JP4769962B2 - Method and apparatus for producing metal-based microstructure - Google Patents

Method and apparatus for producing metal-based microstructure Download PDF

Info

Publication number
JP4769962B2
JP4769962B2 JP2006078125A JP2006078125A JP4769962B2 JP 4769962 B2 JP4769962 B2 JP 4769962B2 JP 2006078125 A JP2006078125 A JP 2006078125A JP 2006078125 A JP2006078125 A JP 2006078125A JP 4769962 B2 JP4769962 B2 JP 4769962B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
metal
template
based microstructure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006078125A
Other languages
Japanese (ja)
Other versions
JP2007254787A (en
Inventor
裕之 細川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006078125A priority Critical patent/JP4769962B2/en
Publication of JP2007254787A publication Critical patent/JP2007254787A/en
Application granted granted Critical
Publication of JP4769962B2 publication Critical patent/JP4769962B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micromachines (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

本発明は、微細加工技術、特に、金属系微細構造物の作製方法、及びそれに使用する装置に関するものであり、更に詳しくは、本発明は、電気めっき法を用いた金属系微細構造物の作製方法、及びその装置に関するものである。本発明は、例えば、マイクロマシン、電子部品等の技術分野において、従来、例えば、リソグラフィーと電気めっきを使用して微細部品を作製していた微細加工技術に関して、高額な装置を使用することなく、環境にやさしいプロセスで、簡便な操作工程で、微細加工を行うことが可能な新規微細加工技術を提供するものである。   The present invention relates to a microfabrication technique, in particular, a method for producing a metal-based microstructure and an apparatus used therefor. More specifically, the present invention relates to the fabrication of a metal-based microstructure using an electroplating method. The present invention relates to a method and an apparatus thereof. The present invention, for example, in the technical field of micromachines, electronic parts, etc., for example, with respect to microfabrication techniques that have conventionally produced microparts using lithography and electroplating, without using expensive equipment, The present invention provides a novel micromachining technology capable of performing micromachining by a simple operation process with a gentle process.

近年、例えば、マイクロマシン、通信、バイオテクノロジー等の多くの技術分野において、装置の集積化、微細化の推進に伴い、微細部品の製作技術が非常に注目され、微細加工技術の研究が活発になってきている。その中で、特に、リソグラフィーと電気めっきを使用して微細構造物を形成するLIGA(Lithograph Galvanformung und Abformung)法の研究が盛んである。   In recent years, for example, in many technical fields such as micromachines, communication, and biotechnology, with the progress of integration and miniaturization of devices, the production technology of fine parts has attracted much attention, and research on fine processing technology has become active. It is coming. Among them, research on the LIGA (Lithograph Galvanformung und Abformung) method for forming a fine structure using lithography and electroplating is particularly active.

例えば、先行文献には、電気めっきとリソグラフィーを使用して、型インサートを製造する方法(特許文献1)、また、プローブ用金型を板状部品に押し当てて、当該プローブに対応する形状を有する型を作製し、当該型の面上にプローブとなるめっき構造物を形成する方法(特許文献2)、が提案されている。   For example, in the prior literature, a method for manufacturing a mold insert using electroplating and lithography (Patent Document 1), and a shape corresponding to the probe is formed by pressing a probe mold against a plate-like component. There has been proposed a method (Patent Document 2) for producing a mold having a plating structure and forming a plating structure serving as a probe on the surface of the mold.

微細構造物の作製目標は、特に、より高アスペクト比、そして、より微細な微細構造物を形成することにあり、例えば、シンクロトロン放射X線(非特許文献1)を使用した深い厚さ1mm以上のPMMAのリソグラフィーの使用等が試みられている。   The production target of the fine structure is, in particular, to form a fine structure having a higher aspect ratio and finer, for example, a deep thickness of 1 mm using synchrotron radiation X-ray (Non-Patent Document 1). Attempts have been made to use the above PMMA lithography.

ここで、従来のLIGA法について具体的に説明するために、その基本工程を図1に示す。図1に示す従来のLIGA法のプロセスでは、まず、図1(a)に示すように、レジスト層(32)を所望の厚みで基板(33)上に形成した後、金などの重金属の吸収材(31)をパターンとするマスク(30)を用いて、X線等でレジスト層(32)を露光する。次いで、現像を行うことで、図1(b)に示すように、レジストパターン(34)が作製される。   Here, in order to specifically explain the conventional LIGA method, its basic steps are shown in FIG. In the conventional LIGA process shown in FIG. 1, first, as shown in FIG. 1A, a resist layer (32) is formed on a substrate (33) with a desired thickness, and then heavy metals such as gold are absorbed. The resist layer (32) is exposed with X-rays or the like using a mask (30) whose pattern is the material (31). Next, by developing, a resist pattern (34) is produced as shown in FIG.

次に、レジストパターン(34)を有する基板を、めっき液に漬け、電気めっきによって、金属の構造物を堆積させる(図3(c))。続いて、図1(d)に示すように、レジストを除くことで、金属系微細構造物を作製することができる。このLIGA法は、例えば、光学素子、センサ、アクチュエーター等の製造に利用することができ、その応用範囲は広い。   Next, the substrate having the resist pattern (34) is dipped in a plating solution, and a metal structure is deposited by electroplating (FIG. 3C). Subsequently, as shown in FIG. 1D, a metal-based microstructure can be manufactured by removing the resist. This LIGA method can be used, for example, in the production of optical elements, sensors, actuators, etc., and its application range is wide.

しかしながら、上述の方法は、より高さの高い微細部分を有する構造物、もしくはより微細な構造物を作製しようとするほど、レジスト材を露光するための設備が複雑、かつ高額となること、そして、その製造方法については、現像液等に関する環境問題を解決する必要があること、そして、工程数が多く、複雑になること、等が主な問題点として挙げられる。   However, in the above-described method, the structure for exposing a resist material becomes more complicated and expensive as the structure having a finer portion having a higher height or the finer structure is manufactured. As for the production method, the main problems are that it is necessary to solve environmental problems related to the developer and the like, and that the number of steps is large and complicated.

このように、従来、LIGA法によりレジスト材を用いて金属系微細構造物を作製することが行われていたが、より高さの高い微細部分を有する構造物、あるいはより微細な構造物を作製するには、複雑、かつ高額な装置の問題、環境問題、工程数が多く、複雑な製造プロセスの問題等があり、当技術分野では、それらの問題を解決することが可能な新しい微細加工技術の開発が強く要請されていた。   As described above, conventionally, a metal-based fine structure has been produced using a resist material by the LIGA method. However, a structure having a finer portion with a higher height or a finer structure is produced. There are complicated and expensive equipment problems, environmental problems, many processes, complicated manufacturing process problems, etc. In this technical field, new microfabrication technology that can solve these problems The development of was strongly requested.

特表平10−510483号公報Japanese National Patent Publication No. 10-510483 特開2004−101351号公報JP 2004-101351 A 応用物理,第73巻,第4号(2004)466−469Applied Physics, Vol. 73, No. 4 (2004) 466-469

このような状況の中で、本発明者は、上記従来技術に鑑みて、従来技術の問題点を確実に解決することが可能な新しい微細加工技術を開発することを目標として鋭意研究を積み重ねた結果、レジスト材を使用しないで、電気めっき法を応用して金属系微細構造物を作製する手法を確立することに成功し、本発明を完成するに至った。   Under such circumstances, the present inventor has conducted intensive research with the goal of developing a new microfabrication technology capable of reliably solving the problems of the prior art in view of the above-described conventional technology. As a result, the present inventors have succeeded in establishing a technique for producing a metal microstructure by applying an electroplating method without using a resist material, and completed the present invention.

本発明は、以上のとおりの事情に鑑みてなされたものであり、従来技術の問題点を解決することができ、設備費が安価であり、レジスト材を用いないプロセスで、環境にやさしく、少ない工程数で、金属系微細構造物を効率良く作製することが可能な金属系微細構造物の新規作製方法とその装置を提供することを目的とするものである。   The present invention has been made in view of the circumstances as described above, can solve the problems of the prior art, has low equipment costs, is a process that does not use a resist material, and is environmentally friendly and low. It is an object of the present invention to provide a novel metal-based microstructure manufacturing method and apparatus capable of efficiently manufacturing a metal-based microstructure with the number of steps.

上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)金属系微細構造物を電気めっき法により作製する方法におい、基板の上に、貫通穴を具備する型板を駆動可能に設置し、上記貫通穴を介して基板の上にめっき処理を行い、上記型板を基板から離れていく方向に移動させることにより、基板上に金属系構造物を形成する、ことからなる金属系微細構造物の作製方法であって、
基板に、所望の金属系微細構造物の底面形状に略対応した輪郭を有する複数個の貫通穴を具備する型板を極めて近接又は密着させて設置し、駆動手段により、型板を基板から離れていく方向に、80〜10000nm/分の速度で、移動させることを特徴とする金属系微細構造物の作製方法。
)電極+及び型板と電極−及び基板をめっき液に浸し、電流を流し、基板の上にめっき処理を行う前記(1)に記載の方法。
前記(1)又は(2)に記載の金属系微細構造物の作製方法で使用する装置であって、
電気めっき槽と、基板と、該基板の上に設置する所望の金属系微細構造物の底面形状に対応した輪郭を有する複数個の貫通穴を具備する型板と、該型板を上記基板から離れていく方向に移動させる駆動手段と、上記基板上にめっき処理するための電極とを有することを特徴とする金属系微細構造物の作製装置。
)槽内に、電極−及び基板と、電極+及び型板を設置した前記()に記載の金属系微細構造物の作製装置。
)めっき槽(11)内に位置する、電極−及び基板(17)と、該電極に対向し、距離を可変できる駆動部(19)に連結しているホルダー(13)及び他方の電極+(12)と、槽内で電極間に位置した所望の金属系微細構造物の底面形状に対応した輪郭を有する複数個の貫通穴(20)を具備する型板(18)と、電極間を接続する電線と、その間に位置する電源とを具備してなる装置であって、
電極−及び基板(17)に型板(18)を極めて近接又は密着させた状態で、前記槽内の両電極(12,17)と型板(18)をめっき液(12)に浸し、電流を流している間に80〜10000nm/分の速度で駆動部(19)により電極+及び型板(18)が電極−及び基板(17)から離れていく方向に移動させ、電極−及び基板(17)上に金属系微細構造物を形成する操作を実行できるようにした、前記(3)又は(4)に記載の金属系微細構造物の作製装置。
The present invention for solving the above-described problems comprises the following technical means.
(1) a metal-based microstructures Te method odor produced by electroplating, on a base plate, a mold plate having a through hole is placed so as to be driven, through the upper SL through hole on a substrate there rows plating, by moving in a direction moving away the upper Symbol mold plate from the substrate, a manufacturing method of forming a metallic structure on a substrate, it Tona Ru metal-based microstructures,
A template having a plurality of through holes having an outline substantially corresponding to the shape of the bottom surface of a desired metal-based microstructure is placed on the substrate in close proximity or in close contact, and the template is separated from the substrate by a driving means. A method for producing a metal-based microstructure, wherein the metal-based microstructure is moved at a speed of 80 to 10000 nm / min in the direction of movement.
( 2 ) The method according to (1), wherein the electrode +, the template, the electrode-, and the substrate are immersed in a plating solution, a current is passed, and the plating treatment is performed on the substrate.
( 3 ) An apparatus used in the method for producing a metal-based microstructure according to (1) or (2),
An electroplating tank, a substrate, a template having a plurality of through holes having a contour corresponding to the shape of the bottom surface of a desired metal-based microstructure installed on the substrate, and the template from the substrate An apparatus for manufacturing a metal-based microstructure, comprising: a driving unit that moves in a direction away from the electrode; and an electrode for plating on the substrate.
( 4 ) The metal-based microstructure manufacturing apparatus according to ( 3 ), wherein an electrode − and a substrate, and an electrode + and a template are installed in a tank.
( 5 ) The electrode and the substrate (17) located in the plating tank (11), the holder (13) connected to the electrode (19) facing the electrode and variable in distance, and the other electrode + (12), the template having a desired metal based composite several through-holes that have a contour that corresponds to the bottom shape of the microstructures located between the electrodes in a bath (20) and (18) A device comprising an electric wire connecting the electrodes and a power source located between the electrodes,
In a state where the template (18) is very close to or in close contact with the electrode and the substrate (17), both the electrodes (12, 17) and the template (18) in the tank are immersed in the plating solution (12), and the current is supplied. The electrode + and the template (18) are moved away from the electrode-and the substrate (17) by the driving unit (19) at a speed of 80 to 10000 nm / min during the flow of the electrode-and the substrate ( 17) The apparatus for producing a metal-based microstructure according to (3) or (4), wherein an operation for forming the metal-based microstructure can be performed on the top.

次に、本発明について、更に詳細に説明する。
本発明は、金属系微細構造物を電気めっき法により作製する方法であって、電気めっき槽に、基板と、該基板の上に、所望の金属系微細構造物の底面形状に略対応した輪郭を有する複数個の貫通穴を具備する型板を駆動可能に設置し、上記貫通穴を介して基板の上にめっき処理を行い、同時に、上記型板を基板から離れていく方向に移動させることにより、基板上に連続的に金属系構造物を形成することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a metal-based microstructure by electroplating, and includes an electroplating bath, a substrate, and a contour substantially corresponding to the bottom shape of the desired metal-based microstructure on the substrate. the mold plate having a double several through holes placed so as to be driven that Yusuke performs plating on a substrate through the through hole, at the same time, in a direction moving away the mold plate from the substrate By moving, a metal-based structure is continuously formed on the substrate.

本発明において、上記型板は、基板に極めて近接又は密着させて設置され、該型板は、めっき処理と同時に、駆動手段により、基板から離れていく方向に所定の速度で移動可能に設置される。めっき処理は、例えば、電極+及び型板と電極−及び基板をめっき液に浸し、電流を流し、基板の上にめっき処理を行うことで実施される。   In the present invention, the template is installed in close proximity to or in close contact with the substrate, and the template is installed to be movable at a predetermined speed in a direction away from the substrate by the driving means simultaneously with the plating process. The The plating process is performed, for example, by immersing the electrode +, the template, the electrode-, and the substrate in a plating solution, passing an electric current, and performing the plating process on the substrate.

また、上記型板は、所望の金属系微細構造物の底面形状に対応した輪郭を有する複数個の貫通穴の形状、大きさ及び個数等は、目的とする金属系微細構造物の形状、構造等に応じて任意に設計することができる。 Further, the template is desired metallic microstructures bottom shape to the shape of the double several through-holes that have a contour corresponding, size and number, etc., of the metallic microstructures of interest It can be arbitrarily designed according to the shape, structure and the like.

次に、図2に示した、本発明の金属系微細構造物の作製を可能とする金属系微細構造物の作製装置の概略図を参照して、本発明を具体的に説明する。本装置は、電気めっき装置に、電極間に貫通穴(20)を有する型板(18)を設置し、該型板(18)と電極+(12)は、電極−(基板)(17)から離れていく方向に移動可能に設置されている。電極−(基板)(17)から極めて近接、もしくは密着した状態で、電流を流すと、電流は貫通穴(20)を有する部分のみに流れ、貫通穴底面に類似した底面を有する金属系構造物が電極−(基板)(17)に形成される。   Next, the present invention will be described in detail with reference to the schematic diagram of the metal-based microstructure manufacturing apparatus capable of manufacturing the metal-based microstructure of the present invention shown in FIG. In this apparatus, a template (18) having through holes (20) between electrodes is installed in an electroplating apparatus, and the template (18) and the electrode + (12) are formed by an electrode- (substrate) (17). It is installed so that it can move in the direction away from it. When an electric current is passed in the state of being very close to or in close contact with the electrode- (substrate) (17), the electric current flows only in a portion having the through hole (20), and a metal structure having a bottom surface similar to the bottom surface of the through hole Is formed on the electrode- (substrate) (17).

図2及び図3に示すように、電極−(基板)(17)から型板(18)と電極+(12)が離れていく際に、構造物が基板に形成される速度と同程度の速度で基板(17)から型板(18)を移動することにより、貫通穴を有する部分のみにめっきが施され、それにより、結果として、基板に金属系微細構造物(21)が形成される。   As shown in FIG. 2 and FIG. 3, when the template (18) and the electrode + (12) are separated from the electrode-(substrate) (17), the speed is about the same as the speed at which the structure is formed on the substrate. By moving the template (18) from the substrate (17) at a speed, only the portion having the through hole is plated, and as a result, the metal-based microstructure (21) is formed on the substrate. .

該方法では、電流を止めることにより、金属系微細構造物(21)の形成を停止させることが可能であり、該構造物の形成速度をTry and Errorにより認知することで、高さを制御した構造物を任意に得ることができる。また、貫通穴(20)の形状を任意に設計することにより、さまざまな底面形状を有する構造物を、底面形状を保持して形成することができる。更に、槽に入れるめっき液としては、電気めっき法により、電極−(基板)(17)上にめっき処理ができるものであれば何れのめっき液でも使用が可能である。   In this method, it is possible to stop the formation of the metal-based microstructure (21) by stopping the current, and the height is controlled by recognizing the formation speed of the structure by Try and Error. A structure can be obtained arbitrarily. In addition, by arbitrarily designing the shape of the through hole (20), structures having various bottom shapes can be formed while maintaining the bottom shape. Furthermore, any plating solution can be used as the plating solution to be placed in the bath as long as it can be plated on the electrode- (substrate) (17) by electroplating.

また、上記方法では、電極−(基板)(17)から型板(18)と電極+(12)を離していく方式を取っているが、本発明では、駆動部(19)を電極−(基板)(17)側に取り付け、型板(18)と電極+(12)から電極−(基板)(17)を離していく方式、又は両側に駆動部(19)を設け、両側を駆動させる方式を採用することも適宜可能である。   In the above method, the template (18) and the electrode + (12) are separated from the electrode-(substrate) (17). In the present invention, however, the drive unit (19) is connected to the electrode-( Mount on the (substrate) (17) side and separate the electrode-(substrate) (17) from the template (18) and the electrode + (12), or provide drive units (19) on both sides to drive both sides It is also possible to adopt a method as appropriate.

更に、上記方法では、電極−(基板)(17)を槽内に設置しているが、槽の壁、あるいは槽の底に貫通穴(20)を具備し、駆動部を電極−(基板)(17)側に装着し、槽外から貫通穴(20)に電極−(基板)(17)を密着させ、電流を流し、型板(18)から電極−(基板)(17)を離していく形態を採用することも適宜可能である。   Further, in the above method, the electrode- (substrate) (17) is installed in the tank, but the through-hole (20) is provided on the wall of the tank or the bottom of the tank, and the drive unit is the electrode- (substrate). (17) Mounted on the side, the electrode (substrate) (17) is brought into close contact with the through hole (20) from the outside of the tank, the current is passed, and the electrode (substrate) (17) is separated from the template (18). It is also possible to adopt various forms as appropriate.

また、本発明では、めっき液(10)に接触する部分は、電極(12,17)を除いては、絶縁材料である必要がある。また、電極間の距離は、構造物の物性に大きく影響を与えることから、型板(18)と電極+(12)の位置を自由に変えることができる機構を設けることも可能である。また、本発明では、各箇所での構造物の形成速度を均一にするために、多電極で、各極の制御ができる機構を設けることも可能である。更に、本発明では、作業の利便性を考慮して、電極−と基板を別々のものとすることができる。電流を流すことで、構造物の形成が開始するが、形成部に新鮮な液を常時供給するために、めっき液の流れを制御する輸液ポンプを設置し、形成部に新鮮な液がいくような手段を講じることが好ましい。   Moreover, in this invention, the part which contacts a plating solution (10) needs to be an insulating material except for electrodes (12, 17). Further, since the distance between the electrodes greatly affects the physical properties of the structure, it is possible to provide a mechanism that can freely change the positions of the template (18) and the electrode + (12). In the present invention, it is also possible to provide a mechanism capable of controlling each pole with multiple electrodes in order to make the formation speed of the structure at each location uniform. Furthermore, in the present invention, the electrode and the substrate can be made separate in consideration of the convenience of work. The formation of the structure starts by passing an electric current, but in order to constantly supply fresh liquid to the formation part, an infusion pump that controls the flow of the plating solution is installed so that the fresh liquid flows through the formation part. It is preferable to take appropriate measures.

本発明において、上記金属系微細構造物の材料としては、例えば、金、銀、銅、白金、クロム、ニッケル、亜鉛、カドミウム、すず、鉛、鉄、アルミニウム、及びこれらを基礎とする合金、及び分散材含有金属もしくは合金が例示される。本発明では、上記金属の種類は、特に制限されるものではないが、好適には、例えば、ニッケル、及びニッケル合金が例示される。   In the present invention, examples of the material for the metal microstructure include gold, silver, copper, platinum, chromium, nickel, zinc, cadmium, tin, lead, iron, aluminum, and alloys based on these, and Dispersant-containing metals or alloys are exemplified. In the present invention, the type of the metal is not particularly limited, but preferably, for example, nickel and a nickel alloy are exemplified.

また、本発明において、上記金属系微細構造物とその微細構造は、特に制限されるものではなく、従来、LIGA法によりレジスト材を用いて微細加工されていた微細構造物と同様の微細構造物、例えば、円柱、多角柱、断面が直線と曲線とにより構成された柱状構造体を対象とすることができる。具体的には、例えば、高集積化、微細化が進行している集積回路、電子デバイス等に対応する微細部材が例示される。   In the present invention, the metal-based microstructure and the microstructure thereof are not particularly limited, and the microstructure similar to the microstructure that has been conventionally microfabricated using a resist material by the LIGA method. For example, a cylindrical structure, a polygonal column, and a columnar structure whose cross section is configured by straight lines and curves can be targeted. Specifically, for example, a fine member corresponding to an integrated circuit, an electronic device, or the like that is highly integrated and miniaturized is exemplified.

本発明では、電気めっき槽に、基板と、該基板の上に、所望の金属系微細構造物の底面形状に略対応した輪郭を有する複数個の貫通穴を具備する型板が駆動可能に設置されるが、この場合、上記型板は、駆動手段により、基板から離れていく方向に80〜10000nm/分の速度で移動可能に設置される。駆動手段としては、例えば、ピエゾ駆動ステージ、ACサーボ駆動ステージ、もしくはそれらの複合駆動ステージが例示され、好適には、クローズドループにより変位制御するピエゾステージが使用される。これらの手段の具体的な構成及び駆動条件等は、対象とする微細構造物の種類、形状及び構造、材質等に応じて、任意に設計及び選定することができる。 In the present invention, the electroplating bath, the substrate and, on a substrate, the template having a desired substantially the corresponding double several through-holes that have a contour shape of the bottom of the metallic microstructures is driven In this case, the template is movably installed at a speed of 80 to 10000 nm / min in a direction away from the substrate by the driving means. As the drive means, for example, a piezo drive stage, an AC servo drive stage, or a composite drive stage thereof is exemplified, and a piezo stage whose displacement is controlled by a closed loop is preferably used. The specific configuration and driving conditions of these means can be arbitrarily designed and selected according to the type, shape, structure, material, etc. of the target microstructure.

本発明において、電気めっきの手法及び手段については、特に制限されるものではなく、適宜の方法及び手段を使用することができる。構造体材、基板、駆動手段及び型板の具体的な構成は、例えば、構造体材としては電気めっき金属として最も用いられているニッケル、基板としては平面度を出すためのラッピング、CPM(Chemical Mechanical Polishing)によって研磨され、アルカリ脱脂、酸洗等表面処理された銅、駆動手段としては静電容量センサーを有し、クローズドループにより変位制御のできるピエゾステージ、型板としては、単数もしくは複数の断面が円形、多角形を有する貫通穴を有し、厚さが直径、一辺の5倍以下程度である構造で、材質が絶縁体、例えば、ナイロン、ポロカーボネイト、ポリエチレン、ペット樹脂、ポリプロピレン、テフロン(登録商標)、アクリル、塩化ビニール、エポキシ、ウレタン、フェノール樹脂、が例示される。   In the present invention, the method and means of electroplating are not particularly limited, and appropriate methods and means can be used. Specific structures of the structural body material, the substrate, the driving means, and the template include, for example, nickel that is most used as an electroplating metal as a structural body material, wrapping for obtaining flatness as a substrate, CPM (Chemical Copper polished by mechanical polishing and subjected to surface treatment such as alkaline degreasing, pickling, etc., a piezo stage having a capacitive sensor as a driving means, and displacement control by a closed loop, and one or a plurality of templates It has a through-hole with a circular and polygonal cross section, a thickness that is about 5 times the diameter of one side, and is made of an insulator such as nylon, polo carbonate, polyethylene, pet resin, polypropylene, and Teflon. (Registered trademark), acrylic, vinyl chloride, epoxy, urethane, and phenol resin are exemplified.

従来法として、高集積化、微細化が進行した半導体集積回路等に対応する高精度のプローブを製造する際に、例えば、プローブ用金型を板状部材に押し当てて、当該プローブに対応する形状を有する型を作製すること、そして、プローブ型凹部に電気めっきによりめっき構造体を形成することで、高精度に微細加工されたプローブを作製することが行われている。   As a conventional method, when manufacturing a high-precision probe corresponding to a semiconductor integrated circuit or the like that has been highly integrated and miniaturized, for example, a probe mold is pressed against a plate-shaped member to cope with the probe. Producing a microfabricated probe with high accuracy is performed by producing a mold having a shape and forming a plating structure in the probe mold recess by electroplating.

しかし、従来、基板に貫通穴を有する型板を設置し、該型板を基板から離れていく方向に移動させながら、該貫通穴を介して、基板上にめっき構造物を堆積させて、所定の微細構造を有する構造物を作製することは行われていなかった。本発明は、上記特定の構成を採用することで、任意の形態の微細構造物、特に、従来技術では、作製することが困難であった、より高さの高い微細部分を有する構造物やより微細な構造物を高精度で効率良く作製することが可能な新しい微細加工技術を提供することを可能にするものである。   However, conventionally, a template having a through hole is installed in the substrate, and a plating structure is deposited on the substrate through the through hole while moving the template away from the substrate. No structure having a fine structure has been produced. The present invention adopts the above-described specific configuration, so that any form of fine structure, in particular, a structure having a finer portion with a higher height, which has been difficult to produce by the conventional technology, and more It is possible to provide a new fine processing technique capable of efficiently producing a fine structure with high accuracy.

本発明の作製方法と作製装置により、以下のような効果が奏される。
(1)従来技術の代表的な問題点である、設備費が高価であること、環境問題、工程数が多いこと等の問題を解消した金属系微細構造物を作製することを可能とする、金属系微細構造物の作製方法と金属系微細構造物の作製装置を提供できる。
(2)レジスト材を用いる従来のLIGA法に代わる、金属系微細構造物の新しい加工技術を提供できる。
(3)従来のLIGA法と比べ、簡便な構造で低コストの装置により、簡便な製造プロセスで、微細加工することが可能な、新しい微細加工技術を提供できる。
(4)工程数が少なく、低エネルギー消費で、環境低負荷型の金属系微細構造物の微細加工技術を提供できる。
(5)構造体の高さを設定する場合に、レジスト材の基板への塗布条件を設定する従来法(特許文献1、2、非特許文献1等)と比べ、形成時間を設定するだけという簡便な製造プロセスで、高さの異なる構造体を得ることができる微細加工技術を提供できる。
(6)型板の駆動範囲を広げることにより、高アスペクト比を有する構造体を形成可能とする微細加工技術を提供できる。
(7)1つの構造体で作製した型を消費する必要のある従来法(特許文献1、2、非特許文献1等)と異なり、何度でも繰り返し型板を使用することができる、ランニングコストの低い微細加工技術を提供できる。
The following effects are produced by the manufacturing method and the manufacturing apparatus of the present invention.
(1) It is possible to produce a metal-based fine structure that solves the problems of the prior art, such as high equipment costs, environmental problems, and a large number of processes. It is possible to provide a metal-based microstructure manufacturing method and a metal-based microstructure manufacturing apparatus.
(2) It is possible to provide a new processing technique for metal-based microstructures in place of the conventional LIGA method using a resist material.
(3) Compared with the conventional LIGA method, it is possible to provide a new micromachining technique that can be microfabricated by a simple manufacturing process with a simple structure and low-cost apparatus.
(4) It is possible to provide a microfabrication technology for a metal microstructure having a low environmental load and a low energy consumption with a small number of processes.
(5) When setting the height of the structure, it is only necessary to set the formation time as compared with the conventional methods (Patent Documents 1 and 2, Non-Patent Document 1, etc.) for setting the application conditions of the resist material to the substrate It is possible to provide a fine processing technique capable of obtaining structures having different heights by a simple manufacturing process.
(6) By extending the driving range of the template, it is possible to provide a fine processing technique that enables formation of a structure having a high aspect ratio.
(7) Unlike conventional methods (Patent Documents 1, 2, Non-Patent Document 1, etc.) that require the consumption of a mold produced with one structure, the running cost can be used repeatedly. Can provide a low-precision microfabrication technology.

次に、本発明を実施例に基づいて具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

(1)金属系微細構造物の作製装置の構築
本実施例では、直径が0.1mmで、ピッチが0.3mmの貫通穴を49個(縦7行、横7列)有する厚さ0.02mmのアクリル材を型板として用いた。図4に、型板の構造の平面図を示す。この型板は、直径0.1mm、ピッチ0.3mmの円49個(縦7行、横7列)を有する。電極+及び基板には、Niを用いた。電気めっき槽内に、上記型板を基板に極めて近接させて設置した。型板(18)の貫通穴近傍にひずみゲージ(図示せず)が設置されており、始めに、型板(18)を基板(17)と接触させ、その後、基板(17)から離れる方向に型板(18)を駆動させ、ひずみが検出されないところを出発位置とした(図2、3)。
(1) Construction of metal-based microstructure manufacturing apparatus In this example, a thickness of 0.1 having a diameter of 0.1 mm and a pitch of 0.3 mm having 49 through-holes (vertical 7 rows, horizontal 7 rows) 0. A 02 mm acrylic material was used as a template. FIG. 4 shows a plan view of the structure of the template. This template has 49 circles (vertical 7 rows, horizontal 7 columns) having a diameter of 0.1 mm and a pitch of 0.3 mm. Ni was used for the electrode + and the substrate. The template was placed in the electroplating tank in close proximity to the substrate. A strain gauge (not shown) is installed in the vicinity of the through hole of the template (18). First, the template (18) is brought into contact with the substrate (17), and then in a direction away from the substrate (17). The template (18) was driven, and the place where no strain was detected was taken as the starting position (FIGS. 2 and 3).

(2)金属系微細構造物の形成
次いで、表1に示す条件で、電気めっき処理を行い、同時に、クローズドループにより変位制御のできるピエゾステージからなる駆動手段により、型板を基板から離れていく方向に1.4μm/分の速さで移動させ、70分で、基板上に連続的に金属系構造物を形成し、直径0.1mm、ピッチ0.3mm、高さ0.1mmの円柱49個(縦7行、横7列)を有するNi微細構造物を作製した。
(2) Formation of metal-based microstructure Next, electroplating is performed under the conditions shown in Table 1, and at the same time, the template is moved away from the substrate by a driving means comprising a piezo stage that can be controlled in displacement by a closed loop. The metal structure is continuously formed on the substrate in 70 minutes, and a cylinder 49 having a diameter of 0.1 mm, a pitch of 0.3 mm, and a height of 0.1 mm is formed. Ni microstructures having 7 pieces (7 rows and 7 columns) were produced.

(3)構造物の評価
上記Ni微細構造物について、走査型電子顕微鏡により側面から観察し、基板から先端までの微細構造体円柱の側長の評価を行った結果、高さ102μmの構造物であった。
(3) Evaluation of the structure As a result of observing the above-mentioned Ni microstructure from the side with a scanning electron microscope and evaluating the side length of the microstructure cylinder from the substrate to the tip, the structure was 102 μm in height. there were.

(1)金属系微細構造物の作製装置の構築
本実施例では、実施例1と同様に、直径0.1mm、ピッチ0.3mmの貫通穴を49個(縦7行、横7列)有する厚さ0.02mmのアクリル材を型板として用いた。電極+には、白金、基板には、Cuを用いた。電気めっき槽内に、上記型板を基板に極めて近接させて設置した。型板(18)の貫通穴近傍にひずみゲージ(図示せず)が設置されており、始めに、型板(18)を基板(17)と接触させ、その後、基板(17)から離れる方向に型板(18)を駆動させ、ひずみが検出されないところを出発位置とした(図2、3)。
(1) Construction of Metal Microstructure Manufacturing Device In this example, as in Example 1, there are 49 through holes (diameter 7 mm, horizontal 7 columns) with a diameter of 0.1 mm and a pitch of 0.3 mm. An acrylic material having a thickness of 0.02 mm was used as a template. Platinum was used for the electrode +, and Cu was used for the substrate. The template was placed in the electroplating tank in close proximity to the substrate. A strain gauge (not shown) is installed in the vicinity of the through hole of the template (18). First, the template (18) is brought into contact with the substrate (17), and then in a direction away from the substrate (17). The template (18) was driven, and the place where no strain was detected was taken as the starting position (FIGS. 2 and 3).

(2)金属系微細構造物の形成
次いで、表2に示す条件で、電気めっき処理を行い、同時に、クローズドループにより変位制御のできるピエゾステージからなる駆動手段により、型板を基板から離れていく方向に0.6μm/分の速さで移動させ、120分で、基板上に連続的に金属系構造物を形成し、直径0.1mm、ピッチ0.3mm、高さ0.08mmの円柱49個(縦7行、横7列)を有するNi−W微細構造物を作製した。
(2) Formation of metal-based microstructure Next, electroplating is performed under the conditions shown in Table 2, and at the same time, the template is separated from the substrate by a driving means including a piezo stage that can be controlled in displacement by a closed loop. The metal structure is continuously formed on the substrate in 120 minutes, and a cylinder 49 having a diameter of 0.1 mm, a pitch of 0.3 mm, and a height of 0.08 mm is formed. Ni-W microstructures having individual pieces (7 rows and 7 columns) were produced.

(3)構造物の評価
上記Ni−W微細構造物について、走査型電子顕微鏡により側面から観察し、基板から先端までの微細構造体円柱の側長の評価を行った結果、高さ76μmの構造物であった。
(3) Evaluation of structure As a result of observing the above-mentioned Ni-W microstructure from the side with a scanning electron microscope and evaluating the side length of the microstructure cylinder from the substrate to the tip, a structure having a height of 76 μm It was a thing.

以上詳述したように、本発明は、金属系微細構造物の作製方法、及びその装置に係るものであり、本発明は、設備費が安価であり、環境にやさしく、工程数が少ない金属系微細構造物の作製方法とその作製装置を提供することを可能とする。本発明は、高集積化、微細化が進行している集積回路、電子デバイス等に対応する微細部品の加工技術を提供するものとして高い技術的意義を有する。   As described above in detail, the present invention relates to a method for manufacturing a metal-based microstructure and an apparatus therefor, and the present invention is a metal system that has low equipment costs, is environmentally friendly, and has a small number of processes. It is possible to provide a manufacturing method of a fine structure and a manufacturing apparatus thereof. The present invention has a high technical significance as providing a processing technology for a fine component corresponding to an integrated circuit, an electronic device, etc., which are highly integrated and miniaturized.

従来のLIGA法のプロセスを示す模式図である。It is a schematic diagram which shows the process of the conventional LIGA method. 本発明に係る作製装置の概略図である。1 is a schematic view of a manufacturing apparatus according to the present invention. 構造物形成の様子を示す模式図である。It is a schematic diagram which shows the mode of structure formation. 型板の構造の平面図である。It is a top view of the structure of a template.

符号の説明Explanation of symbols

10 液
11 槽
12 電極+
13 電極+と型板のホルダー
14 電源
15 電線
16 電極−(基板)ホルダー
17 電極−(基板)
18 型板
19 駆動部
20 貫通穴
21 金属系微細構造物
30 マスク
31 重金属の吸収材
32 レジスト層
33 基板
34 レジストパターン
35 金属系微細構造物
10 Liquid 11 Tank 12 Electrode +
13 Electrode + and template holder 14 Power supply 15 Electric wire 16 Electrode-(substrate) holder 17 Electrode-(substrate)
18 Template 19 Drive unit 20 Through hole 21 Metal-based fine structure 30 Mask 31 Heavy metal absorber 32 Resist layer 33 Substrate 34 Resist pattern 35 Metal-based fine structure

Claims (5)

金属系微細構造物を電気めっき法により作製する方法におい、基板の上に、貫通穴を具備する型板を駆動可能に設置し、上記貫通穴を介して基板の上にめっき処理を行い、上記型板を基板から離れていく方向に移動させることにより、基板上に金属系構造物を形成する、ことからなる金属系微細構造物の作製方法であって、
基板に、所望の金属系微細構造物の底面形状に略対応した輪郭を有する複数個の貫通穴を具備する型板を極めて近接又は密着させて設置し、駆動手段により、型板を基板から離れていく方向に、80〜10000nm/分の速度で、移動させることを特徴とする金属系微細構造物の作製方法。
The metallic microstructures Te method odor produced by electroplating, on a base plate, a mold plate having a through hole is placed so as to be driven, the plating process on the substrate through the upper SL through hole there line, by moving in a direction moving away the upper Symbol mold plate from the substrate, a manufacturing method of forming a metallic structure on a substrate, it Tona Ru metal-based microstructures,
A template having a plurality of through holes having an outline substantially corresponding to the shape of the bottom surface of a desired metal-based microstructure is placed on the substrate in close proximity or in close contact, and the template is separated from the substrate by a driving means. A method for producing a metal-based microstructure, wherein the metal-based microstructure is moved at a speed of 80 to 10000 nm / min in the direction of movement.
電極+及び型板と電極−及び基板をめっき液に浸し、電流を流し、基板の上にめっき処理を行う請求項1に記載の方法。   The method according to claim 1, wherein the electrode + and the template and the electrode − and the substrate are immersed in a plating solution, a current is passed, and the plating process is performed on the substrate. 請求項1又は2に記載の金属系微細構造物の作製方法で使用する装置であって、
電気めっき槽と、基板と、該基板の上に設置する所望の金属系微細構造物の底面形状に対応した輪郭を有する複数個の貫通穴を具備する型板と、該型板を上記基板から離れていく方向に移動させる駆動手段と、上記基板上にめっき処理するための電極とを有することを特徴とする金属系微細構造物の作製装置。
An apparatus used in the method for producing a metal-based microstructure according to claim 1 or 2,
An electroplating tank, a substrate, a template having a plurality of through holes having a contour corresponding to the shape of the bottom surface of a desired metal-based microstructure installed on the substrate, and the template from the substrate An apparatus for manufacturing a metal-based microstructure, comprising: a driving unit that moves in a direction away from the electrode; and an electrode for plating on the substrate.
槽内に、電極−及び基板と、電極+及び型板を設置した請求項に記載の金属系微細構造物の作製装置。 The apparatus for producing a metal-based microstructure according to claim 3 , wherein an electrode-and a substrate, and an electrode + and a template are installed in the tank. めっき槽(11)内に位置する、電極−及び基板(17)と、該電極に対向し、距離を可変できる駆動部(19)に連結しているホルダー(13)及び他方の電極+(12)と、槽内で電極間に位置した所望の金属系微細構造物の底面形状に対応した輪郭を有する複数個の貫通穴(20)を具備する型板(18)と、電極間を接続する電線と、その間に位置する電源とを具備してなる装置であって、
電極−及び基板(17)に型板(18)を極めて近接又は密着させた状態で、前記槽内の両電極(12,17)と型板(18)をめっき液(12)に浸し、電流を流している間に80〜10000nm/分の速度で駆動部(19)により電極+及び型板(18)が電極−及び基板(17)から離れていく方向に移動させ、電極−及び基板(17)上に金属系微細構造物を形成する操作を実行できるようにした、請求項3又は4に記載の金属系微細構造物の作製装置。
An electrode − and a substrate (17) located in the plating tank (11), a holder (13) connected to the drive unit (19) facing the electrode and variable in distance, and the other electrode + (12 a) template having a desired metal based composite several through-holes that have a contour that corresponds to the bottom shape of the microstructures located between the electrodes in a bath (20) and (18), between the electrodes A device comprising an electric wire connecting the power source and a power source located between the wires,
In a state where the template (18) is very close to or in close contact with the electrode and the substrate (17), both the electrodes (12, 17) and the template (18) in the tank are immersed in the plating solution (12), and the current is supplied. The electrode + and the template (18) are moved away from the electrode-and the substrate (17) by the driving unit (19) at a speed of 80 to 10000 nm / min during the flow of the electrode-and the substrate ( 17) The metal-based microstructure manufacturing apparatus according to claim 3 or 4, wherein an operation for forming the metal-based microstructure can be performed on the metal-based microstructure.
JP2006078125A 2006-03-22 2006-03-22 Method and apparatus for producing metal-based microstructure Expired - Fee Related JP4769962B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006078125A JP4769962B2 (en) 2006-03-22 2006-03-22 Method and apparatus for producing metal-based microstructure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006078125A JP4769962B2 (en) 2006-03-22 2006-03-22 Method and apparatus for producing metal-based microstructure

Publications (2)

Publication Number Publication Date
JP2007254787A JP2007254787A (en) 2007-10-04
JP4769962B2 true JP4769962B2 (en) 2011-09-07

Family

ID=38629313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006078125A Expired - Fee Related JP4769962B2 (en) 2006-03-22 2006-03-22 Method and apparatus for producing metal-based microstructure

Country Status (1)

Country Link
JP (1) JP4769962B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2676206B2 (en) * 1987-12-05 1997-11-12 有限会社カネヒロ・メタライジング Marking device
FR2696478B1 (en) * 1992-10-05 1994-10-28 Commissariat Energie Atomique Process for the electrolytic deposition of a metal on a flexible weakly conductive substrate, device for electrolytic deposition allowing the carrying out of this process and product obtained by this process.
JP3644196B2 (en) * 1997-05-15 2005-04-27 豊田合成株式会社 Manufacturing method of three-dimensional object
JP3750646B2 (en) * 2001-10-29 2006-03-01 住友電気工業株式会社 Method for producing metal microstructure
JP2003277968A (en) * 2002-03-25 2003-10-02 Sumitomo Metal Mining Co Ltd Method and device for electrodeposition of three- dimensional micro-electrodeposited structure, electrode for manufacturing three-dimensional micro- electrodeposited structure, and method and device for electrodeposition using the electrode

Also Published As

Publication number Publication date
JP2007254787A (en) 2007-10-04

Similar Documents

Publication Publication Date Title
Daryadel et al. Localized pulsed electrodeposition process for three-dimensional printing of nanotwinned metallic nanostructures
Li et al. Review of additive electrochemical micro-manufacturing technology
Wang et al. Direct-write printing copper–nickel (Cu/Ni) alloy with controlled composition from a single electrolyte using co-electrodeposition
Lei et al. Dynamic “scanning-mode” meniscus confined electrodepositing and micropatterning of individually addressable ultraconductive copper line arrays
Kim et al. Nucleation and aggregative growth of palladium nanoparticles on carbon electrodes: experiment and kinetic model
US11214884B2 (en) Electrochemical three-dimensional printing and soldering
US20130142566A1 (en) Electrochemical methods for wire bonding
CN106077852A (en) A kind of electro-chemical machining system
Davydov et al. Electrochemical local maskless micro/nanoscale deposition, dissolution, and oxidation of metals and semiconductors (a review)
Ren et al. Localized electrodeposition micro additive manufacturing of pure copper microstructures
CN113355702A (en) Additive manufacturing device and method based on meniscus constrained electrodeposition
Habib et al. Fabrication of complex shape electrodes by localized electrochemical deposition
CN112779567B (en) Micro machining tool preparation device and method and in-situ material increase and reduction manufacturing method
JP4769962B2 (en) Method and apparatus for producing metal-based microstructure
US8986563B2 (en) Method for the production of three-dimensional microstructures
Schürch et al. Direct 3D microprinting of highly conductive gold structures via localized electrodeposition
Hengsteler et al. Beginner's guide to micro-and nanoscale electrochemical additive manufacturing
Kunar et al. Investigation into fabrication of microslot arrays by electrochemical micromachining
KR102561196B1 (en) Method of manufacturing porous nanostructure, 3-dimensional electrode and sensor comprising porous nanostructure manufactured thereby and apparatus for manufacturing porous nanostructure
Sahoo et al. Dynamic electrolyte spreading during meniscus-confined electrodeposition and electrodissolution of copper for surface patterning
Pandey et al. Experimental investigation of localized electrochemical deposition-based micro-additive manufacturing process
JP2008280558A (en) Local surface treatment method using liquid
Yang et al. Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process
Han et al. Confined Etchant Layer Technique: An Electrochemical Approach to Micro-/Nanomachining
Kim et al. A multi-step electrochemical etching process for a three-dimensional micro probe array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees