JP4783967B2 - Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients - Google Patents

Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients Download PDF

Info

Publication number
JP4783967B2
JP4783967B2 JP2000215701A JP2000215701A JP4783967B2 JP 4783967 B2 JP4783967 B2 JP 4783967B2 JP 2000215701 A JP2000215701 A JP 2000215701A JP 2000215701 A JP2000215701 A JP 2000215701A JP 4783967 B2 JP4783967 B2 JP 4783967B2
Authority
JP
Japan
Prior art keywords
hexane
acid
fluorine
group
fluorobicyclo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000215701A
Other languages
Japanese (ja)
Other versions
JP2001089367A (en
Inventor
篤郎 中里
利仁 熊谷
一成 坂上
一雪 冨沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisho Pharmaceutical Co Ltd
Original Assignee
Taisho Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisho Pharmaceutical Co Ltd filed Critical Taisho Pharmaceutical Co Ltd
Priority to JP2000215701A priority Critical patent/JP4783967B2/en
Publication of JP2001089367A publication Critical patent/JP2001089367A/en
Application granted granted Critical
Publication of JP4783967B2 publication Critical patent/JP4783967B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な化合物を有効成分とする医薬に関し、更に詳しくはグループ2メタボトロピックグルタミン酸受容体に作用し、例えば精神分裂病、不安及びその関連疾患、うつ病、二極性障害、てんかん等の精神医学的障害、並びに薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患に治療効果及び予防効果を示す医薬に関する。
【0002】
【従来の技術】
近年、グルタミン酸受容体遺伝子のクローニングが相次ぎ、グルタミン酸受容体には驚異的な数のサブタイプが存在することが明かとなった。現在、グルタミン酸受容体は「受容体がイオンチャネル型構造を持つイオノトロピック型」及び「受容体がG−タンパク質と共役しているメタボトロピック型」の2つに大きく分類されている。更に、イオノトロピック受容体は薬理学的にNMDA、α−アミノ−3−ヒドロキシ−5−メチルイソキサゾ−ル−4−プロピオネート(AMPA)及びカイネ−トの3種類に分類され(Science, 258, 597-603, 1992)、メタボトロピック受容体はタイプ1〜タイプ8の8種類に分類されている(J.Neurosci., 13, 1372-1378, 1993; Neuropharmacol., 34, 1-26, 1995)。
【0003】
また、メタボトロピックグルタミン酸受容体は薬理学的に3つのグループに分類される。この中で、グループ2(mGluR2/mGluR3)は、アデニルサイクラーゼと結合し、サイクリックアデノシン1リン酸(cAMP)のホルスコリン刺激性の蓄積を抑制する(Trends Pharmacol. Sci., 14, 13(1993))ことから、メタボトロピックグルタミン酸受容体に作用する化合物は、急性及び慢性の精神医学的疾患及び神経学的疾患の治療又は予防に有効なはずである。そして、グループ2メタボトロピックグルタミン酸受容体に作用する物質としては、特開平8−188561号公報に(+)−(1S,2S,5R,6S)−2−アミノビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸が開示されている。
【0004】
ところで、フッ素原子は強い電子吸引性と高い脂溶性を付与する傾向を有しており、フッ素原子の導入された化合物は物性を大きく変える。このため、フッ素原子の導入は化合物の吸収性、代謝的安定性及び薬理作用に大きく影響を及ぼす可能性がある。しかし、フッ素原子の導入は決して容易なことではない。実際に、特開平8−188561号公報において、(+)−(1S,2S,5R,6S)−2−アミノビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸へのフッ素原子の導入は全く検討されていない。
【0005】
【発明が解決しようとする課題】
本発明の目的は、例えば精神分裂病、不安及びその関連疾患、うつ病、二極性障害、てんかん等の精神医学的障害、並びに薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患など、グループ2メタボトロピックグルタミン酸受容体が関与しているとされる疾患の治療剤又は予防剤として経口投与で有効なグループ2メタボトロピックグルタミン酸受容体拮抗薬を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、((+)-(1S,2S,5R,6S)−2−アミノビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸にフッ素原子を導入した含フッ素アミノ酸誘導体について鋭意検討した結果、グループ2メタボトロピックグルタミン酸受容体に経口投与で影響を及ぼす新規含フッ素アミノ酸誘導体を見出し、本発明を完成した。
【0007】
以下、本発明を説明する。
【0008】
本発明は、式[1]
【0009】
【化3】

Figure 0004783967
【0010】
[式中、X1は水素原子又はフッ素原子を示し、R1及びR2は同一又は異なって水素原子又は炭素数1−10のアルキル基を示す。]で表される含フッ素アミノ酸誘導体又はその医薬上許容される塩を有効成分とする、例えばグループ2メタボトロピックグルタミン酸受容体に作用する医薬である。
本発明において、炭素数1−10のアルキル基とは直鎖状又は分岐鎖状のアルキル基を示し、直鎖状又は分岐鎖状アルキル基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、ペンチル基、イソペンチル基、1−エチルプロピル基、ヘキシル基、イソヘキシル基、1−エチルブチル基、ヘプチル基、イソヘプチル基、オクチル基、ノニル基、デシル基などを挙げることができる。
また、本発明における医薬上許容される塩とは、例えば硫酸、塩酸、燐酸などの鉱酸との塩、酢酸、シュウ酸、乳酸、酒石酸、フマール酸、マレイン酸、メタンスルホン酸、ベンゼンスルホン酸などの有機酸との塩、トリメチルアミン、メチルアミンなどのアミンとの塩、又はナトリウムイオン、カリウムイオン、カルシウムイオンなどの金属イオンとの塩などである。なお、本発明に係る化合物は各種の溶媒和物として存在し得るが、医薬としての適用性の面からは水和物が好ましい。
【0011】
式[1]で示される化合物の中でX1が水素原子の場合、1、2、3、5及び6位に5つの不斉炭素原子が存在する。従って、X1が水素原子である本発明に係る化合物は、光学活性体、ラセミ体等の2種のエナンチオマー混合物及びジアステレオマーの混合物として存在できる。更に、X1がフッ素原子の場合、1、2、5及び6位に4つの不斉炭素原子が存在する。従って、X1がフッ素原子である本発明に係る化合物は、光学活性体、ラセミ体等の2種のエナンチオマー混合物及びジアステレオマーの混合物として存在できる。
【0012】
式[1]で示される化合物において好ましいX1は水素原子である。更に、X1が水素原子である場合には、式[1]で示される化合物は下記の相対的立体化学配置を有することがより好ましい。
【0013】
【化4】
Figure 0004783967
【0014】
また、X1、R1及びR2が水素原子の場合、本化合物の光学異性体の中で最も好ましい光学活性体は正の旋光性を有しており、この絶対立体化学配置は、本化合物の合成前駆体である2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸 (R)−(+)−1−フェニルエチルアミン塩のX線単結晶構造解析により、1S,2S,3S,5R,6Sと決定された。
【0015】
一方、式[1]においてR1とR2の片方又は両方が水素以外を示す場合、すなわちエステル体はグループ2メタボトロピックグルタミン酸受容体に影響を及ぼさない。しかし、このエステル体は生体内でカルボン酸に加水分解され、グループ2メタボトロピックグルタミン酸受容体に影響を及ぼすカルボン酸に変化する。従って、エステル体はプロドラッグとして機能するため、極めて有用な化合物である。
【0016】
【発明の実施の形態】
式[1]の化合物は、以下に示す製造法により供給される。以下の反応式中、R1、R2、X1は前記と同様であり、R3とR4は同一又は異なって炭素数1−10のアルキル基を示し、Yは一般的なアミノ基の保護基(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS,THEODORA W. GREENE and PETER G. M. WUTS著 参照)を示す。
【0017】
【化5】
Figure 0004783967
【0018】
光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物であるモノフッ化化合物(2)は、対応する光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物であるケトン体(1)を一旦エノールシリルエーテル体又はエノールエステル体とした後フッ素化試薬と反応するか、或いはケトン体(1)に直接フッ素化試薬を反応することによって得られる。また、光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物であるジフッ化化合物(3)は、モノフッ化化合物(2)を一旦エノールシリルエーテル体とした後フッ化試薬と反応するか、モノフッ化化合物(2)に直接フッ化試薬と反応するか、或いはケトン体(1)に2当量以上のフッ素化試薬を反応することによって得られる。
【0019】
ここで、エノールシリルエーテル体の製造は、ケトン体(1)に、例えばテトラヒドロフラン、ジエチルエーテルなどのエーテル類、トルエン、ベンゼンなどの炭化水素類、メタノール、t−ブタノールなどのアルコール類、N,N−ジメチルホルムアミド等の不活性溶媒中、例えばn−ブチルリチウム、s−ブチルリチウムなどのアルキルリチウム類、例えばリチウムビストリメチルシリルアミド、カリウムビストリメチルシリルアミド、ナトリウムアミドなどの金属アミド類、例えば水素化ナトリウムなどの水素化金属類、又は、例えばトリエチルアミン等のアミン類等の塩基の存在下、例えばクロロトリメチルシラン、クロロt−ブチルジメチルシラン等のシリル化剤を反応することによって得られる。ここでの反応温度は100℃以下が好ましく、更に−78℃から室温が最適である。
【0020】
エノールエステル体の製造は、シリル化剤を例えば無水酢酸等の酸無水物、例えばプロピオニルクロライド等の酸ハライド、又は例えば酢酸等のカルボン酸とエトキシカルボニルクロライド等のアルコキシカルボニルハライドから調製される混合酸無水物等に変え、エノールシリルエーテル体の製造と同様に反応し得られる。
フッ素化試薬とは、例えばN−フルオロピリジニウムトリフラート、N−フルオロ−N−t−ブチルベンゼンスルホンアミド、N−フルオロサッカリンスルタム、N−フルオロビス(ベンゼンスルホン)イミド、N−フルオロ−o−ベンゼンスルホンイミドなどのN−フルオロ型フッ素化剤、フッ素、ClO3F、又はCF3COOF等である。ここで、直接フッ素化試薬を反応させる態様としては、ケトン体(1)に、例えばテトラヒドロフラン、ジエチルエーテルなどのエーテル類、トルエン、ベンゼンなどの炭化水素類、メタノール、t−ブタノールなどのアルコール類、N,N−ジメチルホルムアミド等の不活性溶媒中、例えばn−ブチルリチウム、s−ブチルリチウムなどのアルキルリチウム類、例えばリチウムビストリメチルシリルアミド、ナトリウムアミドなどの金属アミド類、例えば水素化ナトリウムなどの水素化金属類、又は例えばトリエチルアミン等のアミン類等の塩基の存在下、反応温度を100℃以下で、好ましくは−78℃から室温で、上記のようなフッ素化試薬を反応させる態様が好ましい。
【0021】
このようにして得られた光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物であるモノ又はジフッ素化化合物(4)は、ストレッカーアミノ酸合成(Strecker Amino Acid Synthesis)(Ann.,75,27(1850);91,349(1850))、ブッヘラー−ベルグス反応(Bucherer-Bergs Reaction)(J.Prakt.Chem.,140,69(1934))又はこれらの変法によって得られたアミノシアニド誘導体又はヒダントイン誘導体等を加水分解することによって本発明に係る化合物である対応する光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物である含フッ素アミノ酸誘導体(5)とすることができる。
【0022】
具体的には、モノ又はジフッ化合物(4)を、シアン化ナトリウム又はシアン化カリウム及び炭酸アンモニウムと、例えばエタノールなどのアルコール類又はアルコール類と水の混合溶媒中、好ましくは30℃〜50℃で1日〜2日反応し、合成中間体であるヒダントインに導く。続いて、例えば水酸化ナトリウムなどの塩基、或いは塩酸、硫酸等の酸によって、例えばエタノールなどのアルコール類、ジオキサンなどのエーテル類、又はアセトンなどのケトン類などの不活性溶媒中加水分解することによって、本発明化合物である含フッ素アミノ酸誘導体(5)が得られる。
【0023】
【化6】
Figure 0004783967
【0024】
下記式化7に示すように、(1SR,5RS,6SR)−(1)で示されるケトン体に1つのフッ素原子が導入されたモノフッ化化合物(前出の(2)参照)のブッヘラー−ベルグス反応によって得られる、(1SR,5RS,6SR)−(6)で示されるヒダントイン誘導体は、例えばシリカゲル等を用いたカラムクロマトグラフィーや再結晶などの一般的な手法によって4つのシアステレオマーに分離することができる。
【0025】
更に4つのジアステレオマーのエステルをそれぞれ加水分解後、例えば塩基性キラル分割剤を用いた分割等の一般的な分割方法によって8つのエナンチオマー(8)に分割できる。続いて、ヒダントイン部位を加水分解することによって本発明化合物である8つの光学活性な含フッ素アミノ酸誘導体(9)が得られる。
【0026】
ここで、塩基性キラル分割剤としては、例えば(+)又は(−)−1−フェニルエチルアミン、(+)又は(−)−2−アミノ−1−ブタノール、(+)又は(−)−アラニノール、ブルシン、シンコニジン、シンコニン、キニン、キニジン、デヒドロアビエチルアミン等の光学活性なアミン類を使用することができる。
【0027】
【化7】
Figure 0004783967
【0028】
一方、本発明化合物の一つである2つのフッ素原子を含有する4つの光学活性なアミノ酸誘導体(12)は、下記化8に示すように、(1SR,5RS,6SR)−(1)を出発原料にしてフッ素化、ヒダントイン化、ジアステレオマーの分離、エステルの加水分解、分割及びヒダントイン部位の加水分解によて合成することができる。
【0029】
【化8】
Figure 0004783967
【0030】
1つのフッ素原子を有する式(1SR,5RS,6SR)−(2)で示されるケトン体は、下記化9に示すように、ジアステレオマーの分離、エステルの加水分解及び分割により式(13)で示される4つの光学活性なケトカルボン酸に導かれる。従って、4つの光学活性なケトカルボン酸(13)を直接、或いはエステル化後に、式(5)に示した化合物の合成の場合と同様の操作を行い、また更にジアステレオマーの分離を行うことによっても、光学活性な本発明化合物である含フッ素アミノ酸誘導体を製造することができる。
【0031】
【化9】
Figure 0004783967
【0032】
式(14)で示される2つのフッ素原子を有する2つの光学活性なケトカルボン酸は、2つのフッ素原子を有する式(1SR,5RS,6SR)−(3)で示されるケトン体より、化9と同様の方法、すなわち、エステルの加水分解及び分割によって得ることができる。従って、2つの光学活性なケトカルボン酸(14)を直接、或いはエステル化後に、化6で示したアミノ酸合成法と同様な操作を行い、また、更にジアステレオマーの分離を行うことによって、光学活性な本発明化合物である含フッ素アミノ酸誘導体(15)を製造することができる。
【0033】
【化10】
Figure 0004783967
【0034】
ところで、下記化11に示すように、式(6)で示される光学活性体、ラセミ体等の2種のエナンチオマー混合物又はジアステレオマーの混合物の本発明化合物である含フッ素アミノ酸は、アミノ基をYで示される保護基で保護した後、R3−X2又はR4−X2で示されるアルキルハライド、もしくはR3−OH又はR4−OHで示されるアルコールを用い一般的な方法にてエステル化し、アミノ基の保護基を除去することによって、式(15)で示される本発明化合物である含フッ素アミノ酸エステルに誘導される。
【0035】
【化11】
Figure 0004783967
【0036】
ここで、アミノ基の保護、エステル化及びアミノ基の脱保護は、一般的方法(PROTECTIVE GROUPS IN ORGANIC SYNTHESIS,THEODORA W. GREENE and PETER G. M.WUTS著 参照)で実施される。
【0037】
更に、式(15)で示される含フッ素アミノ酸エステル又は式(17)で示されるN−保護含フッ素アミノ酸エステルの各ジアステレオマーは、例えばシリカゲル等を用いたカラムクロマトグラフィーや再結晶などの一般的な手法によって分離することができる。式(15)の各ジアステレオマーは、例えば酸性キラル分割剤を用いた分割等の一般的な分割方法によって各エナンチオマーに分割できる。
ここで、酸性キラル分割剤としては、(+)又は(−)−ジ−p−トルオルイル酒石酸、(+)又は(−)−ジベンゾイル酒石酸、(+)又は(−)−酒石酸、(+)又は(−)−マンデル酸、(+)又は(−)−しょうのう酸、又は(+)又は(−)−しょうのうスルホン酸等の光学活性な有機酸類を使用することができる。
【0038】
本発明に係る化合物は、1つ又はそれ以上の医薬的に許容される担体、賦形剤又は希釈剤と組み合わされて医薬的製剤とすることができる。前記担体、賦形剤及び希釈剤の例には、水、糖乳、デキストロース、フラクトース、ショ糖、ソルビトール、マンニトール、ポリエチレングリコール、プロピレングリコール、でんぷん、ガム、ゼラチン、アルギネート、ケイ酸カルシウム、リン酸カルシウム、セルロース、水シロップ、メチルセルロース、ポリビニルピロリドン、アルキルパラヒドロキシベンゾエート、タルク、ステアリン酸マグネシウム、ステアリン酸、グリセリン、ゴマ油、オリーブ油、大豆油などが含まれる。
【0039】
本発明に係る化合物は、これらの担体、賦形剤又は希釈剤、そして、必要に応じて一般に使用される増量剤、結合剤、崩壊剤、pH調整剤、溶解剤などの添加剤が混合された上で、常用の製剤技術によって錠剤、丸剤、カプセル剤、顆粒剤、粉剤、液剤、乳剤、懸濁剤、軟膏剤、注射剤、皮膚貼付剤などの経口又は非経口用医薬、特にグロープ2メタボトロピックグルタミン酸受容体作用薬として調製されることができる。本発明に係る化合物は、成人患者に対して0.01〜500mgを1日1回又は数回に分けて経口又は非経口で投与することが可能である。なお、この投与量は治療対象となる疾病の種類、患者の年齢、体重、症状などにより適宜増減することが可能である。
【0040】
【発明の効果】
本発明により、医薬として有用な薬物、特にメタボトロピックなグルタミン酸受容体の作動薬が提供された。従って、例えば精神分裂病、不安及びその関連疾患、うつ病、二極性障害、てんかん等の精神医学的障害、例えば薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患に有用な治療薬及び予防薬として使用できる。
【0041】
【実施例】
以下に製造例及び試験例を示し本発明を具体的に説明する。
製造例1
(1SR,3RS,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレート、及び(1SR,3SR,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートの合成
窒素雰囲気下、n−ブチルリチウム30.9ml(1.54Mヘキサン溶液)と1,1,1,3,3,3−ヘキサメチルジシラザン7.50gから調製したリチウムビストリメチルシリルアミドのテトラヒドロフラン150ml中に、−75℃でテトラヒドロフラン150mlに溶解した(1SR,5RS,6SR)エチル 2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレート6.60gを滴下した。この温度で1時間攪拌した後、クロロトリメチルシラン7.5mlを加え、室温で1時間攪拌した。反応溶液を減圧下濃縮後、残渣に無水ヘキサンを加え、生じた無機塩を濾別し、濃縮した。
【0042】
残渣を塩化メチレン66mlに溶解し、N−フルオロベンゼンスルホンイミド15.00gを加え、室温で16.5時間攪拌した。反応溶液を水で2回洗浄後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧下、濃縮した。残渣をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:ヘキサン−塩化メチレン−酢酸エチル=60:4:1)で精製し、(1SR,3RS,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートと(1SR,3SR,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートの混合物を4.30g得た。
1H−NMR(CDCl3)δ(ppm);1.28(3Hx3/4,t,J=7.2Hz),1.29(3Hx1/4,t,J=7.2Hz),2.11-2.79(5H,m),4.18(2H,q,J=7.2Hz),4.51(1Hx1/4,dd,J=51Hz,8.1Hz),4.58(1Hx3/4,dt,J=51Hz,8.1Hz)
MS(FAB)(Pos)m/e;187(M++1)
【0043】
製造例2
(1SR,3RS,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレート、及び(1SR,3SR,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートの合成
窒素雰囲気下、n−ブチルリチウム1.5ml(1.54Mヘキサン溶液)と1,1,1,3,3,3−ヘキサメチルジシラザン0.38gから調製したリチウムビストリメチルシリルアミドのテトラヒドロフラン6ml中に、−75℃でテトラヒドロフラン6mlに溶解した(1SR,5RS,6SR)エチル 2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレート0.20gを滴下した。この温度で45分間攪拌した後、N−フルオロベンゼンスルホンイミド0.75gを加え、室温で2時間攪拌した。反応溶液を水で2回洗浄後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧下、濃縮した。残渣をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:ヘキサン−塩化メチレン−酢酸エチル=60:4:1)で精製し、(1SR,3RS,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートと(1SR,3SR,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートの混合物を0.08g得た。
1H−NMR(CDCl3)δ(ppm);1.28(3Hx3/4,t,J=7.2Hz),1.29(3Hx1/4,t,J=7.2Hz),2.11-2.79(5H,m),4.18(2H,q,J=7.2Hz),4.51(1Hx1/4,dd,J=51Hz,8.1Hz),4.58(1Hx3/4,dt,J=51Hz,8.1Hz)
MS(FAB)(Pos)m/e;187(M++1)
【0044】
製造例3
(1SR,5RS,6SR)エチル 3,3−ジフルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートの合成
窒素雰囲気下、n−ブチルリチウム30.9ml(1.54Mヘキサン溶液)と1,1,1,3,3,3−ヘキサメチルジシラザン7.50gから調製したリチウムビストリメチルシリルアミドのテトラヒドロフラン150ml中に、−75℃でテトラヒドロフラン150mlに溶解した(1SR,5RS,6SR)エチル 2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレート6.60gを滴下した。この温度で1時間攪拌した後、クロロトリメチルシラン7.5mlを加え、室温で1時間攪拌した。反応溶液を減圧下濃縮後、残渣に無水ヘキサンを加え、生じた無機塩を濾別し、濃縮した。残渣を塩化メチレン66mlに溶解し、N−フルオロベンゼンスルホンイミド15.00gを加え、室温で16.5時間攪拌した。反応溶液を水で2回洗浄後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧下、濃縮した。残渣をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:ヘキサン−塩化メチレン−酢酸エチル=60:4:1)で精製し、(1SR,5RS,6SR)エチル 3,3−ジフルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートを0.02g得た。
1H−NMR(CDCl3)δ(ppm);1.30(3H,t,J=7.1Hz),2.42-2.80(5H,m),4.20(2H,q,J=7.1Hz)
MS(Ion Spray)(Nega)m/e;203(M+−1)
【0045】
製造例4
(1SR,5RS,6SR)エチル 3,3−ジフルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートの合成
窒素雰囲気下、n−ブチルリチウム5.0ml(1.54Mヘキサン溶液)と1,1,1,3,3,3−ヘキサメチルジシラザン1.40gから調製したリチウムビストリメチルシリルアミドのテトラヒドロフラン26ml中に、−75℃でテトラヒドロフラン6.5mlに溶解した製造例1で合成した化合物1.3gを滴下した。この温度で1時間攪拌した後、クロロトリメチルシラン1.3mlを加え、室温で1時間攪拌した。反応溶液を減圧下濃縮後、残渣に無水ヘキサンを加え、生じた無機塩を濾別し、濃縮した。
【0046】
残渣を塩化メチレン13mlに溶解し、N−フルオロベンゼンスルホンイミド3.30gを加え、室温で5時間攪拌した。反応溶液を水で2回洗浄後、無水硫酸ナトリウムで乾燥し、乾燥剤を濾別後、減圧下、濃縮した。残渣をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:ヘキサン−塩化メチレン−酢酸エチル=60:4:1)で精製し、(1SR,5RS,6SR)エチル 3,3−ジフルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートを0.34g得た。
1H−NMR(CDCl3)δ(ppm);1.30(3H,t,J=7.1Hz),2.42-2.80(5H,m),4.20(2H,q,J=7.1Hz)
MS(Ion Spray)(Nega)m/e;203(M+−1)
【0047】
製造例5
(1SR,2SR,3SR,5RS,6SR)エチル 2−スピロ−5´−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート、(1SR,2SR,3RS,5RS,6SR)エチル 2−スピロ−5´−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート、及び(1SR,2RS,3RS,5RS,6SR)エチル 2−スピロ−5´−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートの合成
(1SR,3RS,5RS,6SR)エチル 3−フルオロ−2−オキソビシクロ[3.1.0]ヘキサン−6−カルボキシレートと(1SR,3SR,5RS,6SR)エチル 3−フルオロ−2−オキソビロビシクロ[3.1.0]ヘキサン−6−カルボキシレートの混合物4.84gを、水26mlとエタノール38mlの混合溶液に溶解し、炭酸アンモニウム6.25gとシアン化カリウム1.86gを加え35℃で37時間攪拌した。反応混合物を室温まで冷却後水31mlを加え、更に氷冷下2.5時間攪拌し生じた結晶を濾取し、2.10gの第1結晶を得た。濾液に氷冷下濃塩酸を加えpHを1.0に調整し、生成した結晶を濾取し、2.00gの第2結晶を得た。
【0048】
第1結晶をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:クロロホルム−メタノール=100:1)に付し、低極性ジアステレオマーを0.61gと極性ジアステレオマーA(極性ジアステレオマーBを約25%を含む、極性ジアステレオマーAと極性ジアステレオマーBのRf値は同じ)0.55gに分離した。
低極性ジアステレオマー0.61gを水−エタノール=1:1の混合溶液より再結晶し、(1SR,2SR,3SR,5RS,6SR)エチル 2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートを0.52gを得た。
1H−NMR(DMSO-d6)δ(ppm);1.19(3H,t,J=7.0Hz),1.95-2.46(5H,m),4.06(2H,q,J=7.0Hz),4.81(1H,dd,J=52Hz,5.1Hz),8.44(1H,s),10.91(1H,s)
MS(EI)m/e;256(M+
【0049】
極性ジアステレオマーA0.55gを水−エタノール=1:1の混合溶液より再結晶し、(1SR,2SR,3RS,5RS,6SR)エチル 2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート0.37gを得た。
1H−NMR(DMSO-d6)δ(ppm);1.18(3H,t,J=7.1Hz),1.85-2.43(5H,m),4.05(2H,q,J=7.1Hz),4.70(1H,dt,J=52Hz,8.0Hz),8.21(1H,s),10.83(1H,s)
MS(EI)m/e;256(M+
【0050】
第2結晶を酢酸エチルで洗浄し不溶物を濾別後濾液を減圧下濃縮し、残渣を水−エタノール=1:1で2回再結晶した。この2回の再結晶濾液を減圧下濃縮し、残渣をクロマトグラフィー(シリカゲル:ワコウゲル(和光純薬製)、展開溶媒:クロロホルム−メタノール=100:1)に付し前記低極性ジアステレオマーを完全に除去した。得られた極性ジアステレオマーB(極性ジアステレオマーAを約10%を含む)の結晶0.25gを水−エタノール=1:1で再結晶を行い、、(1SR,2RS,3RS,5RS,6SR)エチル 2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレートを0.18g得た。
1H−NMR(DMSO-d6)δ(ppm);1.18(3H,t,J=7.1Hz),1.81-2.17(4H,m),2.36(1H,dd,J=13Hz,7.2Hz),3.95-4.11(2H,m),4.90(1H,ddd,J=51Hz,8.9Hz,7.2Hz),8.54(1H,s),10.87(1H,s)
MS(EI)m/e;256(M+
【0051】
同様にして下記の化合物を合成した。
(1SR,2SR,5RS,6SR)エチル 2−スピロ−5'−ヒダントイン−3,3−ジフルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート
1H−NMR(DMSO-d6)δ(ppm);1.19(3H,t,J=7.0Hz),1.85-1.89(1H,m),2.00-2.08(1H,m),2.15-2.27(1H,m),2.33-2.50(1H,m),2.55-2.86(1H,m),4.07(2H,q,J=7.0Hz),8.49(1H,m)
MS(EI)m/e;274(M+
【0052】
製造例6
(1SR,2SR,3RS,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸の合成
(1SR,2SR,3RS,5RS,6SR)エチル 2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート300mgを3M水酸化ナトリウム水溶液2.5mlに溶解し、16時間加熱還流した。反応溶液を室温まで冷却後、ガラスフィルターで濾過し、濾液を濃塩酸でpH3にした後、イオン交換クロマトグラフィー(AG1−X8 陰イオン交換樹脂(Bio-Rad)、展開溶媒:0.1M酢酸〜3M酢酸)で精製し、(1SR,2SR,3RS,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸を51mg得た。
1H−NMR(TFA-d)δ(ppm);2.23-2.24(1H,m),2.56-2.96(4H,m),5.15(1H,dt,J=52Hz,7.5Hz)
MS(CI)m/e;204(M++1)
【0053】
同様にして下記の化合物を合成した。
(1SR,2SR,5RS,6SR)−2−アミノ−3,3−ジフルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
1H−NMR(TFA-d)δ(ppm);2.46(1H,brs),2.63-2.90(3H,m),3.01-3.12(1H,m)
MS(CI)m/e;222(M++1)
【0054】
製造例7
(1SR,2SR,3SR,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸の合成
(1SR,2SR,3SR,5RS,6SR)エチル 2−スピロ−5´−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート100mgを60%硫酸水溶液1.5mlに溶解し、140℃で12時間加熱した。反応溶液を室温まで冷却後、5M水酸化ナトリウム水溶液でpH8にした後、イオン交換クロマトグラフィー(AG1−X8 陰イオン交換樹脂(Bio-Rad)、展開溶媒:0.1M酢酸〜2M酢酸)で精製し、(1SR,2SR,3SR,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸を20mg得た。
1H−NMR(TFA-d)δ(ppm);2.49(1H,brs),2.59-3.06(4H,m),5.40(1H,dd,J=52Hz,5.3Hz)
MS(CI)m/e;204(M++1)
【0055】
同様にして下記の化合物を合成した。
(1SR,2RS,3RS,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
1H−NMR(TFA-d)δ(ppm);2.33(1H,brs),2.54-2.89(4H,m),5.42-5,59(1H,m)
MS(CI)m/e;204(M++1)
【0056】
製造例8
(1S,2S,3S,5R,6S)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸の合成
(1)(1SR,2SR,3SR,5RS,6SR)エチル 2−スピロ−5´−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボキシレート2.20gと2M水酸化ナトリウム17mlの混合物を室温で攪拌した。2時間後、濃塩酸を加えpHを1.0に調整した。生成した結晶を濾過により単離し、乾燥して(1SR,2SR,3SR,5RS,6SR)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸を1.81g得た。
1H−NMR(DMSO-d6)δ(ppm);1.85-2.44(5H,m),4.80(1H,dd,J=52Hz,5.3Hz),8.44(1H,s),10.88(1H,s),12.30(1H,brs)
MS(FAB)(Nega)m/e;227(M+−1)
【0057】
(2)(1SR,2SR,3SR,5RS,6SR)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸1.80gをアセトン:水=8:5の混合溶液26ml中55℃で攪拌し、(R)−(+)−1−フェニルエチルアミン0.96gを加えた後、室温で15時間 攪拌した。生成した結晶を濾過し、(R)−(+)−1−フェニルエチルアミン塩1.30gを得た。濾液は製造例9に使用した。
この塩1.20gを水15mlに懸濁し、1M塩酸を用いてpHを1.0に調整し、室温で14時間攪拌した。生成した結晶を濾過により単離し(1S,2S,3S,5R,6S)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸0.65gを得た。更に濾液はイオン交換クロマトグラフィー(AG50W−X8 陽イオン交換樹脂(Bio-Rad)、展開溶媒:1M酢酸)で精製し、(1S,2S,3S,5R,6S)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸を0.06g得た。
D[α]22=36.84(c=0.20,MeOH)
【0058】
(3)(1S,2S,3S,5R,6S)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸0.60gを60%硫酸水溶液10mlに溶解し、140℃で2日間攪拌した。反応溶液を室温まで冷却後、5M水酸化ナトリウム水溶液でpH8にした後、イオン交換クロマトグラフィー(AG1−X8 陰イオン交換樹脂(Bio-Rad)、展開溶媒:0.1M酢酸〜2M酢酸)で精製し、(1S,2S,3S,5R,6S)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸を0.34g得た。
D[α]22=58.61(c=0.20,1M HCl)
【0059】
製造例9
(1R,2R,3R,5S,6R)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸の合成
(1)製造例8(2)の濾液を減圧下、濃縮した。得られた結晶1.3gと水17mlの混合物を1M塩酸を用いてpHを1.0に調整し、室温で攪拌した。4時間後、生成した結晶を濾取し0.81gの結晶を得た。濾液はイオン交換クロマトグラフィー(AG50W−X8 陽イオン交換樹脂(Bio-Rad)、展開溶媒:1M酢酸)で精製し、0.08gの結晶を得た。
【0060】
(2)前記2つの結晶を合わせ(0.89g)、アセトン:水=8:5の混合溶液13mlを加え、55℃で攪拌した。この溶液に(S)−(−)−1−フェニルエチルアミン0.47gを加えた後、室温で15時間攪拌した。生成した結晶を濾過し、(R)−(−)−1−フェニルエチルアミン塩を1.10g得た。
この塩を製造例8の(2)と同様に1M塩酸を用いてフリー体とし、(1R,2R,3R,5S,6R)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸0.58gを得た。濾液をイオン交換クロマトグラフィー(AG50W−X8 陽イオン交換樹脂(Bio-Rad)、展開溶媒:1M酢酸)で精製し、(1R,2R,3R,5S,6R)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸を0.07g得た。
D[α]22=−37.52(c=0.20,MeOH)
【0061】
(3)(1R,2R,3R,5S,6R)2−スピロ−5'−ヒダントイン−3−フルオロビシクロ[3.1.0]ヘキサン−6−カルボン酸0.58gを製造例8の(3)と同様に反応し、(1R,2R,3R,5S,6R)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸0.37gを得た。
D[α]22=−59.36(c=0.20,1M HCl)
【0062】
試験例1[被検薬のcAMP蓄積に及ぼす効果]
代謝型グルタメ−ト受容体 mGluR2安定発現CHO細胞を、10%透析馬胎児血清含有ダルベッコ改変イ−グル培地[1%Proline 50units/ml,Penicillin 50μg/ml,Streptomycin 2mM,L-glutamine(用時添加)]を用いて1.26×104cells/well/0.32cm2/150μlの割合で96穴プレ−トに播種し、37℃、5%CO2下で2日間培養を行った。その後、L-Glutamine free培地に交換し、4時間後に上清を吸引除去し、150μl PBS(+)−IBMX(10mM PBS(-),1mM MgCl2,1mM CaCl2,1mM IBMX)を添加して、20分間、37℃、5%CO2存在下でインキュベ−ションを行った。再び上清を吸引除去し、60μl 10−5M Forskolin、10−10〜10−4Mの被検体を含有したPBS(+)−IBMXを添加して15分間、37℃で5%CO2存在下インキュベ−ションを行い、Forskolin刺激cAMP蓄積量に対するアゴニストの抑制効果の検討を行った(コントロ−ルは,Forskolinと化合物無添加の条件とした。(Tanabe et al,Neuron,8,169-179(1992)))。100μlの氷冷エタノールを添加して反応停止し、上清を別のプレ−トに全量回収した後、エバポレーターで常温乾固し、−20℃で保存した。乾固したサンプルは、cAMP EIA kit(アマシャム社)を用いてcAMP量を定量した。各cAMP量からコントロ−ルの値を差し引いた。10−5M Forskolinで刺激を行ったときのcAMP蓄積を50%抑制する被検薬の濃度をED50値を求め、結果を表1に示した。
【0063】
【表1】
Figure 0004783967
【0064】
Comp.1:(1S,2S,3S,5R,6S)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
Comp.2:(1SR,2SR,3SR,5RS,6SR)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
LY354740:(+)−(1S,2S,5R,6S)−2−アミノビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
DCGIV:(2S,2'R,3'R)−2−(2',3'−ジカルボキシシクロプロピル)グリシン
(1S,3R)ACPD:(1S,3R)−1−アミノシクロペンタン−1,3−ジカルボン酸
L−CCG−I:(2S,1'S,2'S)−2−(カルボキシシクロプロピル)グリシン。
【0065】
試験例2[マウスのメタンフェタミン運動過多に及ぼす効果]
雄性ICR系マウス(体重23−32g、日本チャールスリバー)を1群11〜12匹用いた。動物は塩化ビニール製円筒透明測定ケージ(直径30cm、高さ30cm)に動物を入れ90分間環境順化させた。動物に各薬物を経口投与30分後にメタンフェタミンを1mg/kg腹腔内投与した。その15分後に自動活動量測定装置(SCANET/SV−10、東洋産業株式会社)を用いて30分間の運動量を測定した。薬物は0.3%tween80−生理食塩水に懸濁した。溶媒投与群のカウント数と各用量のカウント数より抑制率を求め、ED50値を算出し、結果を表2に示した。また、統計処理は分散分析(ANOVA)後、ダンネット検定を行った。
LY−354740は0.01mg/kg経口投与群を除き、用量依存的にメタンフェタミン運動過多を抑制[F(4,54)=3.242,P<0.05]し、ED50値は0.87mg/kgであった。MGS0008も同様な作用が認められ[F(3,43)=3.306,P<0.05]、ED50値は0.05mg/kgとなり、LY−374740の17.4倍の強度であった。
【0066】
【表2】
Figure 0004783967
【0067】
N:1群の動物数。*P<0.01 溶媒投与群との比較
Comp.1:(1S,2S,3S,5R,6S)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸
LY354740:(+)−(1S,2S,5R,6S)−2−アミノビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pharmaceutical comprising a novel compound as an active ingredient, and more specifically, acts on a group 2 metabotropic glutamate receptor, such as schizophrenia, anxiety and related diseases, depression, bipolar disorder, epilepsy and the like. For psychiatric disorders and neurological diseases such as drug addiction, cognitive impairment, Alzheimer's disease, Huntington's disease, Parkinson's disease, movement disorders associated with muscle stiffness, cerebral ischemia, brain failure, spinal cord disorder, head disorder The present invention relates to a medicine showing a therapeutic effect and a preventive effect.
[0002]
[Prior art]
Recently, the glutamate receptor gene has been cloned one after another, and it has been revealed that there are a surprising number of subtypes of glutamate receptors. At present, glutamate receptors are broadly classified into two types: “ionotropic type in which the receptor has an ion channel type structure” and “metabolic type in which the receptor is coupled to G-protein”. Furthermore, ionotropic receptors are pharmacologically classified into three types: NMDA, α-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA), and kinetics (Science, 258 , 597-603, 1992), metabotropic receptors are classified into eight types of type 1 to type 8 (J. Neurosci., 13 , 1372-1378, 1993; Neuropharmacol., 34, 1-26, 1995).
[0003]
Metabotropic glutamate receptors are pharmacologically classified into three groups. Among them, group 2 (mGluR2 / mGluR3) binds to adenyl cyclase and suppresses forskolin-stimulated accumulation of cyclic adenosine monophosphate (cAMP) (Trends Pharmacol. Sci., 14 , 13 (1993)), compounds that act on metabotropic glutamate receptors should be effective in the treatment or prevention of acute and chronic psychiatric and neurological diseases. JP-A-8-188561 discloses (+)-(1S, 2S, 5R, 6S) -2-aminobicyclo [3.1.0] hexane-2 as a substance acting on the group 2 metabotropic glutamate receptor. 1,6-dicarboxylic acid is disclosed.
[0004]
By the way, the fluorine atom has a tendency to impart strong electron withdrawing property and high fat solubility, and the compound into which the fluorine atom is introduced greatly changes the physical properties. For this reason, introduction of a fluorine atom may greatly affect the absorbability, metabolic stability and pharmacological action of the compound. However, it is not easy to introduce fluorine atoms. Actually, in JP-A-8-188561, introduction of a fluorine atom into (+)-(1S, 2S, 5R, 6S) -2-aminobicyclo [3.1.0] hexane-2,6-dicarboxylic acid is It has not been studied at all.
[0005]
[Problems to be solved by the invention]
The object of the present invention is, for example, psychiatric disorders such as schizophrenia, anxiety and related diseases, depression, bipolar disorder, epilepsy, and drug dependence, cognitive impairment, Alzheimer's disease, Huntington's chorea, Parkinson's disease, A therapeutic or prophylactic agent for diseases associated with group 2 metabotropic glutamate receptors, such as neurological diseases such as movement disorders associated with muscular rigidity, cerebral ischemia, brain failure, spinal cord disorder, and head disorders As a group 2 metabotropic glutamate receptor antagonist effective as an oral administration.
[0006]
[Means for Solving the Problems]
The present inventors have earnestly studied about a fluorine-containing amino acid derivative in which a fluorine atom is introduced into ((+)-(1S, 2S, 5R, 6S) -2-aminobicyclo [3.1.0] hexane-2,6-dicarboxylic acid. As a result of the study, a novel fluorine-containing amino acid derivative that has an effect on oral administration to a group 2 metabotropic glutamate receptor was found, and the present invention was completed.
[0007]
The present invention will be described below.
[0008]
The present invention provides formula [1]
[0009]
[Chemical 3]
Figure 0004783967
[0010]
[Where X 1 Represents a hydrogen atom or a fluorine atom, R 1 And R 2 Are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. ] Or a pharmaceutically acceptable salt thereof, for example, a drug that acts on a group 2 metabotropic glutamate receptor.
In the present invention, the alkyl group having 1 to 10 carbon atoms is linear Or Represents a branched alkyl group, and examples of the linear or branched alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a pentyl group, an isopentyl group, and 1-ethylpropyl. Group, hexyl group, isohexyl group, 1-ethylbutyl group, heptyl group, isoheptyl group, octyl group, nonyl group, decyl group and the like.
Further, the pharmaceutically acceptable salt in the present invention is, for example, a salt with a mineral acid such as sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid, oxalic acid, lactic acid, tartaric acid, fumaric acid, maleic acid, methanesulfonic acid, benzenesulfonic acid. A salt with an organic acid such as trimethylamine or methylamine, or a salt with a metal ion such as sodium ion, potassium ion or calcium ion. The compounds according to the present invention can exist as various solvates, but hydrates are preferable from the viewpoint of applicability as pharmaceuticals.
[0011]
Among the compounds represented by the formula [1], X 1 When is a hydrogen atom, there are five asymmetric carbon atoms at positions 1, 2, 3, 5 and 6. Therefore, X 1 The compound according to the present invention in which is a hydrogen atom can exist as a mixture of two enantiomers such as an optically active substance and a racemate and a mixture of diastereomers. In addition, X 1 When is a fluorine atom, there are four asymmetric carbon atoms at the 1, 2, 5 and 6 positions. Therefore, X 1 The compound according to the present invention in which is a fluorine atom can exist as a mixture of two enantiomers such as an optically active substance and a racemate and a mixture of diastereomers.
[0012]
Preferred X in the compound represented by the formula [1] 1 Is a hydrogen atom. In addition, X 1 When is a hydrogen atom, the compound represented by the formula [1] more preferably has the following relative stereochemical configuration.
[0013]
[Formula 4]
Figure 0004783967
[0014]
X 1 , R 1 And R 2 Is a hydrogen atom, the most preferred optically active isomer among the optical isomers of this compound has a positive optical rotation, and this absolute stereochemical configuration is determined by 2-spiro-, a synthetic precursor of this compound. X-ray single crystal structure analysis of 5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid (R)-(+)-1-phenylethylamine salt revealed that 1S, 2S, 3S, 5R, 6S was determined.
[0015]
On the other hand, R in the formula [1] 1 And R 2 When one or both of them represent other than hydrogen, that is, the ester does not affect the group 2 metabotropic glutamate receptor. However, this ester is hydrolyzed to a carboxylic acid in vivo and converted to a carboxylic acid that affects the group 2 metabotropic glutamate receptor. Therefore, the ester form functions as a prodrug and is therefore a very useful compound.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The compound of the formula [1] is supplied by the following production method. In the following reaction formula, R 1 , R 2 , X 1 Is the same as above, R Three And R Four Are the same or different and each represent an alkyl group having 1 to 10 carbon atoms, and Y represents a general amino protecting group (see PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, THEODORA W. GREENE and PETER GM WUTS).
[0017]
[Chemical formula 5]
Figure 0004783967
[0018]
The monofluorinated compound (2) which is a mixture of two enantiomers such as an optically active substance, a racemate or a mixture of diastereomers is a mixture of two enantiomers such as a corresponding optically active substance, a racemate or a mixture of diastereomers. The ketone body (1) is once converted into an enol silyl ether body or enol ester body and then reacted with a fluorination reagent, or by directly reacting the ketone body (1) with a fluorination reagent. Further, a difluoride compound (3) which is a mixture of two enantiomers such as an optically active substance and a racemate or a mixture of diastereomers is obtained by converting a monofluoride compound (2) once into an enolsilyl ether form, It is obtained by reacting, reacting monofluorinated compound (2) directly with a fluorinating reagent, or reacting ketone body (1) with 2 or more equivalents of fluorinating reagent.
[0019]
Here, the enol silyl ether is produced by adding the ketone (1) to ethers such as tetrahydrofuran and diethyl ether, hydrocarbons such as toluene and benzene, alcohols such as methanol and t-butanol, N, N In an inert solvent such as dimethylformamide, for example, alkyllithiums such as n-butyllithium and s-butyllithium, for example, metal amides such as lithium bistrimethylsilylamide, potassium bistrimethylsilylamide, and sodium amide, such as sodium hydride It can be obtained by reacting a silylating agent such as chlorotrimethylsilane and chlorot-butyldimethylsilane in the presence of a metal hydride or a base such as an amine such as triethylamine. The reaction temperature here is preferably 100 ° C. or lower, more preferably from −78 ° C. to room temperature.
[0020]
The enol ester is produced by preparing a silylating agent from an acid anhydride such as acetic anhydride, an acid halide such as propionyl chloride, or a mixed acid prepared from a carboxylic acid such as acetic acid and an alkoxycarbonyl halide such as ethoxycarbonyl chloride. The reaction can be carried out in the same manner as in the production of an enol silyl ether, instead of an anhydride.
Examples of the fluorinating reagent include N-fluoropyridinium triflate, N-fluoro-Nt-butylbenzenesulfonamide, N-fluorosaccharin sultam, N-fluorobis (benzenesulfone) imide, and N-fluoro-o-benzene. N-fluoro type fluorinating agents such as sulfonimide, fluorine, ClO Three F or CF Three COOF and the like. Here, as a mode in which the fluorinating reagent is directly reacted, the ketone body (1) is subjected to, for example, ethers such as tetrahydrofuran and diethyl ether, hydrocarbons such as toluene and benzene, alcohols such as methanol and t-butanol, In an inert solvent such as N, N-dimethylformamide, for example, alkyllithiums such as n-butyllithium and s-butyllithium, metal amides such as lithium bistrimethylsilylamide, sodium amide, and hydrogen such as sodium hydride In a preferred embodiment, the fluorination reagent is reacted in the presence of a metal fluoride or a base such as an amine such as triethylamine at a reaction temperature of 100 ° C. or lower, preferably from −78 ° C. to room temperature.
[0021]
The mono- or difluorinated compound (4), which is a mixture of two enantiomers such as optically active substance, racemate and the like, or a mixture of diastereomers (4) thus obtained is obtained by using Strecker Amino Acid Synthesis ( Ann., 75 , 27 (1850); 91 349 (1850)), Bucherer-Bergs Reaction (J. Prakt. Chem., 140 , 69 (1934)) or an amino cyanide derivative or a hydantoin derivative obtained by a modification thereof, or a mixture of two enantiomers such as the corresponding optically active compound, racemate, etc., which are the compounds according to the present invention, or It can be set as the fluorine-containing amino acid derivative (5) which is a mixture of diastereomers.
[0022]
Specifically, the mono- or difluoride compound (4) is mixed with sodium cyanide or potassium cyanide and ammonium carbonate in an alcohol such as ethanol or a mixed solvent of water and water, preferably at 30 ° C to 50 ° C for 1 day. It reacts for ~ 2 days and leads to hydantoin which is a synthetic intermediate. Subsequently, by hydrolysis in an inert solvent such as an alcohol such as ethanol, an ether such as dioxane, or a ketone such as acetone with a base such as sodium hydroxide or an acid such as hydrochloric acid or sulfuric acid. The fluorine-containing amino acid derivative (5) which is the compound of the present invention is obtained.
[0023]
[Chemical 6]
Figure 0004783967
[0024]
As shown in the following formula 7, Buchler-Bergs of a monofluoride compound (see (2) above) in which one fluorine atom is introduced into the ketone body represented by (1SR, 5RS, 6SR)-(1) The hydantoin derivative represented by (1SR, 5RS, 6SR)-(6) obtained by the reaction is separated into four shear stereomers by a general technique such as column chromatography using silica gel or recrystallization, for example. be able to.
[0025]
Furthermore, after each of the four diastereomeric esters is hydrolyzed, it can be resolved into eight enantiomers (8) by a general resolution method such as resolution using a basic chiral resolving agent. Then, eight optically active fluorine-containing amino acid derivatives (9) which are the compounds of the present invention are obtained by hydrolyzing the hydantoin site.
[0026]
Here, as the basic chiral resolving agent, for example, (+) or (−)-1-phenylethylamine, (+) or (−)-2-amino-1-butanol, (+) or (−)-alaninol , Optically active amines such as brucine, cinchonidine, cinchonine, quinine, quinidine, dehydroabiethylamine and the like can be used.
[0027]
[Chemical 7]
Figure 0004783967
[0028]
On the other hand, four optically active amino acid derivatives (12) containing two fluorine atoms which are one of the compounds of the present invention start from (1SR, 5RS, 6SR)-(1) as shown in the following chemical formula 8. The raw material can be synthesized by fluorination, hydantoinization, diastereomer separation, ester hydrolysis, resolution, and hydantoin site hydrolysis.
[0029]
[Chemical 8]
Figure 0004783967
[0030]
The ketone body represented by the formula (1SR, 5RS, 6SR)-(2) having one fluorine atom has the formula (13) by separation of diastereomers, hydrolysis of the ester and resolution as shown in the following chemical formula 9. To four optically active ketocarboxylic acids. Accordingly, by directly or after esterifying the four optically active ketocarboxylic acids (13), the same operation as in the synthesis of the compound represented by formula (5) is performed, and further diastereomers are separated. In addition, a fluorine-containing amino acid derivative which is an optically active compound of the present invention can be produced.
[0031]
[Chemical 9]
Figure 0004783967
[0032]
Two optically active ketocarboxylic acids having two fluorine atoms represented by the formula (14) are represented by the following chemical formula 9 from the ketone body represented by the formula (1SR, 5RS, 6SR)-(3) having two fluorine atoms. It can be obtained in a similar manner, ie hydrolysis and resolution of the ester. Therefore, the optically active ketocarboxylic acid (14) can be directly or after esterification by performing the same operation as the amino acid synthesis method shown in Chemical formula 6 and further separating the diastereomers. Thus, a fluorine-containing amino acid derivative (15) which is a compound of the present invention can be produced.
[0033]
[Chemical Formula 10]
Figure 0004783967
[0034]
By the way, as shown in the following chemical formula 11, the fluorine-containing amino acid which is the compound of the present invention in a mixture of two enantiomers such as an optically active substance and a racemate represented by the formula (6) or a mixture of diastereomers has an amino group. After protecting with a protecting group represented by Y, R Three -X 2 Or R Four -X 2 Or an alkyl halide represented by R Three -OH or R Four Esterification is performed by a general method using an alcohol represented by —OH, and the amino-protecting group is removed to derive a fluorine-containing amino acid ester which is a compound of the present invention represented by the formula (15).
[0035]
Embedded image
Figure 0004783967
[0036]
Here, protection of the amino group, esterification and deprotection of the amino group are carried out by general methods (see PROTECTIVE GROUPS IN ORGANIC SYNTHESIS, THEODORA W. GREENE and PETER GMWUTS).
[0037]
Furthermore, each diastereomer of the fluorine-containing amino acid ester represented by the formula (15) or the N-protected fluorine-containing amino acid ester represented by the formula (17) can be used in general such as column chromatography using silica gel or the like, recrystallization, etc. Can be separated by conventional techniques. Each diastereomer of formula (15) can be resolved into each enantiomer by a general resolution method such as resolution using an acidic chiral resolving agent.
Here, as the acidic chiral resolving agent, (+) or (−)-di-p-toluoyl tartaric acid, (+) or (−)-dibenzoyl tartaric acid, (+) or (−)-tartaric acid, (+) or Optically active organic acids such as (−)-mandelic acid, (+) or (−)-camphoric acid, or (+) or (−)-camphor sulfonic acid can be used.
[0038]
The compounds according to the invention can be combined with one or more pharmaceutically acceptable carriers, excipients or diluents into pharmaceutical preparations. Examples of the carriers, excipients and diluents include water, sugar milk, dextrose, fructose, sucrose, sorbitol, mannitol, polyethylene glycol, propylene glycol, starch, gum, gelatin, alginate, calcium silicate, calcium phosphate, Cellulose, water syrup, methyl cellulose, polyvinyl pyrrolidone, alkyl parahydroxybenzoate, talc, magnesium stearate, stearic acid, glycerin, sesame oil, olive oil, soybean oil and the like are included.
[0039]
The compound according to the present invention is mixed with these carriers, excipients or diluents, and additives such as extenders, binders, disintegrants, pH adjusters, and solubilizers that are generally used as necessary. In addition, tablets or pills, capsules, granules, powders, liquids, emulsions, suspensions, ointments, injections, skin patches, etc., such as tablets, pills, capsules, granules, powders, and oral patches, especially groups It can be prepared as a 2 metabotropic glutamate receptor agonist. The compound according to the present invention can be orally or parenterally administered to an adult patient in an amount of 0.01 to 500 mg once or several times a day. This dose can be appropriately increased or decreased depending on the type of disease to be treated, the age, weight, symptoms, etc. of the patient.
[0040]
【The invention's effect】
According to the present invention, there are provided drugs useful as pharmaceuticals, in particular, metabotropic glutamate receptor agonists. Therefore, it is associated with psychiatric disorders such as schizophrenia, anxiety and related diseases, depression, bipolar disorder, epilepsy, such as drug dependence, cognitive impairment, Alzheimer's disease, Huntington's chorea, Parkinson's disease, muscle rigidity It can be used as a therapeutic and prophylactic agent useful for neurological diseases such as movement disorders, cerebral ischemia, brain failure, spinal cord disorders, and head disorders.
[0041]
【Example】
The present invention will be specifically described below with reference to production examples and test examples.
Production Example 1
(1SR, 3RS, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 3SR, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [ 3.1.0] Synthesis of hexane-6-carboxylate
In a nitrogen atmosphere, in 150 ml of tetrahydrofuran, lithium bistrimethylsilylamide prepared from 30.9 ml of n-butyllithium (1.54 M hexane solution) and 7.50 g of 1,1,1,3,3,3-hexamethyldisilazane. 6.60 g of (1SR, 5RS, 6SR) ethyl 2-oxobicyclo [3.1.0] hexane-6-carboxylate dissolved in 150 ml of tetrahydrofuran at −75 ° C. was added dropwise. After stirring at this temperature for 1 hour, 7.5 ml of chlorotrimethylsilane was added and stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, anhydrous hexane was added to the residue, and the resulting inorganic salt was filtered off and concentrated.
[0042]
The residue was dissolved in 66 ml of methylene chloride, 15.00 g of N-fluorobenzenesulfonimide was added, and the mixture was stirred at room temperature for 16.5 hours. The reaction solution was washed twice with water and then dried over anhydrous sodium sulfate. The desiccant was filtered off and concentrated under reduced pressure. The residue was purified by chromatography (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: hexane-methylene chloride-ethyl acetate = 60: 4: 1), and (1SR, 3RS, 5RS, 6SR) ethyl 3-fluoro- A mixture of 2-oxobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 3SR, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [3.1.0] hexane-6-carboxylate is used. 30 g was obtained.
1 H-NMR (CDCl Three ) δ (ppm); 1.28 (3Hx3 / 4, t, J = 7.2Hz), 1.29 (3Hx1 / 4, t, J = 7.2Hz), 2.11-2.79 (5H, m), 4.18 (2H, q, J = 7.2Hz), 4.51 (1Hx1 / 4, dd, J = 51Hz, 8.1Hz), 4.58 (1Hx3 / 4, dt, J = 51Hz, 8.1Hz)
MS (FAB) (Pos) m / e; 187 (M + +1)
[0043]
Production Example 2
(1SR, 3RS, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 3SR, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [ 3.1.0] Synthesis of hexane-6-carboxylate
In a nitrogen atmosphere, in 1.5 ml of lithium bistrimethylsilylamide prepared from 1.5 ml of n-butyllithium (1.54 M hexane solution) and 0.38 g of 1,1,1,3,3,3-hexamethyldisilazane in tetrahydrofuran. Then, 0.20 g of (1SR, 5RS, 6SR) ethyl 2-oxobicyclo [3.1.0] hexane-6-carboxylate dissolved in 6 ml of tetrahydrofuran at −75 ° C. was added dropwise. After stirring at this temperature for 45 minutes, 0.75 g of N-fluorobenzenesulfonimide was added, and the mixture was stirred at room temperature for 2 hours. The reaction solution was washed twice with water and then dried over anhydrous sodium sulfate. The desiccant was filtered off and concentrated under reduced pressure. The residue was purified by chromatography (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: hexane-methylene chloride-ethyl acetate = 60: 4: 1), and (1SR, 3RS, 5RS, 6SR) ethyl 3-fluoro- A mixture of 2-oxobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 3SR, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [3.1.0] hexane-6-carboxylate is reduced to 0. 08 g was obtained.
1 H-NMR (CDCl Three ) δ (ppm); 1.28 (3Hx3 / 4, t, J = 7.2Hz), 1.29 (3Hx1 / 4, t, J = 7.2Hz), 2.11-2.79 (5H, m), 4.18 (2H, q, J = 7.2Hz), 4.51 (1Hx1 / 4, dd, J = 51Hz, 8.1Hz), 4.58 (1Hx3 / 4, dt, J = 51Hz, 8.1Hz)
MS (FAB) (Pos) m / e; 187 (M + +1)
[0044]
Production Example 3
Synthesis of (1SR, 5RS, 6SR) ethyl 3,3-difluorobicyclo [3.1.0] hexane-6-carboxylate
In a nitrogen atmosphere, in 150 ml of tetrahydrofuran, lithium bistrimethylsilylamide prepared from 30.9 ml of n-butyllithium (1.54 M hexane solution) and 7.50 g of 1,1,1,3,3,3-hexamethyldisilazane. 6.60 g of (1SR, 5RS, 6SR) ethyl 2-oxobicyclo [3.1.0] hexane-6-carboxylate dissolved in 150 ml of tetrahydrofuran at −75 ° C. was added dropwise. After stirring at this temperature for 1 hour, 7.5 ml of chlorotrimethylsilane was added and stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, anhydrous hexane was added to the residue, and the resulting inorganic salt was filtered off and concentrated. The residue was dissolved in 66 ml of methylene chloride, 15.00 g of N-fluorobenzenesulfonimide was added, and the mixture was stirred at room temperature for 16.5 hours. The reaction solution was washed twice with water and then dried over anhydrous sodium sulfate. The desiccant was filtered off and concentrated under reduced pressure. The residue was purified by chromatography (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: hexane-methylene chloride-ethyl acetate = 60: 4: 1), and (1SR, 5RS, 6SR) ethyl 3,3-difluorobicyclo 0.03 g of [3.1.0] hexane-6-carboxylate was obtained.
1 H-NMR (CDCl Three ) δ (ppm): 1.30 (3H, t, J = 7.1Hz), 2.42-2.80 (5H, m), 4.20 (2H, q, J = 7.1Hz)
MS (Ion Spray) (Nega) m / e; 203 (M + -1)
[0045]
Production Example 4
Synthesis of (1SR, 5RS, 6SR) ethyl 3,3-difluorobicyclo [3.1.0] hexane-6-carboxylate
In a nitrogen atmosphere, 5.0 ml of n-butyllithium (1.54 M in hexane) and 26 ml of lithium bistrimethylsilylamide prepared from 1.40 g of 1,1,1,3,3,3-hexamethyldisilazane in tetrahydrofuran Then, 1.3 g of the compound synthesized in Production Example 1 dissolved in 6.5 ml of tetrahydrofuran at −75 ° C. was added dropwise. After stirring at this temperature for 1 hour, 1.3 ml of chlorotrimethylsilane was added and stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, anhydrous hexane was added to the residue, and the resulting inorganic salt was filtered off and concentrated.
[0046]
The residue was dissolved in 13 ml of methylene chloride, 3.30 g of N-fluorobenzenesulfonimide was added, and the mixture was stirred at room temperature for 5 hours. The reaction solution was washed twice with water and then dried over anhydrous sodium sulfate. The desiccant was filtered off and concentrated under reduced pressure. The residue was purified by chromatography (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: hexane-methylene chloride-ethyl acetate = 60: 4: 1), and (1SR, 5RS, 6SR) ethyl 3,3-difluorobicyclo 0.34 g of [3.1.0] hexane-6-carboxylate was obtained.
1 H-NMR (CDCl Three ) δ (ppm): 1.30 (3H, t, J = 7.1Hz), 2.42-2.80 (5H, m), 4.20 (2H, q, J = 7.1Hz)
MS (Ion Spray) (Nega) m / e; 203 (M + -1)
[0047]
Production Example 5
(1SR, 2SR, 3SR, 5RS, 6SR) ethyl 2-spiro-5'-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate, (1SR, 2SR, 3RS, 5RS, 6SR) ethyl 2 -Spiro-5'-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 2RS, 3RS, 5RS, 6SR) ethyl 2-spiro-5'-hydantoin-3-fluorobicyclo Synthesis of [3.1.0] hexane-6-carboxylate
(1SR, 3RS, 5RS, 6SR) ethyl 3-fluoro-2-oxobicyclo [3.1.0] hexane-6-carboxylate and (1SR, 3SR, 5RS, 6SR) ethyl 3-fluoro-2-oxobibicyclo [ 3.1.0] A mixture of hexane-6-carboxylate (4.84 g) was dissolved in a mixed solution of 26 ml of water and 38 ml of ethanol, 6.25 g of ammonium carbonate and 1.86 g of potassium cyanide were added, and the mixture was stirred at 35 ° C for 37 hours. The reaction mixture was cooled to room temperature, 31 ml of water was added, and the mixture was further stirred for 2.5 hours under ice cooling, and the resulting crystals were collected by filtration to obtain 2.10 g of first crystals. Concentrated hydrochloric acid was added to the filtrate under ice-cooling to adjust the pH to 1.0, and the produced crystals were collected by filtration to obtain 2.00 g of second crystals.
[0048]
The first crystal was subjected to chromatography (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: chloroform-methanol = 100: 1), 0.61 g of low-polar diastereomer and polar diastereomer A (polar diastereomer A) The diastereomer A and polar diastereomer B, which contain about 25% of stereomer B, have the same Rf value).
0.61 g of low-polar diastereomer was recrystallized from a mixed solution of water-ethanol = 1: 1 and (1SR, 2SR, 3SR, 5RS, 6SR) ethyl 2-spiro-5′-hydantoin-3-fluorobicyclo [ 3.1.0] 0.52 g of hexane-6-carboxylate was obtained.
1 H-NMR (DMSO-d 6 ) δ (ppm); 1.19 (3H, t, J = 7.0Hz), 1.95-2.46 (5H, m), 4.06 (2H, q, J = 7.0Hz), 4.81 (1H, dd, J = 52Hz, 5.1) Hz), 8.44 (1H, s), 10.91 (1H, s)
MS (EI) m / e; 256 (M + )
[0049]
0.55 g of polar diastereomer A was recrystallized from a mixed solution of water-ethanol = 1: 1 and (1SR, 2SR, 3RS, 5RS, 6SR) ethyl 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1 .0] 0.37 g of hexane-6-carboxylate was obtained.
1 H-NMR (DMSO-d 6 ) δ (ppm); 1.18 (3H, t, J = 7.1Hz), 1.85-2.43 (5H, m), 4.05 (2H, q, J = 7.1Hz), 4.70 (1H, dt, J = 52Hz, 8.0) Hz), 8.21 (1H, s), 10.83 (1H, s)
MS (EI) m / e; 256 (M + )
[0050]
The second crystals were washed with ethyl acetate, insolubles were filtered off, the filtrate was concentrated under reduced pressure, and the residue was recrystallized twice with water-ethanol = 1: 1. The two recrystallized filtrates were concentrated under reduced pressure, and the residue was chromatographed (silica gel: Wako gel (manufactured by Wako Pure Chemical Industries), developing solvent: chloroform-methanol = 100: 1) to complete the low-polar diastereomer. Removed. 0.25 g of the obtained polar diastereomer B crystal (including about 10% of polar diastereomer A) was recrystallized with water-ethanol = 1: 1, and (1SR, 2RS, 3RS, 5RS, 6SR) Ethyl 2-spiro-5'-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate was obtained in an amount of 0.18 g.
1 H-NMR (DMSO-d 6 ) δ (ppm); 1.18 (3H, t, J = 7.1Hz), 1.81-2.17 (4H, m), 2.36 (1H, dd, J = 13Hz, 7.2Hz), 3.95-4.11 (2H, m), 4.90 (1H, ddd, J = 51Hz, 8.9Hz, 7.2Hz), 8.54 (1H, s), 10.87 (1H, s)
MS (EI) m / e; 256 (M + )
[0051]
The following compounds were synthesized in the same manner.
(1SR, 2SR, 5RS, 6SR) Ethyl 2-spiro-5′-hydantoin-3,3-difluorobicyclo [3.1.0] hexane-6-carboxylate
1 H-NMR (DMSO-d 6 ) δ (ppm); 1.19 (3H, t, J = 7.0Hz), 1.85-1.89 (1H, m), 2.00-2.08 (1H, m), 2.15-2.27 (1H, m), 2.33-2.50 (1H) , m), 2.55-2.86 (1H, m), 4.07 (2H, q, J = 7.0Hz), 8.49 (1H, m)
MS (EI) m / e; 274 (M + )
[0052]
Production Example 6
Synthesis of (1SR, 2SR, 3RS, 5RS, 6SR) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
(1SR, 2SR, 3RS, 5RS, 6SR) Dissolve 300 mg of ethyl 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate in 2.5 ml of 3M aqueous sodium hydroxide, Heated to reflux for 16 hours. The reaction solution was cooled to room temperature, filtered through a glass filter, and the filtrate was adjusted to pH 3 with concentrated hydrochloric acid, followed by ion exchange chromatography (AG1-X8 anion exchange resin (Bio-Rad), developing solvent: 0.1 M acetic acid). 3M acetic acid) to obtain 51 mg of (1SR, 2SR, 3RS, 5RS, 6SR) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid.
1 H-NMR (TFA-d) δ (ppm); 2.23-2.24 (1H, m), 2.56-2.96 (4H, m), 5.15 (1H, dt, J = 52Hz, 7.5Hz)
MS (CI) m / e; 204 (M + +1)
[0053]
The following compounds were synthesized in the same manner.
(1SR, 2SR, 5RS, 6SR) -2-Amino-3,3-difluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
1 1 H-NMR (TFA-d) δ (ppm); 2.46 (1H, brs), 2.63-2.90 (3H, m), 3.01-3.12 (1H, m)
MS (CI) m / e; 222 (M + +1)
[0054]
Production Example 7
Synthesis of (1SR, 2SR, 3SR, 5RS, 6SR) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
(1SR, 2SR, 3SR, 5RS, 6SR) Ethyl 2-spiro-5'-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate (100 mg) was dissolved in 1.5 ml of 60% aqueous sulfuric acid solution. Heat at 12 ° C. for 12 hours. The reaction solution is cooled to room temperature, adjusted to pH 8 with 5M aqueous sodium hydroxide solution, and purified by ion exchange chromatography (AG1-X8 anion exchange resin (Bio-Rad), developing solvent: 0.1 M acetic acid to 2 M acetic acid). 20 mg of (1SR, 2SR, 3SR, 5RS, 6SR) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid was obtained.
1 H-NMR (TFA-d) δ (ppm); 2.49 (1H, brs), 2.59-3.06 (4H, m), 5.40 (1H, dd, J = 52Hz, 5.3Hz)
MS (CI) m / e; 204 (M + +1)
[0055]
The following compounds were synthesized in the same manner.
(1SR, 2RS, 3RS, 5RS, 6SR) -2-Amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
1 H-NMR (TFA-d) δ (ppm); 2.33 (1H, brs), 2.54-2.89 (4H, m), 5.42-5,59 (1H, m)
MS (CI) m / e; 204 (M + +1)
[0056]
Production Example 8
Synthesis of (1S, 2S, 3S, 5R, 6S) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
(1) (1SR, 2SR, 3SR, 5RS, 6SR) ethyl 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylate 2.20 g and 2M sodium hydroxide 17 ml mixture Was stirred at room temperature. After 2 hours, concentrated hydrochloric acid was added to adjust the pH to 1.0. The resulting crystals were isolated by filtration and dried (1SR, 2SR, 3SR, 5RS, 6SR) to give 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid as 1. 81 g was obtained.
1 H-NMR (DMSO-d 6 ) δ (ppm); 1.85-2.44 (5H, m), 4.80 (1H, dd, J = 52Hz, 5.3Hz), 8.44 (1H, s), 10.88 (1H, s), 12.30 (1H, brs)
MS (FAB) (Nega) m / e; 227 (M + -1)
[0057]
(2) (1SR, 2SR, 3SR, 5RS, 6SR) 1.80 g of 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid was added to acetone: water = 8: 5 The mixture was stirred in 26 ml of the mixed solution at 55 ° C., 0.96 g of (R)-(+)-1-phenylethylamine was added, and the mixture was stirred at room temperature for 15 hours. The produced crystal was filtered to obtain 1.30 g of (R)-(+)-1-phenylethylamine salt. The filtrate was used in Production Example 9.
1.20 g of this salt was suspended in 15 ml of water, the pH was adjusted to 1.0 with 1M hydrochloric acid, and the mixture was stirred at room temperature for 14 hours. The produced crystals were isolated by filtration (1S, 2S, 3S, 5R, 6S) to give 0.65 g of 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid. Further, the filtrate was purified by ion exchange chromatography (AG50W-X8 cation exchange resin (Bio-Rad), developing solvent: 1M acetic acid), and (1S, 2S, 3S, 5R, 6S) 2-spiro-5'-hydantoin. 0.06 g of -3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid was obtained.
D [Α] twenty two = 36.84 (c = 0.20, MeOH)
[0058]
(3) 0.61 g of (1S, 2S, 3S, 5R, 6S) 2-spiro-5'-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid was dissolved in 10 ml of 60% sulfuric acid aqueous solution. , And stirred at 140 ° C. for 2 days. The reaction solution is cooled to room temperature, adjusted to pH 8 with 5M aqueous sodium hydroxide solution, and purified by ion exchange chromatography (AG1-X8 anion exchange resin (Bio-Rad), developing solvent: 0.1 M acetic acid to 2 M acetic acid). 0.34 g of (1S, 2S, 3S, 5R, 6S) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid was obtained.
D [Α] twenty two = 58.61 (c = 0.20, 1M HCl)
[0059]
Production Example 9
Synthesis of (1R, 2R, 3R, 5S, 6R) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
(1) The filtrate of Production Example 8 (2) was concentrated under reduced pressure. A mixture of 1.3 g of the obtained crystals and 17 ml of water was adjusted to pH 1.0 with 1M hydrochloric acid and stirred at room temperature. After 4 hours, the produced crystals were collected by filtration to obtain 0.81 g of crystals. The filtrate was purified by ion exchange chromatography (AG50W-X8 cation exchange resin (Bio-Rad), developing solvent: 1M acetic acid) to obtain 0.08 g of crystals.
[0060]
(2) The two crystals were combined (0.89 g), 13 ml of a mixed solution of acetone: water = 8: 5 was added, and the mixture was stirred at 55 ° C. To this solution was added 0.47 g of (S)-(−)-1-phenylethylamine, and the mixture was stirred at room temperature for 15 hours. The produced crystal was filtered to obtain 1.10 g of (R)-(−)-1-phenylethylamine salt.
This salt was made free using 1M hydrochloric acid in the same manner as in Production Example 8 (2), and (1R, 2R, 3R, 5S, 6R) 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] was obtained. 0.58 g of hexane-6-carboxylic acid was obtained. The filtrate was purified by ion exchange chromatography (AG50W-X8 cation exchange resin (Bio-Rad), developing solvent: 1M acetic acid), and (1R, 2R, 3R, 5S, 6R) 2-spiro-5'-hydantoin- 0.07 g of 3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid was obtained.
D [Α] twenty two = -37.52 (c = 0.20, MeOH)
[0061]
(3) 0.58 g of (1R, 2R, 3R, 5S, 6R) 2-spiro-5′-hydantoin-3-fluorobicyclo [3.1.0] hexane-6-carboxylic acid was added to (3) of Production Example 8 The same reaction was performed to obtain 0.37 g of (1R, 2R, 3R, 5S, 6R) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid.
D [Α] twenty two = -59.36 (c = 0.20, 1M HCl)
[0062]
Test Example 1 [Effect of test drug on cAMP accumulation]
Metabotropic glutamate receptor mGluR2 stably expressing CHO cells in 10% dialyzed fetal bovine serum-containing Dulbecco's modified Eagle medium [1% Proline 50 units / ml, Penicillin 50 μg / ml, Streptomycin 2 mM, L-glutamine (added when used) )] 1.26 × 104cells / well / 0.32cm 2 / 150 μl in 96-well plates, 37 ° C., 5% CO 2 Cultivation was carried out for 2 days. Thereafter, the medium was replaced with L-Glutamine free medium, and after 4 hours, the supernatant was removed by aspiration. 150 μl PBS (+)-IBMX (10 mM PBS (−), 1 mM MgCl 2 , 1mM CaCl 2 , 1 mM IBMX) for 20 minutes at 37 ° C., 5% CO 2 Incubation was performed in the presence. The supernatant was aspirated again, and PBS (+)-IBMX containing 60 μl of 10-5M Forskolin, 10-10 to 10-4M of the sample was added, and 5% CO at 37 ° C. for 15 minutes. 2 Incubation was carried out in the presence, and the inhibitory effect of the agonist on the amount of Forskolin-stimulated cAMP accumulation was examined (the control was performed under the condition that no Forskolin and a compound were added. 8 169-179 (1992))). The reaction was stopped by adding 100 μl of ice-cold ethanol, and the whole supernatant was collected in another plate, dried at room temperature with an evaporator, and stored at −20 ° C. The amount of cAMP in the dried sample was quantified using cAMP EIA kit (Amersham). The control value was subtracted from each cAMP amount. The concentration of the test drug that suppresses cAMP accumulation by 50% when stimulated with 10-5M Forskolin is ED. 50 Values were determined and the results are shown in Table 1.
[0063]
[Table 1]
Figure 0004783967
[0064]
Comp. 1: (1S, 2S, 3S, 5R, 6S) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
Comp. 2: (1SR, 2SR, 3SR, 5RS, 6SR) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
LY354740: (+)-(1S, 2S, 5R, 6S) -2-aminobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
DCGIV: (2S, 2′R, 3′R) -2- (2 ′, 3′-dicarboxycyclopropyl) glycine
(1S, 3R) ACPD: (1S, 3R) -1-aminocyclopentane-1,3-dicarboxylic acid
L-CCG-I: (2S, 1 ′S, 2 ′S) -2- (carboxycyclopropyl) glycine.
[0065]
Test Example 2 [Effect on excessive methamphetamine exercise in mice]
11 to 12 male ICR mice (weight 23-32 g, Nippon Charles River) were used. The animal was placed in a cylindrical transparent measuring cage made of vinyl chloride (diameter 30 cm, height 30 cm) and acclimatized for 90 minutes. 30 minutes after oral administration of each drug to the animals, 1 mg / kg of methamphetamine was intraperitoneally administered. 15 minutes later, the amount of exercise for 30 minutes was measured using an automatic activity meter (SCANET / SV-10, Toyo Sangyo Co., Ltd.). The drug was suspended in 0.3% tween 80-saline. The inhibition rate is calculated from the count number of the solvent administration group and the count number of each dose, and ED 50 Values were calculated and the results are shown in Table 2. In addition, statistical processing was performed with Dunnett's test after analysis of variance (ANOVA).
LY-354740 suppresses methamphetamine hyperactivity in a dose-dependent manner except in the 0.01 mg / kg oral administration group [F (4,54) = 3.242, P <0.05], and ED 50 The value was 0.87 mg / kg. MGS0008 has a similar effect [F (3,43) = 3.306, P <0.05], ED 50 The value was 0.05 mg / kg, which was 17.4 times the strength of LY-374740.
[0066]
[Table 2]
Figure 0004783967
[0067]
N: Number of animals in group. * P <0.01 Comparison with vehicle administration group
Comp. 1: (1S, 2S, 3S, 5R, 6S) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid
LY354740: (+)-(1S, 2S, 5R, 6S) -2-aminobicyclo [3.1.0] hexane-2,6-dicarboxylic acid

Claims (3)


Figure 0004783967
[式中、X1は水素原子又はフッ素原子を示し、R1及びR2は同一又は異なって水素原子又は炭素数1−10のアルキル基を示す。]で表される含フッ素アミノ酸誘導体又はその医薬上許容される塩を有効成分とする統合失調症の治療剤又は予防剤
formula
Figure 0004783967
[Wherein, X 1 represents a hydrogen atom or a fluorine atom, and R 1 and R 2 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. ] The therapeutic agent or preventive agent of schizophrenia which uses the fluorine-containing amino acid derivative represented by this, or its pharmaceutically acceptable salt as an active ingredient.

Figure 0004783967
[式中、R1及びR2は同一又は異なって水素原子又は炭素数1−10のアルキル基を示す。]で表される相対的立体化学配置を有する含フッ素アミノ酸誘導体又はその医薬上許容される塩を有効成分とする統合失調症の治療剤又は予防剤
formula
Figure 0004783967
[Wherein, R 1 and R 2 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. ] The therapeutic agent or preventive agent of schizophrenia which uses the fluorine-containing amino acid derivative which has the relative stereochemical configuration represented by this, or its pharmaceutically acceptable salt as an active ingredient.
(1S,2S,3S,5R,6S)−2−アミノ−3−フルオロビシクロ[3.1.0]ヘキサン−2,6−ジカルボン酸、その医薬上許容される塩又はその水和物を有効成分とする統合失調症の治療剤又は予防剤(1S, 2S, 3S, 5R, 6S) -2-amino-3-fluorobicyclo [3.1.0] hexane-2,6-dicarboxylic acid, a pharmaceutically acceptable salt thereof or a hydrate thereof as an active ingredient A therapeutic or prophylactic agent for schizophrenia .
JP2000215701A 1999-07-21 2000-07-17 Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients Expired - Fee Related JP4783967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000215701A JP4783967B2 (en) 1999-07-21 2000-07-17 Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP11-206309 1999-07-21
JP1999206309 1999-07-21
JP20630999 1999-07-21
JP2000215701A JP4783967B2 (en) 1999-07-21 2000-07-17 Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients

Publications (2)

Publication Number Publication Date
JP2001089367A JP2001089367A (en) 2001-04-03
JP4783967B2 true JP4783967B2 (en) 2011-09-28

Family

ID=26515576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000215701A Expired - Fee Related JP4783967B2 (en) 1999-07-21 2000-07-17 Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients

Country Status (1)

Country Link
JP (1) JP4783967B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831821B1 (en) * 2001-11-06 2004-01-09 Ar2I Sa Analyses Rech S Et Inn BIOLOGICAL MARKER FOR STRESS STATES, PROCESS FOR QUANTITATIVE EVALUATION OF THE PRESENCE OF THIS MARKER, AND ITS USE FOR THE PREVENTION OF STRESS
AR059898A1 (en) 2006-03-15 2008-05-07 Janssen Pharmaceutica Nv DERIVATIVES OF 3-CIANO-PIRIDONA 1,4-DISUSTITUTED AND ITS USE AS ALLOSTERIC MODULATORS OF MGLUR2 RECEIVERS
TW200900065A (en) 2007-03-07 2009-01-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-pyridinyloxy-phenyl)-pyridin-2-one derivatives
TW200845978A (en) 2007-03-07 2008-12-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
BRPI0816767B8 (en) 2007-09-14 2021-05-25 Addex Pharmaceuticals Sa compound 4-phenyl-3,4,5,6-tetrahydro-2h,1'h-[1,4']bipyridinyl-2'-disubstituted 1',3'-ones, pharmaceutical composition and use of same
AU2008297877C1 (en) 2007-09-14 2013-11-07 Addex Pharma S.A. 1,3-disubstituted-4-phenyl-1 H-pyridin-2-ones
US8252937B2 (en) 2007-09-14 2012-08-28 Janssen Pharmaceuticals, Inc. 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
US8785486B2 (en) 2007-11-14 2014-07-22 Janssen Pharmaceuticals, Inc. Imidazo[1,2-A]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
ES2439291T3 (en) 2008-09-02 2014-01-22 Janssen Pharmaceuticals, Inc. 3-Azabicyclo [3.1.0] hexyl derivatives as modulators of metabotropic glutamate receptors
EP2346505B1 (en) 2008-10-16 2014-04-23 Janssen Pharmaceuticals, Inc. Indole and benzomorpholine derivatives as modulators of metabotropic glutamate receptors
WO2010060589A1 (en) 2008-11-28 2010-06-03 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
MY153913A (en) 2009-05-12 2015-04-15 Janssen Pharmaceuticals Inc 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
CN102439008B (en) 2009-05-12 2015-04-29 杨森制药有限公司 1,2,3-triazolo [4,3-a] pyridine derivatives and their use for the treatment or prevention of neurological and psychiatric disorders
NZ596053A (en) 2009-05-12 2013-05-31 Janssen Pharmaceuticals Inc 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
US8993591B2 (en) 2010-11-08 2015-03-31 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a] pyridine derivatives and their use as positive allosteric modulators of MGLUR2 receptors
US9271967B2 (en) 2010-11-08 2016-03-01 Janssen Pharmaceuticals, Inc. 1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
ES2536433T3 (en) 2010-11-08 2015-05-25 Janssen Pharmaceuticals, Inc. 1,2,4-Triazolo [4,3-a] pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
RS56328B1 (en) * 2012-06-01 2017-12-29 Taisho Pharmaceutical Co Ltd Prodrug of fluorine-containing amino acid
JO3368B1 (en) 2013-06-04 2019-03-13 Janssen Pharmaceutica Nv 6,7-DIHYDROPYRAZOLO[1,5-a]PYRAZIN-4(5H)-ONE COMPOUNDS AND THEIR USE AS NEGATIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
JO3367B1 (en) 2013-09-06 2019-03-13 Janssen Pharmaceutica Nv 1,2,4-TRIAZOLO[4,3-a]PYRIDINE COMPOUNDS AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
JP5983714B2 (en) * 2013-11-29 2016-09-06 大正製薬株式会社 Crystal form of fluorine-containing amino acid prodrug and process for producing the same
JP5983713B2 (en) * 2013-11-29 2016-09-06 大正製薬株式会社 Pharmaceuticals containing prodrugs of fluorine-containing amino acids
DK3096790T3 (en) 2014-01-21 2019-10-07 Janssen Pharmaceutica Nv COMBINATIONS INCLUDING POSITIVE ALLOSTERIC MODULATORS OR ORTHOSTERIC AGONISTS OF METABOTROP GLUTAMATERG SUBTYPE 2 RECEPTOR AND APPLICATION OF THESE
DK3431106T3 (en) 2014-01-21 2021-03-15 Janssen Pharmaceutica Nv COMBINATIONS INCLUDING POSITIVE ALLOSTERIC MODULATORS OR ORTHOSTERIC AGONISTS OF METABOTROP GLUTAMATERG SUBTYPE 2 RECEPTOR AND USE OF THESE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171549A (en) * 1990-11-06 1992-06-18 Mitsubishi Heavy Ind Ltd High speed reading method for memory system
PL182285B1 (en) * 1994-08-12 2001-12-31 Lilly Co Eli Synthetic stimulating amino acids and methods of obtaining them
ZA983930B (en) * 1997-05-14 1999-11-08 Lilly Co Eli Excitatory amino acid receptor modulators.

Also Published As

Publication number Publication date
JP2001089367A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP4783967B2 (en) Pharmaceuticals containing fluorine-containing amino acid derivatives as active ingredients
KR100446892B1 (en) Fluorine-Containing Amino Acid Derivatives
US6333428B1 (en) 6-fluorobicyclo[3.1.0]hexane derivatives
FI114861B (en) 2-Aminobicyclo [3.1.0] hexane-2,6-carboxylic acid
US6770676B2 (en) Dicarboxylic acid derivatives
EP1000927B1 (en) Excitatory amino acid receptor modulators
JP2000072731A (en) 4-substituted-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid derivative and pharmaceutical composition
WO2003061698A1 (en) 6-fluorobicyclo[3.1.0]hexane derivatives
KR20020040900A (en) Bicyclic amino acids as pharmaceutical agents
DE69635886T2 (en) Excitatory amino acid derivatives
JP4194715B2 (en) 6-Fluorobicyclo [3.1.0] hexane derivative
JP4171549B2 (en) Fluorine-containing amino acid derivatives
EP0781271B1 (en) Benzocycloalkene compounds, their production and use
JP2002520406A (en) Bicyclohexane derivative
JP3908798B2 (en) Benzocycloalkenes, production methods and agents thereof
JP2007063129A (en) 2-amino-3-alkoxybicyclo[3.1.0]hexane derivative
JP2000500748A (en) Excitatory amino acid derivative
JP2006096698A (en) 1-fluorocyclopropane derivative

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070717

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110627

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees