present invention contains a carboxyphosphinic acid compound represented by the following formula (I) as a component imparting flame retardancy.
Figure 0004817729
(In the formula, R 1 is an aryl group having 6 to 18 carbon atoms, R 2 and R 3 are an alkyl group having 1 to 18 carbon atoms, an aryl group, a monohydroxyalkyl group or a hydrogen atom, and X is an alkyl group having 1 to 18 carbon atoms. Each represents a divalent hydrocarbon group, and R 1 to R 3 may be the same or different.)

リン化合物として上述の式(I)で表わされるカルボキシホスフィン酸化合物を用いることにより、他のリン化合物を併用しなくても高い難燃性が発現し、しかもポリエチレン−2,6−ナフタレンジカルボキシレートが本来有する耐熱寸法安定性、機械特性および耐加水分解性の低下が少ないという特徴を有する。一方、式(I)以外のカルボキシホスフィン酸化合物を用いた場合、ポリエチレン−2,6−ナフタレンジカルボキシレートが本来有している優れた耐加水分解性を維持することが難しく、また同等の難燃性を得るためにはより多くの量を配合する必要があることから、耐熱寸法安定性、機械特性および耐加水分解性を損なう。   By using the carboxyphosphinic acid compound represented by the above formula (I) as the phosphorus compound, high flame retardancy is exhibited without using another phosphorus compound, and polyethylene-2,6-naphthalenedicarboxylate is obtained. Is inherently less resistant to dimensional stability, mechanical properties and hydrolysis resistance. On the other hand, when a carboxyphosphinic acid compound other than formula (I) is used, it is difficult to maintain the excellent hydrolysis resistance inherent in polyethylene-2,6-naphthalenedicarboxylate, and the same difficulty. In order to obtain flammability, since it is necessary to add a larger amount, the heat-resistant dimensional stability, mechanical properties and hydrolysis resistance are impaired.

式(I)で表わされるカルボキシホスフィン酸化合物としては、カルボキシメチルフェニルホスフィン酸、(2−カルボキシエチル)フェニルホスフィン酸、(2−カルボキシエチル)トルイルホスフィン酸、(2−カルボキシエチル)2,5−ジメチルフェニルホスフィン酸、(2−カルボキシエチル)シクロヘキシルホスフィン酸、(カルボキシプロピル)フェニルホスフィン酸、(4−カルボキシフェニル)フェニルホスフィン酸、(3−カルボキシフェニル)フェニルホスフィン酸およびそれらの低級アルコールエステル、低級アルコールジエステルなど挙げられる。これらの中でも特に好ましい化合物として、(2−カルボキシエチル)フェニルホスフィン酸および(カルボキシプロピル)フェニルホスフィン酸が挙げられ、上述のカルボキシホスフィン酸化合物を2種以上併用してもよい。   Examples of the carboxyphosphinic acid compound represented by the formula (I) include carboxymethylphenylphosphinic acid, (2-carboxyethyl) phenylphosphinic acid, (2-carboxyethyl) toluylphosphinic acid, (2-carboxyethyl) 2,5- Dimethylphenylphosphinic acid, (2-carboxyethyl) cyclohexylphosphinic acid, (carboxypropyl) phenylphosphinic acid, (4-carboxyphenyl) phenylphosphinic acid, (3-carboxyphenyl) phenylphosphinic acid and their lower alcohol esters, lower Examples include alcohol diesters. Among these, particularly preferred compounds include (2-carboxyethyl) phenylphosphinic acid and (carboxypropyl) phenylphosphinic acid, and two or more of the above carboxyphosphinic acid compounds may be used in combination.

これらのカルボキシホスフィン酸化合物は、カルボキシホスフィン酸化合物を含む層(以下、層Aと略記することがある)の重量に対し、リン原子として0.01重量%以上3重量%以下の範囲で含有される。また、カルボキシホスフィン酸化合物の含有量の下限は、好ましくは0.05重量%以上、より好ましくは0.1重量%以上、特に好ましくは0.5重量%以上である。カルボキシホスフィン酸化合物の含有量の上限は、好ましくは2重量%以下、より好ましくは1.5重量%以下、特に好ましくは1.0重量%以下である。カルボキシホスフィン酸化合物の含有量が下限に満たない場合にはフィルムとして充分な難燃性能が発現せず、また上限を超える場合、ポリエチレン−2,6−ナフタレンカルボキシレートが本来有する優れた耐熱寸法安定性、機械特性および耐加水分解性を維持したポリエステルフィルムが得られないことがある。   These carboxyphosphinic acid compounds are contained in the range of 0.01 wt% or more and 3 wt% or less as phosphorus atoms with respect to the weight of the layer containing the carboxyphosphinic acid compound (hereinafter sometimes abbreviated as layer A). The Further, the lower limit of the content of the carboxyphosphinic acid compound is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, and particularly preferably 0.5% by weight or more. The upper limit of the content of the carboxyphosphinic acid compound is preferably 2% by weight or less, more preferably 1.5% by weight or less, and particularly preferably 1.0% by weight or less. When the content of the carboxyphosphinic acid compound is less than the lower limit, sufficient flame retardancy performance as a film does not appear, and when it exceeds the upper limit, the excellent heat-resistant dimensional stability inherent to polyethylene-2,6-naphthalenecarboxylate Polyester film that maintains the properties, mechanical properties and hydrolysis resistance may not be obtained.

<ポリエステル>
本発明の難燃延伸ポリエステルフィルムは、リン化合物として下記式(I)で表されるカルボキシホスフィン酸化合物を含み、主たる構成成分がエチレン−2,6−ナフタレンジカルボキシレートであるポリエステル(以下PEN(A)と略記することがある)を含む。ここで「主たる」とは、カルボキシホスフィン酸化合物および主たる構成単位としてエチレン−2,6−ナフタレンジカルボキシレートを含む層(層A)の重量に対して65重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上、特に好ましくは85重量%以上を意味する。

Figure 0004817729
<Polyester>
The flame-retardant stretched polyester film of the present invention includes a polyester (hereinafter referred to as PEN (hereinafter referred to as PEN)) which contains a carboxyphosphinic acid compound represented by the following formula (I) as a phosphorus compound and whose main constituent is ethylene-2,6-naphthalenedicarboxylate. A) may be abbreviated as A). Here, “main” means 65% by weight or more, preferably 70% by weight or more based on the weight of the layer containing carboxyphosphinic acid compound and ethylene-2,6-naphthalenedicarboxylate as the main structural unit (layer A). More preferably, it means 80% by weight or more, particularly preferably 85% by weight or more.
Figure 0004817729

本発明のポリエステルは、層Aの重量に対して10重量%以下の範囲内でカルボキシホスフィン酸化合物以外の共重合成分をさらに有することができる。共重合体を構成する共重合成分として、分子内に2つのエステル形成性官能基を有する化合物を用いることができ、例えば蓚酸、アジピン酸、フタル酸、セバシン酸、ドデカンジカルボン酸、イソフタル酸、テレフタル酸、1,4−シクロヘキサンジカルボン酸、4,4’−ジフェニルジカルボン酸、フェニルインダンジカルボン酸、2,7−ナフタレンジカルボン酸、テトラリンジカルボン酸、デカリンジカルボン酸、ジフェニルエーテルジカルボン酸等の如きジカルボン酸;p−オキシ安息香酸、p−オキシエトキシ安息香酸の如きオキシカルボン酸;或いはトリメチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、シクロヘキサンメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物、ビスフェノールAのエチレンオキサイド付加物、ジエチレングリコール、ポリエチレンオキシドグリコールの如きジオールを好ましく用いることができる。これらの共重合成分は、1種または2種以上用いてもよい。これらの共重合成分の中で、好ましい酸成分としては、イソフタル酸、テレフタル酸、4,4’−ジフェニルジカルボン酸、2,7−ナフタレンジカルボン酸、p−オキシ安息香酸であり、好ましいジオール成分としては、トリメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール、ビスフェノールスルホンのエチレンオキサイド付加物である。   The polyester of the present invention may further have a copolymer component other than the carboxyphosphinic acid compound within a range of 10% by weight or less based on the weight of the layer A. As a copolymer component constituting the copolymer, a compound having two ester-forming functional groups in the molecule can be used. For example, oxalic acid, adipic acid, phthalic acid, sebacic acid, dodecanedicarboxylic acid, isophthalic acid, terephthalic acid Dicarboxylic acids such as acids, 1,4-cyclohexanedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, phenylindanedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, tetralindicarboxylic acid, decalindicarboxylic acid, diphenyletherdicarboxylic acid; An oxycarboxylic acid such as oxybenzoic acid, p-oxyethoxybenzoic acid; or an ester of trimethylene glycol, tetramethylene glycol, hexamethylene glycol, cyclohexanemethylene glycol, neopentyl glycol, bisphenolsulfone Alkylene oxide adducts, ethylene oxide adducts of bisphenol A, diethylene glycol, can be preferably used such diol polyethylene oxide glycol. These copolymer components may be used alone or in combination of two or more. Among these copolymer components, preferred acid components are isophthalic acid, terephthalic acid, 4,4′-diphenyldicarboxylic acid, 2,7-naphthalenedicarboxylic acid, p-oxybenzoic acid, and preferred diol components. Is an ethylene oxide adduct of trimethylene glycol, hexamethylene glycol, neopentyl glycol, bisphenol sulfone.

また、本発明のポリエステルは、例えば安息香酸、メトキシポリアルキレングリコールなどの一官能性化合物によって末端の水酸基および/またはカルボキシル基の一部または全部を封鎖したものであってよく、また極く少量の例えばグリセリン、ペンタエリスリトールの如き三官能以上のエステル形成性化合物で実質的に線状のポリマーが得られる範囲内で共重合したものであってもよい。   Further, the polyester of the present invention may be one in which part or all of the terminal hydroxyl group and / or carboxyl group is blocked with a monofunctional compound such as benzoic acid or methoxypolyalkylene glycol, and a very small amount thereof. For example, it may be a copolymer obtained from a trifunctional or higher functional ester-forming compound such as glycerin or pentaerythritol within a range in which a substantially linear polymer is obtained.

本発明のポリエステルは、従来公知の方法、例えばジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法や、ジカルボン酸の低級アルキルエステルとグリコールとを従来公知のエステル交換触媒である、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物の一種または二種以上を用いて反応させた後、重合触媒の存在下で重合反応を行う方法で得ることができる。重合触媒としては、三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。   The polyester of the present invention is a conventionally known method, for example, a method of directly obtaining a low polymerization degree polyester by reaction of dicarboxylic acid and glycol, or a lower alkyl ester of dicarboxylic acid and glycol are conventionally known transesterification catalysts, such as sodium It can be obtained by performing a polymerization reaction in the presence of a polymerization catalyst after reacting with one or more of compounds containing potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt. it can. Polymerization catalysts include antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate or partial hydrolysates thereof, and titanyl ammonium oxalate. , Titanium compounds such as potassium titanyl oxalate and titanium trisacetylacetonate can be used.

前記カルボキシホスフィン酸化合物は、ポリエステルの製造時の任意の時期に添加されるが、より好ましい添加時期はエステル化反応あるいはエステル交換反応により低重合体を生成する第1段階の反応の終了後から、得られた低重合体を重縮合反応させる第2段階の開始までの間である。   The carboxyphosphinic acid compound is added at any time during the production of the polyester, but a more preferable addition time is after the completion of the first stage reaction for producing a low polymer by esterification or transesterification, This is until the start of the second stage in which the obtained low polymer is subjected to a polycondensation reaction.

特に、エステル交換反応を経由して重合を行う場合は、重縮合反応前にエステル交換触媒を失活させる目的で、通常トリメチルホスフェート、トリエチルホスフェート、トリ−n−ブチルホスフェート、正リン酸等のリン化合物が通常添加されるが、本発明のカルボキシホスフィン酸化合物をエステル交換反応の終了後、重縮合反応開始前に添加することにより、前記エステル交換反応抑制剤を添加しなくても、同等の効果が得られる。なお、エステル交換触媒をより失活させる目的で、重縮合工程でエステル交換触媒の失活剤として通常用いられる前記リン化合物をリン元素として100ppm以下のごく少量の範囲内で使用してもよく、その量も極めて少量であって難燃性能を付与する目的で添加されるものではない。   In particular, when polymerization is performed via a transesterification reaction, phosphorous such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, or normal phosphoric acid is usually used to deactivate the transesterification catalyst before the polycondensation reaction. Although the compound is usually added, the same effect can be obtained without adding the transesterification inhibitor by adding the carboxyphosphinic acid compound of the present invention after the transesterification reaction and before the start of the polycondensation reaction. Is obtained. For the purpose of further deactivating the transesterification catalyst, the phosphorus compound usually used as a deactivator of the transesterification catalyst in the polycondensation step may be used as a phosphorus element in a very small range of 100 ppm or less, The amount thereof is extremely small and is not added for the purpose of imparting flame retardancy.

本発明におけるポリエステルの固有粘度は、o−クロロフェノール中、35℃において、0.40dl/g以上であることが好ましく、0.40〜0.90dl/gであることが更に好ましい。固有粘度が0.40dl/g未満では工程切断が多発することがある。また固有粘度が0.9dl/gより高いと溶融粘度が高いため溶融押出が困難であるうえ、重合時間が長く不経済である。   The intrinsic viscosity of the polyester in the present invention is preferably 0.40 dl / g or more, more preferably 0.40 to 0.90 dl / g at 35 ° C. in o-chlorophenol. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently. On the other hand, if the intrinsic viscosity is higher than 0.9 dl / g, melt extrusion is difficult because of high melt viscosity, and the polymerization time is long and uneconomical.

本発明の難燃延伸ポリエステルフィルムは、含有する全カルボキシホスフィン酸化合物のうち30〜100モル%がポリエステルの共重合成分として共重合化していることが好ましく、より好ましくは60〜100モル%、特に好ましくは80〜100モル%である。カルボキシホスフィン酸化合物が上述の範囲内でポリエステルに共重合化されることにより、難燃性、耐熱寸法安定性、機械特性および耐加水分解性を両立することが可能となる。   In the flame-retardant stretched polyester film of the present invention, 30 to 100 mol% of all the carboxyphosphinic acid compounds contained are preferably copolymerized as a copolymerization component of the polyester, more preferably 60 to 100 mol%, particularly Preferably it is 80-100 mol%. By copolymerizing the carboxyphosphinic acid compound with the polyester within the above range, it becomes possible to achieve both flame retardancy, heat-resistant dimensional stability, mechanical properties, and hydrolysis resistance.

<他添加剤>
本発明の難燃延伸ポリステルフィルムを構成する層Aには、上記のポリエステル以外の樹脂成分が更に含まれていてもよく、例えばポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアリレート、ポリエーテルイミド、ポリフェニレンエーテルおよびフェノキシ樹脂が挙げられる。かかる樹脂は、層Aの重量に対して好ましくは30重量%以下、より好ましくは20重量%以下の範囲内で用いることができる。かかる樹脂を上限を超えて用いた場合、ポリエチレンー2,6−ナフタレンジカルボキシレートが本来有する物理的特性を損なうことがある。
<Other additives>
The layer A constituting the flame-retardant stretched polyester film of the present invention may further contain a resin component other than the above polyester, such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polybutylene naphthalate, Examples include polycarbonate, polyarylate, polyetherimide, polyphenylene ether, and phenoxy resin. Such a resin can be used in an amount of preferably 30% by weight or less, more preferably 20% by weight or less based on the weight of the layer A. When such a resin is used in excess of the upper limit, the physical properties inherent to polyethylene-2,6-naphthalenedicarboxylate may be impaired.

本発明の難燃延伸ポリステルフィルムには、フィルムの取り扱い性を向上させるため、発明の効果を損なわない範囲で不活性粒子などが添加されていても良い。不活性粒子としては、例えば、周期律表第IIA、第IIB、第IVA、第IVBの元素を含有する無機粒子(例えば、カオリン、アルミナ、酸化チタン、炭酸カルシウム、二酸化ケイ素など)、架橋シリコーン樹脂、架橋ポリスチレン、架橋アクリル樹脂粒子等のごとき耐熱性の高いポリマーよりなる微粒子などを含有させることができる。
不活性粒子を含有させる場合、不活性粒子の平均粒径は、0.001〜5μmの範囲が好ましく、フィルム全重量に対して0.01〜10重量%の範囲で含有されることが好ましい。
In order to improve the handleability of the film, an inert particle or the like may be added to the flame retardant stretched polyester film of the present invention as long as the effects of the invention are not impaired. Examples of the inert particles include inorganic particles (for example, kaolin, alumina, titanium oxide, calcium carbonate, silicon dioxide) containing the elements of Periodic Tables IIA, IIB, IVA, and IVB, and crosslinked silicone resins. Further, fine particles made of a polymer having high heat resistance such as crosslinked polystyrene and crosslinked acrylic resin particles can be contained.
When the inert particles are contained, the average particle diameter of the inert particles is preferably in the range of 0.001 to 5 μm, and preferably in the range of 0.01 to 10% by weight with respect to the total weight of the film.

本発明の難燃延伸ポリステルフィルムには、さらに必要に応じて更に熱安定剤、酸化防止剤、紫外線吸収剤、離型剤、着色剤、帯電防止剤、滑剤等の添加剤を、本発明の目的を損なわない範囲で配合することができる。
不活性粒子およびこれら添加剤は、難燃延伸ポリエステルフィルムが2層以上の積層構造を有する場合、いずれの層に配合されても構わない。
If necessary, the flame retardant stretched polyester film of the present invention may further contain additives such as a heat stabilizer, an antioxidant, an ultraviolet absorber, a release agent, a colorant, an antistatic agent and a lubricant. It can mix | blend in the range which does not impair the objective.
The inert particles and these additives may be blended in any layer when the flame-retardant stretched polyester film has a laminated structure of two or more layers.

<難燃延伸ポリエステルフィルム>
本発明の難燃延伸ポリエステルフィルムは、本発明のカルボキシホスフィン酸化合物を含み、主たる構成成分がエチレン−2,6−ナフタレンジカルボキシレートであるポリエステルからなる層(層A)を含む、少なくとも1層からなるものである。
<Flame retardant stretched polyester film>
The flame-retardant stretched polyester film of the present invention includes at least one layer containing the carboxyphosphinic acid compound of the present invention and a layer (layer A) made of polyester whose main constituent is ethylene-2,6-naphthalenedicarboxylate. It consists of

本発明の難燃延伸ポリエステルフィルムは、層Aの少なくとも一方の面に、さらにポリエチレン−2,6−ナフタレンジカルボキシレート樹脂(以下PEN(B)と略記することがある)を主たる成分としてなる層(以下、層Bと略記することがある)を有してもよい。ここで「主たる」とは、該層Bの重量に対しポリエチレン−2,6−ナフタレンジカルボキシレート樹脂の含有量が80重量%以上、より好ましくは90重量%以上、特に好ましくは95重量%以上を意味する。層Bは、該層Bの重量に対し20重量%以下、より好ましくは10重量%以下、特に好ましくは5重量%以下の範囲で、本発明のカルボキシホスフィン酸化合物、不活性粒子、PEN以外の熱可塑性樹脂、その他添加剤を含有してもよいが、カルボキシホスフィン酸化合物の含有量は、層Bの重量に対しリン原子として1.0重量%以下であって、かつ層Aにおけるカルボキシホスフィン酸化合物の含有量未満であることが好ましい。難燃延伸ポリエステルフィルムは、2層以上の積層構成を有する場合、層Aが主に難燃性を発現する機能を有し、層Bが主に耐熱寸法安定性、機械特性を維持させる機能を有する。   The flame-retardant stretched polyester film of the present invention is a layer mainly composed of polyethylene-2,6-naphthalenedicarboxylate resin (hereinafter sometimes abbreviated as PEN (B)) on at least one surface of the layer A. (Hereinafter may be abbreviated as layer B). Here, “main” means that the content of the polyethylene-2,6-naphthalenedicarboxylate resin is 80% by weight or more, more preferably 90% by weight or more, particularly preferably 95% by weight or more based on the weight of the layer B. Means. Layer B is 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less based on the weight of Layer B, except for the carboxyphosphinic acid compound of the present invention, inert particles, and PEN. A thermoplastic resin and other additives may be contained, but the content of the carboxyphosphinic acid compound is 1.0% by weight or less as a phosphorus atom with respect to the weight of the layer B, and the carboxyphosphinic acid in the layer A The content is preferably less than the compound content. When the flame-retardant stretched polyester film has a laminated structure of two or more layers, the layer A mainly has a function of expressing flame retardancy, and the layer B mainly has a function of maintaining heat-resistant dimensional stability and mechanical properties. Have.

本発明の難燃延伸ポリエステルフィルムの層構成は、上述の2層構成以外に、さらに3層以上の構成であってもよく、例えば層A/層B/層A、層B/層A/層Bが例示される。かかる層数の上限は、特に制限されないが201層であることが好ましい。
難燃延伸ポリエステルフィルムは、フィルム厚みが3〜125μmであることが好ましく、より好ましくは5〜100μm、更に好ましくは7〜75μmの範囲である。本発明における延伸ポリエステルフィルムが積層構成を有する場合も、前記フィルム厚みの範囲であることが好ましい。
The layer structure of the flame-retarded stretched polyester film of the present invention may be three or more layers in addition to the two-layer structure described above. For example, layer A / layer B / layer A, layer B / layer A / layer B is exemplified. The upper limit of the number of layers is not particularly limited, but is preferably 201 layers.
The flame-retardant stretched polyester film preferably has a film thickness of 3 to 125 μm, more preferably 5 to 100 μm, and still more preferably 7 to 75 μm. Also when the stretched polyester film in this invention has a laminated structure, it is preferable that it is the range of the said film thickness.

<塗膜層>
本発明において、難燃延伸ポリエステルフィルム表面に各種の機能を付与するため、少なくとも一方の面に塗膜層が形成されてもよい。塗膜層を構成するバインダー樹脂としては、熱可塑性樹脂または熱硬化性樹脂の各種樹脂を使用し得る。たとえば、ポリエステル、ポリイミド、ポリアミド、ポリエステルアミド、ポリ塩化ビニル、ポリ(メタ)アクリル酸エステル、ポリウレタン、ポリ塩化ビニル、ポリスチレン、およびポリオレフィン、ならびにこれらの共重合体やブレンド物が挙げられる。中でもポリエステル、ポリイミド、ポリ(メタ)アクリル酸エステル、ポリウレタンが好ましく例示される。かかるバインダー樹脂は、更に架橋剤を加えて架橋されたものでも良い。塗膜層はコーティングによって形成されるのが好ましく、コーティング塗剤の溶媒として、トルエン、酢酸エチル、メチルエチルケトンなどの有機溶媒および混合物が使用され、また水を溶媒としてもよい。本発明の塗膜層は、構成成分として、さらにポリアルキレンオキサイドなどの界面活性剤および不活性粒子を含んでいてもよい。また、塗膜層を形成する成分として、本発明の目的を損ねない範囲で、上記成分以外にメラミン樹脂等の上述以外の樹脂、軟質重合体、フィラー、熱安定剤、耐候安定剤、老化防止剤、レベリング剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、染料、顔料、天然油、合成油、ワックス、乳剤、充填剤、硬化剤、難燃剤などを配合してもよい。
<Coating layer>
In the present invention, a coating layer may be formed on at least one surface in order to impart various functions to the surface of the flame-retardant stretched polyester film. As binder resin which comprises a coating-film layer, various resin of a thermoplastic resin or a thermosetting resin can be used. Examples thereof include polyester, polyimide, polyamide, polyesteramide, polyvinyl chloride, poly (meth) acrylic ester, polyurethane, polyvinyl chloride, polystyrene, and polyolefin, and copolymers and blends thereof. Of these, polyester, polyimide, poly (meth) acrylic acid ester, and polyurethane are preferred. Such a binder resin may be further crosslinked by adding a crosslinking agent. The coating layer is preferably formed by coating, and organic solvents and mixtures such as toluene, ethyl acetate and methyl ethyl ketone are used as a solvent for the coating agent, and water may be used as a solvent. The coating layer of the present invention may further contain a surfactant such as polyalkylene oxide and inert particles as constituent components. Moreover, as a component which forms a coating-film layer, in the range which does not impair the objective of this invention, in addition to the said component, resin other than the above, such as a melamine resin, a soft polymer, a filler, a heat stabilizer, a weather stabilizer, anti-aging Agents, leveling agents, antistatic agents, slip agents, antiblocking agents, antifogging agents, dyes, pigments, natural oils, synthetic oils, waxes, emulsions, fillers, curing agents, flame retardants, and the like may be added.

ポリエステルフィルムの少なくとも片面に前記成分からなる塗膜を形成させる方法として、例えば延伸可能なポリエステルフィルムに塗膜形成成分を含む水溶液を塗布した後、乾燥、延伸し必要に応じて熱処理することにより積層することが出来る。
上記の延伸可能なポリエステルフィルムとは、未延伸ポリエステルフィルム、一軸延伸ポリエステルフィルムまたは二軸延伸ポリエステルフィルムであり、これらの中でもフィルムの押出方向(縦方向または長手方向)に一軸延伸した縦延伸ポリエステルフィルムが特に好ましい。
As a method of forming a coating film comprising the above components on at least one surface of a polyester film, for example, after applying an aqueous solution containing a coating film forming component to a stretchable polyester film, drying, stretching, and laminating by heat treatment as necessary I can do it.
The stretchable polyester film is an unstretched polyester film, a uniaxially stretched polyester film or a biaxially stretched polyester film, and among these, a longitudinally stretched polyester film uniaxially stretched in the film extrusion direction (longitudinal direction or longitudinal direction). Is particularly preferred.

二軸延伸ポリエステルフィルムに塗剤を塗布する場合は、通常の塗工工程、すなわち二軸延伸後、熱固定したポリエステルフィルムに該フィルムの製造工程と切り離した工程で行うと埃、ちり等を巻き込み易い。かかる観点よりクリーンな雰囲気での塗布、すなわちフィルムの延伸工程での塗布が好ましい。そして、この塗布によれば、塗膜のポリエステルフィルムへの密着性が更に向上する。
塗布方法としては、公知の任意の塗布方法が適用できる。例えばロールコート法、グラビアコート法、ロールブラッシュ法、スプレーコート法、エアーナイフコート法、含浸法およびカーテンコート法などを単独または組み合わせて用いることが出来る。
When applying a coating agent to a biaxially stretched polyester film, dust, dust, etc. are involved in the normal coating process, that is, after biaxial stretching, in a heat-set polyester film separated from the film production process. easy. From such a viewpoint, application in a clean atmosphere, that is, application in a film stretching process is preferred. And according to this application | coating, the adhesiveness to the polyester film of a coating film further improves.
Any known coating method can be applied as the coating method. For example, a roll coating method, a gravure coating method, a roll brush method, a spray coating method, an air knife coating method, an impregnation method, and a curtain coating method can be used alone or in combination.

<熱収縮率>
本発明の難燃延伸ポリエステルフィルムの熱収縮率は、200℃×10分の条件でフィルムの長手方向および幅方向のいずれも−3〜3%であることが好ましい。また、本発明における熱収縮率は、好ましくは−2〜2%、特に好ましくは−1.5〜1.5%である。フィルムの熱収縮率が下限に満たない場合あるいは上限を超える場合は、例えば回路基板を形成する工程においてフィルムの熱収縮が大きいため、良好な回路パターンが形成できない場合がある。
<Heat shrinkage>
The heat shrinkage ratio of the flame-retardant stretched polyester film of the present invention is preferably −3 to 3% in both the longitudinal direction and the width direction of the film under the condition of 200 ° C. × 10 minutes. Further, the heat shrinkage rate in the present invention is preferably -2 to 2%, particularly preferably -1.5 to 1.5%. When the thermal contraction rate of the film is less than the lower limit or exceeds the upper limit, for example, in the process of forming the circuit board, the film has a large thermal contraction, and thus a good circuit pattern may not be formed.

本発明の熱収縮率は、ポリエステルの種類がポリエチレン−2,6−ナフタレンジカルボキシレート樹脂であること、およびカルボキシホスフィン酸化合物が前述の特定のリン化合物であることによって達成されるものであるが、より好ましくは(Tm−100℃)以上、特に好ましくは220℃〜250℃の条件で熱固定処理を施すことによって達成される。また、該熱固定の後、オフライン工程にて150〜220℃で1〜60秒間熱処理し、50〜80℃で除冷するアニール処理を施してもよい。   The heat shrinkage rate of the present invention is achieved by the fact that the type of polyester is polyethylene-2,6-naphthalenedicarboxylate resin and the carboxyphosphinic acid compound is the specific phosphorus compound described above. More preferably (Tm-100 ° C.) or more, particularly preferably by subjecting to a heat setting treatment at 220 ° C. to 250 ° C. Moreover, you may perform the annealing process which heat-processes at 150-220 degreeC after this heat setting at 150-220 degreeC for 1 to 60 seconds, and removes cooling at 50-80 degreeC.

<製膜>
本発明の難燃延伸ポリエステルフィルムは、少なくとも一軸延伸されていることが必要であるが、フィルムの厚み斑を小さくする観点から、ニ軸延伸されたポリエステルフィルムが好ましい。延伸方法としては、テンター法、インフレーション法等の従来知られている製膜方法を用いることができる。
<Film formation>
Although the flame-retardant stretched polyester film of the present invention needs to be at least uniaxially stretched, a biaxially stretched polyester film is preferable from the viewpoint of reducing the thickness unevenness of the film. As the stretching method, a conventionally known film forming method such as a tenter method or an inflation method can be used.

例えば、予め乾燥したポリエステルを300℃に加熱された押出機に供給し、Tダイよりシート状に成形する。このTダイより押し出されたシート状成形物を表面温度60℃の冷却ドラムで冷却固化し、この未延伸フィルムをロール加熱、赤外線加熱等で加熱し、縦方向に延伸して縦延伸フィルムを得る。かかる延伸は2個以上のロールの周速差を利用して行うのが好ましい。縦延伸温度はポリエステルのガラス転移点(Tg)より高い温度、更にはTgより20〜40℃高い温度とするのが好ましい。縦延伸倍率は、使用する用途の要求に応じて適宜調整すればよいが、好ましくは2.5倍以上4.0倍以下、更に好ましくは2.8倍以上3.9倍以下である。縦延伸倍率が2.5倍以下ではフィルムの厚み斑が悪くなり良好なフィルムが得られない場合がある。また、縦延伸倍率が4.0倍以上では製膜中に破断が発生し易くなる。   For example, pre-dried polyester is supplied to an extruder heated to 300 ° C. and formed into a sheet form from a T-die. The sheet-like molded product extruded from the T-die is cooled and solidified with a cooling drum having a surface temperature of 60 ° C., and this unstretched film is heated by roll heating, infrared heating, etc., and stretched in the longitudinal direction to obtain a longitudinally stretched film. . Such stretching is preferably performed by utilizing a difference in peripheral speed between two or more rolls. The longitudinal stretching temperature is preferably higher than the glass transition point (Tg) of the polyester, more preferably 20 to 40 ° C. higher than Tg. The longitudinal draw ratio may be appropriately adjusted according to the requirements of the intended use, but is preferably 2.5 times or more and 4.0 times or less, more preferably 2.8 times or more and 3.9 times or less. When the longitudinal draw ratio is 2.5 or less, the thickness unevenness of the film is deteriorated and a good film may not be obtained. Further, when the longitudinal draw ratio is 4.0 times or more, breakage tends to occur during film formation.

得られた縦延伸フィルムは、続いて横延伸、熱固定、熱弛緩の処理を順次施して二軸配向フィルムとするが、これらの処理はフィルムを走行させながら行う。横延伸処理は、ポリエステルのガラス転移点(Tg)より20℃高い温度から始め、ポリエステルの融点(Tm)より(120〜20)℃低い温度まで昇温しながら行う。この横延伸開始温度は(Tg+40)℃以下であることが好ましい。また横延伸最高温度は、Tmより(100〜40)℃低い温度であることが好ましい。横延伸開始温度が低すぎるとフィルムに破れが生じやすい。また横延伸最高温度が(Tm−120)℃より低いと、得られたフィルムの熱収縮率が大きくなり、また幅方向の物性の均一性が低下しやすい。一方横延伸最高温度が(Tm−20)℃より高いと、フィルムが柔らかくなりすぎ、製膜中にフィルムの破れが起こり易い。   The obtained longitudinally stretched film is subsequently subjected to lateral stretching, heat setting, and thermal relaxation to form a biaxially oriented film. These treatments are performed while the film is running. The transverse stretching treatment starts from a temperature 20 ° C. higher than the glass transition point (Tg) of the polyester and is performed while raising the temperature to a temperature lower by 120 to 20 ° C. than the melting point (Tm) of the polyester. The transverse stretching start temperature is preferably (Tg + 40) ° C. or lower. The maximum transverse stretching temperature is preferably (100 to 40) ° C. lower than Tm. When the transverse stretching start temperature is too low, the film is easily broken. When the maximum transverse stretching temperature is lower than (Tm−120) ° C., the thermal shrinkage rate of the obtained film increases, and the uniformity of physical properties in the width direction tends to be lowered. On the other hand, if the maximum transverse stretching temperature is higher than (Tm−20) ° C., the film becomes too soft and the film is easily broken during film formation.

横延伸過程での昇温は連続的でも段階的(逐次的)でもよいが、通常は逐次的に昇温する。例えばステンターの横延伸ゾーンをフィルム走行方向に沿って複数に分け、各ゾーンごとに所定温度の加熱媒体を流すことで昇温する。
横延伸倍率は、この用途の要求特性にもよるが、2.5倍以上4.0倍以下とするのが好ましい。更に好ましくは、2.8倍以上3.9倍以下である。横延伸倍率を2.5倍に満たないとフィルムの厚み斑が悪くなり良好なフィルムが得られないことがあり、一方4.0倍を超えると製膜中に破断が発生し易くなることがある。
The temperature increase in the transverse stretching process may be continuous or stepwise (sequential), but usually the temperature is increased sequentially. For example, the transverse stretching zone of the stenter is divided into a plurality along the film running direction, and the temperature is raised by flowing a heating medium of a predetermined temperature for each zone.
The transverse draw ratio is preferably 2.5 times or more and 4.0 times or less, although it depends on the required characteristics of this application. More preferably, they are 2.8 times or more and 3.9 times or less. If the transverse draw ratio is less than 2.5 times, the thickness unevenness of the film may be deteriorated and a good film may not be obtained. On the other hand, if it exceeds 4.0 times, breakage may easily occur during film formation. is there.

なお、ニ軸延伸されたフィルムはその後、熱固定処理が施される。本熱固定を施すことにより、フィルムの熱寸法安定性が向上し、例えば熱固定処理を(Tm−100℃)以上の温度で施すことにより達成することが出来る。また、更に熱収縮を抑えるために、フィルムを例えばオフライン工程にて150〜220℃で1〜60秒間熱処理し、50〜80℃で除冷するアニール処理を施してもよい。   The biaxially stretched film is then heat set. By performing the heat setting, the thermal dimensional stability of the film is improved, and for example, it can be achieved by performing a heat setting process at a temperature of (Tm-100 ° C.) or higher. Further, in order to further suppress the thermal shrinkage, the film may be subjected to an annealing process in which, for example, heat treatment is performed at 150 to 220 ° C. for 1 to 60 seconds in an offline process, and the film is cooled at 50 to 80 ° C.

本発明のポリエステルフィルムが積層構成を有する場合は、以下の方法で未延伸フィルムを作成し、その後の延伸工程は上述の方法に従って行う。2層構成の場合について例示すると、まず層A用に調整したポリエステル(PEN(A))を乾燥後、(Tm)〜(Tm+70)℃の温度範囲内で押出機内で溶融する。同時に、層B用に調整したポリエチレン−2,6−ナフタレンジカルボキシレート(PEN(B))を乾燥後、他の押出機に供給し、(Tm)〜(Tm+70)℃の温度範囲内で溶融する。続いて、両方の溶融樹脂をダイ内部で積層する方法、例えばマルチマニホールドダイを用いた同時積層押出法により、積層された未延伸フィルムが製造される。かかる同時積層押出法によると、層Aを形成する樹脂の溶融物と層Bを形成する樹脂の溶融物はダイ内部で積層され、積層形態を維持した状態でダイよりシート状に成形される。   When the polyester film of this invention has a laminated structure, an unstretched film is created with the following method and the subsequent extending process is performed according to the above-mentioned method. In the case of a two-layer structure, the polyester (PEN (A)) prepared for the layer A is first dried and then melted in an extruder within a temperature range of (Tm) to (Tm + 70) ° C. At the same time, polyethylene-2,6-naphthalenedicarboxylate (PEN (B)) prepared for layer B is dried and then supplied to another extruder and melted within a temperature range of (Tm) to (Tm + 70) ° C. To do. Subsequently, a laminated unstretched film is manufactured by a method of laminating both molten resins inside the die, for example, a simultaneous lamination extrusion method using a multi-manifold die. According to the simultaneous lamination extrusion method, the melt of the resin forming the layer A and the melt of the resin forming the layer B are laminated inside the die and formed into a sheet form from the die while maintaining the laminated form.

<フレキシブルプリント回路基板>
本発明の難燃延伸ポリエステルフィルムは、他の機能を付与する目的で片面または両面に、さらに他層を積層した積層体としてもよい。ここでいう他の層とは、例えば透明なポリエステルフィルム、金属箔、ハードコート層が挙げられる。
<Flexible printed circuit board>
The flame-retardant stretched polyester film of the present invention may be a laminate in which another layer is further laminated on one side or both sides for the purpose of imparting other functions. Examples of other layers herein include transparent polyester films, metal foils, and hard coat layers.

前記金属箔を積層する場合、難燃延伸ポリエステルフィルムのカルボキシホスフィン酸化合物を含有してなる層(層A)の一方の面に金属箔が積層され、フレキシブルプリント回路基板として用いられることが好ましい。本発明のカルボキシホスフィン酸化合物を含有してなる層(層A)は、接着層としての機能も有することから、層Aと金属箔とを貼り合せることによって金属箔との接着性が高まり、バインダー成分を含む接着剤層を用いることなく剥離の少ないフレキシブルプリント回路基板が得られる。また、層Aが接着層としての機能も兼ね備えるためには、カルボキシホスフィン酸化合物の含有量が5重量%を超えることが好ましい。   When laminating the metal foil, it is preferable that the metal foil is laminated on one surface of the layer (layer A) containing the carboxyphosphinic acid compound of the flame retardant stretched polyester film and used as a flexible printed circuit board. Since the layer (layer A) containing the carboxyphosphinic acid compound of the present invention also has a function as an adhesive layer, the adhesion between the metal foil and the layer A is increased by bonding the layer A and the metal foil. A flexible printed circuit board with less peeling can be obtained without using an adhesive layer containing components. Moreover, in order for the layer A to also have a function as an adhesive layer, the content of the carboxyphosphinic acid compound is preferably more than 5% by weight.

本発明のフレキシブルプリント回路基板は、場合に応じて層Aと金属箔との間にさらに接着層を有してもよい。本発明において用いられる金属箔としては銅箔が例示される。金属箔の接合手段や形状の具体的手段としては特に制限はなく、例えば金属箔を難燃延伸ポリエステルフィルムに貼り合せた後、金属箔をパターンエッチングするいわゆるサブトラクティブ法、難燃延伸ポリエステルフィルム上に銅などをパターン状にメッキするアディティブ法、パターン状に打ち抜いた金属箔を難燃延伸ポリエステルフィルムに貼り合せるスタンピングホイルなどを利用することができる。   The flexible printed circuit board of the present invention may further have an adhesive layer between the layer A and the metal foil depending on the case. An example of the metal foil used in the present invention is a copper foil. There are no particular limitations on the means for joining and shape of the metal foil. For example, a so-called subtractive method in which the metal foil is bonded to the flame retardant stretched polyester film and then the metal foil is subjected to pattern etching, on the flame retardant stretched polyester film. An additive method of plating copper or the like in a pattern, a stamping foil for bonding a metal foil punched in a pattern to a flame retardant stretched polyester film, or the like can be used.

以下、実施例により本発明を詳述するが、本発明はこれらの実施例のみに限定されるものではない。なお、各特性値は以下の方法で測定した。また、実施例中の%は、特に断らない限り、重量%を意味する。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples. Each characteristic value was measured by the following method. Moreover, unless otherwise indicated,% in an Example means weight%.

1.リン量の測定方法
得られたポリエステルのリン原子含有量を蛍光X線により測定した。
1. Method for measuring phosphorus content The phosphorus atom content of the obtained polyester was measured by fluorescent X-rays.

2.共重合化率の測定方法
下記数式(1)で表わされるFloryの式に応じて求める。

Figure 0004817729
(式中、TmはPEN共重合体の融点、TmAはPEN単独重合体の融点、△HuはPEN単独重合体の融解熱、pはエステル交換率、Rは気体定数をそれぞれ示す。) 2. Copolymerization rate measurement method The copolymerization rate is determined according to the Flory equation represented by the following equation (1).
Figure 0004817729
(In the formula, Tm represents the melting point of the PEN copolymer, TmA represents the melting point of the PEN homopolymer, ΔHu represents the heat of fusion of the PEN homopolymer, p represents the transesterification rate, and R represents the gas constant.)

3.熱収縮率
フィルムサンプルに30cm間隔で標点をつけ、荷重をかけずに200℃のオーブンで10分間熱処理を実施し、熱処理後の標点間隔を測定して、フィルム連続製膜方向(MD方向)と、製膜方向に垂直な方向(TD方向)において、下記式にて熱収縮率を算出した。
熱収縮率(%)=(熱処理前標点間距離−熱処理後標点間距離)/熱処理前標点間距離×100
3. Heat shrinkage rate Marks are attached to film samples at intervals of 30 cm, heat treatment is carried out in an oven at 200 ° C. for 10 minutes without applying a load, the distance between the marks after heat treatment is measured, and the film is continuously formed (MD direction) ) And the direction perpendicular to the film forming direction (TD direction), the thermal contraction rate was calculated by the following formula.
Thermal contraction rate (%) = (distance between the pre-heat treatment gauge points−distance between the heat treatment gauge points) / distance between the pre-heat treatment gauge points × 100

4.融点
フィルムサンプル約10mgを測定用のアルミニウム製パンに封入して示差熱量計(TAinstruments社製商品名「DSC2920」)に装着し、25℃から20℃/分の速度で300℃まで昇温させて融点(℃)を測定した。
4). Melting point Approximately 10 mg of a film sample was sealed in an aluminum pan for measurement and mounted on a differential calorimeter (trade name “DSC2920” manufactured by TA instruments), and the temperature was raised from 25 ° C. to 300 ° C. at a rate of 20 ° C./min. The melting point (° C.) was measured.

5.燃焼性
フィルムサンプルをUL−94 VTM法に準拠して評価した。サンプルを20cm×5cmにカットし、23±2℃、50±5%RH中で48時間放置し、その後、試料下端をバーナーから10mm上方に離し垂直に保持した。該試料の下端を内径9.5mm、炎長19mmのブンゼンバーナーを加熱源とし、3秒間接炎した。VTM−0,VTM−1,VTM−2の評価基準に沿って難燃性を評価した。
5). Flammability Film samples were evaluated according to the UL-94 VTM method. The sample was cut into 20 cm × 5 cm and left in 23 ± 2 ° C. and 50 ± 5% RH for 48 hours, and then the lower end of the sample was held 10 mm above the burner and held vertically. The bottom end of the sample was indirectly heated for 3 seconds using a Bunsen burner having an inner diameter of 9.5 mm and a flame length of 19 mm as a heating source. Flame retardancy was evaluated according to the evaluation criteria of VTM-0, VTM-1, and VTM-2.

6.機械的特性
200mm×10mmの短冊状のフィルムを、ORIENTEC社製テンシロンUTM−4−100型を用いてチャック間距離10cm、引張速度10mm/secで引張応力を測定し、5回測定した平均値より引張応力を求めた。
6). Mechanical properties A 200 mm × 10 mm strip film was measured using a Tensilon UTM-4-100 model manufactured by ORIENTEC, with a chuck distance of 10 cm and a tensile speed of 10 mm / sec. Tensile stress was determined.

7.耐加水分解性
200mm×10mmの短冊状のフィルムを、121℃・2atm・濡れ飽和モード・100%RHに設定した環境試験機内にステンレス製のクリップで吊り下げる。150時間経過後に環境試験機からフィルムを取り出し、ORIENTEC社製テンシロンUTM−4−100型を用いてチャック間距離10cm、引張速度10mm/secで引張応力を測定し、下記式に従って150時間経過時の強度保持率を算出した。測定は5回行い、その平均値より下記基準で耐加水分解性を判定した。
強度保持率(%)=(150時間経過時の引張応力/初期の引張応力)×100
○:強度保持率 80%以上100%以下
△:強度保持率 60%以上80%未満
×:強度保持率 0%以上60%未満
7). Hydrolysis resistance A 200 mm × 10 mm strip-shaped film is suspended with a stainless steel clip in an environmental tester set to 121 ° C., 2 atm, wet saturation mode, and 100% RH. After 150 hours, the film was taken out from the environmental tester, and the tensile stress was measured at 10 cm / sec between the chucks using a Tensilon UTM-4-100 model manufactured by ORIENTEC. The strength retention was calculated. The measurement was performed 5 times, and the hydrolysis resistance was determined from the average value according to the following criteria.
Strength retention (%) = (tensile stress after 150 hours / initial tensile stress) × 100
○: Strength retention 80% to 100% Δ: Strength retention 60% to less than 80% ×: Strength retention 0% to less than 60%

8.接着性
フィルムサンプルのカルボキシホスフィン酸化合物を配合してなる層(層A)の片面に厚さ35μmの銅箔層を熱プレスにより形成して、得られた積層体を10mm×200mmサンプリング後、JIS C 06471 8.1の方法B(180°ピール)に準拠して引き剥がし強さを測定した。その測定値を元に下記基準で判定した。
○: 引き剥がし強さ0.5N/mm以上
△: 引き剥がし強さ0.2N/mm以上0.5N/mm未満
×: 引き剥がし強さ0.2N/mm未満
8). Adhesion A copper foil layer having a thickness of 35 μm is formed on one side of a layer (layer A) formed by blending a carboxyphosphinic acid compound of a film sample by hot pressing, and the obtained laminate is sampled 10 mm × 200 mm, and then JIS The peel strength was measured according to method B (180 ° peel) of C 06471 8.1. Based on the measured value, the following criteria were used.
○: Peel strength 0.5 N / mm or more Δ: Peel strength 0.2 N / mm or more and less than 0.5 N / mm ×: Peel strength 0.2 N / mm or less

[実施例1]
まず、ナフタレン−2,6−ジカルボン酸ジメチルエステル100重量部、エチレングリコール60重量部を、エステル交換触媒として酢酸マンガン四水塩0.03重量部を使用して、常法に従ってエステル交換反応させた後、エチレングリコールに分散させた平均粒径0.3μmの球状シリカを表1に示す割合で添加した。ついで、下記式(II)で表わされる2−カルボキシエチルフェニルホスフィン酸を表1に示す割合で添加し、三酸化アンチモン0.024重量部を添加して、引き続き高温高真空下で常法にて重縮合反応を行い、固有粘度0.61dl/gのポリエステルを得た。
[Example 1]
First, 100 parts by weight of naphthalene-2,6-dicarboxylic acid dimethyl ester and 60 parts by weight of ethylene glycol were transesterified according to a conventional method using 0.03 parts by weight of manganese acetate tetrahydrate as a transesterification catalyst. Thereafter, spherical silica having an average particle size of 0.3 μm dispersed in ethylene glycol was added at a ratio shown in Table 1. Then, 2-carboxyethylphenylphosphinic acid represented by the following formula (II) was added at a ratio shown in Table 1, 0.024 part by weight of antimony trioxide was added, and subsequently, in a conventional manner under high temperature and high vacuum. A polycondensation reaction was performed to obtain a polyester having an intrinsic viscosity of 0.61 dl / g.

得られたポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し、290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍で延伸し、60℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き150℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.3倍で延伸した。その後テンタ−内で200℃の熱固定を行い、180℃で3%の弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性及び耐加水分解性に優れていた。また、得られた二軸配向ポリエステルフィルムにおいて、カルボキシホスフィン酸の共重合化率は100%であった。さらに、銅箔と貼りあわせた接着性評価において比較的良好な接着性が得られた。

Figure 0004817729
The obtained polyester was dried with a 180 ° C. dryer for 6 hours, put into an extruder, melt-kneaded at 295 ° C., and formed into a sheet form from a 290 ° C. die. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 60 ° C. is led to a roll group heated to 140 ° C., and stretched by 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the film was stretched by 3.3 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 150 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed at 200 ° C. in a tenter, and after 3% relaxation at 180 ° C., the film was uniformly removed and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are as shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Moreover, in the obtained biaxially oriented polyester film, the copolymerization rate of carboxyphosphinic acid was 100%. Furthermore, comparatively good adhesiveness was obtained in the evaluation of adhesiveness bonded to the copper foil.
Figure 0004817729

[実施例2]
2−カルボキシエチルフェニルホスフィン酸およびエチレン−2,6−ナフタレンジカルボキシレート単位の含有量を表1に示す割合に変更した以外は、実施例1と同様に重縮合を行った。
得られたポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し、290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍で延伸し、60℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き150℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.3倍で延伸した。その後テンタ−内で200℃の熱固定を行い、180℃で3%の弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性および耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において高い接着性が得られた。
[Example 2]
Polycondensation was performed in the same manner as in Example 1 except that the contents of 2-carboxyethylphenylphosphinic acid and ethylene-2,6-naphthalenedicarboxylate units were changed to the ratios shown in Table 1.
The obtained polyester was dried with a 180 ° C. dryer for 6 hours, put into an extruder, melt-kneaded at 295 ° C., and formed into a sheet form from a 290 ° C. die. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 60 ° C. is led to a roll group heated to 140 ° C., and stretched by 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the film was stretched by 3.3 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 150 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed at 200 ° C. in a tenter, and after 3% relaxation at 180 ° C., the film was uniformly removed and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are as shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, high adhesiveness was obtained in the adhesiveness evaluation bonded to the copper foil.

[実施例3]
2−カルボキシエチルフェニルホスフィン酸およびエチレン−2,6−ナフタレンジカルボキシレート単位の含有量を表1に示す割合に変更した以外は、実施例1と同様に重縮合を行った。
得られたポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し、290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍で延伸し、60℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き150℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.3倍で延伸した。その後テンタ−内で180℃の熱固定を行い、170℃で3%の弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本実施例のフィルムは難燃性に優れていた。また、機械特性、耐加水分解性および高温寸法安定性はPEN本来の特性より若干低下するものの実用可能な範囲であった。さらに、銅箔と貼りあわせた接着性評価において高い接着性が得られた。
[Example 3]
Polycondensation was performed in the same manner as in Example 1 except that the contents of 2-carboxyethylphenylphosphinic acid and ethylene-2,6-naphthalenedicarboxylate units were changed to the ratios shown in Table 1.
The obtained polyester was dried with a 180 ° C. dryer for 6 hours, put into an extruder, melt-kneaded at 295 ° C., and formed into a sheet form from a 290 ° C. die. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 60 ° C. is led to a roll group heated to 140 ° C., and stretched by 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the film was stretched by 3.3 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 150 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed at 180 ° C. in a tenter, and after 3% relaxation at 170 ° C., the film was uniformly removed and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are as shown in Table 1. The film of this example was excellent in flame retardancy. Further, the mechanical properties, hydrolysis resistance and high temperature dimensional stability were within the practical range although they were slightly lower than the original properties of PEN. Furthermore, high adhesiveness was obtained in the adhesiveness evaluation bonded to the copper foil.

[実施例4]
2−カルボキシエチルフェニルホスフィン酸の代わりに下記式(III)で表わされる−カルボキシプロピルフェニルホスフィン酸を用い、配合量を表1に示す割合に変更した以外は、実施例1と同様に重縮合を行った。
得られたポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し、290℃のダイスよりシート状に成形した。さらにこのシートを表面温度60℃の冷却ドラムで冷却固化した未延伸フィルムを140℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍で延伸し、60℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き150℃に加熱された雰囲気中で長手方向に垂直な方向(横方向)に3.3倍で延伸した。その後テンタ−内で200℃の熱固定を行い、180℃で3%の弛緩後、均一に除冷して室温まで冷やし、50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性および耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において比較的良好な接着性が得られた。

Figure 0004817729
[Example 4]
Polycondensation was performed in the same manner as in Example 1 except that 3 -carboxypropylphenylphosphinic acid represented by the following formula (III) was used instead of 2-carboxyethylphenylphosphinic acid and the blending amount was changed to the ratio shown in Table 1. Went.
The obtained polyester was dried with a 180 ° C. dryer for 6 hours, put into an extruder, melt-kneaded at 295 ° C., and formed into a sheet form from a 290 ° C. die. Furthermore, the unstretched film obtained by cooling and solidifying this sheet with a cooling drum having a surface temperature of 60 ° C. is led to a roll group heated to 140 ° C., and stretched by 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the film was stretched by 3.3 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 150 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, heat setting was performed at 200 ° C. in a tenter, and after 3% relaxation at 180 ° C., the film was uniformly removed and cooled to room temperature to obtain a biaxially stretched film having a thickness of 50 μm. The properties of the obtained film are as shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, comparatively good adhesiveness was obtained in the evaluation of adhesiveness bonded to the copper foil.
Figure 0004817729

[実施例5]
実施例1と同様の方法によって得られたポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練した(層A)。一方、ナフタレン−2,6−ジカルボン酸ジメチルエステル100重量部、エチレングリコール60重量部を、エステル交換触媒として酢酸マンガン四水塩0.03重量部を使用して、常法に従ってエステル交換反応させた後、トリメチルフォスフェート0.023重量部を添加し実質的にエステル交換反応を停止した。ついで、三酸化アンチモン0.024重量部を添加し、引き続き高温高真空下で常法にて重縮合反応を行い、固有粘度0.61dl/g、DEG共重合量1.3モル%のポリエチレン−2,6−ナフタレンジカルボキシレート(PEN)を得た。得られたポリエチレン−2,6−ナフタレンジカルボキシレートを180℃ドライヤーで6時間乾燥後、他方の押出機に投入し(層B)、それぞれ溶融した状態で2層に積層し(厚み比率 層A:層B=1:4)、かかる積層構造を維持した状態でダイスよりシート状に成形した以外は、実施例1と同様にして延伸フィルムを得た。得られたフィルムのフィルム厚みは50μm(層A:10μm,層B:40μm)であり、特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性及び耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において比較的良好な接着性が得られた。
[Example 5]
The polyester obtained by the same method as in Example 1 was dried with a 180 ° C. dryer for 6 hours, then charged into an extruder, and melt-kneaded at 295 ° C. (Layer A). On the other hand, 100 parts by weight of naphthalene-2,6-dicarboxylic acid dimethyl ester and 60 parts by weight of ethylene glycol were transesterified according to a conventional method using 0.03 parts by weight of manganese acetate tetrahydrate as a transesterification catalyst. Thereafter, 0.023 part by weight of trimethyl phosphate was added to substantially stop the transesterification reaction. Subsequently, 0.024 parts by weight of antimony trioxide was added, and then a polycondensation reaction was carried out in a conventional manner under high temperature and high vacuum to obtain a polyethylene having an intrinsic viscosity of 0.61 dl / g and a DEG copolymerization amount of 1.3 mol%. 2,6-Naphthalenedicarboxylate (PEN) was obtained. The obtained polyethylene-2,6-naphthalenedicarboxylate was dried with a 180 ° C. dryer for 6 hours and then charged into the other extruder (layer B), and laminated in two layers in a melted state (thickness ratio layer A). : Layer B = 1: 4), a stretched film was obtained in the same manner as in Example 1 except that the laminated structure was maintained and a sheet was formed from a die. The film thickness of the obtained film is 50 μm (layer A: 10 μm, layer B: 40 μm), and the characteristics are shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, comparatively good adhesiveness was obtained in the evaluation of adhesiveness bonded to the copper foil.

[実施例6]
層Aを形成するポリエステルは実施例2と同様に重縮合を行い、一方層Bを形成するPENは実施例5と同様に重縮合を行って得た。
得られた層A用のポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し(層A)、一方層B用のPENを180℃ドライヤーで6時間乾燥後、他方の押出機に投入し(層B)、それぞれ溶融した状態で2層に積層し(厚み比率 層A:層B=1:4)、かかる積層構造を維持した状態でダイスよりシート状に成形した以外は、実施例1と同様にして延伸フィルムを得た。得られたフィルムのフィルム厚みは50μm(層A:10μm,層B:40μm)であり、特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性及び耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において高い接着性が得られた。
[Example 6]
The polyester forming layer A was obtained by polycondensation as in Example 2, while the PEN forming layer B was obtained by polycondensation as in Example 5.
The obtained polyester for layer A was dried with a 180 ° C. dryer for 6 hours and then charged into an extruder, melted and kneaded at 295 ° C. (layer A), while the PEN for layer B was dried with a 180 ° C. dryer for 6 hours. The other extruder (layer B) is laminated in two layers in a melted state (thickness ratio layer A: layer B = 1: 4), and the sheet is formed into a sheet from the die while maintaining such a laminated structure. A stretched film was obtained in the same manner as in Example 1 except that the film was molded. The film thickness of the obtained film is 50 μm (layer A: 10 μm, layer B: 40 μm), and the characteristics are shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, high adhesiveness was obtained in the adhesiveness evaluation bonded to the copper foil.

[実施例7]
層Aを形成するポリエステルは実施例3と同様に重縮合を行い、一方層Bを形成するPENは実施例5と同様に重縮合を行って得た。
得られた層A用のポリエステルを180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練し(層A)、一方層B用のPENを180℃ドライヤーで6時間乾燥後、他方の押出機に投入し(層B)、それぞれ溶融した状態で2層に積層し(厚み比率 層A:層B=1:4)、かかる積層構造を維持した状態でダイスよりシート状に成形した以外は、実施例1と同様にして延伸フィルムを得た。得られたフィルムのフィルム厚みは50μm(層A:10μm,層B:40μm)であり、特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性及び耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において高い接着性が得られた。
[Example 7]
The polyester forming layer A was obtained by polycondensation as in Example 3, while the PEN forming layer B was obtained by polycondensation as in Example 5.
The obtained polyester for layer A was dried with a 180 ° C. dryer for 6 hours and then charged into an extruder, melted and kneaded at 295 ° C. (layer A), while the PEN for layer B was dried with a 180 ° C. dryer for 6 hours. The other extruder (layer B) is laminated in two layers in a melted state (thickness ratio layer A: layer B = 1: 4), and the sheet is formed into a sheet from the die while maintaining such a laminated structure. A stretched film was obtained in the same manner as in Example 1 except that the film was molded. The film thickness of the obtained film is 50 μm (layer A: 10 μm, layer B: 40 μm), and the characteristics are shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, high adhesiveness was obtained in the adhesiveness evaluation bonded to the copper foil.

[実施例8]
2−カルボキシエチルフェニルホスフィン酸を12.5重量%、エチレン−2,6−ナフタレンジカルボキシレート単位87.375重量%、球状シリカ粒子0.125重量%となるように配合した以外は実施例1と同様に重縮合を繰り返してポリエステルを得た。得られたポリエステル80重量%とポリエーテルイミド(GEプラスチック社製“ウルテム”)20重量%とをブレンドし、180℃ドライヤーで6時間乾燥後、押出機に投入し、295℃で溶融混練した(層A)。層Bを形成するPENは実施例5と同様に重縮合を行い、得られたポリエチレン−2,6−ナフタレンジカルボキシレートを180℃ドライヤーで6時間乾燥後、他方の押出機に投入し(層B)、それぞれ溶融した状態で2層に積層し(厚み比率 層A:層B=1:4)、かかる積層構造を維持した状態でダイスよりシート状に成形した以外は、実施例1と同様にして延伸フィルムを得た。得られたフィルムのフィルム厚みは50μm(層A:10μm,層B:40μm)であり、特性は表1の通りである。本実施例のフィルムは、高温寸法安定性、難燃性、機械特性及び耐加水分解性に優れていた。さらに、銅箔と貼りあわせた接着性評価において高い接着性が得られた。
[Example 8]
Example 1 except that 1-2.5% by weight of 2-carboxyethylphenylphosphinic acid, 87.375% by weight of ethylene-2,6-naphthalenedicarboxylate unit, and 0.125% by weight of spherical silica particles were blended. In the same manner as above, polycondensation was repeated to obtain a polyester. 80% by weight of the polyester obtained and 20% by weight of polyetherimide (“Ultem” manufactured by GE Plastics) were blended, dried with a 180 ° C. dryer for 6 hours, put into an extruder, and melt-kneaded at 295 ° C. ( Layer A). The PEN forming the layer B was subjected to polycondensation in the same manner as in Example 5. The obtained polyethylene-2,6-naphthalenedicarboxylate was dried with a 180 ° C. dryer for 6 hours and then charged into the other extruder (layer). B), laminated in two layers in a melted state (thickness ratio layer A: layer B = 1: 4), and similar to Example 1 except that the laminated structure was maintained and formed into a sheet from a die. Thus, a stretched film was obtained. The film thickness of the obtained film is 50 μm (layer A: 10 μm, layer B: 40 μm), and the characteristics are shown in Table 1. The film of this example was excellent in high temperature dimensional stability, flame retardancy, mechanical properties, and hydrolysis resistance. Furthermore, high adhesiveness was obtained in the adhesiveness evaluation bonded to the copper foil.

[比較例1]
カルボキシホスフィン酸化合物を添加しないで、ポリエステルとしてポリエチレン−2,6−ナフタレンジカルボキシレートホモポリマー(固有粘度0.61dl/g)を用いた以外は実施例1と同様に延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本比較例のフィルムは、寸法安定性、機械特性および耐加水分解性に優れるものの、難燃性が十分ではなかった。さらに、銅箔と貼りあわせた接着性評価において十分な接着性は得られなかった。
[Comparative Example 1]
A stretched film was obtained in the same manner as in Example 1 except that polyethylene-2,6-naphthalenedicarboxylate homopolymer (intrinsic viscosity 0.61 dl / g) was used as the polyester without adding a carboxyphosphinic acid compound. The properties of the obtained film are as shown in Table 1. Although the film of this comparative example was excellent in dimensional stability, mechanical properties, and hydrolysis resistance, the flame retardancy was not sufficient. Furthermore, sufficient adhesiveness was not obtained in the evaluation of adhesiveness bonded to the copper foil.

[比較例2、比較例3]
2−カルボキシエチルフェニルホスフィン酸の代わりに表1に示すカルボキシホスフィン酸を表1に示す量を用い、またエチレン−2,6−ナフタレンジカルボキシレート単位の含有量を表1に示す量用いた以外は、実施例1と同様の操作を繰り返し、延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本比較例のフィルムは、難燃性および耐加水分解性が充分でなかった。銅箔と貼りあわせた接着性評価は高い接着性が得られた。
[Comparative Example 2, Comparative Example 3]
The amount of carboxyphosphinic acid shown in Table 1 was used instead of 2-carboxyethylphenylphosphinic acid in the amount shown in Table 1, and the content of ethylene-2,6-naphthalenedicarboxylate unit was used in the amount shown in Table 1. Repeated the same operation as Example 1, and obtained the stretched film. The properties of the obtained film are as shown in Table 1. The film of this comparative example was insufficient in flame retardancy and hydrolysis resistance. High adhesiveness was obtained in the evaluation of adhesiveness bonded to the copper foil.

[比較例4]
ジメチルテレフタレート100重量部、エチレングリコール60重量部を、エステル交換触媒として酢酸マンガン四水塩0.03重量部を使用して、常法に従ってエステル交換反応させた後、エチレングリコールに分散させた平均粒径0.3μmの球状シリカを表1に示す割合で添加した。ついで、上式(II)で表わされる2−カルボキシエチルフェニルホスフィン酸を5重量%添加し、三酸化アンチモン0.024重量部を添加し、引き続き高温高真空下で常法にて重縮合反応を行い、固有粘度0.62dl/gの共重合PETを得た。
[Comparative Example 4]
The average particles dispersed in ethylene glycol after 100 parts by weight of dimethyl terephthalate and 60 parts by weight of ethylene glycol were transesterified according to a conventional method using 0.03 parts by weight of manganese acetate tetrahydrate as a transesterification catalyst. Spherical silica having a diameter of 0.3 μm was added at a ratio shown in Table 1. Next, 5% by weight of 2-carboxyethylphenylphosphinic acid represented by the above formula (II) is added, 0.024 part by weight of antimony trioxide is added, and then polycondensation reaction is performed in a conventional manner under high temperature and high vacuum. As a result, copolymerized PET having an intrinsic viscosity of 0.62 dl / g was obtained.

得られた共重合PETを160℃ドライヤーで6時間乾燥後、押出機に投入し、290℃で溶融混練して280℃のダイスよりシート状に成形した。さらにこのシートを表面温度20℃の冷却ドラムで冷却固化した未延伸フィルムを110℃に加熱したロール群に導き、長手方向(縦方向)に3.1倍で延伸し、20℃のロール群で冷却した。続いて、縦延伸したフィルムの両端をクリップで保持しながらテンターに導き120℃に加熱された雰囲気中で長手に垂直な方向(横方向)に3.3倍で延伸した。その後テンタ−内で180℃の熱固定を行い、170℃で3%の弛緩後、均一に除冷して室温まで冷やして50μm厚みの二軸延伸フィルムを得た。得られたフィルムの特性は表1の通りである。本比較例のフィルムは、機械特性および耐加水分解性は良好なものの、寸法安定性に劣り、難燃性もVTM−2レベルで十分ではなかった。   The obtained copolymerized PET was dried with a 160 ° C. dryer for 6 hours, then charged into an extruder, melt-kneaded at 290 ° C., and formed into a sheet form from a 280 ° C. die. Further, the unstretched film obtained by cooling and solidifying the sheet with a cooling drum having a surface temperature of 20 ° C. is led to a roll group heated to 110 ° C., and stretched by 3.1 times in the longitudinal direction (longitudinal direction). Cooled down. Subsequently, the film was stretched by 3.3 times in a direction perpendicular to the longitudinal direction (lateral direction) in an atmosphere heated to 120 ° C. while being guided to a tenter while holding both ends of the longitudinally stretched film with clips. Thereafter, the film was heat-set at 180 ° C. in a tenter, relaxed by 3% at 170 ° C., then uniformly cooled and cooled to room temperature to obtain a 50 μm-thick biaxially stretched film. The properties of the obtained film are as shown in Table 1. Although the film of this comparative example had good mechanical properties and hydrolysis resistance, it was inferior in dimensional stability and flame retardancy was not sufficient at the VTM-2 level.

Figure 0004817729
Figure 0004817729

本発明によって得られた難燃延伸ポリエステルフィルムは、難燃性、高温下での寸法安定性、機械特性及び耐加水分解性に優れることから、難燃性を要求される電気・電子部品用途あるいは自動車部品用途に用いることができ、特にフレキシブルプリント回路基板の基材フィルムに好適に使用される。   The flame-retardant stretched polyester film obtained by the present invention is excellent in flame retardancy, dimensional stability at high temperatures, mechanical properties and hydrolysis resistance, so that it can be used for electrical and electronic parts that require flame retardancy or It can be used for automotive parts, and is particularly suitable for a base film of a flexible printed circuit board.

Claims (6)

リン化合物として下記式(I)で表わされるカルボキシホスフィン酸化合物を含み、主たる構成成分がエチレン−2,6−ナフタレンジカルボキシレートであるポリエステルからなる少なくとも1層からなり、かかる層におけるリン量が、該層の重量に対しリン原子として0.01重量%以上3重量%以下であり、かつ全リン量が式(I)で表わされるカルボキシホスフィン酸化合物に由来することを特徴とする、金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルム。
Figure 0004817729
(式中、Rは炭素数6〜18のアリール基、R及びRは炭素数1〜18のアルキル基、アリール基、モノヒドロキシアルキル基または水素原子、Xは炭素数1〜18の2価の炭化水素基をそれぞれ表わし、R〜Rはそれぞれ同一でも異なっていてもよい。)
The phosphorous compound includes a carboxyphosphinic acid compound represented by the following formula (I), and the main constituent component is at least one layer composed of polyester of ethylene-2,6-naphthalenedicarboxylate, and the amount of phosphorus in the layer is A metal foil, characterized in that it is 0.01 wt% or more and 3 wt% or less as phosphorus atoms with respect to the weight of the layer, and the total phosphorus amount is derived from a carboxyphosphinic acid compound represented by the formula (I). Flame-retardant stretched polyester film for flexible printed circuit boards to be laminated .
Figure 0004817729
(In the formula, R 1 is an aryl group having 6 to 18 carbon atoms, R 2 and R 3 are an alkyl group having 1 to 18 carbon atoms, an aryl group, a monohydroxyalkyl group or a hydrogen atom, and X is an alkyl group having 1 to 18 carbon atoms. Each represents a divalent hydrocarbon group, and R 1 to R 3 may be the same or different.)
カルボキシホスフィン酸化合物が、下記式(II)及び下記式(III)で表される化合物からなる群より選ばれる少なくとも1種である請求項1に記載の金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルム。
Figure 0004817729
Figure 0004817729
The carboxyphosphinic acid compound is at least one selected from the group consisting of compounds represented by the following formula (II) and the following formula (III): for a flexible printed circuit board on which the metal foil according to claim 1 is laminated Flame retardant stretched polyester film.
Figure 0004817729
Figure 0004817729
ポリエチレン−2,6−ナフタレンジカルボキシレート樹脂を主たる成分としてなる層がさらに積層された請求項1または2に記載の金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルム。 The flame-retardant stretched polyester film for flexible printed circuit boards on which the metal foil according to claim 1 or 2 is further laminated, wherein a layer mainly composed of polyethylene-2,6-naphthalenedicarboxylate resin is further laminated. 200℃×10分における熱収縮率がフィルムの長手方向および幅方向のいずれも−3〜3%である請求項1〜3のいずれかに記載の金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルム。 The heat shrinkage rate at 200 ° C for 10 minutes is -3 to 3% in both the longitudinal direction and the width direction of the film. Difficulties for flexible printed circuit boards on which the metal foil according to any one of claims 1 to 3 is laminated Flame-stretched polyester film. カルボキシホスフィン酸化合物の30〜100モル%が共重合化している請求項1〜4のいずれかに記載の金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルム。 The flame retardant stretched polyester film for flexible printed circuit boards on which the metal foil according to any one of claims 1 to 4 is copolymerized, wherein 30 to 100 mol% of the carboxyphosphinic acid compound is copolymerized. 請求項1〜のいずれかに記載の金属箔が積層されるフレキシブルプリント回路基板用難燃延伸ポリエステルフィルムの、カルボキシホスフィン酸化合物を含む層の一方の面に金属箔が積層された構成を含むフレキシブルプリント回路基板。 The structure which the metal foil was laminated | stacked on one surface of the layer containing the carboxyphosphinic acid compound of the flame-retardant stretched polyester film for flexible printed circuit boards with which the metal foil in any one of Claims 1-5 is laminated | stacked is included. Flexible printed circuit board.
JP2005193800A 2005-07-01 2005-07-01 Flame retardant stretched polyester film Active JP4817729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005193800A JP4817729B2 (en) 2005-07-01 2005-07-01 Flame retardant stretched polyester film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005193800A JP4817729B2 (en) 2005-07-01 2005-07-01 Flame retardant stretched polyester film

Publications (2)

Publication Number Publication Date
JP2007009111A JP2007009111A (en) 2007-01-18
JP4817729B2 true JP4817729B2 (en) 2011-11-16

Family

ID=37748017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005193800A Active JP4817729B2 (en) 2005-07-01 2005-07-01 Flame retardant stretched polyester film

Country Status (1)

Country Link
JP (1) JP4817729B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5405968B2 (en) * 2009-09-29 2014-02-05 帝人デュポンフィルム株式会社 Flame retardant laminated polyester film for flat cable
KR102378145B1 (en) 2013-10-28 2022-03-23 도요보 가부시키가이샤 Flame-retardant biaxially-oriented polyester film, and flame-retardant polyester film layered body and flexible circuit board comprising same
JP6899733B2 (en) * 2017-08-10 2021-07-07 株式会社クラレ Multi-layer structure and its manufacturing method, packaging materials and products using it, and protective sheet for electronic devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287414A (en) * 1993-04-07 1994-10-11 Toray Ind Inc Production of flame-retardant polyester
JP3386201B2 (en) * 1993-09-24 2003-03-17 東洋紡績株式会社 Copolyester
JPH07100981A (en) * 1993-10-07 1995-04-18 Toray Ind Inc Flame-retardant surface porous film
JPH1110776A (en) * 1997-06-24 1999-01-19 Toray Ind Inc Laminate for circuit
DE10002160A1 (en) * 2000-01-20 2001-07-26 Mitsubishi Polyester Film Gmbh Co-extruded, biaxially oriented polyester film, useful for interior and exterior purposes and as printable, release of embossing film or label, contains flame retardant, ultraviolet stabilizer and polymer with sulfonate group
DE10344512A1 (en) * 2003-09-24 2005-04-28 Mitsubishi Polyester Film Gmbh Single-layer, oriented, electromagnetic radiation-structurable thermoplastic polyester film for producing selectively metallized films

Also Published As

Publication number Publication date
JP2007009111A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
US10208175B2 (en) Flame-retardant biaxially oriented polyester film, and flame-retardant polyester film laminate comprising the same and flexible circuit board
JP5081910B2 (en) Biaxially oriented film for electrical insulation
JP5680238B2 (en) Flame retardant biaxially oriented polyester film
KR20050118302A (en) Base film for semiconductor wafer processing
JP2006051661A (en) Mold release film
JP4817729B2 (en) Flame retardant stretched polyester film
JP2011231174A (en) Flame-retardant polyester film and flame-retardant flat cable obtained from the same
JP4528063B2 (en) Flame retardant stretched polyester film
JP2006051681A (en) Mold release film
JP3948908B2 (en) Polyester film for coverlay film
JP5379033B2 (en) Oriented polyester film and method for producing the same
JP5679884B2 (en) Flame retardant polyester film
JP5405968B2 (en) Flame retardant laminated polyester film for flat cable
JP2011230324A (en) Flame retardant laminated polyester film and flame retardant flat cable constituted of this film
JP6437863B2 (en) Flame retardant biaxially oriented polyester film for flexible circuit board and flexible circuit board comprising the same
JP4904019B2 (en) Biaxially oriented polyester film
JP4880945B2 (en) Flame-retardant polyester film and method for producing the same
JP2011175923A (en) Flame-retardant laminated polyester film for flat cable, and flame-retardant flat cable made of the film
JP2015042706A (en) Flame-retardant polyester film
JP2000343663A (en) Release film
JP2009079123A (en) Flame retardant polyester film
JPH0992691A (en) Polyethylene naphthalate film for tab
JP2011016899A (en) Polyester film for heat-resistant tape
JP2000103876A (en) Polyester film and laminate thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110711

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4817729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250