JP4784259B2 - Solar radiation shielding control device - Google Patents

Solar radiation shielding control device Download PDF

Info

Publication number
JP4784259B2
JP4784259B2 JP2005312022A JP2005312022A JP4784259B2 JP 4784259 B2 JP4784259 B2 JP 4784259B2 JP 2005312022 A JP2005312022 A JP 2005312022A JP 2005312022 A JP2005312022 A JP 2005312022A JP 4784259 B2 JP4784259 B2 JP 4784259B2
Authority
JP
Japan
Prior art keywords
opening
degree
closing
solar radiation
blind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005312022A
Other languages
Japanese (ja)
Other versions
JP2007120089A (en
Inventor
昌史 村上
健 小野
史明 大林
真明 寺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005312022A priority Critical patent/JP4784259B2/en
Publication of JP2007120089A publication Critical patent/JP2007120089A/en
Application granted granted Critical
Publication of JP4784259B2 publication Critical patent/JP4784259B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings

Landscapes

  • Air Conditioning Control Device (AREA)
  • Blinds (AREA)

Description

本発明は、室内への日射量を遮蔽手段で制御する日射遮蔽制御装置に関するものである。   The present invention relates to a solar radiation shielding control device that controls the amount of solar radiation in a room with a shielding means.

近年、温暖化による省エネルギの社会的要求が増えてきている。特に、昼光(日光)の導入を利用した省エネルギ制御は、自然エネルギ利用として期待は高く、また昼光を採光部である窓から室内へ導入する場合、窓本来の機能である利用者の外部環境とのつながりを促すことから執務者の開放感や快適性の面からも有効と考えられる。このような背景により、近年の制御技術の発展に伴い、外環境の状態に合わした日射遮蔽を遮蔽手段の開閉により自動的に行う日射遮蔽制御装置が普及しつつある。ただこれらの日射遮蔽制御装置は、照明エネルギ削減を目的としており、昼光利用による空調エネルギの増減は考慮されていなかった。   In recent years, social demands for energy saving due to global warming have increased. In particular, energy-saving control using daylight (sunlight) is expected to be a natural energy utilization, and when daylight is introduced into a room from a window, which is a daylighting unit, it is the user's original function. It is considered effective from the viewpoint of openness and comfort for office workers because it promotes connection with the external environment. Against this background, with the recent development of control technology, solar shading control devices that automatically perform solar shading according to the state of the external environment by opening and closing the shielding means are becoming widespread. However, these solar radiation shielding control devices are intended to reduce illumination energy, and the increase or decrease in air conditioning energy due to daylight use has not been considered.

このような問題に対して、リアルタイムで外気温度と日射量を読み込みシミュレーションによって照明・空調エネルギを予測し、最適なブラインドの遮蔽状態を決定する建物省エネルギ制御装置が提供されている(例えば、特許文献1)。
特開平7−127897号公報(公報(1)頁左欄の(構成))
In response to such a problem, a building energy-saving control device is provided that reads the outside air temperature and the amount of solar radiation in real time, predicts lighting / air-conditioning energy by simulation, and determines an optimal blind shielding state (for example, Patent Document 1).
Japanese Patent Application Laid-Open No. 7-127897 (Gazette (1) (Structure) in the left column of the page)

上述の特許文献1に開示されているようにシミュレーションによって照明・空調エネルギを予測する方法を用いても、実際の解空間において必ずしも唯一の最適解が存在するわけでないため、複数の局所解が存在する場合が多い。特に日射量が小さい時間帯や曇天では、図14(a)に示すようにブラインドの開度に対して空調エネルギ(I)、照明エネルギ(II)は共に影響がなく、省エネルギに対する期待が小さいにも拘わらず、外気からの貫流成分と日射成分のバランス関係が不安定になり、最適解が不連続な状態で存在する場合が多くなる。このためブラインドの開閉の制御が不安定になり、視環境に悪影響を及ぼす場合が考えられる。また直射光が存在しない、又は殆ど存在しない時間帯においては、図14(b)に示すように昼光導入に伴う空調エネルギ(I)に比べ照明エネルギ(II)による影響は大きいため、最適解は明らかである(ずっと遮蔽手段を開にしておく方が良い)。しかし日射量の急激な変化のため解が不安定になる恐れがあり、シミュレーションによる最適化はリスクが内在するという問題がある。更に直射光が存在する時間帯では、図14(c)に示すように空調エネルギ(I)が増加し、空調エネルギ(I)と照明エネルギ(II)とが均衡し、ブラインドの状態が開、閉以外に最適解を持つ場合が存在するようになる。この領域では空調エネルギ(I)と照明エネルギ(II)とのバランスを考慮した制御が有効になると考えられる。   Even if the method of predicting the illumination / air-conditioning energy by simulation as disclosed in the above-mentioned Patent Document 1, there is not necessarily a single optimum solution in the actual solution space, so there are a plurality of local solutions. There are many cases to do. In particular, in a time zone where the amount of solar radiation is small or in cloudy weather, the air conditioning energy (I) and the illumination energy (II) have no effect on the blind opening as shown in FIG. Nevertheless, the balance between the flow component from the outside air and the solar radiation component becomes unstable, and the optimal solution often exists in a discontinuous state. For this reason, the blind opening / closing control becomes unstable, which may adversely affect the visual environment. In the time zone where there is no direct light or almost no direct light, as shown in FIG. 14 (b), the effect of illumination energy (II) is larger than the air conditioning energy (I) associated with the introduction of daylight. Is obvious (it is better to keep the shield open all the time). However, there is a risk that the solution may become unstable due to a rapid change in the amount of solar radiation, and there is a problem that optimization by simulation has inherent risks. Furthermore, in the time zone in which the direct light exists, the air conditioning energy (I) increases as shown in FIG. 14C, the air conditioning energy (I) and the illumination energy (II) are balanced, and the blind state is opened. There are cases where there is an optimal solution other than closed. In this region, it is considered that the control considering the balance between the air conditioning energy (I) and the illumination energy (II) is effective.

本発明は、上述の点に鑑みて為されたもので、その目的とするところは、遮蔽手段の開閉度が全閉と全開との間を変化するハンチング動作を避け、視環境に悪影響を及ぼすことがない日射遮蔽制御装置を提供することににある。   The present invention has been made in view of the above points, and its object is to avoid a hunting operation in which the degree of opening and closing of the shielding means changes between fully closed and fully open, and adversely affects the visual environment. An object of the present invention is to provide a solar shading control device that never happens.

上述の目的を達成するために、請求項1の発明では、空調機と照明装置とが備えられた対象エリアに設けられ、該対象エリアへの日光の入射を遮蔽手段の開閉度で制御する日射遮蔽制御装置において、日射状態を取得する日射状態取得部と、前記日射状態取得部の取得結果に基づいて前記遮蔽手段の開閉度を調節する制御部とを備え、横軸を前記遮蔽手段の開閉度、縦軸を前記空調機の消費する空調エネルギと前記照明装置の消費する照明エネルギとの和である総エネルギ消費量とした場合に前記遮蔽手段の開閉度と前記総エネルギ消費量との関係が上に凸となるような日射量の領域を不安定領域、それ以外の領域を安定領域とし、前記安定領域では前記総エネルギ消費量が最小となる開閉度が最適開閉度であり、前記制御部は、日射量が前記安定領域であれば前記遮蔽手段の開閉度を前記最適開閉度に調節することを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, solar radiation is provided in a target area provided with an air conditioner and a lighting device, and the incidence of sunlight in the target area is controlled by the degree of opening and closing of the shielding means. The shielding control device includes a solar radiation state acquisition unit that acquires a solar radiation state, and a control unit that adjusts an opening / closing degree of the shielding unit based on an acquisition result of the solar radiation state acquisition unit , and the horizontal axis indicates the opening / closing of the shielding unit. The relationship between the degree of opening and closing of the shielding means and the total energy consumption when the vertical axis is the total energy consumption that is the sum of the air-conditioning energy consumed by the air conditioner and the illumination energy consumed by the lighting device The region of the solar radiation amount that is convex upward is an unstable region, and the other region is a stable region. In the stable region, the degree of opening and closing that minimizes the total energy consumption is the optimum degree of opening and closing. part is, the amount of solar radiation before The opening degree of the shielding means as long as the stable region you and adjusting to the optimal opening degree.

請求項1の発明によれば、日射量が少ない場合に生じる遮蔽手段の開閉度と総エネルギ消費量との関係が上に突出する関係になる不安定領域を使用しないことで、遮蔽手段の開閉度が全閉と全開との間を変化するハンチング動作を避け、視環境に悪影響を及ぼすことがない。   According to the first aspect of the present invention, it is possible to open and close the shielding means by not using an unstable region in which the relationship between the degree of opening and closing of the shielding means and the total energy consumption that occurs when the amount of solar radiation is small. A hunting operation in which the degree changes between fully closed and fully open is avoided, and the visual environment is not adversely affected.

請求項2の発明では、請求項1の発明において、エネルギシミュレーション結果より予め得られた前記安定領域における前記総エネルギ消費量と前記遮蔽手段の開閉度とのデータテーブルを用いて前記最適開閉度を取得する最適開閉度取得手段を備えていることを特徴とする。 In the invention of claim 2, in the invention of claim 1, wherein the optimal opening degree by using a data table for the opening and closing degree of the total energy consumption and the shielding means in the stable region obtained previously from e Nerugi simulation results An optimum opening / closing degree acquisition means for acquiring

請求項2の発明によれば、予め開閉度と総エネルギ消費量との関係が不安定領域を除いいて最適開閉度を取得するので、迅速にハンチング動作を避けた制御を行うことができる。   According to the second aspect of the present invention, since the optimum opening / closing degree is obtained by excluding an unstable region where the relation between the opening / closing degree and the total energy consumption is previously unstable, it is possible to quickly perform control avoiding the hunting operation.

請求項3の発明では、請求項2の発明において、前記最適開閉度取得手段は、前記安定領域における前記最適開閉度と前記総エネルギ消費量との関係を統計的処理した結果に基づいて外挿した値を用いて、前記不安定領域における前記最適開閉度を取得することを特徴とする。 According to a third aspect of the present invention, in the second aspect of the invention, the optimum opening / closing degree acquisition means extrapolates a relationship between the optimum opening / closing degree and the total energy consumption in the stable region based on a result of statistical processing. The optimum opening / closing degree in the unstable region is obtained using the obtained value.

請求項3の発明によれば、不安定領域と安定領域との境を滑らかに接続するので不安定領域についても自然な開閉度制御を行うことができる。 According to the invention of claim 3, since the boundary between the unstable region and the stable region is smoothly connected , natural open / close degree control can be performed also for the unstable region.

請求項4の発明では、請求項1の発明において、前記不安定領域において前記総エネルギ消費量が最小で且つグレアが生じない最大の開閉度を前記最適開閉度として取得する最適開閉度取得手段を備えていることを特徴とする。 According to a fourth aspect of the present invention, in the first aspect of the invention, there is provided an optimum opening / closing degree acquiring means for acquiring, as the optimum opening / closing degree , the maximum opening / closing degree at which the total energy consumption is minimum and no glare occurs in the unstable region. It is characterized by having.

請求項4の発明によれば、不安定領域となる照度が低い状態において、採光するように制御することができるので、外を見たいという室内の人の要望を満たすことができる。   According to the invention of claim 4, since it can be controlled so as to perform daylighting in a state where the illuminance that becomes an unstable region is low, it is possible to satisfy the demand of an indoor person who wants to look outside.

請求項5の発明では、請求項1乃至4の何れかの発明において、前記最適開閉度取得手段は、前記日射状態の変化が所定の最大変化量よりも大きい場合には、前記日射状態を当該日射状態に前記最大変化量を加えた値に制限して前記最適開閉度を取得することを特徴とする。 In the invention of claim 5, in any one of the claims 1 to 4, wherein the optimal opening degree obtaining means, when the change of the solar irradiation is greater than a predetermined maximum change amount, the said solar irradiation The optimum opening / closing degree is obtained by limiting to a value obtained by adding the maximum change amount to a solar radiation state.

請求項5の発明によれば、太陽が雲に隠れてしまうような日射状態の大きな変化が生じた場合に緩やかに遮蔽手段の開閉度を制御して視環境の急激な変化を抑えることができる。   According to the invention of claim 5, when a large change in the solar radiation state occurs in which the sun is hidden in the clouds, it is possible to moderately control the opening / closing degree of the shielding means to suppress a rapid change in the visual environment. .

本発明は、日射量が少ない場合に生じる開閉度と総エネルギ消費量との関係が上に突出する関係になる不安定領域を使用しないで、開閉度が全閉と全開との間を変化するハンチング動作を避け、視環境に悪影響を及ぼすことがない日射遮蔽制御装置を提供することができるという効果を奏する。   The present invention does not use an unstable region where the relationship between the degree of opening and closing and the total energy consumption that occurs when the amount of solar radiation is small, and the degree of opening and closing changes between fully closed and fully opened. There is an effect that it is possible to provide a solar radiation shielding control device that avoids the hunting operation and does not adversely affect the visual environment.

以下本発明を実施形態により説明する。
(実施形態1)
図2は本発明の日射量遮蔽装置を備えたビルの一部を示しており、建物の壁には採光部として窓部Wが開口し、この窓部Wにはベネチャンブラインド(以下ブラインドという)1からなる遮蔽手段が装着され、更に屋内である対象エリアXの天井CEには照明システムの照明装置2及び対象エリアXに配置される机Dの上面(机上面)の照度を検出する照度センサ3と、空調システムの吹き出し口4と、対象エリアXの空調環境(温度・湿度)を検出するための温度・湿度セン5とが設けられている。また日射状態を取得するために屋上等の屋外の適所に設けられ、各方位の鉛直面照度を計測する照度計(又は日射量を計測する日射量計)6とを設けている。尚遮蔽手段としては、例えばガラス板間に介在させた液晶シートの通電を制御して光透過率を可変して遮蔽を行うスマートウィンドウやロールスクリーン等を用いても良い。
Embodiments of the present invention will be described below.
(Embodiment 1)
FIG. 2 shows a part of a building equipped with the solar radiation shielding device of the present invention, and a window portion W is opened as a daylighting portion on the wall of the building, and the window portion W has a Venetian blind (hereinafter referred to as a blind). ) Illuminance for detecting the illuminance of the lighting device 2 of the lighting system and the upper surface (desk upper surface) of the desk D arranged in the target area X on the ceiling CE of the target area X that is equipped with shielding means 1 and indoors a sensor 3, an outlet 4 of the air conditioning system, the temperature and humidity sensor 5 for detecting the target area X of the air-conditioning environment (temperature and humidity) is provided. Moreover, in order to acquire the solar radiation state, an illuminometer (or a solar radiation meter for measuring the amount of solar radiation) 6 provided at an appropriate place on the roof or the like for measuring the vertical surface illuminance in each direction is provided. As the shielding means, for example, a smart window, a roll screen, or the like that performs shielding by changing the light transmittance by controlling the energization of the liquid crystal sheet interposed between the glass plates may be used.

空調システムは機械室等に設けられた空調機8と、天井CEの裏などに設けられた変風量ユニット9と、これら空調機8,変風量ユニット9を温度・湿度センサが検知する温度や湿度に基づいて制御する空調Icont(Intelligent Controller)7とで構成される。照明システムは、照度センサ3の検知照度に基づいて調光機能付きの照明装置2の光出力を制御する照明Icont10とで構成される。 The air conditioning system includes an air conditioner 8 provided in a machine room and the like, a variable air volume unit 9 provided on the back of the ceiling CE, and the temperature / humidity sensor 5 that detects the air conditioner 8 and the variable air volume unit 9. It is comprised with the air conditioning Icont (Intelligent Controller) 7 controlled based on humidity. The illumination system includes an illumination Icont 10 that controls the light output of the illumination device 2 with a dimming function based on the detected illuminance of the illuminance sensor 3.

本実施形態の日射量遮蔽装置は、ブラインド1と、照度計(又は日射量計)6と、ブラインドIcont11とで構成されている。   The solar radiation shielding device of the present embodiment includes a blind 1, an illuminometer (or solar radiation meter) 6, and a blind Icont 11.

そして各Icont7,10,11及び照度計(日射量計)6からの情報収集を行う計測Icont16は建物全体の環境を統合して連携制御する上位システムを構築するフロア統合コントローラ17とに接続されており、この接続には例えばビルオートメーション専用伝送線を用い、所定規格の信号により情報を授受できるようなっている。   And the measurement icon 16 that collects information from each of the icons 7, 10, 11 and the illuminance meter (irradiance meter) 6 is connected to a floor integrated controller 17 that constructs a host system for integrating and controlling the environment of the entire building. For this connection, for example, a dedicated transmission line for building automation is used, and information can be exchanged by a signal of a predetermined standard.

さて本実施形態の日射遮蔽制御装置の中枢となるブラインドIcont11は、図1に示すように日射状態取得部12と、動作モード取得部13と、最適開閉度取得部14と、制御部15とで構成されており、その内の日射状態取得部12は、システムタイマ(図示せず)により現在の時刻を取得し、対象建物の立地条件(設置場所の緯度、経度)とに基づいて現在の太陽位置を算出する太陽位置取得手段としての機能と、照度計から各方位の鉛直面照度を例えば1分間隔で取得する機能と、太陽位置状態と照度計が測定する照度による日射状態から直射光の有無を判定する直射光判断手段としての機能と、太陽高度と鉛直面照度より天候を判定する天候判断手段としての機能とを備えている。尚照度計の代わりに日射量計を設け、計測する日射量から照度へ変換するようにしても良い。また照度情報を計測Icont16,フロア統合コントローラ17を通じて取得するようにしても良い。 As shown in FIG. 1, the blind Icont 11 that is the center of the solar radiation shielding control device of the present embodiment includes a solar radiation state acquisition unit 12, an operation mode acquisition unit 13, an optimum opening / closing degree acquisition unit 14, and a control unit 15. The solar radiation state acquisition unit 12 is configured to acquire the current time by a system timer (not shown), and based on the location conditions (latitude and longitude of the installation location) of the target building Direct solar radiation from a function as a solar position acquisition means for calculating a position, a function of acquiring vertical illuminance in each direction from the illuminometer 6 at intervals of, for example, 1 minute, and a solar position state and an illuminance measured by the illuminometer 6 It has a function as a direct light judgment means for judging the presence or absence of light and a function as a weather judgment means for judging the weather from the solar altitude and the vertical surface illuminance. A solar radiation meter may be provided instead of the illuminometer 6 to convert the measured solar radiation amount into illuminance. Further, the illuminance information may be acquired through the measurement icon 16 and the floor integrated controller 17.

動作モード取得部13は、空調機8の動作モード(冷房/暖房)を空調Icont7,フロア統合コントローラ17を介して取得するものである。   The operation mode acquisition unit 13 acquires the operation mode (cooling / heating) of the air conditioner 8 via the air conditioning Icont 7 and the floor integrated controller 17.

最適開閉度取得部1は、ブラインド1の開閉度と、取得した照度及び太陽位置からなる日射状態に基づいて空調機8が消費する空調エネルギと照明装置2が消費する照明エネルギ量をエネルギシミュレーションによりリアルタイムで算出する。但し、ブラインド1の開閉度はブラインド1が動作する範囲の内、動作可能な開閉度であり、例えば、ブラインド1がスラット角0°〜90°の内、1°刻みに動作可能なブラインドからなる場合では、0°,1°,2°,3°,…,90°となる。 Optimal opening degree acquiring unit 1 4, the opening degree of the blind 1, the energy simulate illumination amount of energy the air conditioner 8 based on the solar irradiation consisting acquired illumination and solar position is consumed air conditioning energy and the illumination device 2 for consumption To calculate in real time. However, the degree of opening and closing of the blind 1 is the degree of opening and closing that can be operated within the range in which the blind 1 operates. For example, the blind 1 is composed of a blind that can operate in increments of 1 ° within a slat angle of 0 ° to 90 °. In this case, 0 °, 1 °, 2 °, 3 °,..., 90 °.

そして最適開閉度取得部1は、シミュレーションにより算出された空調エネルギと照明エネルギとの和である総エネルギ消費量が最小となるブラインド1の開閉度を決定する。 The optimum opening degree acquiring unit 1 4, total energy consumption is the sum of the calculated air-conditioning energy and lighting energy by simulation to determine the opening degree of the blind 1 to be minimized.

制御部15は最適開閉度取得部1で得られたブラインド1の開閉度が、全開及び全閉以外の場合は無条件で最適解として扱い、ブラインド1の開閉度で制御する。また最適開閉度取得部1で得られたブラインド1の開閉度が、全開又は全閉の場合には、眩しさが予め決めてある基準値以下になる範囲及び直射光が対象エリアX内に入射しない範囲でブラインド1の開閉度を開く方に保つようにブラインド1の開閉度を制御する。これは最適な開閉度が全開又は全閉に存在する日射量が低い時間帯では、省エネルギの期待が小さいことから窓部Wからの眺望を優先するためである。尚制御部15はブラインド1の開閉度を制御するに際しては、最適開閉度取得部1で得られた最適なブラインド1の開閉度と、過去のブラインド1の開閉度とを比較して、設定値以上にブラインド1が変化しないように制限を加えながら、最適なブラインド開閉度を決定する処理を行う。つまり日射量の変化が所定の最大変化量よりも大きい場合に日射量を当該日射量に前記最大変化量を加えた値に制限して最適開閉度を取得するのである。 The control unit 15 is optimal opening degree obtaining section 1 blind 1 of closed degree obtained in 4, in the case of outside fully opened and all閉以treated as optimal solution unconditionally, controlled by opening and closing of the blind 1. The opening and closing of the blind 1 obtained in the optimal opening degree obtaining section 1 4, in the case of fully open or fully closed is the glare is less than the reference value that is predetermined range and direct light in the target area X It controls the opening and closing of the blind 1 to maintain in the direction to open the blind 1 of closed degree within a range not incident. This is because the view from the window W is given priority in the time zone where the optimal degree of opening and closing is in the fully open or fully closed state and the amount of solar radiation is low, since the expectation of energy saving is small. Note the control unit 15 when controlling the opening degree of the blind 1 compares the opening degree of the optimum blind 1 obtained in the optimal opening degree obtaining section 1 4, and the opening degree of the past blind 1, set A process for determining the optimum degree of blind opening / closing is performed while restricting the blind 1 so as not to change beyond the value. That is, when the change in the amount of solar radiation is larger than a predetermined maximum amount of change, the optimal degree of opening and closing is obtained by limiting the amount of solar radiation to a value obtained by adding the maximum amount of change to the amount of solar radiation.

次に本実施形態の動作を図3のフローチャートに基づいて説明する。   Next, the operation of this embodiment will be described based on the flowchart of FIG.

まず日射遮蔽制御装置をスタートさせると、ブラインドIcont11の日射状態取得部12は、システムタイマから10乃至30(分)の間隔で現在時刻を取得し(ステップS1)、この現在時刻と予め登録されている或いはGPSなどから取得した当該装置の設置場所の地球上の位置情報とに基づいて現在の太陽Tの位置を算出するとともに対象エリアXが面する窓部Wの位置関係を算出する(ステップS2)。このステップS2ではまず太陽位置の算出は建物の緯度及び経度と、現在時刻とに基づいて太陽高度、太陽方位角を適宜な周知の算出方法により算出する。次に窓部W面への入射角、見かけ高度(太陽高度を窓面に対して垂直方向に補正した高度)を窓部Wの位置関係として算出する。ここで窓面の入射角は、図4(a)に示すように現在の太陽高度をh[°]、方位角をA[°]、窓面の向きA0とすると、窓面への入射角i’は
i’=cos−1[cos(h)×cos(A−A0)]
となる。
First, when the solar radiation shielding control device is started, the solar radiation state obtaining unit 12 of the blind icon 11 obtains the current time at intervals of 10 to 30 (minutes) from the system timer (step S1), and is registered in advance as this current time. Or the current position of the sun T based on the position information of the installation location of the device acquired from the GPS or the like and the positional relationship of the window W facing the target area X (step S2). ). In this step S2, the solar position is calculated by first calculating the solar altitude and the solar azimuth by an appropriate known calculation method based on the latitude and longitude of the building and the current time. Next, the incident angle to the window W surface and the apparent altitude (the altitude obtained by correcting the solar altitude in the direction perpendicular to the window surface) are calculated as the positional relationship of the window W. Here, as shown in FIG. 4 (a), the incident angle of the window surface is the incident angle to the window surface when the current solar altitude is h [°], the azimuth angle is A [°], and the window surface direction A0. i ′ is i ′ = cos−1 [cos (h) × cos (A−A0)].
It becomes.

また見かけ高度h’は
h’=arc tan[tan(h)/cos(A−A0)]
となる。尚図4(a)中E,W,S,Nは東西南北の方位を示し,Zは鉛直方向を示す。
The apparent height h ′ is h ′ = arc tan [tan (h) / cos (A−A0)].
It becomes. In FIG. 4A, E, W, S, and N indicate the directions of east, west, south, and north, and Z indicates the vertical direction.

日射状態取得部12は、算出した窓面への入射角i’より窓面に対する直射光の有無の判定を行う。この場合図4(b)に示すように太陽Tの位置と窓部W側の庇の長さL等から直射光が対象エリアXに入射する範囲βや入射しない範囲γを判断し、同時にエリアA内の机Dの位置や方向などから例えば机Dで執務する人Mの視界に直射光が入射するか否かを判定する処理を行う。   The solar radiation state acquisition unit 12 determines whether there is direct light on the window surface from the calculated incident angle i ′ to the window surface. In this case, as shown in FIG. 4B, a range β where the direct light is incident on the target area X and a range γ where the direct light is not incident are determined from the position of the sun T and the length L of the ridge on the window W side, and the area For example, a process of determining whether or not direct light is incident on the field of view of the person M working at the desk D from the position and direction of the desk D in A is performed.

さて上述のように日射状態取得部12で、時刻の取得と、太陽位置の算出と、直射光入射判定、更に天候判定が終了すると、次のステップS3では動作モード取得部13により空調機8の動作モード、つまり暖房運転中か冷房運転中かの状態取得を行う。   As described above, when the solar radiation state acquisition unit 12 acquires the time, calculates the solar position, determines whether the direct light is incident, and further determines the weather, the operation mode acquisition unit 13 performs the operation of the air conditioner 8 in the next step S3. The operation mode, that is, whether the heating operation or the cooling operation is in progress is acquired.

そしてステップS4において最適開閉度取得部1は後述するエネルギシミュレーションによる省エネルギとなるブラインド1の開閉度の決定と、環境シミュレーションによるグレアを抑制する開閉度の決定を行う。 The optimal opening degree obtaining section 1 4 in Step S4 performs the determination of the opening and closing of the blind 1 to be energy saving by energy simulation described below, the determination of inhibiting opening degree glare by environmental simulation.

これらシミュレーションは周知の方法(例えば宿谷 昌則著 数値計算で学ぶ光と熱の建築環境学「窓と自然室内照度」 丸善株式会社 出版 参照)を用いれば良い。図5はその一例を示しており、この方法では建物の窓部W、空調環境、照明(照明器具の配置情報を含む)、対象エリア(部屋)Xの各特性を格納したデータベースDBを備え、このデータベースDBの情報に基づいて建物モデルの構築において空調照明エネルギ予測の準備を行い、上述の日射状態取得部12から現在時刻と鉛直面照度とを取り込むとともに、動作モード取得部13から空調機8の動作モードを取り込み(ステップS11)、ステップS12〜S17のループにおいて、省エネルギ最適状態候補を、例えばスラット角90°〜0°の範囲で1°ずつ変化させてシミュレーションを行うことで求める。 These simulations may be performed by using a well-known method (for example, Masanori Sukutani, architecture and environmental studies of light and heat learned by numerical calculation, “Window and natural room illumination” published by Maruzen Co., Ltd.). FIG. 5 shows an example thereof. In this method, a database DB storing characteristics of a building window W, air conditioning environment, lighting (including lighting fixture arrangement information), and target area (room) X is provided. Based on the information in this database DB, preparation for air conditioning and illumination energy prediction is performed in building model construction, the current time and vertical surface illuminance are taken in from the above-mentioned solar radiation state obtaining unit 12, and the air conditioner from the operation mode obtaining unit 13 8 is acquired (step S11), and in the loop of steps S12 to S17, the energy saving optimum state candidate is obtained by performing a simulation while changing the slat angle by, for example, 1 ° in a range of 90 ° to 0 °.

このループ内ではステップS13において照明エネルギの予測、つまり外光による机上面照度の予測と照明装置2で消費する照明エネルギの予測とを行う。一方ステップS14により空調エネルギの予測、つまり外光による日射熱の予測と、照明装置2の発熱を含めた空調エネルギの予測を行う。この場合ステップS13での照明エネルギの予測情報を照明装置2の発熱の予測に用いる。また照明エネルギの予測後、ステップS15ではグレア状態の予測を環境シミュレーションにより行う。   In this loop, in step S13, prediction of illumination energy, that is, prediction of desk surface illumination by external light and prediction of illumination energy consumed by the lighting device 2 are performed. On the other hand, in step S14, the air conditioning energy is predicted, that is, the solar heat due to the external light is predicted, and the air conditioning energy including heat generation of the lighting device 2 is predicted. In this case, the prediction information of the illumination energy in step S13 is used for prediction of heat generation of the lighting device 2. After the illumination energy is predicted, the glare state is predicted by environmental simulation in step S15.

ここで環境シミュレーションによるグレア感の予測は、ブラインド1の開閉度にグレア感を考慮するために行うためであり、照明エネルギ算出のために、一時的な変数として求められる窓面・ブラインド面・壁面で反射する輝度を用いて予測式PGSV(Predicted Glare Sensation Vote)からグレア感を予測する。このPGSVは、昼光利用時における眩しさ感を用いて予測する式として提案(戸倉、岩田他:「窓からの昼光によるグレア感の評価方法に関する実験的研究 その1 光環境実験室を用いた実験」、日本建築学会大会学術講演梗概 ,1992.8参照)されており、窓面に対する光源と背景の輝度対比と、居住者のグレア感(眩しさ感)を関連付けた式<数1参照>で表現される。   Here, the glare feeling is predicted by the environmental simulation in order to consider the glare feeling in the degree of opening and closing of the blind 1, and the window surface / blind surface / wall surface obtained as a temporary variable for calculating the lighting energy. The glare sensation is predicted from a prediction formula PGSV (Predicted Glare Sensation Vote) using the luminance reflected by the lens. This PGSV is proposed as a formula that predicts the feeling of glare when using daylight (Tokura, Iwata et al .: “Experimental study on the evaluation method of glare caused by daylight from windows, Part 1 Using the light environment laboratory” ”, The Architectural Institute of Japan Conference Abstract, 19922.8), a formula that associates the light source against the window surface with the brightness of the background and the glare of the occupant (see the formula 1). >.

Figure 0004784259
Figure 0004784259

Lb:背景輝度[cd/m
Lseq:相当均一輝度(光源輝度)[cd/m
ω: 光源の立体角[sr]
但しPGSVとは元来、窓の最適設計のために提案された指標であり、ブラインドの開閉度の制御に利用される例はない。
Lb: background luminance [cd / m 2 ]
Lseq: equivalent uniform luminance (light source luminance) [cd / m 2 ]
ω: solid angle of light source [sr]
However, PGSV is an index originally proposed for optimal design of windows, and there is no example used for controlling the degree of opening and closing of blinds.

而してステップS15において予測されたPGSVと設定PGSV値との比較を行い、設定PSVG値より小さくなるようにブラインド1の開閉度を決定する。表1はPGSVの尺度例を示す。   Thus, the predicted PGSV and the set PGSV value are compared in step S15, and the opening / closing degree of the blind 1 is determined so as to be smaller than the set PSVG value. Table 1 shows an example scale of PGSV.

Figure 0004784259
Figure 0004784259

尚本実施形態では、光源輝度としては、窓部Wを通過する天空輝度と、ブラインド1のスラット面を反射して生じる輝度の平均値を用い、背景輝度として周辺の壁面や天井面の輝度を用いる。   In the present embodiment, as the light source luminance, the sky luminance passing through the window W and the average value of the luminance generated by reflecting the slat surface of the blind 1 are used, and the luminance of the surrounding wall surface and ceiling surface is used as the background luminance. Use.

さてステップS15,S14における予測が終了すると、ステップS16において空調エネルギと照明エネルギとのエネルギ総和の算出を行うのである。図6は空調エネルギ(I)と照明エネルギ(II)とブラインド1の開閉度の関係を示す。   When the prediction in steps S15 and S14 ends, the energy sum of the air conditioning energy and the illumination energy is calculated in step S16. FIG. 6 shows the relationship between the air conditioning energy (I), the illumination energy (II), and the degree of opening / closing of the blind 1.

すべてのスラット角についての省エネルギの最適状態候補についての予測とエネルギ総和の算出が終了して、ループを抜けると、ステップS18において省エネルギになるブラインド1の開閉度の算出、つまり外界(屋外状態)とそれに対応するブラインド1の開閉度の算出を行い、次のステップS19でグレア感が基準以下となる開閉度の算出、つまり外界状態とそれに対応するブラインド1の開閉度を算出し、シミュレーションを終了するとともに、算出した開閉度を制御部15に受け渡す。制御部15は図3のステップS4において、ブラインド1の最適な開閉度のハンチング処理を行う。つまり制御部15は受け渡された開閉度と、過去のブラインド開閉度とを比較して、予め設定している所定の設定値以上にブラインド1の開閉度が変化しないように制限を加えながら最適なブラインド1の開閉度を決定し、ブラインド1のスラット1aの角度制御を行うのである。   When the prediction of the energy saving optimum state candidates and the calculation of the energy sum for all the slat angles are finished and the loop is exited, the calculation of the opening / closing degree of the blind 1 that saves energy in step S18, that is, the outside world (outdoor state) ) And the degree of opening / closing of the blind 1 corresponding thereto, and in the next step S19, calculation of the degree of opening / closing where the glare feeling is below the reference, that is, the outside state and the degree of opening / closing of the corresponding blind 1 are calculated. At the same time, the calculated opening / closing degree is transferred to the control unit 15. In step S4 of FIG. 3, the control unit 15 performs hunting processing for the optimum opening / closing degree of the blind 1. In other words, the control unit 15 compares the passed degree of opening and closing with the past degree of blind opening and closing, and is optimal while restricting the degree of opening and closing of the blind 1 so that it does not change beyond a predetermined set value. The opening / closing degree of the blind 1 is determined, and the angle control of the slat 1a of the blind 1 is performed.

この制御部15での最適開閉度決定動作を図7のフローチャートにより説明する。 The optimal opening degree of the determination operation in the control unit 15 will be described with reference to the flowchart of FIG.

まずステップS21においてブラインド最適開閉度が全開若しくは全閉にあるのかを判定し、全開及び全閉以外の場合には、日射状態取得部12の直射光入射判定、つまり直射光がブラインド1のスラット1a間を透過して対象エリアX内に入り込むのか否かの判定結果をステップS22でチェックし、直射光が入射しなければその開閉度を最適解と採用する(ステップS23)。直射光が入射する場合には、直射光が入射しない開閉度を採用する(ステップS24)。一方ブラインド最適開閉度が全開若しくは全閉の場合には、グレア感が基準以下となる開閉度を取得し(ステップS25)、この取得した開閉度に対する日射状態取得部12の直射光入射判定が、直射光が入射しない場合にはこの取得した開閉度を採用し(ステップS26)、直射光が入射する場合には直射光が入射しない開閉度を採用する(ステップS24)。全開又は全閉の場合は日射量が低い時間帯や曇天の場合であり、省エネルギの期待が小さく、窓越の眺望を優先することが期待されるため、グレア感が基準値以下になる範囲及び直射光が入射しない範囲でブラインド1の開閉度を開く方に保つことを採用するのである。 First, in step S21, it is determined whether the blind optimum opening / closing degree is fully open or fully closed. When the degree of blind open / close is not fully open or fully closed, direct light incident determination of the solar radiation state acquisition unit 12, that is, direct light is slat 1a of blind 1. In step S22, the result of determination as to whether or not the object is transmitted through the space is checked in step S22. If direct light is not incident, the open / closed degree is adopted as the optimum solution (step S23). When the direct light is incident, an opening / closing degree at which the direct light is not incident is adopted (step S24). On the other hand, when the blind optimum opening / closing degree is fully open or fully closed, an opening degree with a glare feeling equal to or less than the reference is acquired (step S25), and the direct sunlight incident determination of the solar radiation state acquisition unit 12 with respect to the acquired opening degree is When the direct light is not incident, the acquired opening / closing degree is adopted (step S26), and when the direct light is incident, the opening / closing degree at which the direct light is not incident is adopted (step S24). Fully open or fully closed is when the amount of solar radiation is low or when it is cloudy, and there is little expectation of energy saving, and it is expected that priority will be given to the view through the window. and direct light is to employ to keep in the direction to open the opening and closing of the blind 1 in a range without incident.

さて上述のようにして採用した開閉度と過去の開閉度と比較してブラインド1の開閉度が所定の設定値以上に変化しないように制限を加え(ステップS28)、最適開閉度を決定し(ステップS29)、この最適開閉度によりブラインド1のスラット1aの角度制御を行うのである。 Now , comparing the degree of opening / closing employed as described above with the past degree of opening / closing, a restriction is applied so that the degree of opening / closing of the blind 1 does not change to a predetermined set value or more (step S28), and the optimum degree of opening / closing is determined. (Step S29), the angle control of the slat 1a of the blind 1 is performed based on the optimum opening / closing degree.

尚図8(a)は冷房モードで日射量が多い状態(晴れの状態)におけるブラインド1が全開、全閉でない場合(○位置)の空調エネルギ(I)、照明エネルギ(II)、総和エネルギ<総エネルギ消費量>(III)との関係を示し、晴れの場合にはブラインド1を全閉から全開へ開閉度を変えると、照明エネルギ(II)が段々と小さくなり、逆に空調エネルギ(I)が大きくなる。また同図(b)冷房モードで、日射量が少ない時間帯でのブラインド1の全開の場合(○位置)の空調エネルギ(I)、照明エネルギ(II)、総和エネルギ(III)を示し、この場合ブラインド1の開閉度が変わってもエネルギの変化は殆どない。同図(c)は冷房モードで日射量が多少ある場合のブラインド1の全開の場合(○)を示している。
(実施形態2)
実施形態1では最適開閉度取得部14によりリアルタイムにシミュレーションを行ってその結果から評価指標を取得していたが、本実施形態では、気象庁のアメダス<Automated Meteorological Data Acquisition System>より配布されている設置場所に対応する地域の気象データ(時刻と日射量(照度)を関係付けたデータ)の数日分を用いて、図9に示すように事前にコンピュータ等からなるエネルギシミュレーション装置18を使用してエネルギシミュレーションを行い、最適開閉度を決定しておく点に特徴がある。具体的には気象データ内にある日射量と、その気象データ日時より算出される太陽位置及びブラインド1の開閉度に対して空調機8が消費する空調エネルギと照明装置2が消費する照明エネルギとを事前に算出するのである。尚ブラインド1の開閉度は、実施形態1の場合と同様にブラインド1が動作する範囲の内、動作可能な開閉度であり、例えば、ブラインド1がスラット角0°〜90°の内、1°刻みに動作可能なブラインドからなる場合では、0°,1°,2°,3°,…,90°となる。そして事前のシミュレーションによって算出された空調エネルギと照明エネルギとの総和である総エネルギ消費量が最小となるブラインド1の開閉度を決定し、上述の日射量とブラインド1の開閉度との関係、省エネルギのブラインド1の開閉度、グレア感を考慮したブラインド1の開閉度を、ブラインドIcont11に付設する最適開閉度テーブルTBに格納し、これらを数日間のデータに関して繰り返し実施する。ここで最適開閉度テーブルTBに格納するブラインド1の開閉度が全開及び全閉以外で総エネルギ消費量が最小となる日射量の最小値以上が存在する領域を安定領域、それが存在しない領域を不安定領域と定義しておく。
FIG. 8 (a) shows the air conditioning energy (I), illumination energy (II), and total energy <when the blind 1 is in the cooling mode and the amount of solar radiation is large (sunny state) when the blind 1 is fully open or not fully closed (Position). It shows the relationship of total energy consumption> (III). In the case of clear weather, changing the degree of opening and closing of the blind 1 from fully closed to fully opened, the illumination energy (II) gradually decreases, and conversely the air conditioning energy (I ) Becomes larger. Fig. 2 (b) shows the air conditioning energy (I), lighting energy (II), and total energy (III) when the blind 1 is fully open (in the position) in the cooling mode when the amount of solar radiation is small. In this case, even if the opening / closing degree of the blind 1 changes, there is almost no change in energy. FIG. 5C shows a case where the blind 1 is fully opened (o) when the solar radiation amount is somewhat in the cooling mode.
(Embodiment 2)
In the first embodiment, the optimum opening / closing degree acquisition unit 14 performs simulation in real time and acquires the evaluation index from the result. In this embodiment, however, the installation distributed by AMeDAS <Automated Meteorological Data Acquisition System> of the Japan Meteorological Agency Using the energy simulation device 18 composed of a computer or the like in advance as shown in FIG. 9, using the weather data of the area corresponding to the place (data relating the time and amount of solar radiation (illuminance)) as shown in FIG. It is characterized in that an energy simulation is performed to determine the optimum opening / closing degree. Specifically, the amount of solar radiation in the weather data, the solar position calculated from the date and time of the weather data, and the air conditioning energy consumed by the air conditioner 8 and the lighting energy consumed by the lighting device 2 for the degree of opening and closing of the blind 1 Is calculated in advance. The opening / closing degree of the blind 1 is an opening degree that can be operated within the range in which the blind 1 operates as in the case of the first embodiment. For example, the blind 1 has a slat angle of 0 ° to 90 °, 1 °. In the case of a blind that can be operated in steps, 0 °, 1 °, 2 °, 3 °,..., 90 °. Then, the degree of opening and closing of the blind 1 that minimizes the total energy consumption, which is the sum of the air conditioning energy and the lighting energy calculated by the prior simulation, is determined, and the relationship between the amount of solar radiation and the degree of opening and closing of the blind 1 is saved. The degree of opening / closing of the blind 1 of energy and the degree of opening / closing of the blind 1 in consideration of the glare are stored in the optimum opening / closing degree table TB attached to the blind Icont 11, and these are repeated for several days of data. Here, an area where the degree of opening / closing of the blind 1 stored in the optimum degree-of-opening / closing degree table TB is not fully open or fully closed is a stable area, and an area where it is not present is an area where the total amount of solar radiation is at least the minimum value. It is defined as an unstable region.

図10はエネルギシミュレーション装置18のシミュレーションのフローを示しており、実施形態1でのシミュレーションとの相違は図5のフローチャートにおけるステップS11の代わりにステップS10とステップS12との間に省エネルギ最適化演算の準備のステップS100を設けるとともに、ステップS19の代わりに最適開閉度テーブルTBに日射量(照度)の関係、省エネルギのブラインド1の開閉度、グレア感を考慮した開閉度を書き込むステップS101を設け、ステップS100とステップS101との間において各時刻の年間シミュレーションのためのループ(ステップS102−S103)を構成し、また照明エネルギの予測(ステップS13)及び空調エネルギ(S14)の予測シミュレーションに当たって、気象データ(時刻と日射量(照度)を関係付けたデータDA)を用いる点にある。   FIG. 10 shows a simulation flow of the energy simulation device 18. The difference from the simulation in the first embodiment is that the energy saving optimization calculation is performed between step S10 and step S12 instead of step S11 in the flowchart of FIG. Step S100 is prepared, and instead of Step S19, Step S101 is written in the optimum degree-of-opening / closing degree table TB to write the degree of opening / closing in consideration of the amount of irradiance (illuminance), the degree of opening / closing of the energy-saving blind 1, and the glare. A loop for the annual simulation at each time (steps S102 to S103) is formed between step S100 and step S101, and the prediction of the illumination energy (step S13) and the prediction simulation of the air conditioning energy (S14) It lies in the use of data (time and solar radiation (data related illuminance) DA).

而して日射遮蔽制御装置の稼動時において、ブラインドIcont11の最適開閉度取得部14は、日射状態取得部12で取得した現在の日射量(照度)が安定領域に存在する場合、最適開閉度テーブルTBのデータにおいて安全領域に対応した省エネルギに最適な開閉度を採用する。また不安定領域に位置する場合は、直射光が入射しない若しくはグレア感を基準値以下になるように開閉度を調整して採用する。   Thus, when the solar radiation shielding control device is in operation, the optimum opening / closing degree acquisition unit 14 of the blind Icont 11 has an optimal opening / closing degree table when the current amount of solar radiation (illuminance) acquired by the solar radiation state acquisition unit 12 exists in the stable region. An optimum opening / closing degree for energy saving corresponding to the safe area is adopted in the TB data. Further, when located in an unstable region, the degree of opening and closing is adjusted and adopted so that direct light does not enter or the glare feeling is below a reference value.

尚不安定領域については図11(a)に示す丸囲い内の安定領域のデータを総エネルギ消費量との統計的処理した結果に基づいて図11(b)に示すように不安定領域まで外挿させて日射量と最適開閉度との回帰式を作成し、不安定領域に日射量が存在する場合には、その回帰式を参照し、省エネルギの最適な開閉度を決定するようにしても良い。この場合グレアを考慮した開閉度に関しては、日射量と最適開閉度の関係に特別な処理は加えない。   As for the unstable region, as shown in FIG. 11 (b), the stable region data in the circled circle shown in FIG. 11 (a) is statistically processed with the total energy consumption. Create a regression formula between the amount of solar radiation and the optimal degree of opening and closing, and if there is an amount of solar radiation in the unstable region, refer to the regression formula to determine the optimal degree of opening and closing for energy saving. Also good. In this case, no special processing is added to the relationship between the amount of solar radiation and the optimum degree of opening / closing with respect to the degree of opening / closing taking glare into account.

而して制御部15は実施形態1と同様に最適開閉度取得部14で採用・決定されたブラインド1の開閉度と、過去のブラインドの開閉度とを比較して、予め設定している設定値以上にブラインド1の開閉度が変化しないように制限を加えながら最適な開閉度でブラインド1のスラット1aの角度制御を行う。尚日射量とブラインド1の開閉度の関係式を用いて制御を行う場合、日射量の変化に敏感に応動する場合も想定されるため、図12に示すように過去の照度とその照度を中心とする±α[lux]を祖父度の変換に対する不感帯とし、この不感帯に存在する場合は制御を行わないようにしても良い。
(実施形態3)
実施形態1、2ではビルオートメーション専用の伝送線を用いて各Icont7,10,11,16とフロア統合コントローラ17との情報授受を行うようにしているが、本実施形態では図13に示すようにイーサネット(登録商標)を用いたLAN19を用いて接続し、例えばブラインドIcont11にWebサーバを搭載し、LAN19に接続されているパーソナルコンピュータからなる個人端末PCや、パネルスイッチ装置PSからHTTP(HyperText Transfer Protocol)を用いてWebサーバにアクセスしてWebサーバが提供するブラインドIcont11側のホームページを閲覧することができるようにし、例えば個人端末PCやパネルスイッチPSからブラインドIcont11の運転状況を変更することを可能とすることで、ユーザーが眩しさレベルを自由に設定することもできるのである。
Thus, the control unit 15 compares the opening / closing degree of the blind 1 adopted and determined by the optimum opening / closing degree acquisition unit 14 with the past opening / closing degree of the blind, as in the first embodiment, and is set in advance. The angle control of the slats 1a of the blind 1 is performed with the optimum degree of opening and closing while limiting the degree of opening and closing of the blind 1 so as not to change beyond the value. Note that when control is performed using the relational expression between the amount of solar radiation and the degree of opening and closing of the blind 1, it may be sensitive to changes in the amount of solar radiation, so the past illuminance and its illuminance are centered as shown in FIG. ± α [lux] as a dead zone for the conversion of grandfather degree, and control may not be performed when the dead zone exists in this dead zone.
(Embodiment 3)
Although the information exchange between each Icont7,10,11,16 and floor integrated controller 17 using the transmission lines dedicated building automation In Embodiments 1 and 2 in line Migihitsuji, in the present embodiment, as shown in FIG. 13 Are connected using a LAN 19 using Ethernet (registered trademark). For example, a Web server is installed in the blind icon 11, and an HTTP (HyperText Transfer) is transmitted from a personal terminal PC including a personal computer connected to the LAN 19 or the panel switch device PS. Protocol) can be used to access the Web server and browse the home page on the Blind Icon 11 side provided by the Web server. For example, the operating status of the Blind Icon 11 can be changed from the personal terminal PC or the panel switch PS. And Heather is can be freely set the glare level.

上述の実施形態1〜3ではベネチャンブラインドからなるブラインド1を用いた場合について説明したが、スマートウィンドウやその他の開閉度を調節できるブラインドにも本発明は適用できる。   In the first to third embodiments described above, the case where the blind 1 made of the Venetian blind is used has been described. However, the present invention can also be applied to a smart window or other blind that can adjust the degree of opening and closing.

ところで、エミット(EMIT(Embedded Micro Internetworking Technology))と称する機器組み込み型ネットワーク技術(機器に簡単にミドルウェアを組み込んでネットワークに接続できる機能を備えるネットワーク技術、以降、EMIT技術と称する。)を用いることで、携帯電話、PC(Personal Computer)、PDA(Personal Digital Assistant)、PHS(Personal Handy phone System)等の外部端末(図示せず)から様々な設備機器(照明装置、空調機、動力装置、センサ、電気錠、Webカメラ等、以降、EMIT端末と称する。)<図示せず>にアクセスして、EMIT端末を遠隔監視・制御することができるシステムがある。   By the way, by using a device-embedded network technology called EMIT (Embedded Micro Internetworking Technology) (a network technology having a function of easily incorporating middleware into a device and connecting to the network, hereinafter referred to as EMIT technology). Various equipment (lighting devices, air conditioners, power devices, sensors) from external terminals (not shown) such as mobile phones, PCs (Personal Computers), PDAs (Personal Digital Assistants), PHSs (Personal Handy phone Systems) Electric locks, Web cameras, etc. are hereinafter referred to as EMIT terminals.) There is a system that can access <not shown> to remotely monitor and control the EMIT terminal.

尚、EMIT端末は、マイコン搭載の組み込み機器であり、機器組み込み型のネット接続用ミドルウェアでありEMIT技術を実現するEMITソフトウェアが搭載されている。   Note that the EMIT terminal is a built-in device equipped with a microcomputer, and is a device-embedded middleware for connecting to the network and is equipped with EMIT software that realizes the EMIT technology.

上述のEMIT技術を応用したシステム(以降、EMITシステムと称する。)としては、外部端末がインターネット上に設けられたセンタサーバ(図示せず)経由でEMIT端末を遠隔監視・制御する構成のものや、センタサーバを介することなく、例えばEMITソフトウェアが搭載された外部端末から、直接各EMIT端末にアクセスしてEMIT端末を遠隔監視・制御する構成のものを挙げることができる。   As a system to which the above-mentioned EMIT technology is applied (hereinafter referred to as an EMIT system), an external terminal remotely monitors and controls an EMIT terminal via a center server (not shown) provided on the Internet. For example, a configuration in which an EMIT terminal is directly accessed from an external terminal equipped with EMIT software to remotely monitor and control the EMIT terminal without using a center server.

そしてEMITシステムによって、例えば、建物(戸建住宅、マンション、ビル、工場用等)<図示せず>内に上述のEMIT端末を分散配置させて、外部端末からEMIT端末の状態を遠隔から監視することで、建物全体のエネルギ管理や、建物内のガス、水道、電気の遠隔検針を行うことも可能となる。   Then, by using the EMIT system, for example, the above-mentioned EMIT terminals are distributed in a building (for detached houses, condominiums, buildings, factories, etc.) <not shown>, and the status of the EMIT terminals is monitored remotely from an external terminal. This makes it possible to perform energy management of the entire building and remote meter reading of gas, water, and electricity in the building.

そこで上述の本発明の実施形態1〜3に係る日射遮蔽制御装置を上述のEMITシステムを用いて構成しても良い。   Therefore, the above-described solar radiation shielding control apparatus according to the first to third embodiments of the present invention may be configured using the above-described EMIT system.

実施形態1のブラインドIcontのブロック図である。It is a block diagram of blind Icont of Embodiment 1. 実施形態1の概略構成図である。1 is a schematic configuration diagram of Embodiment 1. FIG. 実施形態1の動作説明用フローチャートである。3 is a flowchart for explaining the operation of the first embodiment. (a)は実施形態1にて用いる太陽位置の算出説明図、(b)は太陽と窓面との関係説明図である。(A) is calculation explanatory drawing of the solar position used in Embodiment 1, (b) is a related explanatory drawing of the sun and a window surface. 実施形態1の最適開閉度取得部の動作説明のフローチャートである。3 is a flowchart for explaining an operation of an optimum opening / closing degree acquisition unit according to the first embodiment. 実施形態1の空調エネルギ及び照明エネルギとブラインドの開閉度との関係説明図である。It is a relationship explanatory drawing of the air-conditioning energy and illumination energy of Embodiment 1, and the opening-and-closing degree of a blind. 実施形態1のブラインドの開閉度制御の動作説明用フローチャートである。3 is a flowchart for explaining an operation of blind opening / closing degree control according to the first embodiment. 実施形態1のブラインドの開閉度の状態における空調エネルギ、照明エネルギ及び総和エネルギとブラインドの開度との関係説明図である。FIG. 5 is an explanatory diagram of a relationship among air conditioning energy, illumination energy, total energy, and blind opening in the state of the opening / closing degree of the blind according to the first embodiment. 実施形態2に用いるブラインドIcontのブロック図である。It is a block diagram of blind Icont used for Embodiment 2. FIG. 実施形態2の最適開閉度決定のシミュレーションのフローチャートである。10 is a flowchart of a simulation for determining an optimum opening / closing degree according to the second embodiment. 実施形態2の最適開閉度取得部の動作説明図である。FIG. 10 is an operation explanatory diagram of an optimum opening / closing degree acquisition unit of the second embodiment. 実施形態2の制御部の動作説明図である。FIG. 9 is an operation explanatory diagram of a control unit according to the second embodiment. 実施形態3のシステム構成図である。FIG. 9 is a system configuration diagram of a third embodiment. 従来例の説明図である。It is explanatory drawing of a prior art example.

符号の説明Explanation of symbols

1 ブラインド
6 照度計
8 空調機
11 ブラインドIcont
12 日射状態取得部
13 動作モード取得部
14 最適開閉度取得部
15 制御部
1 Blind 6 Illuminance Meter 8 Air Conditioner 11 Blind Icont
12 Solar radiation state acquisition unit 13 Operation mode acquisition unit 14 Optimal opening / closing degree acquisition unit 15 Control unit

Claims (5)

空調機と照明装置とが備えられた対象エリアに設けられ、該対象エリアへの日光の入射を遮蔽手段の開閉度で制御する日射遮蔽制御装置において、
日射状態を取得する日射状態取得部と、前記日射状態取得部の取得結果に基づいて前記遮蔽手段の開閉度を調節する制御部とを備え、
横軸を前記遮蔽手段の開閉度、縦軸を前記空調機の消費する空調エネルギと前記照明装置の消費する照明エネルギとの和である総エネルギ消費量とした場合に前記遮蔽手段の開閉度と前記総エネルギ消費量との関係が上に凸となるような日射量の領域を不安定領域、それ以外の領域を安定領域とし、前記安定領域では前記総エネルギ消費量が最小となる開閉度が最適開閉度であり、
前記制御部は、日射量が前記安定領域であれば前記遮蔽手段の開閉度を前記最適開閉度に調節することを特徴とする日射遮蔽制御装置。
In a solar radiation shielding control device that is provided in a target area provided with an air conditioner and a lighting device, and controls the incidence of sunlight in the target area by the degree of opening and closing of the shielding means,
A solar radiation state acquisition unit for acquiring the solar radiation state, and a control unit for adjusting the degree of opening and closing of the shielding means based on the acquisition result of the solar radiation state acquisition unit ,
When the horizontal axis is the degree of opening and closing of the shielding means, and the vertical axis is the total energy consumption that is the sum of the air conditioning energy consumed by the air conditioner and the lighting energy consumed by the lighting device, the degree of opening and closing of the shielding means The solar radiation amount region where the relationship with the total energy consumption is convex upward is defined as an unstable region, and the other region is defined as a stable region. In the stable region, the degree of opening and closing at which the total energy consumption is minimized The optimal opening and closing degree,
If the amount of solar radiation is the said stable region, the said control part will adjust the opening / closing degree of the said shielding means to the said optimal opening / closing degree, The solar radiation shielding control apparatus characterized by the above-mentioned .
ネルギシミュレーション結果より予め得られた前記安定領域における前記総エネルギ消費量と前記遮蔽手段の開閉度とのデータテーブルを用いて前記最適開閉度を取得する最適開閉度取得手段を備えていることを特徴とする請求項1記載の日射遮蔽制御装置。 Further comprising an optimum opening degree acquiring means for acquiring the optimal opening degree with the in the stable region that previously obtained from d Nerugi simulation results and the total energy consumption of the data table and the opening and closing degree of the shielding means The solar radiation shielding control device according to claim 1, wherein 前記最適開閉度取得手段は、前記安定領域における前記最適開閉度と前記総エネルギ消費量との関係を統計的処理した結果に基づいて外挿した値を用いて、前記不安定領域における前記最適開閉度を取得することを特徴とする請求項2記載の日射遮蔽制御装置。 The optimum opening / closing degree acquisition means uses the value obtained by extrapolating the relation between the optimum opening / closing degree and the total energy consumption in the stable region based on a result of statistical processing, and uses the optimum opening / closing degree in the unstable region. The solar radiation shielding control device according to claim 2, wherein the degree is acquired . 前記不安定領域において前記総エネルギ消費量が最小で且つグレアが生じない最大の開閉度を前記最適開閉度として取得する最適開閉度取得手段を備えていることを特徴とする請求項1記載の日射遮蔽制御装置。 2. The solar radiation according to claim 1 , further comprising: an optimum opening / closing degree obtaining unit that obtains, as the optimum opening / closing degree , the largest opening / closing degree at which the total energy consumption is minimum and no glare occurs in the unstable region. Shielding control device. 前記最適開閉度取得手段は、前記日射状態の変化が所定の最大変化量よりも大きい場合には、前記日射状態を当該日射状態に前記最大変化量を加えた値に制限して前記最適開閉度を取得することを特徴とする請求項1乃至4の何れかに記載の日射遮蔽制御装置。 The optimum opening degree obtaining means, when the change of the solar irradiation is greater than a predetermined maximum change amount, the optimal opening degree of the solar irradiation is limited to the value obtained by adding the maximum variation in the solar irradiation The solar radiation shielding control device according to any one of claims 1 to 4, wherein the solar radiation shielding control device is obtained.
JP2005312022A 2005-10-26 2005-10-26 Solar radiation shielding control device Active JP4784259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005312022A JP4784259B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005312022A JP4784259B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Publications (2)

Publication Number Publication Date
JP2007120089A JP2007120089A (en) 2007-05-17
JP4784259B2 true JP4784259B2 (en) 2011-10-05

Family

ID=38144207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005312022A Active JP4784259B2 (en) 2005-10-26 2005-10-26 Solar radiation shielding control device

Country Status (1)

Country Link
JP (1) JP4784259B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4869763B2 (en) * 2006-04-03 2012-02-08 トヨタホーム株式会社 building
JP4956410B2 (en) * 2007-12-25 2012-06-20 パナソニック株式会社 Daylight shielding control device
JP5452951B2 (en) * 2008-09-26 2014-03-26 積水化学工業株式会社 Light control system
JP4605486B2 (en) * 2009-03-31 2011-01-05 八洲電業株式会社 LED lighting control system
JP5317839B2 (en) * 2009-06-15 2013-10-16 三菱電機株式会社 Air conditioner
JP2011117627A (en) * 2009-12-01 2011-06-16 Mitsubishi Electric Corp Air conditioner
JP2011202892A (en) * 2010-03-25 2011-10-13 Panasonic Electric Works Co Ltd Environment control system
JP2012026607A (en) * 2010-07-21 2012-02-09 Shinryo Corp Guidance system for opening and closing blind
JP5696897B2 (en) * 2011-07-05 2015-04-08 清水建設株式会社 Blind control device, blind control method, blind control program
JP5914891B2 (en) * 2011-09-15 2016-05-11 パナソニックIpマネジメント株式会社 Energy saving evaluation device, energy saving evaluation method, server device, program
US9367053B2 (en) 2012-03-27 2016-06-14 Siemens Schweiz Ag System and method for coordination of building automation system demand and shade control
JP5575317B2 (en) * 2013-09-09 2014-08-20 三菱電機株式会社 Air conditioner
JP6319646B2 (en) * 2013-12-27 2018-05-09 株式会社大林組 Blind control method and blind control system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5347141A (en) * 1976-10-13 1978-04-27 Fuji Electric Co Ltd System of controlling outdoor blind
JPS5973801A (en) * 1982-10-20 1984-04-26 日立照明株式会社 Illuminating method and device utilizing external light
JP3302800B2 (en) * 1993-11-05 2002-07-15 株式会社東芝 Building energy saving control device
JPH0864017A (en) * 1994-08-23 1996-03-08 Matsushita Electric Ind Co Ltd Lighting control device
JPH10153062A (en) * 1996-11-21 1998-06-09 Toshiba Lighting & Technol Corp Shading device
JP3656385B2 (en) * 1998-01-05 2005-06-08 清水建設株式会社 Dimmable shade
JP3616896B2 (en) * 1998-01-05 2005-02-02 清水建設株式会社 Dimmable shade

Also Published As

Publication number Publication date
JP2007120089A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP4784259B2 (en) Solar radiation shielding control device
JP4867287B2 (en) Solar radiation shielding control device
US10858886B2 (en) Wirelessly interconnected lighting and smart window control system
US10253564B2 (en) Sky camera system for intelligent building control
Loutzenhiser et al. An empirical validation of the daylighting algorithms and associated interactions in building energy simulation programs using various shading devices and windows
O'Brien et al. Manually-operated window shade patterns in office buildings: A critical review
EP3295262B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with controlled window blinds
EP3295261B1 (en) Energy-efficient integrated lighting, daylighting, and hvac with electrochromic glass
JP4867286B2 (en) Solar radiation shielding control device
GB2583019A (en) Sky camera system for intelligent building control
EP3827153B1 (en) Shading device
CN116880583A (en) Sunshade member control method, device, equipment and storage medium
Lee High performance building façade solutions PIER final project report
JP4956410B2 (en) Daylight shielding control device
To et al. Total energy performance of atria with daylight
Kragh et al. Advanced facades and HVAC systems: preliminary results of full-scale monitoring
Uribe Design, control and optimization of complex fenestration systems of office buildings
Kassab Enhancing the energy-efficient design of office buildings using a based-simulation design support system
Boyer Daylighting designs presented

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R151 Written notification of patent or utility model registration

Ref document number: 4784259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3