JP4798644B2 - Desalination method using reverse osmosis membrane - Google Patents

Desalination method using reverse osmosis membrane Download PDF

Info

Publication number
JP4798644B2
JP4798644B2 JP2001007302A JP2001007302A JP4798644B2 JP 4798644 B2 JP4798644 B2 JP 4798644B2 JP 2001007302 A JP2001007302 A JP 2001007302A JP 2001007302 A JP2001007302 A JP 2001007302A JP 4798644 B2 JP4798644 B2 JP 4798644B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
membrane module
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001007302A
Other languages
Japanese (ja)
Other versions
JP2002210335A (en
JP2002210335A5 (en
Inventor
円 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp filed Critical Organo Corp
Priority to JP2001007302A priority Critical patent/JP4798644B2/en
Publication of JP2002210335A publication Critical patent/JP2002210335A/en
Publication of JP2002210335A5 publication Critical patent/JP2002210335A5/ja
Application granted granted Critical
Publication of JP4798644B2 publication Critical patent/JP4798644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/144Wave energy

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、逆浸透膜を用いる脱塩方法及び脱塩装置に関するものであり、例えば、海水淡水化工業用水、半導体デバイス製造工程で使用される洗浄用超純水、ボイラ給水、又は医製薬製造に用いる注射用水の製造装置において使用されるか、あるいは該製造装置が排出する脱塩排水の脱塩処理において使用される、逆浸透膜を用いる脱塩装置及び脱塩方法に関する。
【0002】
【従来の技術】
逆浸透膜を用いた脱塩装置は、海水淡水化やかん水の淡水化に限らず、下排水の脱塩再利用や食塩工業などにおける有価物の濃縮等、さまざまな分野で使用されおり、さらには、半導体デバイス製造工程で使用される洗浄用超純水の製造装置から排出される脱塩排水の脱塩処理に用いられている。
【0003】
従来の被処理水の脱塩処理を行う逆浸透膜モジュールは、図11に示すように、被処理水は被処理水供給配管54を流通し、不図示の流入ポートから逆浸透膜モジュール50の被処理水側53に流入し、不図示の流出ポートへ流通するとともに、一部が逆浸透膜51を透過して、脱塩水となる。生成した脱塩水は、脱塩水流出配管56から取出され、洗浄用超純水の原水等として利用されるとともに、濃縮された被処理水は、濃縮液として、濃縮液流出配管55から取出される。
【0004】
また、従来の逆浸透膜モジュールを組み合わせてなる逆浸透膜モジュール集合体は、例えば、図12に示すように、前段に並列接続された2台の逆浸透膜モジュール60a、60bと、後段の逆浸透膜モジュール60cとから構成される。先ず、被処理水は分岐して前段の逆浸透膜モジュール60a、60bの被処理水側63a、63bにそれぞれ流入し、不図示の流出ポートへ流通するとともに、一部が逆浸透膜61a、61bを透過して、それぞれ脱塩水となる。一方、濃縮された被処理水は、濃縮液として取出され、それぞれ取出された濃縮液は合流して後段の逆浸透膜モジュール60cの被処理水側63cに流入し、不図示の流出ポートへ流通するとともに、一部が逆浸透膜61cを透過して脱塩水となる。生成した脱塩水は、前段の2台の逆浸透膜モジュール60a、60bから得られた脱塩水と合流して、洗浄用超純水の原水等として利用されるとともに、濃縮された被処理水は、濃縮水として取り出される。このような逆浸透膜モジュール集合体60を使用すれば、処理量を増大できると共に、水の利用率を高めることができる。
【0005】
しかしながら、このような逆浸透膜モジュール50や逆浸透膜モジュール集合体60では、長期間の運転により、シリカや炭酸カルシウム等のスケールが逆浸透膜51の膜表面に形成され、塩除去率の低下、透過水量の低下など脱塩性能の低下をもたらす。従来から、このような膜面上のスケールを除去するために、酸洗浄や、アルカリ洗浄等の薬品洗浄が行われてきた。しかし、薬品洗浄を実施するためには、逆浸透膜を用いた脱塩装置の運転を停止する必要があるほか、薬品貯槽、薬品供給ポンプ、薬品供給配管系、薬品廃水処理系を必要とするため、これらの薬品洗浄設備コスト負担も大きいという問題がある。そこで、長期間運転しても、逆浸透膜の膜面が汚染することがなく、常設の薬品洗浄設備を要することのない逆浸透膜を用いる脱塩装置が望まれていた。
【0006】
一方、半導体デバイス製造工場の洗浄工程から排出される排水、例えば、300mg/l程度のカルシウムと10mg/l程度のフッ化物イオンを含有する排水、あるいは半導体デバイス製造工場から排出される、冷却水系からの1mg/l程度のカルシウムが混入した数百mg/lのフッ化物イオンを含有する排水は、難溶性のフッ化カルシウムが膜面に析出し、急激な透過水量の低下を生じることから、逆浸透膜を用いる脱塩装置により脱塩処理することは困難であった。従って、従来、前者の排水は、河川や海洋に直接放流するか、下水道設備を経由して放流されており、後者の排水は、多量の石灰などのカルシウム化合物を投入してフッ素を凝集処理した後、放流されていた。このような処理方法は、環境保護の観点から好ましいことではない。そこで、これら半導体デバイス製造工場で発生する排水など、従来河川や海洋へ放流していた廃水も、逆浸透膜装置などの回収処理装置を設置して処理した後、再利用することが求められている。
【0007】
【発明が解決しようとする課題】
従って、本発明の目的は、長期間運転しても、スケールによる逆浸透膜の膜面の汚染が無いため、脱塩率の低下や透過水量の低下がなく、更には、上記した半導体デバイス製造工場の排水など、従来河川や海洋へ放流していた排水を回収再利用することを可能にする逆浸透膜を用いる脱塩装置及びこれを用いた脱塩方法を提供することにある。
【0008】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、逆浸透膜モジュール(以下、単に「RO」とも言う。)の膜面上のスケール汚染は、膜表面の流体の塩濃度が高い場合に生じ易いこと、また、高い塩濃度の液に暴露して膜面が汚染されても、その後、当該汚染部分を低い塩濃度の液に暴露すれば、汚染物質は再溶解して膜面から除去されること、従って、膜面を高濃度の液と低濃度の液に交互に暴露すれば、長期間運転しても、膜面の汚染による脱塩率の低下及び透過水量の低下がないことなどを見出し、本発明を完成するに至った。
【0014】
すなわち、本発明は、複数の逆浸透膜モジュールを組み合わせてなり、前段の逆浸透膜モジュールから排出される濃縮液を後段の逆浸透膜モジュールの被処理液とする逆浸透膜モジュール集合体の被処理液入口から0.01〜10mg/lのカルシウムと100〜1000mg/lのフッ化物イオンを含有するか、又は10〜800mg/lのカルシウムと10〜300mg/lのフッ化物イオンを含有する被処理液を流入させると共に、濃縮液出口から濃縮液を排出させ、脱塩液出口から脱塩液を得る脱塩工程と、流路切替えにより、前記逆浸透膜モジュール集合体を構成する逆浸透膜モジュールのうち、前記濃縮液出口側の逆浸透膜モジュールの被処理液入口から被処理液を流入し、前記濃縮液出口側の逆浸透膜モジュールの濃縮液出口から中間濃縮液を排出し、次いで前記被処理液入口側の逆浸透膜モジュールの被処理液入口から該中間濃縮液を流入し、前記被処理液入口側の逆浸透膜モジュールの濃縮液出口から濃縮液を排出すると共に、前記脱塩液出口より脱塩液を得、該脱塩工程における濃縮液出口側の逆浸透膜モジュールの膜面に析出したフッ化カルシウムを溶解する逆浸透膜モジュール配置変換脱塩工程と、を交互に行う逆浸透膜を用いる脱塩方法を提供するものである。かかる構成とすることにより、長期間運転しても、膜面の汚染による脱塩率の低下及び透過水量の低下がなく、さらには、流路切替え工程を頻繁に行うことにより、従来、河川や海洋に放流していた程の不純物を高濃度で含む廃水、例えば、半導体デバイス製造工場の洗浄廃水を回収再利用することが可能となる。
【0015】
【発明の実施の形態】
本発明の第1の実施の形態にかかる逆浸透膜を用いる脱塩装置20を図1を参照して説明する。逆浸透膜を用いる脱塩装置20は、被処理水を流入させる被処理水入口ポート4aと、濃縮水を排出させる濃縮水出口ポート5aと、脱塩水を流出させる脱塩水出口ポート6aを備えた逆浸透膜モジュール10aと、被処理水入口ポート4aを濃縮水出口ポートに切替え、且つ濃縮水出口ポート5aを被処理液入口に切替える流路切替え手段を有する配管構造と、被処理水のpHを2.0〜6.5に調整するためのpH調整手段8aと、スケール防止剤添加手段9aを備える。流路切替え手段を有する配管構造は、被処理水供給配管12、濃縮水排出配管17、及び配管14の連結箇所に三方弁7aを配設し、被処理水供給配管13、濃縮水排出配管18、及び配管15の連結箇所に三方弁7bを配設する構造である。三方弁7a及び三方弁7bは、後述する被処理水の脱塩方法において、流路切替え手段としての働きをするが、流路切替え手段は、三方弁に限定されるものではない。
【0016】
逆浸透膜モジュール10aとしては、例えば、逆浸透膜3aの膜面上の被処理水の流れ方向と、透過水の流れ方向とが直交する方式のものが挙げられる。逆浸透膜モジュール10aは逆浸透膜と支持構造物から構成され、例えば、中空糸型、のり巻型、平板型、管状型などの公知のものが使用できる。逆浸透膜3aとしては、特に制限されず、酢酸セルロース系非対称膜、合成高分子系複合膜など、公知の逆浸透膜を用いることができる。支持構造物はその内部に逆浸透膜3aを納める圧力容器であって、前述の被処理水入口ポート、濃縮水出口ポート、脱塩水出口ポートをそれぞれ具備している。
【0017】
また、被処理水のpHを2.0〜6.5に調整するためのpH調整手段8aは、塩酸、硝酸、硫酸など酸性溶液を添加するポンプ、酸性溶液貯槽で構成され、必要に応じて、pH計と調節計とを用いて一定のpHを維持する制御系を設けてもよい。図1中、pH調整手段8aは、配管81を介して被処理水供給配管11に接続されるが、これに限定されず、被処理水供給配管12、13及び配管14、15のいずれの配管に接続されるものであってもよい。また、本発明の逆浸透膜を用いる脱塩装置は、このpH調整手段8aが省略されていてもよい。
【0018】
被処理液にスケール防止剤を添加するためのスケール防止剤添加手段9aは、スケール防止剤を添加するポンプ、スケール防止剤貯槽で構成され、流量計と調節計とを用いて一定のスケール防止剤濃度を維持する制御系を設けてもよい。また、添加するスケール防止剤としては、特に制限されないが、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム、及びホスホン酸系化合物等のリン系分散剤;ポリアクリル酸ナトリウム等のアクリル酸系分散剤、マレイン酸系(共)重合体、スルホン酸系(共)重合体などの有機高分子化合物;EDTA(エチレンジアミンテトラ酢酸)、グルコン酸、クエン酸などのキレート剤から任意に選択することができる。スケール防止剤の注入方法及び注入量は特に制限されず、適宜決定される。図1中、スケール防止剤添加手段9aは、配管91を介して被処理水供給配管11に接続されるが、これに限定されず、被処理水供給配管12、13及び配管14、15のいずれの配管に接続されるものであってもよい。また、本発明の逆浸透膜を用いる脱塩装置は、このスケール防止剤添加手段9aが省略されていてもよい。
【0019】
次いで、脱塩装置20を用いる脱塩方法を以下に示す。ここでは、三方弁7aにより、被処理水供給配管12と配管14とを連通し、且つ三方弁7bにより、配管15と配管18とを連通させて行う脱塩工程についてまず述べる。脱塩工程において、被処理水は、必要に応じて、pH調整又はスケール防止剤が添加され、被処理水供給配管11、配管12、配管14を順に流通し、ポート4aより逆浸透膜装置10aの被処理水側1aに流入する。流入した被処理水は、ポート5aに向かって流通するとともに、濃縮水が、ポート5aより排出され、脱塩水は、逆浸透膜装置10aの脱塩水側2aのポート6aより得られる。得られた脱塩水は、例えば、半導体デバイス工場の洗浄用水である超純水の製造に用いる原水として、再利用することが可能である。
【0020】
上記の脱塩工程を長時間行うにつれて、逆浸透膜3aのポート5aの近傍部分がスケールなどにより汚染され、阻止率の低下、及び透過水量の低下が起こる。ここで、三方弁7a及び7bを、三方弁7bにより、被処理水供給配管13と配管15とを連通し、且つ三方弁7aにより配管14と配管17とを連通させるよう切替えを行い、次いで、逆フロー脱塩工程を行う。逆フロー脱塩工程において、被処理水は、必要に応じて、pH調整又はスケール防止剤が添加され、被処理水供給配管13を経て、配管15から被処理水入口となるポート5aより逆浸透膜装置10aの被処理水側1aに流入し、濃縮水が、濃縮水出口となるポート4aより排出される。該逆フロー脱塩工程により、逆浸透膜3aのポート5aの近傍の汚染された部分が塩濃度が低い被処理水に暴露されるため、逆浸透膜面上のシリカ、硬度成分及びその他の難溶性塩類等の汚染物や析出物が少しづつ再溶解し、汚染物や析出物が消滅し、阻止率及び透過水量が回復する。また、逆フロー脱塩工程を長時間行うにつれて、逆浸透膜3aのポート4aの近傍部分がスケールなどにより汚染され、阻止率の低下、及び透過水量の低下が起こる。そして、再度、さらに、流路切替えにより、脱塩工程に切り替え、以後これが繰り返し行われる。
【0021】
上記脱塩工程から逆フロー脱塩工程への切替え、あるいは、逆フロー脱塩工程から脱塩工程への切替えは、どのような時期で行ってもよいが、塩濃度が高い液中で逆浸透膜面の汚染が進行することにより、阻止率や透過水量が所定の許容限界値まで低下するに要する時間(t)と同等又はそれより短い時間で、低濃度の液中で阻止率や透過水量が回復するように行えば、常に、阻止率や透過水量を所定の許容限界値以上に維持しながら長時間連続運転できる点で好適である。この切替えは、阻止率や透過水流量の経時的低下を最小限に抑制するためには、できるだけ短い方が良く、例えば15分毎に行うこともできる。しかし、切替え時には、逆浸透膜装置の運転停止を伴い、このような頻繁な起動−停止は、逆浸透膜エレメントの接着部や膜面に対して物理的な損傷を生じさせ、透過水量が増加するものの、阻止率が使用には適さない程度まで著しく低下してしまう可能性があるので、エレメントの寿命を長く保つためには、切替えの頻度はできるだけ少ない方が望ましい。半導体デバイス製造工場の洗浄工程から排出される排水、例えば、300mg/l程度のカルシウムと10mg/l程度のフッ化物イオンを含有する不純物イオンを高濃度で含む排水を処理する場合、1日〜180日に1回といった範囲から、所望の阻止率、透過水量を維持するために必要な最低限の頻度を経験的に設定することが、エレメントの寿命を短縮することなく、阻止率及び透過水量の低下がほとんど生じることがなく、脱塩工程を継続することができるため好ましい。また、低濃度の液中で阻止率や透過水量が回復する時間が、上記(t)時間より長い場合であっても、酸性溶液の添加やスケール防止剤の添加により液中への再溶解を促進し、この回復時間を短縮できる。従って、難溶性塩類を含む被処理水をその溶解度以上、例えば、フッ化カルシウム塩を構成するフッ化物イオンとカルシウムイオンのイオン濃度積が3.5×10-11 以上となるような高い回収率で安定した脱塩処理が可能となる。
【0022】
第1の実施の形態の脱塩装置20および該脱塩装置を用いる脱塩方法によれば、長期間運転しても、膜面の汚染による阻止率の低下及び透過水量の低下がない脱塩装置とすることができ、さらには、河川や海洋に放流していた排水、例えば半導体デバイス工場の洗浄工程で発生する排水を高い回収率で回収し再利用することができる。さらに、スケール防止剤により、逆浸透膜の膜面へのスケール発生を防止することができ、さらなる長期間運転が可能な装置及び脱塩方法とすることができる。また、pH調節手段により、スケール発生の原因となるカルシウムやシリカ由来の化合物の溶解性を高めて、スケールの発生を防止することができ、安定した連続運転が可能な脱塩装置及び脱塩方法とすることができる。
【0023】
本発明の第2の実施の形態にかかる脱塩装置を図2を参照して説明する。逆浸透膜モジュール集合体を用いる脱塩装置30は、逆浸透膜モジュール10b、10cを直列に組み合わせてなり、被処理液を流入させる被処理液入口ポート4bと、濃縮液を排出させる濃縮液出口ポート5cと、脱塩液を流出させる脱塩液出口ポート6b、6cとを備える逆浸透膜モジュール集合体と、前記濃縮液出口側の逆浸透膜モジュール10cに被処理液を流入させ、且つ前記被処理液入口側の逆浸透膜モジュール10bから濃縮液を排出させるように流路を切替える、流路切り替え手段を有する配管構造と、被処理水のpHを2.0〜6.5に調整するためのpH調整手段8bと、スケール防止剤添加手段9bを備える。
【0024】
流路切り替え手段を有する配管構造は、被処理水供給配管101、被処理水供給配管102及び被処理水供給配管103の連結箇所に三方弁7cを、配管104、配管105及び配管119の連結箇所に三方弁7dを、配管114、配管115及び配管119の連結箇所に三方弁7eを、配管116、配管117及び濃縮水排出配管118の連結箇所に三方弁7fを、それぞれ配設する構造である。三方弁7c、7d、7e及び三方弁7fは、後述する被処理水の脱塩方法において、流路切替え手段としての働きをするが、流路切替え手段は、三方弁に限定されるものではない。
【0025】
逆浸透膜モジュール集合体は、複数の逆浸透膜モジュールを組み合わせてなる集合体であって、前段の逆浸透膜モジュールから排出される濃縮水を後段の逆浸透膜モジュールの被処理水とするものである。第2の実施の形態例で使用する逆浸透膜モジュール、pH調整手段8b及びスケール防止剤添加手段9bは、第1の実施の形態例で使用するものと同様であるので、その説明を省略する。
【0026】
脱塩装置30を用いる脱塩方法は、逆浸透膜モジュール集合体の被処理液入口ポート4bから被処理液を流入させると共に、濃縮液出口ポート5cから濃縮液を排出させ、脱塩液出口ポート6b、6cから脱塩液を得る脱塩工程と、流路切替えにより、前記逆浸透膜モジュール集合体を構成する逆浸透膜モジュールのうち、濃縮液出口側(後段)の逆浸透膜モジュール10cに被処理液を流入し、且つ前記被処理液入口側(前段)の逆浸透膜モジュール10bから濃縮液を排出すると共に、前記脱塩液出口ポート6b、6cより脱塩液を得る逆浸透膜モジュール配置変換脱塩工程と、を交互に行う。
【0027】
脱塩工程は次のように行われる。先ず、三方弁7cにより被処理水供給配管101と被処理水供給配管102を、三方弁7dにより配管119と配管105を、三方弁7eにより配管114と配管119を、三方弁7fにより配管117と濃縮水排出配管118を連通させる。次いで、被処理水は、必要に応じて、pH調整又はスケール防止剤が添加され、被処理水供給配管101、102、106を順に流通し、ポート4bより逆浸透膜モジュール10bの被処理水側1bに流入する。流入した被処理水は、処理水出口となるポート5bに向かって流通するとともに、中間濃縮水がポート5bより排出され、脱塩水は、逆浸透膜モジュール10bの脱塩水側2bのポート6bから得られる。ポート5bより排出された中間濃縮水は、配管111、114、119、105及び107を順に流通し、ポート4cより逆浸透膜モジュール10cの被処理水側1cに流入する。流入した中間濃縮水(逆浸透膜モジュール10cの被処理水)は、処理水出口となるポート5cに向かって流通するとともに、濃縮水がポート5cより排出され、脱塩水は、逆浸透膜モジュール10cの脱塩水側2cのポート6cから得られる(以上の水の流れは図中、実線の矢印で示す。)。
【0028】
上記脱塩工程を長時間行うにつれて、後段側逆浸透膜モジュール10cの逆浸透膜3cがスケールなどにより汚染され、阻止率の低下、及び透過水量の低下が起こる。ここで、流路の切替えを三方弁で行うことにより逆浸透膜モジュール配置変換脱塩工程に移行する。すなわち、三方弁7cにより配管101と配管103を、三方弁7dにより配管119と配管104を、三方弁7eにより配管115と配管119を、三方弁7fにより配管116と配管118を連通させる。この切替えにより、後段側逆浸透膜モジュール10cは前段側となり、前段側逆浸透膜モジュール10bは後段側となる。すなわち、被処理水は、必要に応じて、pH調整又はスケール防止剤が添加され、被処理水供給配管101、103、107を順に流通し、ポート4cより逆浸透膜モジュール10cの被処理水側1cに流入する。流入した被処理水は、処理水出口となるポート5cに向かって流通するとともに、中間濃縮水がポート5cより排出され、脱塩水は、逆浸透膜モジュール10cの脱塩水側2cのポート6cから得られる。ポート5cより排出された中間濃縮水は、配管112、115、119、104及び106を順に流通し、ポート4bより逆浸透膜モジュール10bの被処理水側1bに流入する。流入した中間濃縮水(逆浸透膜モジュール10bの被処理水)は、処理水出口となるポート5bに向かって流通するとともに、濃縮水がポート5bより排出され、脱塩水は、逆浸透膜モジュール10bの脱塩水側2bのポート6bから得られる(以上の水の流れは図中、破線の矢印で示す。)。
【0029】
逆浸透膜モジュール配置変換脱塩工程により、逆浸透膜モジュール10cの汚染された逆浸透膜3cが塩濃度が低い被処理水に暴露されるため、逆浸透膜面上のシリカ、硬度成分及びその他の難溶性塩類等の汚染物や析出物が少しづつ再溶解し、汚染物や析出物が消滅し、阻止率及び透過水量が回復する。また、逆浸透膜モジュール配置変換脱塩工程を長時間行うにつれて、今度は逆浸透膜モジュール10bの逆浸透膜3bがスケールなどにより汚染され、阻止率の低下、及び透過水量の低下が起こる。そして、再度、さらに、流路切替えにより、脱塩工程に切り替え、以後これが繰り返し行われる。
【0030】
上記脱塩工程から逆浸透膜モジュール配置変換脱塩工程への切替え、あるいは、逆浸透膜モジュール配置変換脱塩工程から脱塩工程への切替えは、第1の実施の形態例における切替え時期と同様に行えばよい。また、第2の実施の形態例により、逆浸透膜モジュール集合体を用いる脱塩装置及び脱塩方法においても、上記第1の実施の形態と同様の効果を奏することができる。
【0031】
本発明の逆浸透膜を用いる脱塩装置及び脱塩方法の被処理水としては、特に制限されず、井戸水、工業用水、海水などを挙げることができるが、本発明の逆浸透膜を用いる脱塩装置及び脱塩方法は、特に、半導体デバイス製造工程の洗浄排水の脱塩処理に好適に用いることができる。半導体デバイスの洗浄排水としては、0.01〜10mg/lのカルシウムと100〜1000mg/lのフッ化物イオンを含有する排水又は半導体デバイス製造工場から排出される10〜800mg/lのカルシウムと10〜300mg/lのフッ化物イオンを含有する水質のものを挙げることができる。
【0032】
【実施例】
本明細書中、実施例1、3及び4は本発明の参考例となるものである。
実施例1下記装置仕様及び運転条件において、pH調整手段8aとスケール防止剤添加手段9aを省略した以外は、図1と同様の構成の逆浸透膜モジュールを使用した。結果を図3及び図4に示す。図3は、運転日数に対する透過流束保持率(%)の変化を示す。透過流束保持率(%)は操作圧力と水温の補正をした透過水流量を初期の透過水流量で除して百分率で表した値であり、膜面が汚染してくると低い値となる。図4は、運転日数に対するシリカ阻止率(%)の変化を示す。
【0033】
(運転の条件)
・被処理水;表1に示す水質を有する工業用水
・逆浸透膜モジュール(RO);
型式;NTR-759 (日東電工社製)
逆浸透膜;全芳香族ポリアミド系
回収率;50%
操作圧力;1.2MPa
・脱塩工程20日間、逆フロー脱塩工程20日間の繰り返し連続80日間運転
【0034】
【表1】

Figure 0004798644
【0035】
比較例1
逆フロー脱塩工程を行うことなく、脱塩工程を連続して行った以外は、実施例1と同様の方法で行った。結果を図3及び図4に示す。
【0036】
本例の装置において、ROの回収率50%は、濃縮水の濃度が、原水の約2倍の濃度となるが、明らかにその溶解度を超える成分は存在しないにも係わらず、約20日間で透過水量が初期の80%に、シリカの阻止率が初期の99%に対して95%にそれぞれ低下した。実施例1においては、その後、逆フロー脱塩工程を行ったため、流路切り替え後のROの入口側近傍の膜面の部位、すなわち、汚染により水が透過し難くなった部位の透過水流量が徐々に回復するため、全体の透過水流量が増加してくる。一方、流路切り替え後のROの出口側近傍の膜面の部位は、新たに汚染され、徐々に水が透過し難くなるので、全体の透過水量は減少に転じた。40日後の再度の脱塩工程により、再び透過水流量は初期の80%まで減少したので、逆フロー脱塩工程に切替え、回復させた。以上の操作を繰り返し、薬品洗浄を実施することなく、透過水流束保持率80%以上を維持して80日間、運転することができた。また、シリカ阻止率も透過水流束保持率と同様の低下傾向を示し、シリカ阻止率95%以上を維持して80日間、運転することができた(図4)。一方、比較例1は80日後、透過水流束保持率50%程度まで減少した。また、シリカの阻止率は87%に低下した。
【0037】
実施例2
下記装置仕様及び運転条件において、pH調整手段8bとスケール防止剤添加手段9bを省略した以外は、図2と同様の構成の逆浸透膜モジュール集合体を使用した。結果を図5及び図6に示す。図5は運転日数に対する透過流束保持率(%)の変化を示し、図6は運転日数に対するナトリウム阻止率(%)の変化を示す。
【0038】
(運転の条件)
・被処理水;半導体デバイス製造工場の廃水を水酸化ナトリウムで中和したものであって表2に示す水質を有するもの。
・逆浸透膜モジュール集合体で使用する逆浸透膜モジュール(RO);
型式;NTR-759 (日東電工社製)
逆浸透膜;全芳香族ポリアミド系
回収率;75%
操作圧力;1.2MPa
・脱塩工程15日間、逆浸透膜モジュール配置変換脱塩工程15日間の繰り返し連続90日間運転
【0039】
【表2】
Figure 0004798644
【0040】
比較例2
逆浸透膜モジュール配置変換脱塩工程を行うことなく、脱塩工程を連続して行った以外は、実施例2と同様の方法で行った。結果を図5及び図6に示す。
【0041】
本例では、被処理水は、カルシウムとフッ化物イオンについて、フッ化カルシウムとしてのイオン濃度積が、その溶解度積である3.5×10-11 を超えて、15.9×10-11 となっており、過飽和の状態である。本例のROでは回収率が75%であり、濃縮水は元の濃度の約4倍となるため、上記イオン濃度積は64倍の10.2×10-9となる。このような状態では、フッ化カルシウムがROの膜面に析出し、透過水流量や阻止率が低下してしまう。すなわち、30日間の脱塩工程で、初期の透過水流量の70%まで、ナトリウムの阻止率は初期値95%に対して、88%に低下してしまう(比較例2)。実施例2においては、15日経過後、逆浸透膜モジュール配置変換脱塩工程を行ったため、後段側のROの膜が洗浄され透過水量が徐々に回復し、全体の透過水量が増加した。一方、前段側のROの膜が新たに汚染され、徐々に水が透過し難くなり、全体の透過水量は減少に転じた。30日以降の再度の脱塩工程により、再び透過水流量は初期の90%まで減少したので、逆浸透膜モジュール配置変換脱塩工程に切替え、回復させた。以上の操作を繰り返し、薬品洗浄を実施することなく、透過水流束保持率90%以上を維持して90日間、運転することができた。また、ナトリウム阻止率も透過水流束保持率と同様の低下傾向を示し、ナトリウム阻止率90%以上を維持して90日間、運転することができた(図6)。一方、比較例2は90日後、透過水流束保持率60%程度まで減少した。また、ナトリウム阻止率は87%に低下した。
【0042】
実施例3
下記装置仕様及び運転条件において、図2と同様の構成の逆浸透膜モジュール集合体を使用した。結果を図7及び図8に示す。図7は運転日数に対する透過流束保持率(%)の変化を示し、図8は運転日数に対するシリカ阻止率(%)の変化を示す。
【0043】
(運転の条件)
・被処理水;半導体デバイス製造工場からの廃水を電気透析装置で脱塩したものであって、表3に示す水質を有するもの
・逆浸透膜モジュール集合体で使用する逆浸透膜モジュール(RO);
型式;NTR-759 (日東電工社製)
逆浸透膜;全芳香族ポリアミド系
回収率;75%
操作圧力;1.2MPa
・脱塩工程15日間、逆浸透膜モジュール配置変換脱塩工程15日間の繰り返し連続90日間運転
・pH調整手段;被処理水をpH6以下となるように調整する
・スケール防止剤添加手段;スケール防止剤として、AC−300(オルガノ社製)を使用し、濃縮水中の濃度が6mg/lとなるように調整する
【0044】
【表3】
Figure 0004798644
【0045】
比較例3
逆浸透膜モジュール配置変換脱塩工程を行うことなく、脱塩工程を連続して行った以外は、実施例3と同様の方法で行った。結果を図7及び図8に示す。
【0046】
本例では、被処理水は、カルシウムとフッ化物イオンについて、フッ化カルシウムとしてのイオン濃度積が0.27×10-11 であり、原水のままであれば、その溶解度積である3.5×10-11 を超えてはいない。しかし、本例のROでは回収率が75%であり、濃縮水は元の濃度の約4倍となるため、上記イオン濃度積は64倍の17×10-11 となる。このような状態では、フッ化カルシウムがROの膜面に析出し、透過水流量や阻止率が低下してしまう。また、この水はシリカ濃度が109mg as SiO2 /l であり、ほぼ飽和濃度に達している。濃縮水は元の濃度の約4倍となるため、シリカは440mg as SiO2 /l もの濃度に達し、膜面にスケールとして析出し、透過水流量や阻止率が低下してしまう。本例の装置では、30日間の脱塩工程で、初期の透過水流量の75%に、シリカの阻止率は初期値98%に対して、90%にそれぞれ低下してしまう(比較例3)。このように、比較例3ではpHを6以下に調整しても、また、スケール防止剤を添加してもフッ化カルシウムの析出による膜面の汚染を同時に防止することはできない。実施例3においては、15日間の脱塩工程の実施により、透過水量は徐々に減少し、初期の90%まで達する。ここで、逆浸透膜モジュール配置変換脱塩工程を行ったため、後段側のROの膜が洗浄され透過水量が徐々に回復し、全体の透過水量が増加する。一方、前段側のROの膜が新たに汚染され、徐々に水が透過し難くなり、全体の透過水量は減少に転じた。30日以降の再度の脱塩工程により、再び透過水流量は初期の90%まで減少したので、逆浸透膜モジュール配置変換脱塩工程に切替え、回復させた。以上の操作を繰り返し、薬品洗浄を実施することなく、透過水流束保持率90%以上を維持して90日間、運転することができた。また、シリカ阻止率も透過水流束保持率と同様の低下傾向を示し、シリカ阻止率95%以上を維持して90日間、運転することができた(図8)。一方、比較例3は90日後、透過水流束保持率60%程度まで減少した。また、シリカの阻止率は88%に低下した。
【0047】
実施例4
スケール防止剤添加手段9bを省略した以外は、実施例3と同様の方法で行った。結果を図9及び図10に示す。
【0048】
比較例4
逆浸透膜モジュール配置変換脱塩工程を行うことなく、脱塩工程を連続して行った以外は、実施例4と同様の方法で行った。結果を図9及び図10に示す。
【0049】
図9に示すように、実施例4は実施例3と比較して、逆浸透膜モジュール配置変換脱塩工程を実施した後の回復度が小さいため、透過水量が徐々に低下していくものの、90日間運転しても80%を維持していた。シリカ阻止率の推移も、同様の傾向にあり、逆浸透膜モジュール配置変換脱塩工程を実施した後、徐々に低下していくものの、薬品洗浄を実施することなく、90日間運転してもシリカ阻止率90%以上を維持していた。また、比較例4は、透過水流量が15日間で初期の75%に低下し、シリカ阻止率は90%まで低下した。
【0050】
【発明の効果】
本発明(1)によれば、長期間運転しても、膜面の汚染による阻止率の低下及び透過水量の低下がない脱塩装置とすることができ、さらには、従来、河川や海洋に放流していた排水、例えば半導体デバイス工場の洗浄排水を回収再利用することが可能な装置とすることができる。また、本発明(2)によれば、逆浸透膜モジュール集合体を用いる脱塩装置においても、前記本発明(1)と同様の効果を奏することができる。また、本発明(3)によれば、本発明(1)又は(2)と同様の効果を奏する他、スケール防止剤により、逆浸透膜の膜面へのスケール発生を防止することができ、さらなる長期間運転が可能な装置とすることができる。また、本発明(4)によれば、本発明(1)〜(3)と同様の効果を奏する他、スケール発生の原因となるカルシウムやシリカ由来の化合物の溶解性を高めて、スケールの発生を防止することができ、安定した連続運転が可能な装置とすることができる。
【0051】
また、本発明(5)によれば、長期間運転しても、膜面の汚染による阻止率の低下及び透過水量の低下がなく、さらには、流路切替え工程を頻繁に、例えば15分ごとに、行うことにより、従来、河川や海洋に放流していた排水、例えば半導体デバイス工場の洗浄排水を回収再利用することが可能となる。また、本発明(6)によれば、逆浸透膜モジュール集合体を用いる場合においても、前記本発明(5)と同様の効果を奏することができる。
【図面の簡単な説明】
【図1】第1の実施の形態例における逆浸透膜モジュールを使用する脱塩装置のフロー図を示す。
【図2】第2の実施の形態例における逆浸透膜モジュール集合体を使用する脱塩装置のフロー図を示す。
【図3】実施例1及び比較例1の運転時間に対する透過水流束保持率の変化を示す。
【図4】実施例1及び比較例1の運転時間に対するシリカ阻止率の変化を示す。
【図5】実施例2及び比較例2の運転時間に対する透過水流束保持率の変化を示す。
【図6】実施例2及び比較例2の運転時間に対するナトリウム阻止率の変化を示す。
【図7】実施例3及び比較例3の運転時間に対する透過水流束保持率の変化を示す。
【図8】実施例3及び比較例3の運転時間に対するシリカ阻止率の変化を示す。
【図9】実施例4及び比較例4の運転時間に対する透過水流束保持率の変化を示す。
【図10】実施例4及び比較例4の運転時間に対するシリカ阻止率の変化を示す。
【図11】従来例における逆浸透膜モジュールを使用する脱塩装置のフロー図を示す。
【図12】従来例における逆浸透膜モジュール集合体を使用する脱塩装置のフロー図を示す。
【符号の説明】
1a〜1c、53、63a〜63c 被処理水側
2a〜2c、52、62a〜62c 脱塩水側
3a〜3c、51、61a〜61c 逆浸透膜
4a〜4c 被処理水入口(ポート)
5a〜5c 濃縮水出口(ポート)
6a〜6c 脱塩水出口(ポート)
7a〜7f 三方弁
8a、8b pH調整手段
9a、9b スケール防止剤添加手段
10a〜10c、50、60、60a〜60c 逆浸透膜モジュール
11〜13、101〜103、54 被処理水供給配管
14、15、81、91、104〜109、114、115、119
配管
17、18、19、55、111、112、116、117、118
濃縮水排出配管
20、30 逆浸透膜を用いる脱塩装置
56、110 脱塩水出口配管[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a desalination method and desalination apparatus using a reverse osmosis membrane, for example, seawater desalination industrial water, cleaning ultrapure water used in a semiconductor device manufacturing process, boiler feed water, or pharmaceutical manufacture The present invention relates to a desalting apparatus and a desalting method using a reverse osmosis membrane, which are used in an apparatus for producing water for injection used in water or used in desalting treatment of desalted waste water discharged from the manufacturing apparatus.
[0002]
[Prior art]
  Desalination equipment using reverse osmosis membranes is not limited to seawater desalination and brine desalination, but is used in various fields such as desalination and reuse of sewage and concentration of valuable materials in the salt industry.TheFurthermore, it is used for the desalination treatment of the desalted waste water discharged from the apparatus for producing ultrapure water for cleaning used in the semiconductor device manufacturing process.
[0003]
As shown in FIG. 11, the conventional reverse osmosis membrane module that performs desalination treatment of the water to be treated circulates the water to be treated through the water supply pipe 54 to be treated. While flowing into the to-be-processed water side 53 and distribute | circulating to the outflow port not shown, a part permeate | transmits the reverse osmosis membrane 51, and becomes desalinated water. The generated desalted water is taken out from the desalted water outflow pipe 56 and used as raw water for cleaning ultrapure water or the like, and the concentrated water to be treated is taken out from the concentrated liquid outflow pipe 55 as a concentrate. .
[0004]
Further, a reverse osmosis membrane module assembly formed by combining conventional reverse osmosis membrane modules includes, for example, as shown in FIG. 12, two reverse osmosis membrane modules 60a and 60b connected in parallel in the front stage and a reverse in the rear stage. And a permeable membrane module 60c. First, the water to be treated branches and flows into the water to be treated 63a and 63b of the upstream reverse osmosis membrane modules 60a and 60b, respectively, and flows to an unillustrated outflow port, and part of the reverse osmosis membranes 61a and 61b. Permeate to become demineralized water. On the other hand, the concentrated water to be treated is taken out as a concentrate, and the extracted liquids are combined to flow into the water to be treated 63c of the reverse osmosis membrane module 60c at the subsequent stage and flow to an unillustrated outflow port. In addition, a part of the reverse osmosis membrane 61c permeates to become demineralized water. The generated desalted water is combined with the desalted water obtained from the two reverse osmosis membrane modules 60a and 60b in the previous stage and used as raw water for cleaning ultrapure water or the like, and the concentrated treated water is It is taken out as concentrated water. By using such a reverse osmosis membrane module assembly 60, the amount of treatment can be increased and the utilization rate of water can be increased.
[0005]
However, in such a reverse osmosis membrane module 50 or reverse osmosis membrane module assembly 60, scales such as silica and calcium carbonate are formed on the membrane surface of the reverse osmosis membrane 51 due to long-term operation, and the salt removal rate decreases. , Resulting in a decrease in desalting performance such as a decrease in the amount of permeate. Conventionally, chemical cleaning such as acid cleaning or alkali cleaning has been performed in order to remove the scale on the film surface. However, in order to carry out chemical cleaning, it is necessary to stop the operation of a desalination apparatus using a reverse osmosis membrane, and a chemical storage tank, chemical supply pump, chemical supply piping system, and chemical wastewater treatment system are required. Therefore, there is a problem that the cost burden of these chemical cleaning facilities is large. Therefore, there has been a demand for a desalting apparatus using a reverse osmosis membrane that does not contaminate the membrane surface of the reverse osmosis membrane even when operated for a long period of time and does not require a permanent chemical cleaning facility.
[0006]
On the other hand, waste water discharged from the cleaning process of the semiconductor device manufacturing factory, for example, waste water containing about 300 mg / l calcium and 10 mg / l fluoride ion, or from the cooling water system discharged from the semiconductor device manufacturing factory. The drainage containing several hundred mg / l fluoride ions mixed with about 1 mg / l of calcium, on the other hand, is caused by the insoluble calcium fluoride depositing on the membrane surface, resulting in a sudden decrease in the amount of permeate. It has been difficult to desalinate using a desalting apparatus using an osmotic membrane. Therefore, conventionally, the former wastewater is discharged directly into rivers and oceans, or discharged through sewerage facilities, and the latter wastewater is agglomerated by adding a large amount of calcium compounds such as lime. It was later released. Such a processing method is not preferable from the viewpoint of environmental protection. Therefore, wastewater that has been discharged into rivers and oceans, such as wastewater generated at these semiconductor device manufacturing factories, must be reused after being treated by installing a recovery treatment device such as a reverse osmosis membrane device. Yes.
[0007]
[Problems to be solved by the invention]
Accordingly, the object of the present invention is that there is no contamination of the membrane surface of the reverse osmosis membrane due to the scale even if it is operated for a long period of time, so there is no decrease in the desalination rate or the amount of permeated water. An object of the present invention is to provide a desalination apparatus using a reverse osmosis membrane and a desalting method using the same, which makes it possible to collect and reuse wastewater that has been discharged into rivers and oceans, such as factory wastewater.
[0008]
[Means for Solving the Problems]
Under such circumstances, the present inventors have conducted intensive studies, and as a result, scale contamination on the membrane surface of the reverse osmosis membrane module (hereinafter also simply referred to as “RO”) is caused when the salt concentration of the fluid on the membrane surface is high. In addition, even if the membrane surface is contaminated by exposure to a high salt concentration solution, if the contaminated part is exposed to a low salt concentration solution, the contaminants will be dissolved again from the membrane surface. Therefore, if the membrane surface is alternately exposed to a high-concentration liquid and a low-concentration liquid, even if it is operated for a long time, there is no decrease in the desalination rate and the permeated water amount due to contamination of the membrane surface. As a result, the present invention has been completed.
[0014]
  IeThe present invention is a treatment of a reverse osmosis membrane module assembly comprising a combination of a plurality of reverse osmosis membrane modules, and using the concentrated liquid discharged from the upstream reverse osmosis membrane module as the liquid to be treated of the downstream reverse osmosis membrane module. To be treated containing 0.01 to 10 mg / l calcium and 100 to 1000 mg / l fluoride ions from the liquid inlet, or containing 10 to 800 mg / l calcium and 10 to 300 mg / l fluoride ions A reverse osmosis membrane module that constitutes the reverse osmosis membrane module assembly by a desalting step of flowing in the liquid and discharging the concentrated liquid from the outlet of the concentrated liquid to obtain a desalted liquid from the outlet of the desalted liquid and switching the flow path The liquid to be treated flows from the liquid treatment inlet of the reverse osmosis membrane module on the concentrated liquid outlet side, and the intermediate liquid concentrate from the liquid concentrate outlet of the reverse osmosis membrane module on the liquid concentrate outlet side. Next, the intermediate concentrated liquid flows in from the inlet of the liquid to be processed of the reverse osmosis membrane module on the inlet side of the liquid to be processed, and the concentrated liquid is discharged from the outlet of the concentrated liquid of the reverse osmosis membrane module on the inlet side of the liquid to be processed. A reverse osmosis membrane module arrangement conversion desalting step for obtaining a desalted solution from the desalting solution outlet and dissolving calcium fluoride deposited on the membrane surface of the reverse osmosis membrane module on the concentrated solution outlet side in the desalting step And a desalting method that uses reverse osmosis membranes alternately. With this configuration,Even if it is operated for a long period of time, there is no decrease in the desalination rate and the amount of permeated water due to the contamination of the membrane surface. It is possible to collect and reuse waste water containing a high concentration of impurities, for example, cleaning waste water from a semiconductor device manufacturing plant.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
A desalting apparatus 20 using a reverse osmosis membrane according to a first embodiment of the present invention will be described with reference to FIG. The desalination apparatus 20 using a reverse osmosis membrane includes a treated water inlet port 4a through which treated water flows, a concentrated water outlet port 5a through which concentrated water is discharged, and a desalted water outlet port 6a through which the desalted water flows out. The reverse osmosis membrane module 10a, a piping structure having a flow path switching means for switching the treated water inlet port 4a to the concentrated water outlet port and switching the concentrated water outlet port 5a to the treated liquid inlet, and the pH of the treated water PH adjusting means 8a for adjusting to 2.0 to 6.5 and scale inhibitor adding means 9a are provided. In the piping structure having the flow path switching means, the three-way valve 7a is disposed at the connection point of the treated water supply pipe 12, the concentrated water discharge pipe 17, and the pipe 14, and the treated water supply pipe 13 and the concentrated water discharge pipe 18 are arranged. , And a three-way valve 7b is provided at the connection location of the pipe 15. The three-way valve 7a and the three-way valve 7b serve as flow path switching means in the desalting method of water to be treated which will be described later, but the flow path switching means is not limited to the three-way valve.
[0016]
As the reverse osmosis membrane module 10a, for example, a method in which the flow direction of the water to be treated on the membrane surface of the reverse osmosis membrane 3a and the flow direction of the permeated water are orthogonal to each other can be mentioned. The reverse osmosis membrane module 10a is composed of a reverse osmosis membrane and a support structure, and for example, known ones such as a hollow fiber type, a wound type, a flat plate type, and a tubular type can be used. The reverse osmosis membrane 3a is not particularly limited, and a known reverse osmosis membrane such as a cellulose acetate asymmetric membrane or a synthetic polymer composite membrane can be used. The support structure is a pressure vessel in which the reverse osmosis membrane 3a is housed, and includes the above-described treated water inlet port, concentrated water outlet port, and desalted water outlet port.
[0017]
The pH adjusting means 8a for adjusting the pH of the water to be treated to 2.0 to 6.5 is composed of a pump for adding an acidic solution such as hydrochloric acid, nitric acid, sulfuric acid, and an acidic solution storage tank. A control system that maintains a constant pH using a pH meter and a controller may be provided. In FIG. 1, the pH adjusting unit 8 a is connected to the treated water supply pipe 11 via the pipe 81, but is not limited thereto, and any of the treated water supply pipes 12 and 13 and the pipes 14 and 15 is used. It may be connected to. Further, in the desalting apparatus using the reverse osmosis membrane of the present invention, the pH adjusting means 8a may be omitted.
[0018]
The scale inhibitor adding means 9a for adding the scale inhibitor to the liquid to be treated is composed of a pump for adding the scale inhibitor and a scale inhibitor storage tank, and a constant scale inhibitor using a flow meter and a controller. A control system for maintaining the concentration may be provided. The scale inhibitor to be added is not particularly limited, but is a phosphorus dispersant such as sodium hexametaphosphate, sodium tripolyphosphate, and a phosphonic acid compound; an acrylic dispersant such as sodium polyacrylate; a maleic acid type Organic polymer compounds such as (co) polymers and sulfonic acid-based (co) polymers; can be arbitrarily selected from chelating agents such as EDTA (ethylenediaminetetraacetic acid), gluconic acid, and citric acid. The injection method and the injection amount of the scale inhibitor are not particularly limited and are appropriately determined. In FIG. 1, the scale inhibitor addition means 9 a is connected to the treated water supply pipe 11 via the pipe 91, but is not limited thereto, and any of the treated water supply pipes 12 and 13 and the pipes 14 and 15 is connected. It may be connected to other pipes. Further, the desalting apparatus using the reverse osmosis membrane of the present invention may omit the scale inhibitor addition means 9a.
[0019]
Next, a desalting method using the desalting apparatus 20 will be described below. Here, the desalting process performed by communicating the to-be-processed water supply piping 12 and the piping 14 by the three-way valve 7a and communicating the piping 15 and the piping 18 by the three-way valve 7b will be described first. In the desalting step, the water to be treated is added with a pH adjustment or a scale inhibitor as necessary, and the treated water supply pipe 11, the pipe 12, and the pipe 14 are circulated in order, and the reverse osmosis membrane device 10a from the port 4a. It flows into the to-be-treated water side 1a. The treated water that has flowed in flows toward the port 5a, the concentrated water is discharged from the port 5a, and the desalted water is obtained from the port 6a on the desalted water side 2a of the reverse osmosis membrane device 10a. The obtained desalted water can be reused, for example, as raw water used in the production of ultrapure water that is cleaning water in a semiconductor device factory.
[0020]
As the desalting step is performed for a long time, the portion near the port 5a of the reverse osmosis membrane 3a is contaminated by scales and the like, and the rejection rate and the permeated water amount decrease. Here, the three-way valves 7a and 7b are switched so that the to-be-treated water supply pipe 13 and the pipe 15 are communicated by the three-way valve 7b, and the pipe 14 and the pipe 17 are communicated by the three-way valve 7a. A reverse flow desalting step is performed. In the reverse flow desalting step, the water to be treated is added with pH adjustment or a scale inhibitor as necessary, and reverse osmosis through the treated water supply pipe 13 and from the port 5a serving as the treated water inlet from the pipe 15. It flows into the to-be-processed water side 1a of the membrane apparatus 10a, and concentrated water is discharged | emitted from the port 4a used as a concentrated water exit. In the reverse flow desalting step, the contaminated portion in the vicinity of the port 5a of the reverse osmosis membrane 3a is exposed to the water to be treated having a low salt concentration, so silica, hardness components and other difficulties on the reverse osmosis membrane surface are exposed. Contaminants such as soluble salts and precipitates are redissolved little by little, the contaminants and precipitates disappear, and the rejection and the amount of permeated water are restored. Further, as the reverse flow desalting process is performed for a long time, the vicinity of the port 4a of the reverse osmosis membrane 3a is contaminated by scales and the like, and the rejection rate and permeated water amount decrease. And again, it switches to a desalination process by switching a flow path, and this is repeated after that.
[0021]
Switching from the above desalting process to the reverse flow desalting process or switching from the reverse flow desalting process to the desalting process may be performed at any time, but reverse osmosis in a solution with a high salt concentration. Due to the progress of contamination on the membrane surface, the rejection rate and the amount of permeated water in a low-concentration liquid in a time equivalent to or shorter than the time (t) required for the rejection rate and the amount of permeated water to fall to the predetermined allowable limit value. If the recovery is performed, it is preferable in that a continuous operation can be performed for a long time while maintaining the rejection rate and the permeated water amount at or above a predetermined allowable limit value. This switching is preferably as short as possible in order to minimize the temporal decrease in the rejection rate and permeate flow rate, and can be performed, for example, every 15 minutes. However, when switching, the operation of the reverse osmosis membrane device is stopped, and such frequent start-stop causes physical damage to the adhesion part and membrane surface of the reverse osmosis membrane element, and the amount of permeated water increases. However, since there is a possibility that the rejection rate is remarkably lowered to the extent that it is not suitable for use, in order to keep the element life long, it is desirable that the frequency of switching is as low as possible. When treating wastewater discharged from a cleaning process of a semiconductor device manufacturing factory, for example, wastewater containing high concentrations of impurity ions containing about 300 mg / l calcium and about 10 mg / l fluoride ions, it is 1 to 180 days. From the range of once a day, empirically setting the minimum frequency necessary to maintain the desired rejection rate and permeate flow rate, without reducing the element life, This is preferable because almost no reduction occurs and the desalting step can be continued. In addition, even if the rejection rate and permeated water recovery time in a low-concentration liquid are longer than the above (t) time, re-dissolution into the liquid can be achieved by adding an acidic solution or adding a scale inhibitor. To promote and reduce this recovery time. Accordingly, the water to be treated containing hardly soluble salts has a solubility higher than its solubility, for example, the ion concentration product of fluoride ions and calcium ions constituting the calcium fluoride salt is 3.5 × 10 5.-11A stable desalting treatment is possible with such a high recovery rate.
[0022]
According to the desalination apparatus 20 of the first embodiment and the desalination method using the desalination apparatus, even if it is operated for a long period of time, there is no reduction in the rejection due to contamination of the membrane surface and no reduction in the amount of permeated water. In addition, wastewater that has been discharged into rivers and oceans, for example, wastewater generated in the cleaning process of a semiconductor device factory, can be recovered and reused at a high recovery rate. Furthermore, the scale inhibitor can prevent the generation of scale on the membrane surface of the reverse osmosis membrane and can provide a device and a desalting method that can be operated for a longer period of time. Further, the desalinator and desalting method capable of preventing the generation of scale by increasing the solubility of calcium or silica-derived compounds that cause scale generation by means of pH adjustment, and capable of stable continuous operation It can be.
[0023]
A desalination apparatus according to a second embodiment of the present invention will be described with reference to FIG. The desalination apparatus 30 using the reverse osmosis membrane module assembly is formed by combining the reverse osmosis membrane modules 10b and 10c in series, and a liquid inlet port 4b into which the liquid to be processed flows in, and a liquid outlet through which the liquid concentrate is discharged. A reverse osmosis membrane module assembly including a port 5c and desalting solution outlet ports 6b and 6c for allowing the desalting solution to flow out; and a reverse osmosis membrane module 10c on the concentrated solution outlet side; The flow path is switched so that the concentrated liquid is discharged from the reverse osmosis membrane module 10b on the treated liquid inlet side, and the pH of the treated water is adjusted to 2.0 to 6.5. PH adjusting means 8b and a scale inhibitor adding means 9b are provided.
[0024]
The piping structure having the flow path switching means includes a three-way valve 7c at a connection point between the treated water supply pipe 101, the treated water supply pipe 102 and the treated water supply pipe 103, and a connecting point between the pipe 104, the pipe 105 and the pipe 119. The three-way valve 7d, the three-way valve 7e at the connection point of the pipe 114, the pipe 115, and the pipe 119, and the three-way valve 7f at the connection point of the pipe 116, the pipe 117, and the concentrated water discharge pipe 118, respectively. . The three-way valves 7c, 7d, 7e and the three-way valve 7f function as flow path switching means in the desalting method of water to be treated, which will be described later, but the flow path switching means is not limited to the three-way valve. .
[0025]
The reverse osmosis membrane module assembly is an assembly formed by combining a plurality of reverse osmosis membrane modules, and the concentrated water discharged from the previous reverse osmosis membrane module is treated water of the subsequent reverse osmosis membrane module. It is. The reverse osmosis membrane module, the pH adjusting means 8b, and the scale inhibitor adding means 9b used in the second embodiment are the same as those used in the first embodiment, and thus description thereof is omitted. .
[0026]
The desalting method using the desalting apparatus 30 is such that the liquid to be treated flows in from the liquid inlet port 4b of the reverse osmosis membrane module assembly, and the concentrated liquid is discharged from the concentrated liquid outlet port 5c. Of the reverse osmosis membrane modules constituting the aggregate of reverse osmosis membrane modules, the reverse osmosis membrane module 10c on the concentrated solution outlet side (rear stage) is formed by the desalting step of obtaining the desalted solution from 6b and 6c and the flow path switching. A reverse osmosis membrane module that flows in the liquid to be treated and discharges the concentrated liquid from the reverse osmosis membrane module 10b on the treatment liquid inlet side (previous stage) and obtains the desalted liquid from the desalting liquid outlet ports 6b and 6c. The configuration conversion desalting step is alternately performed.
[0027]
The desalting step is performed as follows. First, the three-way valve 7c is connected to the treated water supply pipe 101 and the treated water supply pipe 102, the three-way valve 7d is connected to the pipe 119 and the pipe 105, the three-way valve 7e is connected to the pipe 114 and the pipe 119, and the three-way valve 7f is connected to the pipe 117. The concentrated water discharge pipe 118 is connected. Next, the water to be treated is added with a pH adjustment or a scale inhibitor as necessary, and flows through the treated water supply pipes 101, 102, and 106 in order, and from the port 4b to the treated water side of the reverse osmosis membrane module 10b. Flows into 1b. The treated water that has flowed in flows toward the port 5b serving as the treated water outlet, and the intermediate concentrated water is discharged from the port 5b. The desalted water is obtained from the port 6b on the desalted water side 2b of the reverse osmosis membrane module 10b. It is done. The intermediate concentrated water discharged from the port 5b flows through the pipes 111, 114, 119, 105, and 107 in order, and flows from the port 4c into the treated water side 1c of the reverse osmosis membrane module 10c. The inflowing intermediate concentrated water (the treated water of the reverse osmosis membrane module 10c) flows toward the port 5c serving as the treated water outlet, and the concentrated water is discharged from the port 5c, and the desalted water is supplied to the reverse osmosis membrane module 10c. Obtained from the port 6c on the demineralized water side 2c (the flow of the above water is indicated by solid arrows in the figure).
[0028]
As the desalting step is performed for a long time, the reverse osmosis membrane 3c of the rear-stage reverse osmosis membrane module 10c is contaminated by scales and the like, and the rejection rate and the permeated water amount are reduced. Here, it switches to a reverse osmosis membrane module arrangement | positioning conversion desalination process by switching a flow path with a three-way valve. That is, the three-way valve 7c connects the pipe 101 and the pipe 103, the three-way valve 7d connects the pipe 119 and the pipe 104, the three-way valve 7e connects the pipe 115 and the pipe 119, and the three-way valve 7f connects the pipe 116 and the pipe 118. By this switching, the rear-stage reverse osmosis membrane module 10c becomes the front stage, and the front-stage reverse osmosis membrane module 10b becomes the rear stage. That is, the water to be treated is added with pH adjustment or scale inhibitor as necessary, and flows through the treated water supply pipes 101, 103, and 107 in order, and the treated water side of the reverse osmosis membrane module 10c from the port 4c. Flows into 1c. The treated water that has flowed in flows toward the port 5c serving as the treated water outlet, and the intermediate concentrated water is discharged from the port 5c. The desalted water is obtained from the port 6c on the desalted water side 2c of the reverse osmosis membrane module 10c. It is done. The intermediate concentrated water discharged from the port 5c flows through the pipes 112, 115, 119, 104 and 106 in order, and flows into the treated water side 1b of the reverse osmosis membrane module 10b from the port 4b. The inflowing intermediate concentrated water (the treated water of the reverse osmosis membrane module 10b) flows toward the port 5b serving as the treated water outlet, and the concentrated water is discharged from the port 5b, and the desalted water is the reverse osmosis membrane module 10b. Obtained from the port 6b on the desalted water side 2b of the water (the above water flow is indicated by broken arrows in the figure).
[0029]
In the reverse osmosis membrane module arrangement conversion desalting step, the contaminated reverse osmosis membrane 3c of the reverse osmosis membrane module 10c is exposed to the water to be treated having a low salt concentration. Contaminants and precipitates such as hardly soluble salts are gradually dissolved again, the contaminants and precipitates disappear, and the blocking rate and the amount of permeated water are restored. Moreover, as the reverse osmosis membrane module arrangement conversion desalting step is performed for a long time, the reverse osmosis membrane 3b of the reverse osmosis membrane module 10b is contaminated by scales and the like, and the rejection rate and the permeated water amount are reduced. And again, it switches to a desalination process by switching a flow path, and this is repeated after that.
[0030]
Switching from the desalting process to the reverse osmosis membrane module arrangement conversion desalting process, or switching from the reverse osmosis membrane module arrangement conversion desalting process to the desalting process is the same as the switching time in the first embodiment. You can go to In addition, according to the second embodiment, the same effects as those of the first embodiment can be obtained also in the desalination apparatus and the desalination method using the reverse osmosis membrane module assembly.
[0031]
Water to be treated in the desalination apparatus and desalination method using the reverse osmosis membrane of the present invention is not particularly limited, and examples thereof include well water, industrial water, seawater, and the like. The salt apparatus and the desalting method can be suitably used particularly for the desalination treatment of the washing waste water in the semiconductor device manufacturing process. As waste water for cleaning semiconductor devices, waste water containing 0.01 to 10 mg / l calcium and 100 to 1000 mg / l fluoride ions or 10 to 800 mg / l calcium discharged from a semiconductor device manufacturing factory and 10 to 10 mg A water-based material containing 300 mg / l fluoride ion can be mentioned.
[0032]
【Example】
  In the present specification, Examples 1, 3 and 4 are reference examples of the present invention.
  Example 1 A reverse osmosis membrane module having the same configuration as that of FIG. 1 was used except that the pH adjusting unit 8a and the scale inhibitor addition unit 9a were omitted in the following apparatus specifications and operating conditions. The results are shown in FIGS. FIG. 3 shows a change in permeation flux retention rate (%) with respect to operating days. Permeation flux retention rate (%) is a value obtained by dividing the permeate flow rate corrected for operating pressure and water temperature by the initial permeate flow rate, and becomes a low value when the membrane surface becomes contaminated. . FIG. 4 shows the change in the silica rejection rate (%) with respect to the operating days.
[0033]
(Operating conditions)
・ Treatment water; industrial water having water quality shown in Table 1
・ Reverse osmosis membrane module (RO);
Model: NTR-759 (Nitto Denko)
Reverse osmosis membrane; wholly aromatic polyamide
Recovery rate: 50%
Operating pressure: 1.2 MPa
・ Repeated desalting process for 20 days and reverse flow desalting process for 20 days
[0034]
[Table 1]
Figure 0004798644
[0035]
Comparative Example 1
It performed by the method similar to Example 1 except having performed the desalting process continuously, without performing a reverse flow desalting process. The results are shown in FIGS.
[0036]
In the apparatus of this example, the RO recovery rate of 50% is that the concentration of the concentrated water is about twice the concentration of the raw water, but in about 20 days, although there is clearly no component exceeding its solubility. The permeated water amount decreased to 80% in the initial stage, and the silica rejection decreased to 95% from the initial 99%. In Example 1, since the reverse flow desalting step was performed thereafter, the permeate flow rate at the membrane surface portion near the inlet side of the RO after switching the flow path, that is, the portion where water became difficult to permeate due to contamination. Since it gradually recovers, the total permeate flow rate increases. On the other hand, the portion of the membrane surface in the vicinity of the RO outlet side after the flow path switching is newly contaminated and the water gradually becomes difficult to permeate, so that the total permeated water amount started to decrease. The permeated water flow rate again decreased to 80% of the initial value by the desalting step again after 40 days, so the reverse flow desalting step was switched to recover. The operation was repeated for 80 days while maintaining the permeated water flux retention of 80% or more without repeating the above operation and performing chemical cleaning. Further, the silica rejection rate showed the same decreasing tendency as the permeate flux retention rate, and it was possible to operate for 80 days while maintaining the silica rejection rate of 95% or more (FIG. 4). On the other hand, in Comparative Example 1, the permeated water flux retention decreased to about 50% after 80 days. Further, the rejection rate of silica decreased to 87%.
[0037]
Example 2
  A reverse osmosis membrane module assembly having the same configuration as that of FIG. 2 was used except that the pH adjusting unit 8b and the scale inhibitor adding unit 9b were omitted in the following apparatus specifications and operating conditions. The results are shown in FIGS. FIG. 5 shows the change in the permeation flux retention rate (%) with respect to the operating days, and FIG. 6 shows the change with respect to the operating days.sodiumShows the change in rejection rate (%).
[0038]
(Operating conditions)
Water to be treated: Waste water from a semiconductor device manufacturing plant neutralized with sodium hydroxide and having the water quality shown in Table 2.
-Reverse osmosis membrane module (RO) used in the reverse osmosis membrane module assembly;
Model: NTR-759 (Nitto Denko)
Reverse osmosis membrane; wholly aromatic polyamide
Recovery rate: 75%
Operating pressure: 1.2 MPa
Resalting process 15 days, reverse osmosis membrane module conversion conversion desalting process 15 days repeated continuous 90 days operation
[0039]
[Table 2]
Figure 0004798644
[0040]
Comparative Example 2
The reverse osmosis membrane module arrangement conversion was performed in the same manner as in Example 2 except that the desalting step was continuously performed without performing the desalting step. The results are shown in FIGS.
[0041]
  In this example, the water to be treated is about 3.5 × 10 5 in which the ion concentration product as calcium fluoride is the solubility product of calcium and fluoride ions.-1115.9 × 10-11And is in a supersaturated state. In the RO of this example, the recovery rate is 75%, and the concentrated water is about 4 times the original concentration. Therefore, the ion concentration product is 10.2 × 10 6 times 64 times.-9It becomes. In such a state, calcium fluoride is deposited on the membrane surface of the RO, and the permeate flow rate and the rejection rate are reduced. That is, in the desalting step for 30 days, the sodium rejection is reduced to 88% with respect to the initial value of 95% up to 70% of the initial permeate flow rate (Comparative Example 2). In Example 2, since the reverse osmosis membrane module arrangement conversion desalting step was performed after 15 days, the downstream RO membrane was washed and the permeated water amount gradually recovered, and the total permeated water amount increased. On the other hand, the RO membrane on the front side was newly contaminated, gradually making it difficult for water to permeate, and the total amount of permeated water started to decrease. The flow of permeate decreased again to the initial 90% by the re-desalting step after 30 days, so it was switched to the reverse osmosis membrane module conversion conversion desalting step and recovered. The operation was repeated for 90 days while maintaining the permeated water flux retention of 90% or more without repeating the above operation and carrying out chemical cleaning. Also,sodiumThe rejection rate also shows the same downward trend as the permeate flux retention rate,sodiumIt was possible to drive for 90 days while maintaining a rejection rate of 90% or more (FIG. 6). On the other hand, in Comparative Example 2, the permeated water flux retention decreased to about 60% after 90 days. Moreover, the sodium rejection rate fell to 87%.
[0042]
Example 3
A reverse osmosis membrane module assembly having the same configuration as in FIG. 2 was used under the following apparatus specifications and operating conditions. The results are shown in FIGS. FIG. 7 shows a change in permeation flux retention rate (%) with respect to operating days, and FIG. 8 shows a change in silica rejection rate (%) with respect to operating days.
[0043]
(Operating conditions)
・ Water to be treated: Waste water from the semiconductor device manufacturing plant, which has been desalted with an electrodialyzer and has the water quality shown in Table 3
-Reverse osmosis membrane module (RO) used in the reverse osmosis membrane module assembly;
Model: NTR-759 (Nitto Denko)
Reverse osmosis membrane; wholly aromatic polyamide
Recovery rate: 75%
Operating pressure: 1.2 MPa
Resalting process 15 days, reverse osmosis membrane module conversion conversion desalting process 15 days repeated continuous 90 days operation
PH adjusting means: Adjust the water to be treated to pH 6 or less
-Scale inhibitor addition means: Use AC-300 (manufactured by Organo Corporation) as a scale inhibitor and adjust the concentration in the concentrated water to 6 mg / l.
[0044]
[Table 3]
Figure 0004798644
[0045]
Comparative Example 3
The reverse osmosis membrane module arrangement conversion was performed in the same manner as in Example 3 except that the desalting step was continuously performed without performing the desalting step. The results are shown in FIGS.
[0046]
  In this example, the water to be treated has an ion concentration product as calcium fluoride of 0.27 × 10 for calcium and fluoride ions.-11If the raw water remains as it is, its solubility product is 3.5 × 10-11Is not exceeded. However, in this RO, the recovery rate is 75%, and the concentrated water is about 4 times the original concentration.17× 10-11It becomes. In such a state, calcium fluoride is deposited on the membrane surface of the RO, and the permeate flow rate and the rejection rate are reduced. This water has a silica concentration of 109 mg as SiO2 / l, almost reaching the saturation concentration. Since concentrated water is about 4 times the original concentration, silica is 440 mg as SiO2 The concentration reaches as high as / l, and deposits as a scale on the membrane surface, reducing the permeate flow rate and rejection. In the apparatus of this example, in the desalting step for 30 days, the initial permeate flow rate is reduced to 75%, and the silica rejection is reduced to 90% with respect to the initial value of 98% (Comparative Example 3). . Thus, in Comparative Example 3, even if the pH is adjusted to 6 or less, and even if a scale inhibitor is added, contamination of the film surface due to precipitation of calcium fluoride cannot be prevented at the same time. In Example 3, the amount of permeated water gradually decreases and reaches 90% of the initial value by performing the desalting step for 15 days. Here, since the reverse osmosis membrane module arrangement conversion desalination step was performed, the RO membrane on the rear stage side was washed, the permeate amount gradually recovered, and the total permeate amount increased. On the other hand, the RO membrane on the front side was newly contaminated, gradually making it difficult for water to permeate, and the total amount of permeated water started to decrease. The flow of permeate decreased again to the initial 90% by the re-desalting step after 30 days, so it was switched to the reverse osmosis membrane module conversion conversion desalting step and recovered. The operation was repeated for 90 days while maintaining the permeated water flux retention of 90% or more without repeating the above operation and carrying out chemical cleaning. In addition, the silica rejection rate showed a decreasing tendency similar to the permeated water flux retention rate, and it was possible to operate for 90 days while maintaining the silica rejection rate of 95% or more (FIG. 8). On the other hand, in Comparative Example 3, the permeated water flux retention decreased to about 60% after 90 days. Further, the rejection rate of silica decreased to 88%.
[0047]
Example 4
The same procedure as in Example 3 was performed except that the scale inhibitor addition means 9b was omitted. The results are shown in FIGS.
[0048]
Comparative Example 4
The reverse osmosis membrane module arrangement conversion was performed in the same manner as in Example 4 except that the desalting step was continuously performed without performing the desalting step. The results are shown in FIGS.
[0049]
As shown in FIG. 9, compared with Example 3, since the degree of recovery after the reverse osmosis membrane module arrangement conversion desalination step is small, the amount of permeated water gradually decreases, Even after 90 days of operation, 80% was maintained. The trend of silica rejection also has the same tendency, and after the reverse osmosis membrane module conversion conversion desalination step, it gradually decreases, but even if it is operated for 90 days without chemical cleaning, the silica The rejection rate was maintained at 90% or higher. In Comparative Example 4, the permeate flow rate decreased to 75% of the initial value in 15 days, and the silica rejection decreased to 90%.
[0050]
【The invention's effect】
According to the present invention (1), even when operated for a long period of time, it is possible to provide a desalination apparatus that does not cause a decrease in the rejection rate due to contamination of the membrane surface and a decrease in the amount of permeated water. It can be set as the apparatus which can collect | recover and reuse the waste_water | drain which was discharged, for example, the washing | cleaning waste_water | drain of a semiconductor device factory. Moreover, according to this invention (2), also in the desalination apparatus using a reverse osmosis membrane module assembly, there can exist an effect similar to the said this invention (1). Further, according to the present invention (3), in addition to the same effects as the present invention (1) or (2), the scale inhibitor can prevent the occurrence of scale on the membrane surface of the reverse osmosis membrane, The apparatus can be operated for a longer period. In addition, according to the present invention (4), in addition to the same effects as those of the present invention (1) to (3), the solubility of calcium and silica-derived compounds that cause scale generation is enhanced, thereby generating scale. Can be prevented, and a device capable of stable continuous operation can be obtained.
[0051]
In addition, according to the present invention (5), even if it is operated for a long period of time, there is no decrease in the rejection rate and permeated water amount due to the contamination of the membrane surface, and the flow path switching step is frequently performed, for example, every 15 minutes. In addition, it is possible to collect and reuse wastewater that has conventionally been discharged into rivers and oceans, for example, washing wastewater from semiconductor device factories. Further, according to the present invention (6), even when a reverse osmosis membrane module assembly is used, the same effect as the present invention (5) can be obtained.
[Brief description of the drawings]
FIG. 1 is a flow diagram of a desalting apparatus using a reverse osmosis membrane module according to a first embodiment.
FIG. 2 is a flow diagram of a desalting apparatus using a reverse osmosis membrane module assembly in a second embodiment.
FIG. 3 shows a change in permeate flux retention with respect to operation time in Example 1 and Comparative Example 1.
FIG. 4 shows a change in silica rejection with respect to operation time in Example 1 and Comparative Example 1.
FIG. 5 shows a change in permeate flux retention with respect to operation time in Example 2 and Comparative Example 2.
6 shows a change in sodium rejection with respect to operation time in Example 2 and Comparative Example 2. FIG.
7 shows a change in permeate flux retention with respect to operation time in Example 3 and Comparative Example 3. FIG.
FIG. 8 shows a change in silica rejection with respect to operation time in Example 3 and Comparative Example 3.
9 shows a change in permeate flux retention with respect to operation time in Example 4 and Comparative Example 4. FIG.
10 shows changes in silica rejection with respect to operation time in Example 4 and Comparative Example 4. FIG.
FIG. 11 shows a flow diagram of a desalting apparatus using a reverse osmosis membrane module in a conventional example.
FIG. 12 is a flow diagram of a desalting apparatus using a reverse osmosis membrane module assembly in a conventional example.
[Explanation of symbols]
1a to 1c, 53, 63a to 63c Water to be treated
2a-2c, 52, 62a-62c Demineralized water side
3a-3c, 51, 61a-61c Reverse osmosis membrane
4a-4c Water to be treated (port)
5a-5c Concentrated water outlet (port)
6a-6c Demineralized water outlet (port)
7a-7f three-way valve
8a, 8b pH adjusting means
9a, 9b Scale inhibitor addition means
10a-10c, 50, 60, 60a-60c Reverse osmosis membrane module
11-13, 101-103, 54 To-be-processed water supply piping
14, 15, 81, 91, 104-109, 114, 115, 119
Piping
17, 18, 19, 55, 111, 112, 116, 117, 118
Concentrated water discharge piping
20, 30 Desalination apparatus using reverse osmosis membrane
56, 110 Demineralized water outlet piping

Claims (4)


複数の逆浸透膜モジュールを組み合わせてなり、前段の逆浸透膜モジュールから排出される濃縮液を後段の逆浸透膜モジュールの被処理液とする逆浸透膜モジュール集合体の被処理液入口から0.01〜10mg/lのカルシウムと100〜1000mg/lのフッ化物イオンを含有するか、又は10〜800mg/lのカルシウムと10〜300mg/lのフッ化物イオンを含有する被処理液を流入させると共に、濃縮液出口から濃縮液を排出させ、脱塩液出口から脱塩液を得る脱塩工程と、
流路切替えにより、前記逆浸透膜モジュール集合体を構成する逆浸透膜モジュールのうち、前記濃縮液出口側の逆浸透膜モジュールの被処理液入口から被処理液を流入し、前記濃縮液出口側の逆浸透膜モジュールの濃縮液出口から中間濃縮液を排出し、次いで前記被処理液入口側の逆浸透膜モジュールの被処理液入口から該中間濃縮液を流入し、前記被処理液入口側の逆浸透膜モジュールの濃縮液出口から濃縮液を排出すると共に、前記脱塩液出口より脱塩液を得、該脱塩工程における濃縮液出口側の逆浸透膜モジュールの膜面に析出したフッ化カルシウムを溶解する逆浸透膜モジュール配置変換脱塩工程と、を交互に行うことを特徴とする逆浸透膜を用いる脱塩方法。

A plurality of reverse osmosis membrane modules are combined, and the concentrated liquid discharged from the upstream reverse osmosis membrane module is treated liquid of the reverse osmosis membrane module from the treatment liquid inlet of the reverse osmosis membrane module assembly. A liquid to be treated containing 01 to 10 mg / l calcium and 100 to 1000 mg / l fluoride ions, or 10 to 800 mg / l calcium and 10 to 300 mg / l fluoride ions is introduced. , A desalting step of discharging the concentrated solution from the concentrated solution outlet and obtaining a desalted solution from the desalted solution outlet;
Of the reverse osmosis membrane modules constituting the reverse osmosis membrane module assembly by switching the flow path, the liquid to be treated flows in from the liquid treatment inlet of the reverse osmosis membrane module on the concentrate outlet side, and the concentrate outlet side The intermediate concentrated liquid is discharged from the concentrated liquid outlet of the reverse osmosis membrane module, and then the intermediate concentrated liquid is introduced from the processed liquid inlet of the reverse osmosis membrane module on the processed liquid inlet side. The concentrated solution is discharged from the concentrated solution outlet of the reverse osmosis membrane module, the desalted solution is obtained from the desalted solution outlet, and the fluoride deposited on the membrane surface of the reverse osmosis membrane module on the concentrated solution outlet side in the desalting step A desalting method using a reverse osmosis membrane, characterized by alternately performing a reverse osmosis membrane module arrangement conversion desalting step for dissolving calcium.
前記複数は2つであることを特徴とする請求項記載の逆浸透膜を用いる脱塩方法。Wherein the plurality desalting method using a reverse osmosis membrane according to claim 1, wherein a is two.
更に、被処理液にスケール防止剤を添加することを特徴とする請求項1又は2記載の逆浸透膜を用いる脱塩方法。

The desalinating method using a reverse osmosis membrane according to claim 1 or 2 , further comprising adding a scale inhibitor to the liquid to be treated.
更に、被処理液のpHを2.0〜6.5に調整することを特徴とする請求項1〜のいずれか1項に記載の逆浸透膜を用いる脱塩方法。Furthermore, pH of a to-be-processed liquid is adjusted to 2.0-6.5, The desalting method using the reverse osmosis membrane of any one of Claims 1-3 characterized by the above-mentioned.
JP2001007302A 2001-01-16 2001-01-16 Desalination method using reverse osmosis membrane Expired - Fee Related JP4798644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001007302A JP4798644B2 (en) 2001-01-16 2001-01-16 Desalination method using reverse osmosis membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001007302A JP4798644B2 (en) 2001-01-16 2001-01-16 Desalination method using reverse osmosis membrane

Publications (3)

Publication Number Publication Date
JP2002210335A JP2002210335A (en) 2002-07-30
JP2002210335A5 JP2002210335A5 (en) 2007-09-13
JP4798644B2 true JP4798644B2 (en) 2011-10-19

Family

ID=18875072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001007302A Expired - Fee Related JP4798644B2 (en) 2001-01-16 2001-01-16 Desalination method using reverse osmosis membrane

Country Status (1)

Country Link
JP (1) JP4798644B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198531A (en) * 2005-01-20 2006-08-03 Daicen Membrane Systems Ltd Operating method of hollow fiber membrane module
JP5022613B2 (en) * 2006-03-17 2012-09-12 メタウォーター株式会社 Operation method of water treatment equipment by membrane filtration
JP5317452B2 (en) * 2007-09-21 2013-10-16 旭化成ケミカルズ株式会社 Hollow fiber membrane filtration device
JP2008137008A (en) * 2008-01-09 2008-06-19 Japan Organo Co Ltd Method and apparatus for treating ink waste liquid
JP5345344B2 (en) * 2008-06-20 2013-11-20 オルガノ株式会社 Scale inhibitor supply management method and supply management apparatus
JP5548378B2 (en) * 2009-03-31 2014-07-16 株式会社神鋼環境ソリューション Water treatment apparatus and water treatment method
JP2011031146A (en) * 2009-07-30 2011-02-17 Miura Co Ltd Water treatment system
WO2013176119A1 (en) 2012-05-22 2013-11-28 東レ株式会社 Membrane separation device and operation method for membrane separation device
JP6146075B2 (en) * 2013-03-22 2017-06-14 栗田工業株式会社 Scale prevention method and scale inhibitor
JP5606615B1 (en) * 2013-12-05 2014-10-15 三菱重工業株式会社 Membrane separator, circulating water utilization system
JP5518245B1 (en) 2013-12-05 2014-06-11 三菱重工業株式会社 Remote monitoring method and system for circulating water utilization system group
JP5563142B1 (en) 2013-12-05 2014-07-30 三菱重工業株式会社 Circulating water utilization system
JP5567199B1 (en) 2013-12-05 2014-08-06 三菱重工業株式会社 Circulating water utilization system
JP5512032B1 (en) 2013-12-05 2014-06-04 三菱重工業株式会社 Circulating water usage system charging device, circulating water usage system
CN105217732A (en) * 2015-09-30 2016-01-06 杭州司迈特水处理工程有限公司 A kind of reverse osmosis membrane pile structure of direction-agile of intaking
CN105217733B (en) * 2015-10-12 2018-08-10 北京碧水源膜科技有限公司 A kind of the nanometer filtering film water processing system and method for two-way flow
CN105502577B (en) * 2015-12-01 2019-01-22 中国电子系统工程第二建设有限公司 Reverse osmosis unit
CN108946870A (en) * 2017-05-18 2018-12-07 佛山市顺德区美的饮水机制造有限公司 Water purification machine, reverse osmosis filtration system and its control method
CN108946871A (en) * 2017-05-18 2018-12-07 佛山市顺德区美的饮水机制造有限公司 Water purification machine, reverse osmosis filtration system and its control method
CN111148564A (en) * 2017-09-25 2020-05-12 富士胶片株式会社 Filtering device, filtering system and filtering method
JP7449107B2 (en) 2020-02-04 2024-03-13 オルガノ株式会社 Water treatment method and water treatment equipment
CN115108608A (en) * 2022-06-17 2022-09-27 江苏京源环保股份有限公司 Circulating reverse osmosis treatment system and treatment method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192201U (en) * 1987-12-08 1989-06-16
JPH0679142A (en) * 1992-09-07 1994-03-22 Mitsubishi Heavy Ind Ltd Method for supplying liquid in reverse osmosis module
JPH06134460A (en) * 1992-10-23 1994-05-17 Daiki Kk Recycling device of contaminated water using hollow yarn membrane module
JP4160200B2 (en) * 1998-04-10 2008-10-01 日機装株式会社 Hollow fiber membrane filtration device
JP2000202445A (en) * 1999-01-13 2000-07-25 Kurita Water Ind Ltd Treatment of recovered water containing fluoride ion in semiconductor production process
JP2000300966A (en) * 1999-02-17 2000-10-31 Toray Ind Inc Membrane sterilization method and membrane separation device

Also Published As

Publication number Publication date
JP2002210335A (en) 2002-07-30

Similar Documents

Publication Publication Date Title
JP4798644B2 (en) Desalination method using reverse osmosis membrane
TWI504572B (en) A method for treating water for activated carbon, a method for treating water containing organic matter, and a treatment device
EP1363856B1 (en) Method of boron removal in presence of magnesium ions
KR101353002B1 (en) Treating method and treating apparatus of waste water containing organic material and
EP1424311B1 (en) Method of multi-stage reverse osmosis treatment
JP4996067B2 (en) Water treatment apparatus using reverse osmosis membrane and method of using the same
JP2008132421A (en) Water treatment apparatus and water treatment method
JPH11244853A (en) Production of pure water
EP1894612B1 (en) Method for purifying water by means of a membrane filtration unit
JP4850467B2 (en) Cleaning method for membrane deaerator
JP2004261768A (en) Ultrapure water manufacturing system and its operation method
JP4697758B2 (en) Desalination wastewater treatment method and apparatus
JP2022176325A (en) Operational method of desalination apparatus
WO2021125002A1 (en) Concentration system
JP3906855B2 (en) Method and apparatus for treating wastewater containing organic matter and oxidizing agent
JP2003290775A (en) Method and apparatus for treating desalted waste water
JP3267468B2 (en) Operating method of reverse osmosis membrane device
TW201402198A (en) Processing method of reverse osmosis membrane and processing device of reverse osmosis membrane
JPH11662A (en) Demineralization apparatus and method for boiler water
KR101098679B1 (en) Method of treating waste water containing organic substance and treating apparatus
JPH10128075A (en) Reverse osmosis membrane device and treatment using the same
JPH09155344A (en) Method for desalination of brackish water and apparatus therefor
JP2005046801A (en) Water treatment method and apparatus therefor
JP2005028329A (en) Washing method of reverse osmosis membrane device
WO2023166905A1 (en) Method for operating desalting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090813

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798644

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees