JP4815281B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP4815281B2
JP4815281B2 JP2006175429A JP2006175429A JP4815281B2 JP 4815281 B2 JP4815281 B2 JP 4815281B2 JP 2006175429 A JP2006175429 A JP 2006175429A JP 2006175429 A JP2006175429 A JP 2006175429A JP 4815281 B2 JP4815281 B2 JP 4815281B2
Authority
JP
Japan
Prior art keywords
air conditioner
heating
heat exchanger
compressor
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006175429A
Other languages
Japanese (ja)
Other versions
JP2008002790A (en
Inventor
秀明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006175429A priority Critical patent/JP4815281B2/en
Publication of JP2008002790A publication Critical patent/JP2008002790A/en
Application granted granted Critical
Publication of JP4815281B2 publication Critical patent/JP4815281B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷凍サイクルを有する空気調和機に関し、特に効率向上及び起動時の冷凍サイクルの安定を早めることが可能な技術に関する。   The present invention relates to an air conditioner having a refrigeration cycle, and more particularly to a technique capable of improving efficiency and accelerating the stability of a refrigeration cycle at startup.

室内熱交換器及び室外熱交換器を有し、冷凍サイクルを行う空気調和機において、例えば室外空気温度が比較的低い条件下では、暖房運転時に室外熱交換器に着霜する場合がある。着霜すると熱交換器の能力が低下するため、空気調和機の性能は低下する。そこで、圧縮機から吐出される高温のガス冷媒を利用して除霜運転を行う方法や、圧縮機に導入される冷媒をヒータ等の冷媒加熱手段を用いて加熱することで液バックを防止しつつ除霜運転を行う方法が知られている(例えば特許文献1参照)。
特開平3−105183号公報
In an air conditioner having an indoor heat exchanger and an outdoor heat exchanger and performing a refrigeration cycle, the outdoor heat exchanger may be frosted during heating operation, for example, under conditions where the outdoor air temperature is relatively low. When the frost is formed, the performance of the heat exchanger decreases, so the performance of the air conditioner decreases. Therefore, liquid back is prevented by a method of performing a defrosting operation using high-temperature gas refrigerant discharged from the compressor, or by heating the refrigerant introduced into the compressor using refrigerant heating means such as a heater. A method for performing a defrosting operation is known (for example, see Patent Document 1).
JP-A-3-105183

上述したヒータを用いる空気調和機では、次のような問題があった。すなわち、ヒータは除霜運転にのみ用いられており、その他の機能、例えば冷凍サイクルの効率向上等を行うことができなかった。   The air conditioner using the heater described above has the following problems. That is, the heater is used only for the defrosting operation, and cannot perform other functions, such as improving the efficiency of the refrigeration cycle.

そこで本発明は、冷媒加熱手段を用いることで除霜運転のみならず、暖房能力向上及び安定運転を行える空気調和機を提供することを目的としている。   Then, this invention aims at providing the air conditioner which can perform not only a defrost operation but a heating capability improvement and stable operation by using a refrigerant | coolant heating means.

前記課題を解決し目的を達成するために、本発明の空気調和機は次のように構成されている。   In order to solve the problems and achieve the object, the air conditioner of the present invention is configured as follows.

圧縮機、四方弁、室外熱交換器、膨張装置及び室内熱交換器が順次接続されて構成された冷凍サイクルと、暖房運転時に上記室外熱交換器の蒸発温度と、上記室外熱交換器の出口と上記圧縮機を接続する吸込配管の吸込冷媒温度との温度差である過熱度を検出する検出手段と、この検出手段で検出された上記過熱度が所定の制御目標値となるように上記膨張装置の開度を制御する制御手段と、上記吸込配管に設けられた冷媒加熱手段とを備え、上記制御手段は、暖房運転時の上記冷媒加熱手段による加熱時に、非加熱時よりも過熱度が大きくなるように上記制御目標値を変更することを特徴とする。 Refrigeration cycle configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger, the evaporation temperature of the outdoor heat exchanger during heating operation, and the outlet of the outdoor heat exchanger Detecting means for detecting the degree of superheat, which is a temperature difference between the suction refrigerant temperature of the suction pipe connecting the compressor and the compressor, and the expansion so that the degree of superheat detected by the detecting means becomes a predetermined control target value. A control means for controlling the opening degree of the apparatus, and a refrigerant heating means provided in the suction pipe, wherein the control means has a degree of superheat at the time of heating by the refrigerant heating means at the time of heating operation as compared with that at the time of non-heating. The control target value is changed so as to increase .

本発明によれば、冷媒加熱手段を用いることで除霜運転のみならず、暖房能力向上及び安定運転を行える空気調和機を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the air conditioner which can perform not only a defrost operation but a heating capability improvement and stable operation by using a refrigerant | coolant heating means.

図1は本発明の第1の実施の形態に係る空気調和機10を示す構成図、図2は空気調和機10のP−h線図である。   FIG. 1 is a configuration diagram illustrating an air conditioner 10 according to a first embodiment of the present invention, and FIG. 2 is a Ph diagram of the air conditioner 10.

空気調和機10は、圧縮機11と、この圧縮機11の吐出口に連結された吐出配管12と、吐出配管12に連結された四方弁13と、四方弁13に連結された室内熱交換器14と、室内熱交換器14に連結された電子膨張弁15と、電子膨張弁15に連結された室外熱交換器16と、室外熱交換器16に四方弁13を介して連結された吸込配管17と、吸込配管17に連結されたアキュムレータ19とを順次備え、吸込配管17上であり、アキュムレータ19入口に設けられたヒータ(冷媒加熱手段)18を有し、アキュムレータ19は圧縮機11の吸込口へと連結されている。   The air conditioner 10 includes a compressor 11, a discharge pipe 12 connected to the discharge port of the compressor 11, a four-way valve 13 connected to the discharge pipe 12, and an indoor heat exchanger connected to the four-way valve 13. 14, an electronic expansion valve 15 connected to the indoor heat exchanger 14, an outdoor heat exchanger 16 connected to the electronic expansion valve 15, and a suction pipe connected to the outdoor heat exchanger 16 via a four-way valve 13. 17 and an accumulator 19 connected to the suction pipe 17 in order, and has a heater (refrigerant heating means) 18 provided on the inlet of the accumulator 19 on the suction pipe 17, and the accumulator 19 It is connected to the mouth.

空気調和機10は、四方弁13を切り替えることにより冷媒の流れの方向を逆にすることが可能に構成されている。   The air conditioner 10 is configured to be able to reverse the direction of refrigerant flow by switching the four-way valve 13.

圧縮機11の吐出口には、圧縮機11からの吐出温度TDを計測する吐出温度センサ20が設けられている。   A discharge temperature sensor 20 that measures a discharge temperature TD from the compressor 11 is provided at the discharge port of the compressor 11.

電子膨張弁15と室外熱交換器16の間であり、室外熱交換器16の入口には、室外熱交換器16の入口蒸発温度TEを計測する蒸発温度センサ21が設けられている。   An evaporation temperature sensor 21 that measures the inlet evaporation temperature TE of the outdoor heat exchanger 16 is provided between the electronic expansion valve 15 and the outdoor heat exchanger 16 and at the inlet of the outdoor heat exchanger 16.

圧縮機11の吸入口側であり、ヒータ18とアキュムレータ19の間には、圧縮機11への吸込温度TSを計測する吸込温度センサ22が設けられている。   A suction temperature sensor 22 that measures the suction temperature TS to the compressor 11 is provided between the heater 18 and the accumulator 19 on the suction port side of the compressor 11.

空気調和機10は、吐出温度センサ20、蒸発温度センサ21及び吸込温度センサ22からの温度情報の受信が可能な制御器30が設けられている。   The air conditioner 10 is provided with a controller 30 capable of receiving temperature information from the discharge temperature sensor 20, the evaporation temperature sensor 21, and the suction temperature sensor 22.

制御部30は、吐出温度センサ20からの吐出温度TD情報と、蒸発温度センサ21からの蒸発温度TE情報及び吸込温度センサ22からの吸込温度TS情報とを受信し、それらの温度情報に基づいて電子膨張弁15の開度を制御することが可能に構成されている。   The control unit 30 receives the discharge temperature TD information from the discharge temperature sensor 20, the evaporation temperature TE information from the evaporation temperature sensor 21 and the suction temperature TS information from the suction temperature sensor 22, and based on the temperature information. The opening degree of the electronic expansion valve 15 can be controlled.

このように構成された空気調和機10は、次のようにして運転が行われる。すなわち、暖房運転時、吸込温度センサ22からの吸込温度TS情報と蒸発温度センサ21からの蒸発温度TE情報とが制御部30へ送信され、吸込温度TSと蒸発温度TEの差である過熱度SH値(SH=TS−TE)が一定になるよう制御部30により電子膨張弁15の開度が制御される。   The air conditioner 10 configured as described above is operated as follows. That is, during the heating operation, the suction temperature TS information from the suction temperature sensor 22 and the evaporation temperature TE information from the evaporation temperature sensor 21 are transmitted to the control unit 30, and the superheat degree SH that is the difference between the suction temperature TS and the evaporation temperature TE is transmitted. The opening degree of the electronic expansion valve 15 is controlled by the control unit 30 so that the value (SH = TS−TE) becomes constant.

通常の暖房運転時は、SH値は室外熱交換器16の機能を十分に得るために過熱度設定値SH1=TS1−TE(例えば5℃程度)の設定とし、制御部30で電子膨張弁15を制御しながら空気調和機10が運転される(図2参照)。   During normal heating operation, the SH value is set to a superheat setting value SH1 = TS1-TE (for example, about 5 ° C.) in order to sufficiently obtain the function of the outdoor heat exchanger 16, and the electronic expansion valve 15 is controlled by the control unit 30. The air conditioner 10 is operated while controlling (see FIG. 2).

暖房能力向上運転時は、ヒータ18を作動させ、過熱度設定値をSH2=TS2−TE>SH1と変更する。これにより、制御部30は電子膨張弁15の開度を蒸発圧力が高くなり過ぎないように制御する。また、室外熱交換器16の機能を十分に得られ、暖房能力が向上される(図2参照)。   During the heating capacity improving operation, the heater 18 is operated, and the superheat setting value is changed to SH2 = TS2-TE> SH1. Thereby, the control part 30 controls the opening degree of the electronic expansion valve 15 so that the evaporation pressure does not become too high. Moreover, the function of the outdoor heat exchanger 16 can be sufficiently obtained, and the heating capacity is improved (see FIG. 2).

なお、ヒータ18を作動させたまま、過熱度設定値SH1を維持すると、冷媒は加熱され、電子膨張弁15の開度が大きくなる。電子膨張弁15の開度が大きくなると蒸発圧力が高くなり、蒸発温度も上昇する。このため、冷媒の温度と外気の温度との温度差が小さくなり、室外交換機16の効率が悪くなる。   If the superheat setting value SH1 is maintained while the heater 18 is operated, the refrigerant is heated and the opening of the electronic expansion valve 15 is increased. As the opening of the electronic expansion valve 15 increases, the evaporation pressure increases and the evaporation temperature also increases. For this reason, the temperature difference between the temperature of the refrigerant and the temperature of the outside air is reduced, and the efficiency of the outdoor exchanger 16 is deteriorated.

起動時運転時は、ヒータ18を作動させ、通常の暖房運転と同じ過熱度設定値SH1=TS1−TE(例えば5℃)で運転する。この運転により、液バックによる信頼性の悪化も無く、かつ、冷媒循環量が十分に得られるため、起動時の冷凍サイクルの安定が早くなる(図2参照)。   During the start-up operation, the heater 18 is operated, and the operation is performed at the same superheat setting value SH1 = TS1-TE (for example, 5 ° C.) as in the normal heating operation. By this operation, there is no deterioration in reliability due to the liquid back, and a sufficient amount of refrigerant circulation is obtained, so that the stability of the refrigeration cycle at the time of startup is accelerated (see FIG. 2).

なお、過熱度設定値SH1としないと、室外熱交換器16の熱バランスが安定するまでは、液バック運転(SH3=TS3−TE≦0)となりやすい。そのため、制御部30は、液バック運転を回避するために電子膨張弁15の開度を絞り気味にする。しかし、電子膨張弁15の開度を絞り気味にすると、冷媒循環量が得られず、安定状態に達するまでの時間がかかることとなる。   Unless the superheat setting value SH1 is set, the liquid back operation (SH3 = TS3-TE ≦ 0) tends to occur until the heat balance of the outdoor heat exchanger 16 is stabilized. Therefore, the control unit 30 makes the opening degree of the electronic expansion valve 15 narrow to avoid the liquid back operation. However, if the opening degree of the electronic expansion valve 15 is reduced, the refrigerant circulation amount cannot be obtained, and it takes time to reach a stable state.

本実施の形態に係る空気調和機10によれば、ヒータ18を用いるとともに、運転状態によって過熱度設定値SH1及びSH2を切り替え、この過熱度設定値SH1〜2に基づいて電子膨張弁15の開度を調節することで、暖房能力向上及び安定運転を行うことが可能となる。   According to the air conditioner 10 according to the present embodiment, the heater 18 is used, the superheat degree setting values SH1 and SH2 are switched depending on the operating state, and the electronic expansion valve 15 is opened based on the superheat degree setting values SH1 and SH2. By adjusting the degree, it becomes possible to improve the heating capacity and perform stable operation.

なお、上述した空気調和機10においては、ヒータ18を能力制御が可能なものとしてもよい。すなわち、能力制御が可能なヒータを用いると、加熱能力が小さいときに、SH設定値を小さく設定し制御部30により電子膨張弁15を制御する。同様に空気調和機10は、制御が可能なヒータを用い、加熱能力が大きいときは、SH設定値を大きく設定し制御部30により電子膨張弁15を制御する。これにより、室外熱交換器16の機能を損なわず、暖房能力を向上することが可能となる。   In the air conditioner 10 described above, the heater 18 may be capable of capacity control. That is, when a heater capable of capacity control is used, when the heating capacity is small, the SH set value is set small and the control unit 30 controls the electronic expansion valve 15. Similarly, the air conditioner 10 uses a controllable heater, and when the heating capacity is large, the SH set value is set large and the control unit 30 controls the electronic expansion valve 15. Thereby, heating capability can be improved without impairing the function of the outdoor heat exchanger 16.

また、圧縮機11の運転周波数に応じてSH設定値を制御可能な構成としてもよい。制御部30は電子膨張弁15を制御する際、圧縮機11の運転周波数によりSH設定値を設定し、電子膨張弁15を制御する。圧縮機11の運転周波数に応じて、冷媒循環量が変化し、ヒータ18による温度上昇値が変化する。そこで、圧縮機11の運転周波数が大きくなる場合は、SH設定値を小さくする。圧縮機11の運転周波数が小さくなる場合はSH設定値を大きくする。このSH値の設定により、室外熱交換器16は機能を損なわず、暖房能力を向上することが可能となる。   Moreover, it is good also as a structure which can control SH setting value according to the operating frequency of the compressor 11. FIG. When the control unit 30 controls the electronic expansion valve 15, it sets the SH set value according to the operating frequency of the compressor 11 and controls the electronic expansion valve 15. Depending on the operating frequency of the compressor 11, the refrigerant circulation amount changes, and the temperature rise value by the heater 18 changes. Therefore, when the operating frequency of the compressor 11 is increased, the SH set value is decreased. When the operating frequency of the compressor 11 decreases, the SH set value is increased. By setting the SH value, the outdoor heat exchanger 16 can improve the heating capacity without impairing the function.

図3は本発明の第2の実施の形態に係る空気調和機40を示す構成図である。図3中の図1と同一機能部分には同一符号を付し、その詳細な説明は省略する。   FIG. 3 is a block diagram showing an air conditioner 40 according to the second embodiment of the present invention. 3 that are the same as those in FIG. 1 are given the same reference numerals, and detailed descriptions thereof are omitted.

空気調和機40は、例えば商用電源等の電源部31と、電源部31に接続されインバータ、制御回路及び充電回路等を備えている回路部32と、回路部32に接続された蓄電池33を備えている。   The air conditioner 40 includes a power supply unit 31 such as a commercial power supply, a circuit unit 32 connected to the power supply unit 31 and including an inverter, a control circuit, a charging circuit, and the like, and a storage battery 33 connected to the circuit unit 32. ing.

回路部32は、圧縮機11、電子膨張弁15及びヒータ18に接続されている。ヒータ18への電力の供給は、主として、蓄電池33から回路部32を介してヒータ18へ供給される。また、室内熱交換器14には室内熱交換器温度センサ23が設けられている。   The circuit unit 32 is connected to the compressor 11, the electronic expansion valve 15, and the heater 18. The power supply to the heater 18 is mainly supplied from the storage battery 33 to the heater 18 via the circuit unit 32. The indoor heat exchanger 14 is provided with an indoor heat exchanger temperature sensor 23.

このように構成された空気調和機40では、圧縮機11の運転停止時等、空気調和機40への入力電流が小さいときに、蓄電池33へ電流を充電する。空気調和機40を通常運転させるときは、圧縮機11の運転や電子膨張弁15の制御には電源部31からの電流を回路部32を介し作動させる。一方、ヒータ18は、蓄電池33を用いて作動させる。   In the air conditioner 40 configured as described above, when the input current to the air conditioner 40 is small, such as when the operation of the compressor 11 is stopped, the battery 33 is charged with current. When the air conditioner 40 is normally operated, the current from the power supply unit 31 is operated via the circuit unit 32 for the operation of the compressor 11 and the control of the electronic expansion valve 15. On the other hand, the heater 18 is operated using the storage battery 33.

冷房運転の起動時にヒータ18を作動させ、室内熱交換器14の室内熱交換器温度センサ23にて室内熱交換器14の温度を計測し、上述した暖房運転時と同様に回路部32で制御する。   When the cooling operation is started, the heater 18 is operated, the temperature of the indoor heat exchanger 14 is measured by the indoor heat exchanger temperature sensor 23 of the indoor heat exchanger 14, and is controlled by the circuit unit 32 as in the heating operation described above. To do.

このように、ヒータ18の電源として、蓄電池33に圧縮機11の運転停止時等に充電しておいた電流を使用することができる。したがって、ヒータ18の電源として、空気調和機40の電源部31から電流を得ると、ヒータ18に投入する電力分が圧縮機11に投入できなくなり、圧縮機11で使用できる電力が減ってしまうことを防止できる。このため、蓄電池33からヒータ18の作動電流を得ることにより、圧縮機11への供給電力を最大限に活用できる。圧縮機11への供給電力を最大限に活用することで、空気調和機40は高い暖房能力を発揮する運転が可能となる。   Thus, the current charged in the storage battery 33 when the compressor 11 is stopped can be used as the power source of the heater 18. Therefore, when a current is obtained from the power supply unit 31 of the air conditioner 40 as the power source of the heater 18, the power to be input to the heater 18 cannot be input to the compressor 11, and the power that can be used by the compressor 11 is reduced. Can be prevented. For this reason, the electric power supplied to the compressor 11 can be utilized to the maximum by obtaining the operating current of the heater 18 from the storage battery 33. By utilizing the power supplied to the compressor 11 to the maximum extent, the air conditioner 40 can be operated to exhibit high heating capacity.

また、上述の暖房運転時と同じように、室内熱交換器温度センサ23で計測した温度情報により電子膨張弁15を冷房運転時にも制御することにより、冷房運転の立ち上がりを早くすることが可能となる。   Further, as in the heating operation described above, it is possible to speed up the start of the cooling operation by controlling the electronic expansion valve 15 during the cooling operation based on the temperature information measured by the indoor heat exchanger temperature sensor 23. Become.

本実施の形態に係る空気調和機40によれば、前述した空気調和機10と同様に効率の高く安定的な運転が行われるとともに、圧縮機11への供給電力を最大限に活用することで、高暖房能力を発揮することができる。   According to the air conditioner 40 according to the present embodiment, the highly efficient and stable operation is performed in the same manner as the air conditioner 10 described above, and the power supplied to the compressor 11 is maximized. Can demonstrate high heating ability.

なお、本発明は前記各実施の形態に限定されるものではない。例えば、上述した例では、ヒータ(冷媒加熱手段)18とだけ明記したが、例えばヒータ18に正特性サーミスタ(例えばPTCヒータ)を用いることでも適用できる。正特性サーミスタを用いることで、正特性サーミスタの自己温度制御性でヒータによる過剰な加熱を抑えることができ、安全な空気調和機を提供できる。   The present invention is not limited to the embodiments described above. For example, in the above-described example, only the heater (refrigerant heating means) 18 is specified. However, for example, a positive temperature coefficient thermistor (for example, a PTC heater) may be used for the heater 18. By using the positive temperature coefficient thermistor, excessive heating by the heater can be suppressed by the self-temperature controllability of the positive temperature coefficient thermistor, and a safe air conditioner can be provided.

また、ヒータ18に電磁誘導加熱(例えばIHヒータ)を用いることでも適用できる。電磁誘導加熱を冷媒加熱手段とすることにより、吸込配管17の外部からの熱伝導ではなく、吸込配管17からの直接加熱が可能となるので、効率的に冷媒過熱が可能となる。電磁誘導加熱を利用するとき、吸込配管17は銅製でも電磁誘導加熱は可能であるが、吸込配管17を鉄等で形成したり、吸込配管17の内部に鉄製の部材を設けたりすることにより、より効果的な加熱が可能である。この他、本発明の要旨を逸脱しない範囲で種々変形実施可能であるのは勿論である。   The heater 18 can also be applied by using electromagnetic induction heating (for example, IH heater). By using electromagnetic induction heating as the refrigerant heating means, it is possible not to conduct heat from the outside of the suction pipe 17 but to directly heat it from the suction pipe 17, so that the refrigerant can be efficiently overheated. When electromagnetic induction heating is used, electromagnetic induction heating is possible even if the suction pipe 17 is made of copper, but by forming the suction pipe 17 with iron or the like, or by providing an iron member inside the suction pipe 17, More effective heating is possible. Of course, various modifications can be made without departing from the scope of the present invention.

本発明の第1の実施の形態に係る空気調和機を示す構成図。The block diagram which shows the air conditioner which concerns on the 1st Embodiment of this invention. 同空気調和機のP−h線図。Ph diagram of the air conditioner. 本発明の第2の実施の形態に係る空気調和機を示す構成図。The block diagram which shows the air conditioner which concerns on the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10、40…空気調和機、11…圧縮機、12…吐出配管、13…四方弁、14…室内熱交換器、15…電子膨張弁、16…室外熱交換器、17…吸込配管、18…ヒータ、19…アキュムレータ、20…吐出温度センサ、21…蒸発温度センサ、22…吸込温度センサ、30…制御部。   DESCRIPTION OF SYMBOLS 10, 40 ... Air conditioner, 11 ... Compressor, 12 ... Discharge piping, 13 ... Four-way valve, 14 ... Indoor heat exchanger, 15 ... Electronic expansion valve, 16 ... Outdoor heat exchanger, 17 ... Suction piping, 18 ... Heater, 19 ... Accumulator, 20 ... Discharge temperature sensor, 21 ... Evaporation temperature sensor, 22 ... Suction temperature sensor, 30 ... Control part.

Claims (4)

圧縮機、四方弁、室外熱交換器、膨張装置及び室内熱交換器が順次接続されて構成された冷凍サイクルと、
暖房運転時に上記室外熱交換器の蒸発温度と、上記室外熱交換器の出口と上記圧縮機を接続する吸込配管の吸込冷媒温度との温度差である過熱度を検出する検出手段と、
この検出手段で検出された上記過熱度が所定の制御目標値となるように上記膨張装置の開度を制御する制御手段と、
上記吸込配管に設けられた冷媒加熱手段とを備え、
上記制御手段は、暖房運転時の上記冷媒加熱手段による加熱時に、非加熱時よりも過熱度が大きくなるように上記制御目標値を変更することを特徴とする空気調和機。
A refrigeration cycle configured by sequentially connecting a compressor, a four-way valve, an outdoor heat exchanger, an expansion device, and an indoor heat exchanger;
Detecting means for detecting the degree of superheat, which is a temperature difference between the evaporation temperature of the outdoor heat exchanger and the suction refrigerant temperature of the suction pipe connecting the outlet of the outdoor heat exchanger and the compressor during heating operation;
Control means for controlling the opening degree of the expansion device so that the degree of superheat detected by the detection means becomes a predetermined control target value;
A refrigerant heating means provided in the suction pipe,
The air conditioner characterized in that the control means changes the control target value so that the degree of superheat is larger when heating by the refrigerant heating means during heating operation than when not heating .
上記冷媒加熱手段は加熱能力が変更可能であり、その加熱能力に応じて上記過熱度の制御目標値を異ならせることを特徴とする請求項1に記載の空気調和機。   2. The air conditioner according to claim 1, wherein the refrigerant heating means can change a heating capacity, and the control target value of the degree of superheat varies according to the heating capacity. 上記圧縮機はインバータで駆動され、上記圧縮機の運転周波数に応じて上記過熱度の制御目標値を異ならせることを特徴とする請求項1、2に記載の空気調和機。   The air conditioner according to claim 1 or 2, wherein the compressor is driven by an inverter, and a control target value of the superheat degree is made different according to an operating frequency of the compressor. 上記冷媒加熱手段は蓄電池により電力が供給されることを特徴とする請求項1、2及び3に記載の空気調和機。   The air conditioner according to claim 1, 2, or 3, wherein the refrigerant heating means is supplied with electric power by a storage battery.
JP2006175429A 2006-06-26 2006-06-26 Air conditioner Expired - Fee Related JP4815281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006175429A JP4815281B2 (en) 2006-06-26 2006-06-26 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006175429A JP4815281B2 (en) 2006-06-26 2006-06-26 Air conditioner

Publications (2)

Publication Number Publication Date
JP2008002790A JP2008002790A (en) 2008-01-10
JP4815281B2 true JP4815281B2 (en) 2011-11-16

Family

ID=39007320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006175429A Expired - Fee Related JP4815281B2 (en) 2006-06-26 2006-06-26 Air conditioner

Country Status (1)

Country Link
JP (1) JP4815281B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009294118B2 (en) * 2008-09-17 2012-11-01 Daikin Industries, Ltd. Outdoor unit of air conditioner
JP2010223457A (en) * 2009-03-19 2010-10-07 Daikin Ind Ltd Air conditioner
RU2488047C2 (en) 2009-03-19 2013-07-20 Дайкин Индастриз, Лтд. Conditioner
AU2010225946B2 (en) 2009-03-19 2013-03-07 Daikin Industries, Ltd. Air conditioning apparatus
CN102348944B (en) 2009-03-19 2014-06-25 大金工业株式会社 Air conditioner
JP5423083B2 (en) 2009-03-19 2014-02-19 ダイキン工業株式会社 Air conditioner
JP5606262B2 (en) * 2010-10-19 2014-10-15 三菱重工業株式会社 Heat pump system
JPWO2022162819A1 (en) * 2021-01-28 2022-08-04

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05346271A (en) * 1992-06-15 1993-12-27 Toshiba Corp Control device for refrigerant heating type air conditioner
JP2919760B2 (en) * 1994-11-29 1999-07-19 三洋電機株式会社 Air conditioner
JPH08210720A (en) * 1995-02-06 1996-08-20 Matsushita Electric Ind Co Ltd Air conditioner with refrigeratnt heater
JP3541480B2 (en) * 1995-02-24 2004-07-14 日産自動車株式会社 Pre-air conditioning
JP3789019B2 (en) * 1997-01-24 2006-06-21 カルソニックカンセイ株式会社 Air conditioner for electric vehicles
JPH10170096A (en) * 1996-12-10 1998-06-26 Zexel Corp Initial warming controller for engine driven heat pump
JP2000028185A (en) * 1998-07-13 2000-01-25 Toshiba Corp Air conditioner
JP3949291B2 (en) * 1998-09-03 2007-07-25 カルソニックカンセイ株式会社 Air conditioner for electric vehicles
JP2001280747A (en) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd Air conditioner
JP2003291623A (en) * 2002-03-29 2003-10-15 Calsonic Kansei Corp Air conditioner for vehicle

Also Published As

Publication number Publication date
JP2008002790A (en) 2008-01-10

Similar Documents

Publication Publication Date Title
JP4815281B2 (en) Air conditioner
KR100997284B1 (en) Air conditioner and control method thereof
JP5341622B2 (en) Air conditioner
JP6071648B2 (en) Air conditioner
WO2008018381A1 (en) Refrigeration device
WO2007119414A1 (en) Cooling medium heating apparatus and heating control method
EP2607809B1 (en) Hydronic heater
JP2012088005A (en) Heat pump apparatus
EP2522933B1 (en) Heat storing apparatus having cascade cycle and control process of the same
JP2013119954A (en) Heat pump hot water heater
CN107514735A (en) The defrosting control method and control device of air-conditioning
JPH04208368A (en) Air conditioner
WO2018179137A1 (en) Air conditioning device
CN110836551A (en) Heat pump system and control method for heat pump system
JP3740380B2 (en) Heat pump water heater
WO2021093227A1 (en) Heat pump system and anti-dry-heating control method
JP2007278656A (en) Heat pump water heater
JP2012007751A (en) Heat pump cycle device
JP2002188860A5 (en)
US10443901B2 (en) Indoor unit of air conditioner
US11493226B2 (en) Airconditioning apparatus
JP2000346449A (en) Heat pump hot-water supplier
JP5516332B2 (en) Heat pump type hot water heater
JP2004225929A (en) Air conditioner and control method of air conditioner
EP3026364B1 (en) Heat pump type heating and hot water supply apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees