JP4757408B2 - Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device - Google Patents

Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device Download PDF

Info

Publication number
JP4757408B2
JP4757408B2 JP2001227922A JP2001227922A JP4757408B2 JP 4757408 B2 JP4757408 B2 JP 4757408B2 JP 2001227922 A JP2001227922 A JP 2001227922A JP 2001227922 A JP2001227922 A JP 2001227922A JP 4757408 B2 JP4757408 B2 JP 4757408B2
Authority
JP
Japan
Prior art keywords
furnace
furnace bottom
unevenness
coke oven
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001227922A
Other languages
Japanese (ja)
Other versions
JP2003041258A (en
Inventor
正彦 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001227922A priority Critical patent/JP4757408B2/en
Publication of JP2003041258A publication Critical patent/JP2003041258A/en
Application granted granted Critical
Publication of JP4757408B2 publication Critical patent/JP4757408B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Coke Industry (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、コークス炉炭化室内の炉底煉瓦の凹凸を測定する装置、及び該凹凸測定装置による測定結果に基づいてコークス炉炉底を補修する方法に関するものである。
【0002】
【従来の技術】
コークス炉は、多数の炭化室と燃焼室が交互に連接して構成され、炭化室に石炭を装入し、炉壁を介して燃焼室より炭化室に900℃〜1100℃の高熱を約20時間連続して加え、石炭を乾溜し、コークスを製造する。この乾留が完了すると、コークスを排出し、そして石炭を装入してまた加熱を開始する。
【0003】
各炭化室は、高さが約6.5m、幅が約0.4m、長さが約16mであり、非常に幅が狭く奥行きが深い(長さが長い)炉空間を形成している。炭化室の炉底及び内壁は耐火レンガで構成されている。炭化室炉底に使用される耐火レンガは、長期間高温に曝され、又石炭のコークス化が完了する度にコークス押出機によってコークスを押し出して搬出するため、耐火物がコークスの圧力を受け、熱的、化学的、あるいは機械的なストレスにより損傷しやすい。すなわち、炉底煉瓦の目地切れ、レンガ亀裂、剥離、カーボン付着、あるいは底面の凹凸等を招きやすい。損傷部はコークス押し出し時に局部的に過大な力が加わって更に損傷が拡大しやすくなる。
【0004】
炭化室炉壁煉瓦が損傷した場合には、損傷が軽微であれば損傷部に不定形耐火物を充填し、損傷が進行した場合には該損傷した煉瓦を交換して補修することができる。しかし、炉底煉瓦が損傷した場合においては、煉瓦を交換して補修することは困難であるため、炉底煉瓦が致命的な損傷を受ける前に損傷部を適切に補修する必要がある。
【0005】
炉底煉瓦損傷部の補修方法としては、損傷によって発生した凹部に不定形耐火物を充填し、あるいは耐火物を溶射して埋めることによって補修を行なう。この場合において、炉底煉瓦の損傷の発見と位置把握が必要となる。このため、炭化室内が赤熱している状況において、炉底の全表面について必要な解像度で表面を観察し、損傷を発見して位置を把握することが重要である。
【0006】
【発明が解決しようとする課題】
操業の合間の短時間を利用してコークス炉窯口から炉底を観察する方法では、炉内が高温であるので窯口の外から内部を観察せざるをえず、底面の凹凸を正確に観察することは非常に難しい。
【0007】
また、コークス押し出し後の炭化室炉底にはコークス粉が堆積しており、炉底煉瓦損傷部の凹部には特に該コークス粉が堆積しているため、炉底煉瓦の凹凸の観察を困難にしている。
【0008】
本発明は、操業の合間の短時間を利用して、赤熱するコークス炉炭化室内炉底煉瓦の凹凸を測定する測定装置、該測定結果に基づいてコークス炉炉底を補修する方法及び補修装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
即ち、本発明の要旨とするところは以下の通りである。
(1)コークス炉炉底の凹凸を測定するための装置であって、コークス押出機10の押出ラム11又は移動式炉内診断装置12に配置され、炉底煉瓦23に堆積する堆積物を除去するためのスクレーパ2及びそれとシューとの間に炉底煉瓦表面との距離を測定する非接触式距離計3とを有し、スクレーパ2は気体噴射式スクレーパ2a又はそれと機械式スクレーパ2bの両方であって、気体噴射式スクレーパ2aは気体として空気又は窒素を用い、空気を用いる場合においては直径50mmφ〜75mmφのパイプに斜め下方向きに設けた小孔から2〜5kg/cm 2 の圧力で空気を吹出し、前記ラム11又は移動式炉内診断装置12の移動にあわせて炉底部の凹凸を測定することを特徴とするコークス炉炉底凹凸測定装置
(2)非接触式距離計3を複数有し、該距離計を炭化室幅方向に複数配置することを特徴とする上記(1)に記載のコークス炉炉底凹凸測定装置。
)非接触式距離計3は、押出ラム11又は移動式炉内診断装置12の移動に合わせて炉底の測定点を炭化室幅方向に走査して炉底部の凹凸を測定することを特徴とする上記(1)又は(2)に記載のコークス炉炉底凹凸測定装置。
)非接触式距離計3は、30kW以上の出力を有する特定波長レーザー発信機と乱反射光を特定の角度で捉える検知機とを備え、煉瓦の自発光に影響されずに炉底部の凹凸を測定することを特徴とする上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置。
)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の炉底までの距離を計測し、該計測した炉底までの距離と、予め想定しておいた距離との差異をほぼ連続的に求め、その差異を基にして補修方法を選定することを特徴とするコークス炉炉底補修方法。
)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の炉底までの距離を計測し、該計測した炉底までの距離を既に測定した数値との比較し、各位置での周囲との相対凸部高さ又は相対凹部深さを検知し、補修方法を選定することを特徴とするコークス炉炉底補修方法。
)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の凹凸を測定し、該測定した凹凸に基づいて炉底煉瓦各部位に充填すべきモルタル量を定め、該定めた量のモルタルを炉底煉瓦各部位に充填し、充填後1時間以上にわたって炭化室を空窯にしてモルタルを焼成することにより炉底を平滑化することを特徴とするコークス炉炉底補修方法。
)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の凹凸を測定し、該測定した炉底凹凸情報に基づいて、凸部を切削する部位及び/又は量を決め炉底を平滑化することを特徴とするコークス炉炉底補修方法。
)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置と、該炉底凹凸測定装置によって測定した炉底凹凸情報に基づいて炉底各部に充填するモルタル充填量を算出する充填量演算装置4と、該算出結果に基づいて炉底煉瓦にモルタルをモルタル粉としてあるいはスラリー状耐火物として流し込むための流し込み装置5とを有し、押出ラム11又は移動式炉内診断装置12を移動させながら炉底各部の煉瓦損傷部にモルタルを充填させることを特徴とするコークス炉炉底補修装置。
10)上記(1)乃至()のいずれかに記載のコークス炉炉底凹凸測定装置と、炉底凹凸測定装置を用いて測定した炉底凹凸情報に基づいて凸部を切削する凸部切削装置6を有することを特徴とするコークス炉炉底補修装置。
【0010】
【発明の実施の形態】
室炉式コークス炉においては、各炭化室21で乾留が完了したコークスをコークサイドの窯口から炭化室外に押し出すため、図1(a)に示すような押出ラム11を有している。押出ラム11は、炭化室21の押出機側の窯口から炭化室内に挿入され、炭化室内のコークスは押出ラム11に押されてコークサイドの窯口から押し出される。押出ラムの先端部の下部には橇又は車輪(これを総称してシュー13と言う)を有し、シュー13を炭化室炉底22に接触させながら炭化室内を移動する。
【0011】
また、特開平11−106755号公報に開示されているように、赤熱する炭化室内に挿入して炭化室内壁をカメラにより観察する移動式炉内診断装置12が知られている。炭化室内壁観察装置12も、図1(b)に示すように押出ラムと同じように診断装置先端部の下部に車輪又は橇からなるシュー13を有し、シュー13を炭化室炉底22に接触させながら炭化室内を移動することができる。
【0012】
本発明の炉底凹凸測定装置1は、上記押出ラム11あるいは移動式炉内診断装置12の先端部近傍であって炉底に近接する部分に配置される。
【0013】
本発明の炉底凹凸測定装置1は、非接触式距離計3を有する。押出ラム11あるいは移動式炉内診断装置12の先端部に近くであって炉底22に近接する部分に配置された該非接触式距離計3は、図2(a)に示すように光軸8を距離計3の一定の方向、例えば鉛直下方に向け、炉底22表面までの距離を測定することができる。また、該一定の方向は可変とすることができ、一定の周期により一定の角度範囲で炭化室幅方向に走査するように調整すれば、炭化室幅方向の所定の長さ範囲について炉底煉瓦表面の測定点を走査し、距離計と炉底表面との間の距離情報を得ることができる。非接触式距離計3としては、マイクロ波やレーザーを用いた方法を用いることができ、そのうちでも温度影響が少なく精度的にも高いレーザー式距離計を用いると好ましい。非接触式距離計で距離計と炉底表面との距離を測定しつつ前記押出ラム又は移動式炉内診断装置を炭化室長手方向に移動することにより、炉底煉瓦表面の凹凸を測定することができる。
【0014】
乾留したコークスを押し出した後の空炉状態の炭化室21の炉底22には、前記したように粉コークスが堆積しているため、このままでは炉底煉瓦の凹凸を非接触距離計3によって測定することができない。本発明の炉底凹凸測定装置は気体噴射式スクレーパ2a又は機械式スクレーパ2b若しくはその両方を有する。気体噴射式スクレーパ2aは図2(a)に示すように炉底煉瓦に空気を吹き付け、これによって炉底煉瓦に堆積する堆積物を除去する。凹凸測定時の押出ラム11又は移動式炉内診断装置12の進行方向に対し、気体噴射式スクレーパ2aを非接触式距離計3よりも進行方向前方に配置する。これにより、押出ラム11又は移動式炉内診断装置12を進行させつつ気体噴射式スクレーパ2aによって炉底煉瓦に堆積する堆積物を排除し、非接触式距離計3は該堆積物が排除された炉底部位との間の距離を測定するため、炉底堆積物の影響を受けずに測定を行なうことが可能になる。
【0015】
気体噴射式スクレーパ2aは、空気や窒素のような気体18を噴射する。空気を使用すると最も安価にスクレーパとすることができる。ただし、空気を噴射すると付着カーボンを燃焼除去する作用を有するため、炉底煉瓦の目地切れ部を塞いでいるカーボンを除去してしまうという不都合が生じるときがある。このような場合は、噴射する気体として窒素等の非酸化性ガスを使用すると良い。噴射気体として空気を用いる場合、ラムビーム内に直径50mmφ〜75mmφの空気配管を通し、ラムヘッド先端部最下部に炭化室幅方向に数個の斜め下方向きの小孔を設け、その小孔から2〜5Kg/cm2の圧力を有する空気を吹出し、炉底部に残るコークス塊を吹き飛ばす。コークス押出時に前方に吹き飛ばし、塊コークスと共に受骸バケットに落下させ、レーザー距離計による炉底部凹凸測定の外乱とならないようにするものである。
【0016】
炉底堆積物の堆積量が多い場合には、上記気体噴射式スクレーパ2aのみでは十分に該堆積物を除去できない場合がある。本発明においては、図2(a)に示すように、気体噴射式スクレーパ2aに合せて機械式スクレーパ2bを用いることにより、炉底堆積物の堆積量が多い場合においても十分に堆積物を除去することが可能になる。
【0017】
機械的スクレーパ2bとして、針金製たわし状スクレーパや傘型プレートが有効である。炉底煉瓦を傷めずに残コークスを除去できる方法としてラムヘッド又は移動式炉内診断装置の先端に近い位置最下部に針金製たわし状スクレーパを設置する方法が望ましい
【0019】
本発明の炉底凹凸測定装置においては、複数の非接触式距離計3を炭化室幅方向に分散して配置することができる。炉底凹凸測定装置を炭化室長手方向に移動しつつ距離測定を行なうことにより、各非接触式距離計にて炉底長手方向の凹凸情報を得ることができ、更に炉底幅方向に分散して配置した複数の非接触距離計の測定結果を総合することにより、炉底の長手方向及び幅方向を総合した面情報としての凹凸情報を得ることができる。図3に示す形態においては、距離計ボックス7の内部に3台の非接触式距離計(3a〜3c)を配置、その結果炉底の幅方向3個所の距離計測定点9の測定を同時に行うことができる。
【0020】
本発明の炉底凹凸測定装置においては、図4に示すように、押出ラム又は移動式炉内診断装置の移動にあわせて非接触式距離計3を移動することにより、炉底の測定点を炭化室幅方向に走査して炉底部の凹凸を測定することができ、1台の非接触式距離計3の測定結果から炉底の長手方向及び幅方向を総合した面情報としての凹凸情報を得ることができる。図4に示す形態においては、非接触式距離計3は3aの位置と3bの位置との間を往復移動する。更にこのような走査機能を有する非接触式距離計を炭化室幅方向に複数配置すれば、1台あたりの非接触距離計の走査範囲が狭くても、炉底煉瓦幅全範囲について凹凸情報を得ることが可能になる。
【0021】
非接触式距離計3は通常光学的手段によって距離を測定する。一方、赤熱する炭化室炉底煉瓦は自発光光を有するため、該自発光光が距離測定のノイズとなり、正確に距離が測定できない場合がある。本発明においては、非接触式距離計は、30kW以上の出力を有する特定波長レーザー発信機と乱反射光を特定の角度で捉える検知機とを備えることにより、煉瓦の自発光に影響されずに炉底部の凹凸を測定することが可能になる。特定波長としてはGaAsを用いた波長780nmのレーザー発信機が好ましい。波長780nmが好ましい理由は、高温煉瓦の自発光波長分布に対して比較的分離して検知し易いこと、GaAsレーザーは一般的に市販され入手し易いからである。また出力を30kW以上とすれば、自発光に対してエネルギー強度が高く周囲から入射する外乱光に対して反射光を検知しやすいという理由により有効である。
【0022】
以上に述べた炉底凹凸測定装置を用いた測定を行なった結果、炉底煉瓦の損傷による凹凸情報が得られる。次いで、該測定した凹凸に基づいて炉底煉瓦損傷部の補修を行うことができる。
【0023】
本発明において、計測した炉底までの距離と、予め想定しておいた距離との差異をほぼ連続的に求め、その差異を基にして補修方法を選定すると好ましい。差異が広範囲にわたりかつ損傷が深い場合であれば補修方法として当該炭化室近傍の数窯の操業を停止し熱間積み替えを選択し、差異つまり損傷が浅く狭い場合は補修方法として溶射補修やドライモルタルを流し粘着させる方法を選択すると良い。熱間積み替え補修はコークス炉体の温度を一時的に下げるため周辺部位の損傷につながるから、できるだけ溶射やモルタル流し込みで対処したいところである。
【0024】
本発明においてはまた、計測した炉底までの距離を既に測定した数値と比較し、各位置での周囲との相対凸部高さ又は相対凹部深さを検知し、補修方法を選定すると好ましい。検知した相対凸部高さ又は相対凹部深さが増大して許容範囲を超えていれば切削またはモルタル流し込みや溶射を選択し、相対凸部高さ又は相対凹部深さが許容範囲内であれば時系列管理データとして保存すると良い。通常その判断基準は凹凸で20mm、炉長方向長さで50mm以上とするのが適当である。
【0025】
本発明においてはまた、測定した凹凸に基づいて炉底煉瓦各部位に充填すべきモルタル量を定め、該定めた量のモルタルを炉底煉瓦各部位に充填し、充填後1時間以上にわたって炭化室を空窯にしてモルタルを焼成することにより炉底を平滑化することができる。凹部の深さに応じモルタルを該凹部を充填するに足りるだけ供給し、凹部に充填する。その結果、モルタル充填後のモルタル表面高さは、損傷前の煉瓦表面高さに等しい高さで平滑化することができる。充填後1時間以上にわたって炭化室を空窯にしてモルタルを焼成することにより該モルタル層は所定の強度を得ることができ、装入炭を装入して乾留を開始することが可能になる。
【0026】
また、本発明の炉底補修装置は、図2(a)に示すように、以上に述べた炉底凹凸測定装置1と、炉底凹凸測定装置1によって測定した炉底凹凸情報に基づいて炉底各部に充填するモルタル充填量を算出する充填量演算装置4と、該算出結果に基づいて炉底煉瓦にモルタルをモルタル粉としてあるいはスラリー状耐火物として流し込むための流し込み装置5とを有する。流し込み装置5のノズル5dは炉底凹凸測定装置とともに押出ラム又は移動式炉内診断装置の先端部に配置することができる。
【0027】
まず最初に、押出ラム又は移動式炉内診断装置を炭化室内で移動しつつ炉底凹凸測定装置1によって炉底の凹凸を測定する。次いで、充填量演算装置4により、該測定した炉底凹凸情報に基づいて炉底各部に充填するモルタル充填量を算出する。モルタル充填量は、充填後にモルタル表面高さが損傷前の煉瓦表面高さに等しい高さとなるように算出する。通常は、炉底煉瓦単位表面積当たりに流し込むモルタル量が、該流し込み部位の凹部深さに比例するようにモルタル充填量を算出すれば、充填後の炉底煉瓦表面を平滑化することができる。その後、押出ラム又は移動式炉内診断装置を炭化室内で移動しつつ流し込み装置5から前記算出したモルタル充填量に基づいて炉底各部位にモルタルを流し込む。
【0028】
最初に炉底凹凸測定装置によって炉底の凹凸を測定する際に、気体噴射式スクレーパ2a、更に必要に応じて機械式スクレーパ2bを用いて炉底の堆積物を除去しているので、通常はモルタル流し込み時に再度堆積物を除去する必要はない。ただし、炉底凹凸測定装置1による測定後に新たに堆積物が堆積した場合には、再度気体噴射式スクレーパ2a、更に必要に応じて機械式スクレーパ2bを用いて炉底の堆積物を除去しながら押出ラム又は移動式炉内診断装置の移動を行ない、該移動とともに流し込み装置5から炉底各部位にモルタルを流し込むことが好適である。
【0029】
モルタルの流し込み装置5は、流し込み装置本体即ちモルタルタンク5a、搬送用ガス供給ファン5b又は加圧ガス、炉底の凹凸からモルタル供給量を演算する充填量演算装置4は炭化室外部に設置し、ラムビーム14又は移動式診断装置12の水平ランス16を貫通し粉体供給配管5cを内蔵し、底煉瓦凹凸を測定する距離計3の後方に炉底近傍に粉体を供給できるノズル5dを下向きに設置する。また、その近傍には高速回転式カッターを有する凸部切削装置6を設け、カーボン付着やAsh分のクリンカ、周囲の煉瓦面に比較して凸の著しい部位を研磨できるようにしておくことが有効である。凹みの大きい部位には多めのモルタルを供給し、凸部が著しい部位は研削することにより、炉底の平滑が得られる。本発明のコークス炉炉底凹凸測定装置1を用いてコークス炉炉底煉瓦の凹凸を測定し、該測定した炉底凹凸情報に基づいて、凸部を切削する部位及び/又は量を決め、凸部切削装置6を用いて炉底を平滑化する。
【0030】
【実施例】
実施例1
図1(a)、図2(a)に示すように、老朽化して押出負荷が高まってきたコークス炉の炉底の影響を排除するため、本発明の装置を適用した。炭化室幅は押出機側400mm、コークサイド側460mm,炭化室奥行き(通常、炉長という)15m、炉敷煉瓦はタイル状の300mm×400mm×厚さ100mmの珪石煉瓦が敷かれている。炉底の凹凸測定機を押出機10のラムヘッド14の後方でラムシュー13との中間に設置した。モルタル塗布装置5も非接触式距離計3の後方に着脱可能とし、更に凸部切削装置6も着脱可能な構造とした。
【0031】
凹凸測定装置のスクレーパ2として、気体噴射式スクレーパ2aと機械式スクレーパ2bとを併用した。気体噴射式スクレーパ2aは噴射気体として空気を用い、ラムビーム内に直径75mmφの空気配管を通し、ラムヘッド先端部最下部に炭化室幅方向に数個の斜め下方向きの小孔を設け、その小孔から2〜5Kg/cm2の圧力を有する空気を吹出し、炉底部に残るコークス塊を吹き飛ばす。機械的スクレーパ2bとして、気体噴射式スクレーパ2aの後方のラムヘッド15の先端に近い位置最下部に針金製たわし状スクレーパを設置した。
【0032】
凹凸測定装置の非接触式距離計3は、上記スクレーパ2の後方に配置される外郭に水流を構成する幅300mm長さ450mm高さ300mmの距離計ボックス7に格納され、レーザー光を発し、反射してくるレーザー光を検出できる窓を下向きに3個窯幅方向に横並びで備えている。コークスを押出す時ラムが炉長方向に挿入される際に、400mm幅に3点、奥行き15mにわたり底煉瓦の凹凸がほぼ連続的に測定できるものとし、そのデータは記録できるように距離計ボックス7内にメモリーを搭載して距離計の数値及び予め想定した炉底までの距離との差異を記録できるようにした。測定した距離計の数値は予め想定した炉底レベルと比較し、各位置の凹凸を各位置毎に算出し、10mm以上差異の有る部分は、リスト出力できるものとした。
【0033】
本装置で炉底凹凸を計測した結果、最大25mm凹みが5箇所検出された。そこで、本計測装置の後方に窯幅方向に6個の小孔を配するモルタル散布ノズル5dをとりつけ、ラムビーム14から粉体供給配管5cを通してモルタル粉を供給できるようにし、凹凸計測器(予め想定したレベルとの差異演算及びモルタル散布量の演算機能含む)からの情報を基に炉長方向に挿入しながらモルタル塗布を行った。また、その際に凸部を切削できるように回転刃を備えた凸部切削装置6をモルタル散布ノズル5dの後方に設置した。他の窯での試験において、炭化室中央部のレベルが30mm凹んでいる部位において長さ100mmにわたって損耗の少ない部位が発見されたため、押出時の抵抗を少なくする目的で、本切削装置にて10mm程度削って平滑化した。
【0034】
実施例2
次に炭化室移動式炉内診断装置11を用いて炉底凹凸を計測することにした。炭化室診断装置の構造は概略図1(b)のようになっている。診断装置は内管と外管とからなる二重管で、内管と外管との間のスペースが冷却水を通す水冷ジャケットとなっている。冷却水は水平ランス16aから垂直ランス17a、垂直ランス17b、水平ランス16bと通過する。炉壁の診断装置は垂直ランス17a内に格納されている。
【0035】
スクレーパとして図1(b)に示すように気体噴射式スクレーパ2aのみを用いた。気体噴射式スクレーパ2aは上記実施例1と同等のものである。非接触式距離計3として、水平ランス16aの中にレーザー距離計を設置した。この実施例においては測定位置を窯幅方向は2点のみとし、長手方向ではシュー13の中間位置に設置した。本装置が炭化室内に挿入されると同時にレーザー距離計を作動させ、炉底の幅方向の中心近傍2点を奥行き15mに亘り測定した。
【0036】
その結果、炉底の凹凸は図5のように検出された。炉底煉瓦23における凸部24の高さh、凹部25の深さを測定することができた。図5においてaはランスを挿入する際、ある距離以上挿入した時点で片持ち状態から先端部シューが炉底煉瓦に接地した動きを示している。
【0037】
【発明の効果】
本発明の炉底凹凸測定装置は、押出ラム又は移動式炉内診断装置を進行させつつ気体噴射式スクレーパ、更に機械式スクレーパやシューによって炉底煉瓦に堆積する堆積物を排除し、非接触式距離計は該堆積物が排除された炉底部位との間の距離を測定するため、炉底堆積物の影響を受けずに測定を行なうことができる。
【0038】
本発明の炉底凹凸測定装置は、複数の非接触式距離計を炭化室幅方向に分散して配置し、更に炉底の測定点を炭化室幅方向に走査して炉底部の凹凸を測定することにより、炉底の長手方向及び幅方向を総合した面情報としての凹凸情報を得ることができる。
【0039】
本発明の炉底凹凸測定装置の非接触式距離計は、30kW以上の出力を有する特定波長レーザー発信機と乱反射光を特定の角度で捉える検知機とを備えることにより、煉瓦の自発光に影響されずに炉底部の凹凸を測定することが可能になる。
【0040】
本発明においては、上記炉底凹凸測定装置によって測定した凹凸に基づいて炉底煉瓦各部位に充填すべきモルタル量を定め、該定めた量のモルタルを炉底煉瓦各部位に充填し、充填後1時間以上にわたって炭化室を空窯にしてモルタルを焼成することにより炉底を平滑化することができる。また、凸部に対しては切削することもできる。
【図面の簡単な説明】
【図1】コークス炉内に配置した本発明の炉底凹凸測定装置を示す図であり、(a)は押出ラムに設置した例、(b)は移動式炉内診断装置に設置した例を示す図である。
【図2】本発明の炉底凹凸測定装置及び補修装置を示す図であり、(a)はスクレーパを配置した例、(b)はスクレーパを配置しない例である。
【図3】本発明の複数の非接触式距離計を有する炉底凹凸測定装置を示す斜視図である。
【図4】本発明の非接触式距離計を走査させる炉底凹凸測定装置を示す図である。
【図5】本発明の炉底凹凸測定結果を示す図である。
【符号の説明】
1 炉底凹凸測定装置
2 スクレーパ
2a 気体噴射式スクレーパ
2b 機械式スクレーパ
3 非接触式距離計
4 充填量演算装置
5 流し込み装置
5a モルタルタンク
5b 搬送用ガス供給ファン
5c 粉体供給配管
5d ノズル
6 凸部切削装置
7 距離計ボックス
8 距離計光軸
9 距離計測定点
10 コークス押出機
11 押出ラム
12 移動式炉内診断装置
13 シュー
14 ラムビーム
15 ラムヘッド
16 水平ランス
17 垂直ランス
18 気体
21 炭化室
22 炉底
23 炉底煉瓦
24 凸部
25 凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus for measuring unevenness of a furnace bottom brick in a coke oven carbonization chamber and a method for repairing a coke furnace furnace bottom based on a measurement result by the unevenness measuring apparatus.
[0002]
[Prior art]
The coke oven is constructed by alternately connecting a large number of carbonization chambers and combustion chambers, charging coal into the carbonization chamber, and applying high heat of 900 ° C. to 1100 ° C. from the combustion chamber to the carbonization chamber through the furnace wall. Coke is produced by adding coal continuously over time and drying coal. When this dry distillation is complete, the coke is discharged and the coal is charged and heating is started again.
[0003]
Each carbonization chamber has a height of about 6.5 m, a width of about 0.4 m, and a length of about 16 m, and forms a furnace space that is very narrow and deep (long). The furnace bottom and inner wall of the carbonization chamber are made of refractory bricks. The refractory bricks used in the bottom of the carbonization chamber are exposed to high temperatures for a long period of time, and each time the coking of coal is completed, the coke is extruded and carried out by the coke extruder. Easily damaged by thermal, chemical or mechanical stress. That is, it is likely to cause joint cuts, brick cracks, peeling, carbon adhesion, or irregularities on the bottom surface of the bottom brick. In the damaged part, excessive force is locally applied when the coke is pushed out, so that the damage is further enlarged.
[0004]
When the carbonization chamber furnace wall brick is damaged, if the damage is slight, the damaged portion can be filled with an irregular refractory, and when the damage has progressed, the damaged brick can be replaced and repaired. However, when the bottom brick is damaged, it is difficult to replace and repair the brick. Therefore, it is necessary to appropriately repair the damaged part before the bottom brick is fatally damaged.
[0005]
As a method for repairing the damaged brick at the bottom of the furnace, repair is performed by filling the concave portion generated by the damage with an indeterminate refractory or by spraying and filling the refractory. In this case, it is necessary to find and locate the bottom brick damage. For this reason, in the situation where the inside of the carbonization chamber is red-hot, it is important to observe the surface with the necessary resolution for the entire surface of the furnace bottom, find the damage and grasp the position.
[0006]
[Problems to be solved by the invention]
In the method of observing the bottom of the coke oven from the coke oven kiln using a short time between operations, the inside of the kiln is hot, so the inside of the kiln must be observed from the outside, and the unevenness of the bottom surface is accurately It is very difficult to observe.
[0007]
In addition, coke powder is deposited on the bottom of the coking chamber furnace after coke extrusion, and the coke powder is deposited particularly on the recesses in the damaged parts of the furnace bottom brick, making it difficult to observe the irregularities of the furnace bottom brick. ing.
[0008]
The present invention relates to a measuring device for measuring unevenness of a brick at the bottom of a coke oven carbonization chamber that glows red, using a short time between operations, a method for repairing a coke oven bottom based on the measurement result, and a repair device. The purpose is to provide.
[0009]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) An apparatus for measuring the unevenness of the coke oven furnace bottom, which is disposed in the extrusion ram 11 of the coke extruder 10 or the mobile in-furnace diagnostic apparatus 12 and removes deposits deposited on the furnace bottom brick 23 and a noncontact distance meter 3 for measuring the distance between the hearth bricks surface between the scraper 2 and its Re preparative shoe to the scraper 2 of the gas injection scraper 2a or a mechanical scraper 2b In both cases, the gas jet scraper 2a uses air or nitrogen as a gas, and when air is used, it is applied at a pressure of 2 to 5 kg / cm 2 from a small hole provided obliquely downward in a pipe having a diameter of 50 mmφ to 75 mmφ. A coke oven bottom unevenness measuring apparatus which blows air and measures the unevenness of the bottom of the furnace as the ram 11 or the mobile in-furnace diagnostic device 12 moves .
(2 ) The coke oven bottom unevenness measuring apparatus according to (1 ) above, wherein a plurality of non-contact type distance meters 3 are provided, and a plurality of the distance meters are arranged in the coking chamber width direction.
( 3 ) The non-contact distance meter 3 measures the unevenness of the furnace bottom by scanning the measurement point of the furnace bottom in the width direction of the carbonization chamber in accordance with the movement of the extrusion ram 11 or the mobile in-furnace diagnostic device 12. The coke oven furnace bottom unevenness measuring apparatus according to (1) or (2), characterized in that it is characterized in that
( 4 ) The non-contact distance meter 3 includes a specific wavelength laser transmitter having an output of 30 kW or more and a detector that captures irregularly reflected light at a specific angle, and is not affected by the self-light emission of the bricks. The coke oven furnace bottom unevenness measuring apparatus according to any one of the above (1) to ( 3 ), wherein
( 5 ) The distance to the bottom of the coke oven bottom brick is measured using the coke oven bottom unevenness measuring apparatus according to any of (1) to ( 4 ) above, and the measured distance to the bottom of the furnace is measured. And a coke oven bottom repair method, wherein a difference from a distance assumed in advance is obtained almost continuously, and a repair method is selected based on the difference.
( 6 ) The distance to the bottom of the coke oven bottom brick is measured using the coke oven bottom unevenness measuring apparatus according to any one of (1) to ( 4 ) above, and the measured distance to the bottom of the furnace is measured. The coke oven bottom repair method is characterized in that the relative height of the convex portion or the relative concave portion depth with respect to the surroundings at each position is detected and the repair method is selected.
( 7 ) The unevenness of the coke oven bottom brick is measured using the coke oven bottom unevenness measuring device according to any one of (1) to ( 4 ), and each portion of the furnace brick is measured based on the measured unevenness. The amount of mortar to be filled is determined, the mortar of the determined amount is filled in each part of the furnace bottom brick, and the furnace bottom is smoothed by firing the mortar in an empty kiln for 1 hour or longer after filling. Coke furnace bottom repair method characterized by the above.
( 8 ) The unevenness of the coke oven bottom brick is measured using the coke oven bottom unevenness measuring device according to any one of (1) to ( 4 ) above, and the unevenness is measured based on the measured furnace bottom unevenness information. A method for repairing a coke oven bottom, wherein a portion and / or amount for cutting a portion is determined and the furnace bottom is smoothed.
( 9 ) Coke furnace bottom unevenness measuring device according to any one of (1) to ( 4 ) above, and mortar filling to fill each part of the furnace bottom based on the furnace bottom unevenness information measured by the furnace bottom unevenness measuring device A filling amount calculation device 4 for calculating the amount, and a pouring device 5 for pouring mortar into the furnace bottom brick as mortar powder or as a slurry refractory based on the calculation result, and an extrusion ram 11 or a mobile furnace A coke oven bottom repair device, in which a mortar is filled in a brick damaged part of each part of the furnace bottom while moving the internal diagnostic device 12.
( 10 ) The convex part which cuts a convex part based on the coke oven bottom unevenness measuring apparatus in any one of said (1) thru | or ( 4 ), and the furnace bottom unevenness | corrugation information measured using the furnace bottom unevenness measuring apparatus A coke oven furnace bottom repair device comprising a cutting device 6.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The chamber-type coke oven has an extrusion ram 11 as shown in FIG. 1 (a) in order to push out coke, which has been dry-distilled in each carbonization chamber 21, from the coke side kiln to the outside of the carbonization chamber. The extrusion ram 11 is inserted into the carbonization chamber from the kiln mouth on the extruder side of the carbonization chamber 21, and coke in the carbonization chamber is pushed by the extrusion ram 11 and pushed out from the coke side kiln mouth. At the lower part of the front end of the extrusion ram, there is a gutter or a wheel (collectively referred to as a shoe 13), and the shoe 13 moves in the carbonizing chamber while contacting the shoe chamber 22 with the carbonizing chamber furnace bottom 22.
[0011]
Further, as disclosed in Japanese Patent Application Laid-Open No. 11-106755, there is known a mobile in-furnace diagnostic device 12 that is inserted into a red-hot carbonization chamber and observes the carbonization chamber wall with a camera. As shown in FIG. 1 (b), the carbonization chamber inner wall observation device 12 has a shoe 13 made of wheels or scissors at the lower portion of the distal end of the diagnostic device as in the extrusion ram, and the shoe 13 is attached to the carbonization chamber furnace bottom 22. It can move in the carbonization chamber while making contact.
[0012]
The furnace bottom unevenness measuring apparatus 1 of the present invention is disposed in the vicinity of the tip of the extrusion ram 11 or the mobile in-furnace diagnostic apparatus 12 and in the vicinity of the furnace bottom.
[0013]
The furnace bottom unevenness measuring apparatus 1 of the present invention has a non-contact distance meter 3. The non-contact type distance meter 3 disposed near the tip of the extrusion ram 11 or the mobile in-furnace diagnostic device 12 and close to the furnace bottom 22 has an optical axis 8 as shown in FIG. Can be directed to a certain direction of the distance meter 3, for example, vertically downward, and the distance to the surface of the furnace bottom 22 can be measured. Further, the constant direction can be made variable, and if it is adjusted so as to scan in the width direction of the coking chamber in a constant angle range with a constant period, the bottom brick in a predetermined length range in the width direction of the coking chamber Surface measurement points can be scanned to obtain distance information between the distance meter and the furnace bottom surface. As the non-contact type distance meter 3, a method using a microwave or a laser can be used. Among them, it is preferable to use a laser type distance meter which has little temperature influence and high accuracy. Measuring unevenness on the surface of the bottom brick by moving the extrusion ram or mobile in-furnace diagnostic device in the longitudinal direction of the carbonization chamber while measuring the distance between the distance meter and the bottom surface with a non-contact type distance meter. Can do.
[0014]
Since powder coke is deposited on the furnace bottom 22 of the coking chamber 21 in an empty furnace state after extruding the carbonized coke, as described above, the unevenness of the furnace bottom brick is measured with the non-contact distance meter 3 as it is. Can not do it. The furnace bottom unevenness measuring apparatus of the present invention has a gas injection scraper 2a and / or a mechanical scraper 2b. As shown in FIG. 2 (a), the gas injection scraper 2a blows air onto the furnace bottom brick, thereby removing deposits deposited on the furnace bottom brick. The gas injection scraper 2a is disposed in front of the non-contact distance meter 3 with respect to the direction of travel of the extrusion ram 11 or the mobile in-furnace diagnostic device 12 during unevenness measurement. As a result, deposits accumulated on the brick at the bottom of the furnace are eliminated by the gas injection scraper 2a while the extrusion ram 11 or the mobile in-furnace diagnostic device 12 is advanced, and the deposits are eliminated by the non-contact distance meter 3. Since the distance to the bottom of the furnace is measured, the measurement can be performed without being affected by the bottom deposit.
[0015]
The gas injection scraper 2a injects a gas 18 such as air or nitrogen. When air is used, the scraper can be made at the lowest cost. However, when air is injected, it has an action of burning and removing adhering carbon, and therefore, there may be a disadvantage that the carbon closing the joints of the furnace bottom brick is removed. In such a case, a non-oxidizing gas such as nitrogen may be used as the gas to be injected. When air is used as the injection gas, an air pipe having a diameter of 50 mmφ to 75 mmφ is passed through the ram beam, and several small holes facing downward in the width direction of the carbonization chamber are provided at the lowermost end of the ram head. Air having a pressure of 5 kg / cm 2 is blown out, and the coke mass remaining at the bottom of the furnace is blown off. When coke is pushed out, it is blown forward and dropped together with the lump coke into the receiving bucket so that it does not cause disturbance in the measurement of the furnace bottom unevenness by a laser distance meter.
[0016]
When the amount of deposits in the furnace bottom deposit is large, the deposit may not be sufficiently removed only by the gas jet scraper 2a. In the present invention, as shown in FIG. 2 (a), by using a mechanical scraper 2b in accordance with the gas injection scraper 2a, the deposit is sufficiently removed even when the amount of deposits in the furnace bottom is large. It becomes possible to do.
[0017]
As the mechanical scraper 2b, a wire-made scraper-like scraper or an umbrella plate is effective. As a method for removing the remaining coke without damaging the furnace bottom brick, a method of installing a wire scraper at the lowest position near the tip of the ram head or the mobile in-furnace diagnostic device is desirable .
[0019]
In the furnace bottom unevenness measuring apparatus of the present invention, a plurality of non-contact type distance meters 3 can be dispersed and arranged in the coking chamber width direction. By measuring the distance while moving the furnace bottom unevenness measuring device in the longitudinal direction of the carbonization chamber, unevenness information in the furnace bottom longitudinal direction can be obtained with each non-contact type distance meter and further distributed in the furnace bottom width direction. By combining the measurement results of a plurality of non-contact distance meters arranged in the manner described above, it is possible to obtain unevenness information as surface information combining the longitudinal direction and the width direction of the furnace bottom. In the form shown in FIG. 3, three non-contact type distance meters (3a to 3c) are arranged inside the distance meter box 7, and as a result, the distance measuring points 9 at three locations in the width direction of the furnace bottom are simultaneously measured. be able to.
[0020]
In the furnace bottom unevenness measuring apparatus of the present invention, as shown in FIG. 4, the measurement point of the furnace bottom is set by moving the non-contact distance meter 3 in accordance with the movement of the extrusion ram or the mobile in-furnace diagnostic apparatus. The unevenness of the bottom of the furnace can be measured by scanning in the width direction of the carbonization chamber, and the unevenness information as surface information integrating the longitudinal direction and the width direction of the furnace bottom from the measurement result of one non-contact distance meter 3 Obtainable. In the form shown in FIG. 4, the non-contact distance meter 3 reciprocates between a position 3a and a position 3b. Furthermore, if a plurality of non-contact distance meters having such a scanning function are arranged in the coking chamber width direction, unevenness information can be obtained for the entire range of the furnace bottom brick width even if the scanning range of each non-contact distance meter is narrow. It becomes possible to obtain.
[0021]
The non-contact distance meter 3 usually measures distance by optical means. On the other hand, since the red-hot coking chamber furnace bottom brick has self-luminous light, the self-luminous light becomes noise in distance measurement, and the distance may not be measured accurately. In the present invention, the non-contact distance meter includes a specific wavelength laser transmitter having an output of 30 kW or more and a detector that captures irregular reflection light at a specific angle, so that the furnace is not affected by the self-light emission of the brick. It becomes possible to measure the unevenness of the bottom. As the specific wavelength, a laser transmitter having a wavelength of 780 nm using GaAs is preferable. The reason why the wavelength of 780 nm is preferable is that it is relatively easy to detect and detect the self-luminous wavelength distribution of the high-temperature brick, and GaAs lasers are generally commercially available and easily available. Further, if the output is 30 kW or more, it is effective for the reason that the reflected light is easily detected with respect to the disturbance light incident from the surrounding area because the energy intensity is high with respect to the self-emission.
[0022]
As a result of the measurement using the furnace bottom unevenness measuring apparatus described above, unevenness information due to damage to the furnace bottom brick can be obtained. Next, the damaged furnace bottom brick can be repaired based on the measured unevenness.
[0023]
In the present invention, it is preferable that a difference between the measured distance to the furnace bottom and a distance assumed in advance is obtained almost continuously, and a repair method is selected based on the difference. If the difference is wide and the damage is deep, the operation of several kilns near the carbonization chamber is stopped as the repair method and hot transshipment is selected.If the difference, that is, the damage is shallow and narrow, the repair method is sprayed repair or dry mortar. It is recommended to select a method for pouring and sticking. Hot reloading repair temporarily reduces the temperature of the coke oven body, leading to damage to surrounding parts, so we want to deal with it by spraying or pouring mortar as much as possible.
[0024]
In the present invention, it is also preferable to select a repair method by comparing the measured distance to the furnace bottom with the measured numerical values, detecting the relative convex height or relative concave depth with respect to the surroundings at each position. If the detected relative convex height or relative concave depth increases and exceeds the allowable range, cutting or mortar pouring or thermal spraying is selected, and if the relative convex height or relative concave depth is within the allowable range Save as time-series management data. In general, it is appropriate that the criterion is 20 mm for unevenness and 50 mm for length in the furnace length direction.
[0025]
In the present invention, the amount of mortar to be filled in each portion of the furnace bottom brick is determined based on the measured unevenness, the determined amount of mortar is filled in each portion of the furnace bottom brick, and the carbonization chamber is over 1 hour after filling. The furnace bottom can be smoothed by firing the mortar using an empty kiln. Depending on the depth of the recess, mortar is supplied to fill the recess, and the recess is filled. As a result, the mortar surface height after mortar filling can be smoothed at a height equal to the brick surface height before damage. By firing the mortar in an empty kiln for 1 hour or longer after filling, the mortar layer can obtain a predetermined strength, and it is possible to charge coal and start dry distillation.
[0026]
Further, as shown in FIG. 2A, the furnace bottom repair device of the present invention is based on the furnace bottom unevenness measuring apparatus 1 described above and the furnace bottom unevenness information measured by the furnace bottom unevenness measuring apparatus 1. A filling amount calculation device 4 that calculates the mortar filling amount to be filled in each part of the bottom, and a pouring device 5 for pouring the mortar into the furnace bottom brick as mortar powder or as a slurry refractory based on the calculation result. The nozzle 5d of the pouring device 5 can be arranged at the tip of the extrusion ram or the mobile in-furnace diagnostic device together with the furnace bottom unevenness measuring device.
[0027]
First, the furnace bottom unevenness is measured by the furnace bottom unevenness measuring device 1 while moving the extrusion ram or the mobile in-furnace diagnostic device in the carbonization chamber. Next, the filling amount calculation device 4 calculates the mortar filling amount to fill each part of the furnace bottom based on the measured furnace bottom unevenness information. The mortar filling amount is calculated so that the mortar surface height after filling is equal to the brick surface height before damage. Usually, if the mortar filling amount is calculated so that the amount of mortar poured per furnace bottom brick unit surface area is proportional to the depth of the recessed portion of the pouring site, the surface of the furnace bottom brick after filling can be smoothed. Thereafter, mortar is poured into each part of the furnace bottom from the pouring device 5 while moving the extrusion ram or the mobile in-furnace diagnostic device in the carbonization chamber based on the calculated mortar filling amount.
[0028]
When first measuring the unevenness of the furnace bottom using the furnace bottom unevenness measuring apparatus, the deposits on the furnace bottom are usually removed using the gas jet scraper 2a and, if necessary, the mechanical scraper 2b. There is no need to remove deposits again when pouring mortar. However, when a new deposit is deposited after measurement by the furnace bottom unevenness measuring apparatus 1, the deposit on the furnace bottom is removed again using the gas injection scraper 2a and, if necessary, the mechanical scraper 2b. It is preferable to move the extrusion ram or the mobile in-furnace diagnostic device, and pour mortar into each part of the furnace bottom from the pouring device 5 along with the movement.
[0029]
The mortar pouring device 5 is a pouring device main body, that is, a mortar tank 5a, a transfer gas supply fan 5b or pressurized gas, and a filling amount calculating device 4 for calculating the mortar supply amount from unevenness of the furnace bottom is installed outside the carbonization chamber A nozzle 5d that passes through the ram beam 14 or the horizontal lance 16 of the mobile diagnostic device 12 and has a built-in powder supply pipe 5c and can supply powder to the vicinity of the furnace bottom is located downwardly behind the distance meter 3 for measuring the bottom brick unevenness. Install. In addition, it is effective to provide a convex cutting device 6 having a high-speed rotary cutter in the vicinity so as to polish carbon deposits, clinker for Ash, and a portion with remarkable convexity compared to the surrounding brick surface. It is. By supplying a large amount of mortar to a portion having a large dent and grinding a portion having a remarkable convex portion, smoothness of the furnace bottom can be obtained. Using the coke oven bottom unevenness measuring apparatus 1 of the present invention, the unevenness of the coke oven bottom brick is measured, and based on the measured furnace bottom unevenness information, the portion and / or amount for cutting the convex portion is determined. The furnace bottom is smoothed using the partial cutting device 6.
[0030]
【Example】
Example 1
As shown in FIG. 1 (a) and FIG. 2 (a), the apparatus of the present invention was applied in order to eliminate the influence of the bottom of the coke oven, which has been aged and the extrusion load has increased. The width of the carbonization chamber is 400 mm on the extruder side, the side of the coke side is 460 mm, the depth of the carbonization chamber (usually referred to as the furnace length) is 15 m, and the furnace brick is tile-shaped 300 mm × 400 mm × 100 mm thick quartz brick. A furnace bottom unevenness measuring machine was installed in the middle of the ram shoe 13 behind the ram head 14 of the extruder 10. The mortar applicator 5 is also detachable behind the non-contact distance meter 3, and the convex cutting device 6 is also detachable.
[0031]
As the scraper 2 of the unevenness measuring apparatus, a gas jet scraper 2a and a mechanical scraper 2b were used in combination. The gas injection scraper 2a uses air as the injection gas, passes an air pipe with a diameter of 75mmφ through the ram beam, and has several small holes in the carbonization chamber width direction at the bottom of the ram head tip. Then, air having a pressure of 2 to 5 kg / cm 2 is blown out, and the coke mass remaining at the bottom of the furnace is blown off. As the mechanical scraper 2b, a wire-made scraper scraper was installed at the lowest position near the tip of the ram head 15 behind the gas jet scraper 2a.
[0032]
The non-contact type distance meter 3 of the unevenness measuring apparatus is stored in a distance meter box 7 having a width of 300 mm, a length of 450 mm and a height of 300 mm which forms a water flow in the outer wall arranged behind the scraper 2, emits a laser beam, and reflects it. There are three windows that can detect the incoming laser beam facing down, side by side in the width direction of the kiln. When the ram is inserted in the furnace length direction when coke is extruded, the unevenness of the bottom brick can be measured almost continuously over 3 points in 400mm width and 15m in depth, and the distance meter box so that the data can be recorded A memory was installed in 7 to record the difference between the distance meter value and the distance to the furnace bottom assumed in advance. The measured distance meter values were compared with the furnace bottom level assumed in advance, and the unevenness at each position was calculated for each position. The parts with a difference of 10 mm or more could be output as a list.
[0033]
As a result of measuring the unevenness of the bottom of the furnace with this device, a maximum of 5 dents of 25mm were detected. Therefore, a mortar spray nozzle 5d having six small holes arranged in the kiln width direction is attached to the rear of the measuring device so that the mortar powder can be supplied from the ram beam 14 through the powder supply pipe 5c. Mortar application was performed while inserting in the furnace length direction based on the information from the calculation of the difference from the measured level and the calculation function of the mortar application amount. Moreover, the convex part cutting device 6 provided with the rotary blade was installed in the back of the mortar spraying nozzle 5d so that a convex part could be cut in that case. In a test in another kiln, a part with less wear over a length of 100 mm was found in a part where the level of the central part of the carbonization chamber was 30 mm, so 10 mm was used with this cutting device in order to reduce resistance during extrusion. It was smoothed to some extent.
[0034]
Example 2
Next, the furnace bottom irregularities were measured using the carbonization chamber mobile in-furnace diagnostic device 11. The structure of the carbonization chamber diagnostic apparatus is schematically as shown in FIG. The diagnostic device is a double pipe composed of an inner pipe and an outer pipe, and a space between the inner pipe and the outer pipe is a water cooling jacket through which cooling water passes. The cooling water passes from the horizontal lance 16a to the vertical lance 17a, the vertical lance 17b, and the horizontal lance 16b. The furnace wall diagnostic device is stored in the vertical lance 17a.
[0035]
As the scraper, only the gas injection scraper 2a was used as shown in FIG. The gas injection scraper 2a is the same as that in the first embodiment. As the non-contact type distance meter 3, a laser distance meter was installed in the horizontal lance 16a. In this example, the measurement position was set at only two points in the kiln width direction, and was set at an intermediate position of the shoe 13 in the longitudinal direction. At the same time that this apparatus was inserted into the carbonization chamber, the laser distance meter was operated, and two points near the center in the width direction of the furnace bottom were measured over a depth of 15 m.
[0036]
As a result, the unevenness of the furnace bottom was detected as shown in FIG. The height h of the convex part 24 and the depth of the concave part 25 in the furnace bottom brick 23 could be measured. In FIG. 5, when inserting a lance, a shows a movement in which the tip shoe contacts the furnace bottom brick from the cantilever state when the lance is inserted more than a certain distance.
[0037]
【The invention's effect】
The furnace bottom unevenness measuring apparatus of the present invention eliminates deposits deposited on the furnace bottom brick by a gas jet scraper, further a mechanical scraper or a shoe while advancing an extrusion ram or a mobile in-furnace diagnostic device, and is a non-contact type Since the distance meter measures the distance from the bottom of the furnace where the deposit is excluded, the measurement can be performed without being affected by the bottom deposit.
[0038]
The furnace bottom unevenness measuring apparatus of the present invention disperses and arranges a plurality of non-contact distance meters in the width direction of the carbonization chamber, and further measures the unevenness of the furnace bottom by scanning the measurement points of the furnace bottom in the width direction of the carbonization chamber. By doing so, it is possible to obtain unevenness information as surface information that combines the longitudinal direction and the width direction of the furnace bottom.
[0039]
The non-contact type distance meter of the furnace bottom unevenness measuring apparatus of the present invention has an influence on brick self-luminescence by including a specific wavelength laser transmitter having an output of 30 kW or more and a detector that captures irregular reflection light at a specific angle. Accordingly, it is possible to measure the unevenness of the furnace bottom.
[0040]
In the present invention, the amount of mortar to be filled in each part of the furnace bottom brick is determined based on the unevenness measured by the furnace bottom unevenness measuring device, the mortar of the determined amount is filled in each part of the furnace bottom brick, and after filling The bottom of the furnace can be smoothed by firing the mortar in an empty kiln for an hour or more. Moreover, it can also cut with respect to a convex part.
[Brief description of the drawings]
FIG. 1 is a view showing a furnace bottom unevenness measuring apparatus of the present invention disposed in a coke oven, where (a) is an example installed in an extrusion ram, and (b) is an example installed in a mobile in-furnace diagnostic apparatus. FIG.
FIGS. 2A and 2B are diagrams showing a furnace bottom unevenness measuring apparatus and a repair apparatus according to the present invention, in which FIG. 2A shows an example in which a scraper is arranged, and FIG. 2B shows an example in which no scraper is arranged.
FIG. 3 is a perspective view showing a furnace bottom unevenness measuring apparatus having a plurality of non-contact distance meters according to the present invention.
FIG. 4 is a view showing a furnace bottom unevenness measuring apparatus for scanning the non-contact distance meter of the present invention.
FIG. 5 is a view showing a result of measurement of furnace bottom unevenness according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Furnace bottom unevenness measuring device 2 Scraper 2a Gas injection type scraper 2b Mechanical scraper 3 Non-contact type distance meter 4 Filling amount calculation device 5 Pouring device 5a Mortar tank 5b Gas supply fan 5c for conveyance Powder supply piping 5d Nozzle 6 Convex part Cutting device 7 Distance meter box 8 Distance meter optical axis 9 Distance meter measurement point 10 Coke extruder 11 Extrusion ram 12 Mobile in-furnace diagnostic device 13 Shoe 14 Ram beam 15 Ram head 16 Horizontal lance 17 Vertical lance 18 Gas 21 Carbonization chamber 22 Furnace bottom 23 Furnace bottom brick 24 Convex part 25 Concave part

Claims (10)

コークス炉炉底の凹凸を測定するための装置であって、コークス押出機の押出ラム又は移動式炉内診断装置に配置され、炉底煉瓦に堆積する堆積物を除去するためのスクレーパ及びそれとシューとの間に炉底煉瓦表面との距離を測定する非接触式距離計とを有し、
前記スクレーパは気体噴射式スクレーパ又はそれと機械式スクレーパの両方であって、
前記気体噴射式スクレーパは気体として空気又は窒素を用い、空気を用いる場合においては直径50mmφ〜75mmφのパイプに斜め下方向きに設けた小孔から2〜5kg/cm 2 の圧力で空気を吹出し、
前記押出ラム又は移動式炉内診断装置の移動にあわせて炉底部の凹凸を測定することを特徴とするコークス炉炉底凹凸測定装置。
An apparatus for measuring the unevenness of the coke oven hearth, disposed pusher ram or mobile furnace diagnostic apparatus coke extruder, Re scraper and its for removing deposits deposited on the furnace bottom bricks A non-contact distance meter that measures the distance from the furnace bottom brick surface between the shoe and the shoe ,
The scraper is a gas jet scraper or both a mechanical scraper,
The gas jet scraper uses air or nitrogen as gas, and in the case of using air , air is blown out at a pressure of 2 to 5 kg / cm 2 from a small hole provided obliquely downward in a pipe having a diameter of 50 mmφ to 75 mmφ ,
A coke oven bottom unevenness measuring apparatus, wherein unevenness at the bottom of the furnace is measured in accordance with the movement of the extrusion ram or the mobile in-furnace diagnostic device.
前記非接触式距離計を複数有し、該距離計を炭化室幅方向に複数配置することを特徴とする請求項1に記載のコークス炉炉底凹凸測定装置。Wherein a plurality of the noncontact distance meters, coke oven hearth irregularities measuring apparatus according to claim 1, characterized by arranging a plurality of said rangefinder coking chamber width direction. 前記非接触式距離計は、前記押出ラム又は移動式炉内診断装置の移動に合わせて炉底の測定点を炭化室幅方向に走査して炉底部の凹凸を測定することを特徴とする請求項1又は2に記載のコークス炉炉底凹凸測定装置。The non-contact type distance meter measures the unevenness of the bottom of the furnace by scanning the measurement point of the furnace bottom in the width direction of the carbonization chamber in accordance with the movement of the extrusion ram or the mobile in-furnace diagnostic device. Item 3. The coke oven furnace bottom unevenness measuring apparatus according to Item 1 or 2 . 前記非接触式距離計は、30kW以上の出力を有する特定波長レーザー発信機と乱反射光を特定の角度で捉える検知機とを備え、煉瓦の自発光に影響されずに炉底部の凹凸を測定することを特徴とする請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置。The non-contact type distance meter includes a specific wavelength laser transmitter having an output of 30 kW or more and a detector that captures irregularly reflected light at a specific angle, and measures the unevenness of the bottom of the furnace without being affected by the self-light emission of the brick. The coke oven furnace bottom unevenness measuring device according to any one of claims 1 to 3 . 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の炉底までの距離を計測し、該計測した炉底までの距離と、予め想定しておいた距離との差異をほぼ連続的に求め、その差異を基にして補修方法を選定することを特徴とするコークス炉炉底補修方法。The distance to the bottom of the coke oven bottom brick is measured using the coke oven bottom unevenness measuring apparatus according to any one of claims 1 to 4 , and the distance to the measured bottom is assumed in advance. Coke furnace bottom repair method, characterized in that the difference from the distance placed is obtained almost continuously and the repair method is selected based on the difference. 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の炉底までの距離を計測し、該計測した炉底までの距離を既に測定した数値との比較し、各位置での周囲との相対凸部高さ又は相対凹部深さを検知し、補修方法を選定することを特徴とするコークス炉炉底補修方法。The distance from the coke oven bottom brick to the furnace bottom is measured using the coke oven bottom unevenness measuring device according to any one of claims 1 to 4 , and the measured distance to the furnace bottom has already been measured. The coke oven bottom repair method is characterized by detecting the relative convexity height or relative concave depth of the surroundings at each position and selecting a repairing method. 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の凹凸を測定し、該測定した凹凸に基づいて炉底煉瓦各部位に充填すべきモルタル量を定め、該定めた量のモルタルを炉底煉瓦各部位に充填し、充填後1時間以上にわたって炭化室を空窯にしてモルタルを焼成することにより炉底を平滑化することを特徴とするコークス炉炉底補修方法。The amount of mortar to be filled in each part of the furnace bottom brick based on the measured unevenness by measuring the unevenness of the coke oven bottom brick using the coke oven bottom unevenness measuring device according to any one of claims 1 to 4. Coke characterized in that the furnace bottom is smoothed by filling each part of the furnace bottom brick with the determined amount of mortar, and firing the mortar in an empty kiln for 1 hour or longer after filling. Furnace bottom repair method. 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置を用いてコークス炉炉底煉瓦の凹凸を測定し、該測定した炉底凹凸情報に基づいて、凸部を切削する部位及び/又は量を決め炉底を平滑化することを特徴とするコークス炉炉底補修方法。Using the coke oven furnace bottom unevenness measuring apparatus according to any one of claims 1 to 4, the unevenness of the coke oven furnace bottom brick is measured, and based on the measured furnace bottom unevenness information, a portion for cutting the protrusion, and A coke furnace bottom repair method characterized by determining the amount and / or smoothing the bottom. 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置と、該炉底凹凸測定装置によって測定した炉底凹凸情報に基づいて炉底各部に充填するモルタル充填量を算出する充填量演算装置と、該算出結果に基づいて炉底煉瓦にモルタルをモルタル粉としてあるいはスラリー状耐火物として流し込むための流し込み装置とを有し、前記押出ラム又は移動式炉内診断装置を移動させながら炉底各部の煉瓦損傷部にモルタルを充填させることを特徴とするコークス炉炉底補修装置。A coke oven bottom unevenness measuring device according to any one of claims 1 to 4 , and a filling amount for calculating a mortar filling amount to be filled in each part of the furnace bottom based on furnace bottom unevenness information measured by the furnace bottom unevenness measuring device. A calculation device and a pouring device for pouring mortar into the furnace bottom brick as mortar powder or as a slurry refractory based on the calculation result, while moving the extrusion ram or mobile in-furnace diagnostic device A coke oven furnace bottom repair device, in which a brick damaged part of each part of the bottom is filled with mortar. 請求項1乃至のいずれかに記載のコークス炉炉底凹凸測定装置と、該炉底凹凸測定装置を用いて測定した炉底凹凸情報に基づいて凸部を切削する凸部切削装置を有することを特徴とするコークス炉炉底補修装置。A coke oven bottom unevenness measuring device according to any one of claims 1 to 4 and a convex cutting device for cutting a convex based on furnace bottom unevenness information measured using the furnace bottom unevenness measuring device. Coke oven furnace bottom repair device.
JP2001227922A 2001-07-27 2001-07-27 Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device Expired - Fee Related JP4757408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001227922A JP4757408B2 (en) 2001-07-27 2001-07-27 Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001227922A JP4757408B2 (en) 2001-07-27 2001-07-27 Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device

Publications (2)

Publication Number Publication Date
JP2003041258A JP2003041258A (en) 2003-02-13
JP4757408B2 true JP4757408B2 (en) 2011-08-24

Family

ID=19060511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001227922A Expired - Fee Related JP4757408B2 (en) 2001-07-27 2001-07-27 Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device

Country Status (1)

Country Link
JP (1) JP4757408B2 (en)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004322281A (en) * 2003-04-28 2004-11-18 Kurosaki Harima Corp Grinding method of furnace inner surface
JP4864430B2 (en) * 2005-11-24 2012-02-01 株式会社タイホーコーザイ Coke oven coking chamber hearth powder repair agent and repair method
KR101345487B1 (en) * 2008-10-06 2013-12-27 신닛테츠스미킨 카부시키카이샤 Repair method and repair device for wall surface of coke oven chamber at bottom edge thereof
US7998316B2 (en) 2009-03-17 2011-08-16 Suncoke Technology And Development Corp. Flat push coke wet quenching apparatus and process
US9200225B2 (en) 2010-08-03 2015-12-01 Suncoke Technology And Development Llc. Method and apparatus for compacting coal for a coal coking process
JP5812289B2 (en) * 2012-03-01 2015-11-11 新日鐵住金株式会社 Water sealing device and dust discharging method
IN2015KN00248A (en) 2012-07-31 2015-06-12 Suncoke Technology & Dev Llc
US9359554B2 (en) 2012-08-17 2016-06-07 Suncoke Technology And Development Llc Automatic draft control system for coke plants
US9243186B2 (en) 2012-08-17 2016-01-26 Suncoke Technology And Development Llc. Coke plant including exhaust gas sharing
US9249357B2 (en) 2012-08-17 2016-02-02 Suncoke Technology And Development Llc. Method and apparatus for volatile matter sharing in stamp-charged coke ovens
US9169439B2 (en) 2012-08-29 2015-10-27 Suncoke Technology And Development Llc Method and apparatus for testing coal coking properties
EP2898048B8 (en) 2012-09-21 2020-08-12 SunCoke Technology and Development LLC Reduced output rate coke oven operation with gas sharing providing extended process cycle
US9273249B2 (en) 2012-12-28 2016-03-01 Suncoke Technology And Development Llc. Systems and methods for controlling air distribution in a coke oven
WO2014105063A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Systems and methods for maintaining a hot car in a coke plant
WO2014105065A1 (en) 2012-12-28 2014-07-03 Suncoke Technology And Development Llc. Vent stack lids and associated systems and methods
US10047295B2 (en) 2012-12-28 2018-08-14 Suncoke Technology And Development Llc Non-perpendicular connections between coke oven uptakes and a hot common tunnel, and associated systems and methods
CN104902984B (en) 2012-12-28 2019-05-31 太阳焦炭科技和发展有限责任公司 System and method for removing the mercury in emission
US9238778B2 (en) 2012-12-28 2016-01-19 Suncoke Technology And Development Llc. Systems and methods for improving quenched coke recovery
US9476547B2 (en) 2012-12-28 2016-10-25 Suncoke Technology And Development Llc Exhaust flow modifier, duct intersection incorporating the same, and methods therefor
US10883051B2 (en) 2012-12-28 2021-01-05 Suncoke Technology And Development Llc Methods and systems for improved coke quenching
US9193915B2 (en) 2013-03-14 2015-11-24 Suncoke Technology And Development Llc. Horizontal heat recovery coke ovens having monolith crowns
US9273250B2 (en) 2013-03-15 2016-03-01 Suncoke Technology And Development Llc. Methods and systems for improved quench tower design
CN104073269B (en) * 2013-03-29 2016-09-14 上海梅山钢铁股份有限公司 Coke oven charcoal bottom brick degree of depth method for maintaining
EP3090034B1 (en) * 2013-12-31 2020-05-06 Suncoke Technology and Development LLC Methods for decarbonizing coking ovens, and associated systems and devices
CA2954063C (en) 2014-06-30 2022-06-21 Suncoke Technology And Development Llc Horizontal heat recovery coke ovens having monolith crowns
UA123493C2 (en) 2014-08-28 2021-04-14 Санкоук Текнолоджі Енд Дівелепмент Ллк Method and system for optimizing coke plant operation and output
AU2015317909B2 (en) 2014-09-15 2020-11-05 Suncoke Technology And Development Llc Coke ovens having monolith component construction
US10975310B2 (en) 2014-12-31 2021-04-13 Suncoke Technology And Development Llc Multi-modal beds of coking material
EP3240862A4 (en) 2015-01-02 2018-06-20 Suncoke Technology and Development LLC Integrated coke plant automation and optimization using advanced control and optimization techniques
US11060032B2 (en) 2015-01-02 2021-07-13 Suncoke Technology And Development Llc Integrated coke plant automation and optimization using advanced control and optimization techniques
CA3203921A1 (en) 2015-12-28 2017-07-06 Suncoke Technology And Development Llc Method and system for dynamically charging a coke oven
EP3465369A4 (en) 2016-06-03 2020-01-15 Suncoke Technology and Development LLC Methods and systems for automatically generating a remedial action in an industrial facility
WO2018217955A1 (en) 2017-05-23 2018-11-29 Suncoke Technology And Development Llc System and method for repairing a coke oven
JP6502434B2 (en) * 2017-08-23 2019-04-17 株式会社メガテック Repair method of hearth brick of coke oven
US11098252B2 (en) 2018-12-28 2021-08-24 Suncoke Technology And Development Llc Spring-loaded heat recovery oven system and method
WO2020140079A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Decarbonizatign of coke ovens, and associated systems and methods
US11365355B2 (en) 2018-12-28 2022-06-21 Suncoke Technology And Development Llc Systems and methods for treating a surface of a coke plant
US11760937B2 (en) 2018-12-28 2023-09-19 Suncoke Technology And Development Llc Oven uptakes
BR112021012455B1 (en) 2018-12-28 2023-10-24 Suncoke Technology And Development Llc COKE OVEN
WO2020140086A1 (en) 2018-12-28 2020-07-02 Suncoke Technology And Development Llc Particulate detection for industrial facilities, and associated systems and methods
US11395989B2 (en) 2018-12-31 2022-07-26 Suncoke Technology And Development Llc Methods and systems for providing corrosion resistant surfaces in contaminant treatment systems
CA3125585C (en) 2018-12-31 2023-10-03 Suncoke Technology And Development Llc Improved systems and methods for utilizing flue gas
JP7393649B2 (en) 2020-03-10 2023-12-07 日本製鉄株式会社 Carbonization chamber repair machine
CA3177017C (en) 2020-05-03 2024-04-16 John Francis Quanci High-quality coke products
WO2023081821A1 (en) 2021-11-04 2023-05-11 Suncoke Technology And Development Llc Foundry coke products, and associated systems, devices, and methods
US11946108B2 (en) 2021-11-04 2024-04-02 Suncoke Technology And Development Llc Foundry coke products and associated processing methods via cupolas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293112A (en) * 1986-06-13 1987-12-19 Nippon Steel Corp Measuring instrument for width of coke furnace carbonizing chamber
JPH07243812A (en) * 1994-03-03 1995-09-19 Kawasaki Steel Corp Method and apparatus for measurement of worn-out amount of oven wall of coke oven
JP3848478B2 (en) * 1999-01-27 2006-11-22 新日本製鐵株式会社 Coke oven diagnostic repair device and diagnostic repair method
JP3603181B2 (en) * 1999-12-22 2004-12-22 Jfeスチール株式会社 Repair equipment for coke oven wall

Also Published As

Publication number Publication date
JP2003041258A (en) 2003-02-13

Similar Documents

Publication Publication Date Title
JP4757408B2 (en) Coke furnace bottom irregularity measuring device, furnace bottom repair method and repair device
JP5315341B2 (en) Thermal spray repair device and thermal spray repair method for coke oven
JPH06299156A (en) Method for removing deposited carbon of carbonization chamber of coke oven
CA3190471A1 (en) Systems and methods for non-contact boring
US8083982B2 (en) Method for repairing a protective lining of an industrial reaction or transport vessel
JP3848478B2 (en) Coke oven diagnostic repair device and diagnostic repair method
JP2019123784A (en) An inspection method at furnace building of a coke oven and a furnace building method of the coke oven
WO2003066775A1 (en) Furnace wall observation device and furnace wall shape measuring device
KR101604144B1 (en) Device for expelling the contents of coke chamber ovens having a low degree of heat exchange
JP5461768B2 (en) Coke oven carbonization chamber diagnostic method
JP4362391B2 (en) Furnace wall shape measuring method and furnace wall shape measuring apparatus
JP2004271446A (en) Method and instrument for measuring coal charge level in coke oven
JP4073281B2 (en) Coke oven carbonization chamber wall thickness evaluation method
JP4142333B2 (en) Coke oven coking chamber diagnostic method
JP4188919B2 (en) Diagnostic equipment for coke oven carbonization chamber
JP5907343B2 (en) Coke cake extrusion method
JP3689487B2 (en) Coke oven spraying repair device and repair method
JPH0765049B2 (en) Carbon removal method and apparatus for coke oven carbonization chamber
JP7306602B1 (en) Coke oven wall shape measuring method and coke oven wall repair method
JP3905832B2 (en) Coke oven diagnostic repair equipment
JP4102225B2 (en) Coke oven diagnostic repair method and diagnostic repair device
JP2019123839A (en) Thermal spray repairing method of coke oven
JP2001040359A (en) Process for operating coke oven
JP3562547B2 (en) Detection method of carbon adhesion in coke oven carbonization chamber
JP2005206727A (en) Method for repairing furnace wall of carbonizing chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

R151 Written notification of patent or utility model registration

Ref document number: 4757408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees