JP4753657B2 - Surface shape measuring apparatus and surface shape measuring method - Google Patents

Surface shape measuring apparatus and surface shape measuring method Download PDF

Info

Publication number
JP4753657B2
JP4753657B2 JP2005229311A JP2005229311A JP4753657B2 JP 4753657 B2 JP4753657 B2 JP 4753657B2 JP 2005229311 A JP2005229311 A JP 2005229311A JP 2005229311 A JP2005229311 A JP 2005229311A JP 4753657 B2 JP4753657 B2 JP 4753657B2
Authority
JP
Japan
Prior art keywords
light
light receiving
measurement
spot
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005229311A
Other languages
Japanese (ja)
Other versions
JP2007046937A (en
Inventor
清二 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2005229311A priority Critical patent/JP4753657B2/en
Publication of JP2007046937A publication Critical patent/JP2007046937A/en
Application granted granted Critical
Publication of JP4753657B2 publication Critical patent/JP4753657B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、測定物表面の輪郭形状を測定する表面形状測定装置及び表面形状測定方法に関し、特に測定物表面が鏡面である場合に、その輪郭形状を非接触で測定する表面形状測定装置及び表面形状測定方法に関する。   The present invention relates to a surface shape measuring device and a surface shape measuring method for measuring a contour shape of a surface of a measurement object, and particularly to a surface shape measuring device and a surface for measuring the contour shape in a non-contact manner when the surface of the measurement object is a mirror surface. The present invention relates to a shape measuring method.

従来から、測定物表面の輪郭形状を測定する方法として、触針を測定物表面に接触させながら沿わせて表面の凹凸によって生じる触針の変位を検出する触針法(例えば、下記特許文献1)と、測定物表面に光ビームを投射してその散乱光を受光素子で受けて測定物表面までの距離を計測する光走査式の形状計測法(例えば、下記特許文献2)が知られている。   Conventionally, as a method of measuring the contour shape of the surface of a measurement object, a stylus method for detecting displacement of the stylus caused by unevenness of the surface while bringing the stylus into contact with the surface of the measurement object (for example, Patent Document 1 below) ) And an optical scanning shape measurement method (for example, Patent Document 2 below) is known in which a light beam is projected onto the surface of the object to be measured and the scattered light is received by a light receiving element to measure the distance to the surface of the object to be measured. Yes.

このうち光走査式の形状計測法では、図1の(A)に示すように、投光部Sから測定物表面MP1に向けてスポット光を投射し、その結果生じる散乱光を受光面Rで受けた最大輝度位置P1を検出する。すると、測定物表面MP1と比べて投光部Sまでの距離が異なる測定面MP2では、散乱光を受光面Rで受けた最大輝度位置P2が、測定物表面MP1のときに検出された位置P1と異なるので、この位置の相違を利用して測定物表面までの距離を計測する。   Among them, in the optical scanning shape measurement method, as shown in FIG. 1A, spot light is projected from the light projecting portion S toward the measurement object surface MP1, and the resulting scattered light is reflected on the light receiving surface R. The received maximum luminance position P1 is detected. Then, on the measurement surface MP2 where the distance to the light projecting part S is different from the measurement object surface MP1, the position P1 detected when the maximum luminance position P2 at which the scattered light is received by the light receiving surface R is the measurement object surface MP1. Therefore, the distance to the surface of the object to be measured is measured using the difference in position.

特開平5−264213号公報JP-A-5-264213 特開2001−183117号公報JP 2001-183117 A

ところが、測定物として金型のような表面が鏡面仕上げされた物体の表面形状を測定しようとする場合には、上述のような触針法では測定物表面に傷を付けてしまうおそれがあるため、使用することはできないという問題点があった。
また、上述の従来の光走査式の形状計測法によると、測定物表面に投射した光ビームが表面で正反射してしまうために、投光部と測定物表面との間の距離だけでなく、光ビームの入射角度によっても受光面での受光位置が変化するため、測定物表面までの距離を計測することができないという問題点があった。この様子を図1の(B)に示す。
いま、鏡面MP3とMP1は投光部Sから等距離にあり、鏡面MP3は鏡面MP1に比べてやや傾いているものとする。このため測定物表面MP3及びMP1に入射した各スポット光が正反射した反射光は、受光面Rの異なる位置P3及びP1で受光されることになる。このように鏡面の表面形状測定に従来の光走査式の形状測定法を使用すると、測定物表面の未知の傾斜によって受光面上の受光位置が影響を受けるため、測定物表面までの距離を正確に計測することができない。
However, when the surface shape of an object having a mirror-finished surface such as a mold is to be measured as the measurement object, the surface of the measurement object may be damaged by the stylus method as described above. There was a problem that it could not be used.
In addition, according to the above-described conventional optical scanning shape measurement method, the light beam projected on the surface of the measurement object is regularly reflected on the surface, so that not only the distance between the light projecting portion and the surface of the measurement object Further, since the light receiving position on the light receiving surface changes depending on the incident angle of the light beam, there is a problem in that the distance to the surface of the measurement object cannot be measured. This state is shown in FIG.
Now, it is assumed that the mirror surfaces MP3 and MP1 are equidistant from the light projecting unit S, and the mirror surface MP3 is slightly inclined as compared to the mirror surface MP1. For this reason, the reflected light obtained by regular reflection of each spot light incident on the measurement object surfaces MP3 and MP1 is received at different positions P3 and P1 of the light receiving surface R. In this way, if the conventional optical scanning shape measurement method is used to measure the surface shape of the mirror surface, the light receiving position on the light receiving surface is affected by the unknown inclination of the surface of the object to be measured, so the distance to the surface of the object to be measured is accurate. Cannot be measured.

上記の問題点を鑑みて、本発明は、測定物表面が鏡面であってもその輪郭形状を非接触で測定する表面形状測定装置及び表面形状測定方法を提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a surface shape measuring device and a surface shape measuring method for measuring the contour shape in a non-contact manner even when the surface of the measurement object is a mirror surface.

上記目的を達成するために本発明では、投光部からのスポット光が、鏡面である測定物表面にて反射した反射光を受光する受光面を、その法線成分を含む方向に駆動し、受光面の法線方向の変位に伴う受光位置の変化に基づいて反射光の光軸位置を決定して、反射光の光軸とスポット光の投光軸との交差位置を測定物表面上の測定点の位置として決定する。   In order to achieve the above object, in the present invention, the spot light from the light projecting unit drives the light receiving surface that receives the reflected light reflected by the surface of the measurement object, which is a mirror surface, in the direction including the normal component, The optical axis position of the reflected light is determined based on the change of the light receiving position accompanying the displacement of the light receiving surface in the normal direction, and the intersection position of the optical axis of the reflected light and the light projecting axis of the spot light is determined on the surface of the measurement object. Determine the position of the measurement point.

すなわち、本発明の第1形態による表面形状測定装置は、鏡面である測定物表面にスポット光を投射する投光部と、測定物表面で反射したスポット光の反射光を受光する受光面を有する受光部と、を有し、測定物表面上の各測定点について、スポット光を投射してその反射光を受光部で受光し、受光面上の受光位置に基づいて該測定点の位置を求めることにより、測定物表面の表面形状を測定する表面形状測定装置であって、受光面をその法線成分を含む方向に駆動する受光面駆動部と、受光面の法線方向の変位に伴う受光位置の変化に基づいて反射光の光軸位置を決定する反射光軸位置決定部と、反射光の光軸とスポット光の投光軸との交差位置を測定点の位置として決定する位置測定部と、を備えて構成される。   That is, the surface shape measuring apparatus according to the first embodiment of the present invention has a light projecting unit that projects spot light onto the surface of the measurement object that is a mirror surface, and a light receiving surface that receives reflected light of the spot light reflected from the surface of the measurement object. A light receiving portion, and for each measurement point on the surface of the object to be measured, spot light is projected and the reflected light is received by the light receiving portion, and the position of the measurement point is obtained based on the light receiving position on the light receiving surface. A surface shape measuring device for measuring the surface shape of the surface of the object to be measured, the light receiving surface driving unit for driving the light receiving surface in a direction including the normal component thereof, and light reception accompanying displacement of the light receiving surface in the normal direction A reflected optical axis position determining unit that determines the optical axis position of the reflected light based on a change in position, and a position measuring unit that determines an intersection position between the optical axis of the reflected light and the projection axis of the spot light as the position of the measurement point And comprising.

投光部から投射されたスポット光は、測定物表面の傾斜方向に応じて様々な方向に反射する。表面形状測定装置は、測定点を順次変えていく間に反射光の受光位置が受光面の外へ飛び出してしまわないように、常に投光部及び受光面を測定物表面の傾斜に追従させて、受光位置が受光面の所定の位置(好適には中央)に位置するように制御することが望ましい。受光面上の受光位置の変更は、投光部及び受光部と測定物との相対位置を変える、あるいは投光部によるスポット光の投射方向を変えることにより可能であるが、表面形状測定を行う際には、各測定点すなわちスポット光の各投射位置同士の間隔にバラツキが生じないことが望ましい。   The spot light projected from the light projecting part is reflected in various directions according to the inclination direction of the surface of the measurement object. The surface shape measuring device always keeps the light projecting part and light receiving surface to follow the inclination of the surface of the measured object so that the reflected light receiving position does not jump out of the light receiving surface while changing the measurement point sequentially. It is desirable to control so that the light receiving position is located at a predetermined position (preferably in the center) of the light receiving surface. The light receiving position on the light receiving surface can be changed by changing the relative position between the light projecting unit and the light receiving unit and the measurement object, or by changing the projection direction of the spot light by the light projecting unit. In this case, it is desirable that there is no variation in the intervals between the measurement points, that is, the projection positions of the spot light.

このため、表面形状測定装置は、投光部と受光部とを有する測定ヘッドを測定物に対して相対移動させる測定ヘッド相対位置変更部と、測定ヘッドの向きを変更する測定ヘッド方向変更部と、測定ヘッド相対位置変更部によって測定ヘッドを測定物に対して相対移動させ、かつ測定ヘッド方向変更部によって測定ヘッドの向きを変更することによって、測定物表面上の投射位置を一定に保ったまま受光面上の受光位置を調整する投光軸調整部と、をさらに備えることが好適である。
そして、投光軸調整部は、受光面が受光面駆動部によって所定の位置(例えば全ストロークの中間点)に位置付けられた状態で、受光位置が受光面の所定の基準位置(例えば受光面中心)となるように調整してもよい。
For this reason, the surface shape measuring apparatus includes a measurement head relative position changing unit that moves a measurement head having a light projecting unit and a light receiving unit relative to the measurement object, and a measurement head direction changing unit that changes the orientation of the measurement head. The projection position on the surface of the measurement object is kept constant by moving the measurement head relative to the measurement object by the measurement head relative position changing unit and changing the direction of the measurement head by the measurement head direction changing unit. It is preferable to further include a light projection axis adjusting unit that adjusts the light receiving position on the light receiving surface.
The light projecting axis adjustment unit is configured such that the light receiving surface is positioned at a predetermined position (for example, an intermediate point of all strokes) by the light receiving surface driving unit and the light receiving position is a predetermined reference position (for example, the center of the light receiving surface). You may adjust so that it may become.

このように投光部の投光軸を調整することにより、表面形状測定装置が測定点を順次変えていく間に反射光の受光位置が受光面の外へ飛び出してしまうことを防止することが可能となり、かつこの投光軸調整の際にスポット光の各投射位置(測定点)が大きく移動して各測定点の間隔にバラツキが生じることを防止する。   By adjusting the light projecting axis of the light projecting unit in this way, it is possible to prevent the light receiving position of the reflected light from jumping out of the light receiving surface while the surface shape measuring device sequentially changes the measurement points. In addition, it is possible to prevent the projection positions (measurement points) of the spot light from greatly moving and adjusting the intervals between the measurement points when the projection axis is adjusted.

また後述するように、投光部と受光部とを、スポット光の投光軸と受光面の所定の法線とが同一平面に含まれるように測定ヘッドに設け、スポット光の投光軸と受光面の所定の法線とを含む平面をある基準面に直交させたまま測定物表面へのスポット光の入射角度を変化させるように測定ヘッドの姿勢(方向)を制御する場合を考える。
このとき、測定物表面に入射するスポット光の上記基準面に対する入射方位と、基準面に対する測定物表面の傾斜方向とが一致していれば、測定物表面で反射したスポット光が入射方位と基準面において反対側の方位に反射されるため、入射角度が変化しても、受光面上の受光位置は投光軸及び受光面の所定の法線を含む平面と受光面とが交差する直線内で移動する。
Further, as will be described later, the light projecting unit and the light receiving unit are provided in the measuring head so that the light projecting axis of the spot light and the predetermined normal line of the light receiving surface are included in the same plane, Consider a case where the posture (direction) of the measuring head is controlled so that the incident angle of the spot light on the surface of the object to be measured is changed while a plane including a predetermined normal line of the light receiving surface is orthogonal to a certain reference surface.
At this time, if the incident azimuth of the spot light incident on the surface of the measurement object with respect to the reference surface matches the inclination direction of the surface of the measurement object with respect to the reference surface, the spot light reflected on the surface of the measurement object is converted into the incident azimuth and the reference Since the light is reflected in the opposite direction on the surface, the light receiving position on the light receiving surface is within the straight line where the light receiving surface and the plane including the predetermined normal of the light receiving surface and the light receiving surface intersect even if the incident angle changes. Move with.

このような幾何学的関係を利用することにより、表面形状測定装置は、所定の基準面に対する測定点における測定物表面の傾斜方向を測定する決定する傾斜方向決定部をさらに備えてもよい。
そして、スポット光の投光軸と受光面の所定の法線とが同一平面に含まれるように、投光部と受光部とが設けられる測定ヘッドと、測定ヘッドの向きを変更する測定ヘッド方向変更部と、を備えて構成し、傾斜方向決定部は、測定ヘッド方向変更部によって、スポット光の投光軸と受光面の所定の法線とを含む平面を所定の基準面に直交させた状態で、測定物表面へのスポット光の入射角度を変化させ、このとき入射角度の変化に伴う受光位置の移動が、投光軸及び受光面の所定の法線を含む平面と受光面とが交差する直線上で生じる、スポット光の測定物表面への入射方位を探索して、該入射方位を、測定物表面の傾斜方向として決定することとしてよい。
測定物表面の傾斜方向にスポット光が入射するとき、測定物表面の法線方向は、スポット光の投光軸方向と反射光の光軸方向とが成す角度の2等分線の方向と等しくなる。ここでスポット光の光軸の方向は既知であり、反射光の光軸の方向もまた上述の通り測定可能である。したがって、前記測定物表面の法線方向を、スポット光の投光軸方向と反射光の光軸方向とが成す角度の2等分線の方向として決定することが可能である。表面形状測定装置は、このようにして前記測定物表面の法線方向を決定する法線方向決定部を備えて構成してもよい。
なお、上記スポット光としては、受光面における受光位置を明瞭に測定するため平行光が好適に使用される。
By utilizing such a geometric relationship, the surface shape measuring apparatus may further include an inclination direction determining unit that determines an inclination direction of the surface of the measurement object at a measurement point with respect to a predetermined reference plane.
And the measuring head in which the light projecting part and the light receiving part are provided so that the light projecting axis of the spot light and the predetermined normal of the light receiving surface are included in the same plane, and the direction of the measuring head for changing the direction of the measuring head And the tilt direction determination unit made the plane including the light projection axis of the spot light and the predetermined normal of the light receiving surface orthogonal to the predetermined reference plane by the measuring head direction changing unit. In this state, the incident angle of the spot light on the surface of the object to be measured is changed.At this time, the movement of the light receiving position accompanying the change in the incident angle is such that the plane including the light projecting axis and the predetermined normal of the light receiving surface and the light receiving surface are The incident azimuth of the spot light incident on the surface of the measurement object generated on the intersecting straight line may be searched to determine the incident azimuth as the inclination direction of the surface of the measurement object.
When spot light is incident in the tilt direction of the surface of the measurement object, the normal direction of the surface of the measurement object is equal to the bisector of the angle formed by the projection axis direction of the spot light and the optical axis direction of the reflected light. Become. Here, the direction of the optical axis of the spot light is known, and the direction of the optical axis of the reflected light can also be measured as described above. Therefore, the normal direction of the surface of the measurement object can be determined as the direction of the bisector of the angle formed by the light projection axis direction of the spot light and the optical axis direction of the reflected light. The surface shape measuring apparatus may include a normal direction determining unit that determines the normal direction of the surface of the measurement object in this way.
As the spot light, parallel light is preferably used in order to clearly measure the light receiving position on the light receiving surface.

さらに、本発明の第2形態による表面形状測定方法では、鏡面である測定物表面上の各測定点について、スポット光を投射してその反射光を受光面で受光し、この受光面上の受光位置に基づいて該測定点の位置を求めることにより、測定物表面の表面形状を測定する表面形状測定方法において、受光面をその法線成分を含む方向に駆動し、受光面の法線方向の変位に伴う受光位置の変化に基づいて反射光の光軸位置を決定し、反射光の光軸とスポット光の投光軸との交差位置を測定点の位置として決定する。   Furthermore, in the surface shape measuring method according to the second embodiment of the present invention, spot light is projected at each measurement point on the surface of the measurement object that is a mirror surface, and the reflected light is received by the light receiving surface. In the surface shape measurement method for measuring the surface shape of the surface of the measurement object by determining the position of the measurement point based on the position, the light receiving surface is driven in a direction including the normal component thereof, and the normal direction of the light receiving surface is determined. The optical axis position of the reflected light is determined based on the change of the light receiving position accompanying the displacement, and the intersection position between the optical axis of the reflected light and the light projection axis of the spot light is determined as the position of the measurement point.

このとき、投光部と受光部とを有する測定ヘッドを測定物に対して相対移動させ、かつ測定ヘッドの向きを変更することにより、測定物表面上の投射位置を一定に保ったまま受光面上の受光位置を調整することとしてよい。さらに受光面が受光面駆動部によって所定の位置に位置付けられた状態で、受光位置が受光面の所定の基準位置となるように調整してもよい。   At this time, by moving the measuring head having the light projecting portion and the light receiving portion relative to the measurement object and changing the direction of the measurement head, the light receiving surface is maintained with the projection position on the surface of the measurement object kept constant. The upper light receiving position may be adjusted. Further, the light receiving position may be adjusted to be a predetermined reference position of the light receiving surface in a state where the light receiving surface is positioned at a predetermined position by the light receiving surface driving unit.

またさらに、スポット光の投光軸と受光面の所定の法線とが同一平面に含まれるように投光部と受光面とを測定ヘッドに設け、測定ヘッドの向きを変えることによって測定物表面へのスポット光の入射方位を変更し、各入射方位において測定ヘッドの向きを変えることによってスポット光の投光軸と受光面の所定の法線とを含む平面を所定の基準面に直交させた状態で、測定物表面へのスポット光の入射角度を変化させ、このときの入射角度の変化に伴う受光位置の移動が、スポット光の投光軸及び受光面の所定の法線を含む平面と受光面とが交差する直線上で生じる、スポット光の入射方位を、所定の基準面に対するスポット光の投射位置における測定物表面の傾斜方向として決定してもよい。
また、決定された前記傾斜方向に前記スポット光の入射方位を方向付けた状態で決定される前記反射光の光軸の方向と、前記スポット光の既知の投光軸の方向と、に基づいて前記測定物表面の法線方向を決定することとしてもよい。
Furthermore, the surface of the object to be measured is provided by providing the light projecting portion and the light receiving surface on the measuring head so that the light projecting axis of the spot light and the predetermined normal of the light receiving surface are included in the same plane, and changing the direction of the measuring head. The plane including the light projection axis of the spot light and the predetermined normal line of the light receiving surface is made orthogonal to the predetermined reference plane by changing the incident direction of the spot light on the surface and changing the direction of the measuring head in each incident direction In the state, the incident angle of the spot light on the surface of the object to be measured is changed, and the movement of the light receiving position accompanying the change in the incident angle at this time is a plane including the light projection axis of the spot light and a predetermined normal line of the light receiving surface. The incident direction of the spot light generated on the straight line intersecting the light receiving surface may be determined as the inclination direction of the surface of the measurement object at the projection position of the spot light with respect to a predetermined reference surface.
Further, based on the direction of the optical axis of the reflected light determined in a state where the incident direction of the spot light is oriented in the determined tilt direction, and the direction of the known light projecting axis of the spot light The normal direction of the surface of the measurement object may be determined.

本発明によって、表面が鏡面である測定物の輪郭形状を、表面を傷つけることなく正確に測定することが可能となる。   According to the present invention, it is possible to accurately measure the contour shape of a measurement object having a mirror surface without damaging the surface.

以下、添付する図面を参照して本発明の実施例を説明する。図2は、本発明の実施例による表面形状測定装置の全体斜視図である。表面形状測定装置1は、測定物である金型などの表面が鏡面仕上げされたワークを載置するためのテーブル2と、テーブル2上に表面形状を非接触で検出するための測定ヘッド3と、測定ヘッド3を支持しながら互いに直交する3軸を回転軸として測定ヘッド3を自在に回転させて、測定ヘッド3の方向(姿勢)に自在に変更可能なヘッド方向変更機構4と、このヘッド方向変更機構4を支持しながらこのヘッド方向変更機構4をXYZ方向のいずれの方向にも移動可能なヘッド位置変更機構5を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 2 is an overall perspective view of the surface shape measuring apparatus according to the embodiment of the present invention. The surface shape measuring apparatus 1 includes a table 2 for placing a workpiece such as a mold as a measurement object whose surface is mirror-finished, and a measuring head 3 for detecting the surface shape on the table 2 in a non-contact manner. The head direction changing mechanism 4 that can freely change the direction (posture) of the measuring head 3 by freely rotating the measuring head 3 around the three axes orthogonal to each other while supporting the measuring head 3, and the head A head position changing mechanism 5 capable of moving the head direction changing mechanism 4 in any of the XYZ directions while supporting the direction changing mechanism 4 is provided.

図3は、図2に示す測定ヘッド3の断面図である。測定ヘッド3は、ワーク表面に平行光であるスポット光を投射する投光部6と、ワーク表面で反射したスポット光の正反射光を受光する受光面71を有する受光部7とを備える。このような受光面71としては2次元CCDや2次元PSDなど、入射光を2次元平面で受けて受光位置の2次元座標に応じた信号を出力する素子を利用する。
投光部6は、発光部61と、略点光源である発光部61からの発光光を平行光へと変える照明レンズ62と、照明レンズ62を通過した平行光の中心部以外を遮蔽してスポット光を作るアパーチャ板63と、を備えて構成する。
受光部7は、スポット光の正反射光を受光する受光面71と、スポット光の正反射光を受光面71に集光する集光レンズ72と、受光面71の法線方向に伸長する直動ガイド73と、直動ガイド73に沿って受光面71を駆動する受光面駆動部74と、を備えている。
FIG. 3 is a cross-sectional view of the measuring head 3 shown in FIG. The measuring head 3 includes a light projecting unit 6 that projects spot light, which is parallel light, on the work surface, and a light receiving unit 7 that has a light receiving surface 71 that receives regular reflection light of the spot light reflected on the work surface. As such a light receiving surface 71, an element such as a two-dimensional CCD or a two-dimensional PSD that receives incident light on a two-dimensional plane and outputs a signal corresponding to the two-dimensional coordinates of the light receiving position is used.
The light projecting unit 6 shields other than the light emitting unit 61, the illumination lens 62 that changes the emitted light from the light emitting unit 61 that is a substantially point light source to parallel light, and the central part of the parallel light that has passed through the illumination lens 62. And an aperture plate 63 for producing spot light.
The light receiving unit 7 includes a light receiving surface 71 that receives specularly reflected light of the spot light, a condensing lens 72 that collects the specularly reflected light of the spot light on the light receiving surface 71, and a straight line that extends in the normal direction of the light receiving surface 71. A moving guide 73 and a light receiving surface driver 74 that drives the light receiving surface 71 along the linear guide 73 are provided.

そして、これら投光部6と受光部7とは、投光部6のスポット光の投光軸と、受光面71の所定の法線とが同一平面(以下、「光軸面LP」と記す)に含まれるように、測定ヘッド3に固定される。例えば、投光部6のスポット光の投光軸と、受光面71の中心Cを通過する受光面71の法線と、が上記光軸面LPに含まれるように、投光部6と受光部7とを測定ヘッド3内に設けてよい。   In the light projecting unit 6 and the light receiving unit 7, the light projecting axis of the spot light of the light projecting unit 6 and the predetermined normal line of the light receiving surface 71 are the same plane (hereinafter referred to as “optical axis surface LP”). ) To be fixed to the measuring head 3. For example, the light projecting unit 6 and the light receiving unit 6 receive light so that the light projecting axis of the spot light of the light projecting unit 6 and the normal line of the light receiving surface 71 passing through the center C of the light receiving surface 71 are included in the optical axis plane LP. The unit 7 may be provided in the measurement head 3.

図2に戻って、ヘッド位置変更機構5は、測定ヘッド3が設けられたヘッド方向変更機構4を支持する可動部材51と、可動部材51を支持する一方でY方向に駆動することが可能なY方向駆動部52と、Y方向駆動部52を支持する一方でX方向に駆動することが可能なX方向駆動部53と、X方向駆動部53を支持する一方でZ方向に駆動することが可能なコラム54と、を備えている。   Returning to FIG. 2, the head position changing mechanism 5 can be driven in the Y direction while supporting the movable member 51 that supports the head direction changing mechanism 4 provided with the measurement head 3 and the movable member 51. The Y-direction drive unit 52, the X-direction drive unit 53 capable of driving in the X direction while supporting the Y-direction drive unit 52, and driving in the Z-direction while supporting the X-direction drive unit 53 are supported. And a possible column 54.

したがって、ヘッド位置変更機構5は、測定ヘッド3を測定物であるワークに対して相対移動させることが可能であり、ここに本願特許請求の範囲に係る測定ヘッド相対位置変更部を成す。なお本実施例においては、測定ヘッド相対位置変更部は、測定ヘッド3を移動させることによって測定ヘッド3とワークとの相対移動を実現させることとしたが、これに代えて又はこれに加えて、ワーク側を移動させることによって測定ヘッド3とワークとの相対移動を実現させてもよく。このためにワークをXYZ方向のうちのいずれかに、又はそのいずれにも移動可能なワーク移動機構を設けてもよい。   Therefore, the head position changing mechanism 5 can move the measuring head 3 relative to the workpiece, which is a measurement object, and forms a measuring head relative position changing unit according to the claims of the present application. In this embodiment, the measurement head relative position changing unit realizes the relative movement between the measurement head 3 and the workpiece by moving the measurement head 3, but instead of or in addition to this, The relative movement between the measuring head 3 and the workpiece may be realized by moving the workpiece side. For this purpose, a workpiece moving mechanism that can move the workpiece in any of the XYZ directions or any of them may be provided.

図4の(A)は、図2に示すヘッド方向変更機構4の斜視図である。ヘッド方向変更機構4は、互いに直交する3軸方向を軸とした回転運動を与える第1モータ41、第2モータ42、及び第3モータ43を備える。
ここで第1モータは、測定ヘッド3を支持しつつ、上記測定ヘッド3の光軸面LPに垂直な第1の方向を回転軸として測定ヘッド3を回転駆動可能である。また第2モータは、第1モータを支持しつつ、図中のXY平面内において第1の方向と直交する第2の方向を回転軸として第1モータを回転駆動可能である。さらに第3モータは、第2モータを支持しつつ、Z軸方向を回転軸として第2モータを回転駆動可能である。
4A is a perspective view of the head direction changing mechanism 4 shown in FIG. The head direction changing mechanism 4 includes a first motor 41, a second motor 42, and a third motor 43 that give a rotational motion about three axial directions orthogonal to each other.
Here, the first motor can rotate and drive the measurement head 3 with the first direction perpendicular to the optical axis plane LP of the measurement head 3 as a rotation axis while supporting the measurement head 3. In addition, the second motor can rotate the first motor about the second direction orthogonal to the first direction in the XY plane in the drawing while supporting the first motor. Furthermore, the third motor can rotate the second motor about the Z-axis direction as a rotation axis while supporting the second motor.

このようにヘッド方向変更機構4は、直交する3軸方向を軸とした回転運動を与える各モータ41〜43を備えることにより、測定ヘッド3を支持しながら互いに直交する3軸を回転軸として測定ヘッド3を回転させてワークに入射するスポット光の入射角度及び入射方位を自在に変更することが可能である。ここにヘッド方向変更機構4は、本願特許請求の範囲に係る測定ヘッド方向変更部を成す。なお本実施例においては、測定ヘッド3自体の向きを変更することによってワークに入射するスポット光の入射角度及び入射方位を変更することとしたが、これに代えて又はこれに加えて、ワーク側を3軸方向に回転させつつワークを移動することにより、ワークに入射するスポット光の入射角度及び入射方位を相対的に変化させることにより実現してもよく、このために互いに直交する3軸のいずれか、又は全ての軸を回転軸としてワークを回転させるワーク方向変更機構と、XYZ方向のうちのいずれかに、又はそのいずれにも移動可能なワーク移動機構を設けてもよい。   As described above, the head direction changing mechanism 4 includes the motors 41 to 43 that give rotational motion about the three orthogonal axes, thereby measuring the three axes orthogonal to each other while supporting the measuring head 3. It is possible to freely change the incident angle and incident direction of the spot light incident on the work by rotating the head 3. Here, the head direction changing mechanism 4 forms a measuring head direction changing unit according to the claims of the present application. In the present embodiment, the incident angle and the incident direction of the spot light incident on the workpiece are changed by changing the direction of the measuring head 3 itself, but instead of or in addition to this, the workpiece side May be realized by relatively changing the incident angle and the incident azimuth of the spot light incident on the workpiece by moving the workpiece while rotating the three-axis direction. You may provide the workpiece | work direction change mechanism which rotates a workpiece | work using one or all the axes as a rotating shaft, and the workpiece | work movement mechanism which can move to either of XYZ directions or any of them.

図5は、図1の表面形状測定装置1のブロック図である。表面形状測定装置1は、上述のヘッド方向変更機構4とヘッド位置変更機構5を駆動して、測定ヘッド3の位置及び方向を制御するヘッド制御部81と、受光面71から出力された反射光の受光位置を示すアナログ信号を入力してディジタル形式の位置信号として出力する信号処理回路82とを、備える。またヘッド制御部81は、受光面駆動部74を制御して受光面71をその法線方向に移動させて、受光面71の位置を制御する。   FIG. 5 is a block diagram of the surface shape measuring apparatus 1 of FIG. The surface shape measuring apparatus 1 drives the head direction changing mechanism 4 and the head position changing mechanism 5 described above to control the position and direction of the measuring head 3 and the reflected light output from the light receiving surface 71. And a signal processing circuit 82 for inputting an analog signal indicating the light receiving position and outputting it as a digital position signal. The head controller 81 controls the position of the light receiving surface 71 by controlling the light receiving surface driving unit 74 to move the light receiving surface 71 in the normal direction.

また、表面形状測定装置1は、受光面駆動部74によって受光面71を変位させ、そのとき生じる受光面71上で受光位置の変化に基づいてワーク表面で反射した反射光の光軸の測定ヘッド3からの相対位置を決定する反射光軸位置決定部83と、この反射光の光軸と既知のスポット光の投光軸との交差位置を、各測定点の測定ヘッド3からの相対位置として決定する位置測定部84と、ヘッド位置変更機構5及びヘッド方向変更機構4によって測定ヘッド3を各測定点の測定位置に位置付けながら、位置測定部84からの相対位置情報を読み取って、既知の測定ヘッド3の位置及び方向情報に基づいて各測定点の位置を算出して、ワークの表面形状を算出する表面形状算出部85を備える。   Further, the surface shape measuring apparatus 1 displaces the light receiving surface 71 by the light receiving surface driving unit 74 and measures the optical axis of the reflected light reflected from the workpiece surface based on the change in the light receiving position on the light receiving surface 71 that occurs at that time. And the intersection position of the optical axis of the reflected light and the projection axis of the known spot light as the relative position from the measurement head 3 at each measurement point. While positioning the measurement head 3 at the measurement position of each measurement point by the position measurement unit 84 to be determined, the head position change mechanism 5 and the head direction change mechanism 4, the relative position information from the position measurement unit 84 is read and a known measurement is performed. A surface shape calculation unit 85 is provided that calculates the position of each measurement point based on the position and direction information of the head 3 and calculates the surface shape of the workpiece.

さらに、表面形状測定装置1は、ヘッド位置機構5によって測定ヘッド3を移動させ、かつヘッド方向変更機構4によって測定ヘッド3の向きを変更することによって、ワーク表面上に投射されたスポット光の投射位置を一定に保ったまま受光面71上の受光位置を調整する投光軸調整部86を備える。
さらにまた、表面形状測定装置1は、例えばテーブル2面(XY面)などに予め定めた基準面に対する、ワークの測定点における傾斜方向を決定する傾斜方向決定部87を備える。さらに、表面形状測定装置1は、上記のような基準面に対するワークの測定面における法線方向を決定する法線方向決定部88を備える。
Furthermore, the surface shape measuring apparatus 1 projects the spot light projected on the workpiece surface by moving the measuring head 3 by the head position mechanism 5 and changing the direction of the measuring head 3 by the head direction changing mechanism 4. A light projection axis adjusting unit 86 is provided for adjusting the light receiving position on the light receiving surface 71 while keeping the position constant.
Furthermore, the surface shape measuring apparatus 1 includes an inclination direction determining unit 87 that determines an inclination direction at a measurement point of a workpiece with respect to a reference surface predetermined on, for example, the table 2 surface (XY surface). Furthermore, the surface shape measuring apparatus 1 includes a normal direction determining unit 88 that determines the normal direction on the measurement surface of the workpiece with respect to the reference surface as described above.

図6を参照して、本発明の実施例による表面形状測定方法を説明する。上述の表面形状算出部85は、ヘッド位置変更機構5及びヘッド方向変更機構4によって測定ヘッド3をワーク上の測定点の測定位置に位置付ける。投光部6はワーク表面(測定面MP)に対してスポット光を投射し、受光部7は測定面MPで正反射した反射光をその受光面71の受光位置Aで受光する(図6の(A))。反射光軸位置決定部83は、このときの位置Aを記憶する。   With reference to FIG. 6, a surface shape measuring method according to an embodiment of the present invention will be described. The above-described surface shape calculation unit 85 positions the measurement head 3 at the measurement position of the measurement point on the workpiece by the head position change mechanism 5 and the head direction change mechanism 4. The light projecting unit 6 projects spot light onto the workpiece surface (measurement surface MP), and the light receiving unit 7 receives the reflected light regularly reflected by the measurement surface MP at the light receiving position A of the light receiving surface 71 (FIG. 6). (A)). The reflected optical axis position determining unit 83 stores the position A at this time.

次に、反射光軸位置決定部83は、受光面駆動部74によって受光面71をその法線方向に変位させて位置71’に位置付ける。そしてその状態で受光部7は測定面MPで正反射した反射光をその受光面71の受光位置Bで受光する(図6の(B))。反射光軸位置決定部83は、このときの位置Bを記憶する。
すると、受光面71の既知の位置71(図6の(A))及び既知の位置71’(図6の(A))並びに記憶した位置A及びBによって、測定面MPで正反射した反射光の光軸が通る2点の座標が明らかになるため、反射光軸位置決定部83は、これら位置情報に基づいて、測定面MPで正反射した反射光の光軸の測定ヘッド3からの相対位置を決定する。
Next, the reflected optical axis position determining unit 83 displaces the light receiving surface 71 in the normal direction by the light receiving surface driving unit 74 and positions the light receiving surface 71 at the position 71 ′. In this state, the light receiving unit 7 receives the reflected light regularly reflected by the measurement surface MP at the light receiving position B of the light receiving surface 71 ((B) of FIG. 6). The reflected optical axis position determining unit 83 stores the position B at this time.
Then, the reflected light regularly reflected on the measurement surface MP by the known position 71 (FIG. 6A) and the known position 71 ′ (FIG. 6A) of the light receiving surface 71 and the stored positions A and B. Since the coordinates of the two points through which the optical axis passes are clarified, the reflected optical axis position determining unit 83 determines the relative optical axis of the reflected light regularly reflected by the measurement surface MP from the measurement head 3 based on the position information. Determine the position.

測定面MP上の測定点Pは反射光の光軸と投射光の光軸の交点として算出でき、また、投射光の光軸の測定ヘッド3からの相対位置は既知であるので、位置測定部84は、反射光の光軸の測定ヘッド3からの相対位置と投射光の光軸の測定ヘッド3からの相対位置とに基づいて、これら2つの光軸の交点として測定面MP上の測定点Pの測定ヘッド3からの相対位置を算出する。
そして表面形状算出部85は、ワーク上の各測定点において、位置測定部84からの相対位置情報を読み取って、既知の測定ヘッド3の位置及び方向情報に基づいて各測定点の位置を算出して、ワークの表面形状を算出する。
Since the measurement point P on the measurement surface MP can be calculated as the intersection of the optical axis of the reflected light and the optical axis of the projection light, and the relative position of the optical axis of the projection light from the measurement head 3 is known, the position measurement unit 84 is a measurement point on the measurement surface MP as an intersection of these two optical axes based on the relative position of the optical axis of the reflected light from the measurement head 3 and the relative position of the optical axis of the projection light from the measurement head 3. The relative position of P from the measuring head 3 is calculated.
Then, the surface shape calculation unit 85 reads the relative position information from the position measurement unit 84 at each measurement point on the workpiece, and calculates the position of each measurement point based on the known position and direction information of the measurement head 3. The surface shape of the workpiece is calculated.

図7は、図5に示す投光軸調整部86によるスポット光の光軸の調整方法の説明図である。上述の通り、表面形状測定装置1は、測定点Pを順次変えていく間に反射光の受光位置が受光面71の外へ飛び出してしまわないように、常に測定ヘッド3を測定物表面の傾斜に追従させて、受光面71上の受光位置が受光面71の所定の位置(好適には受光面71中央)に位置するように制御することが望ましい。またこのとき測定ヘッド3を移動及び回転させることによりスポット光の投射位置(測定点)が大きく移動してしまうことを防止し、各測定点の間隔にバラツキが生じることを防止する必要がある。   FIG. 7 is an explanatory diagram of a method of adjusting the optical axis of the spot light by the light projection axis adjusting unit 86 shown in FIG. As described above, the surface shape measuring apparatus 1 always tilts the measurement head 3 so that the light receiving position of the reflected light does not jump out of the light receiving surface 71 while the measurement points P are sequentially changed. It is desirable that the light receiving position on the light receiving surface 71 is controlled to be located at a predetermined position (preferably at the center of the light receiving surface 71). Further, at this time, it is necessary to prevent the projection position (measurement point) of the spot light from moving greatly by moving and rotating the measurement head 3 and to prevent variation in the interval between the measurement points.

そこで、投光軸調整部86は、各測定点にて位置Pの算出が終了する都度、ヘッド位置変更機構5によって測定ヘッド3をワークに対して相対移動させ、かつ測定ヘッド方向変更部によって測定ヘッドの向きを変更することにより、受光面71が所定のニュートラル位置にあるとき、受光位置が受光面71の中央Cの位置に位置するように測定ヘッド3の位置及び姿勢を微調整する。   Therefore, each time the calculation of the position P is completed at each measurement point, the light projecting axis adjustment unit 86 moves the measurement head 3 relative to the workpiece by the head position change mechanism 5 and measures by the measurement head direction change unit. By changing the direction of the head, when the light receiving surface 71 is at a predetermined neutral position, the position and posture of the measuring head 3 are finely adjusted so that the light receiving position is located at the center C of the light receiving surface 71.

投光軸調整部86が、このような測定ヘッド3の姿勢の調整を、各測定点における位置算出後の次の測定点に測定ヘッド3を移動する前に行うことにより、投光部6のスポット光が現在の投射位置Pを既知のものとすることができる。また測定ヘッド3の位置や投光部6のスポット光の光軸位置も既知であるので、投光軸調整部86は投光部6のスポット光がこの位置Pに投射する状態を維持させながら、ヘッド位置変更機構5によって測定ヘッド3をワークに対して相対移動させ、かつ測定ヘッド方向変更部によって測定ヘッドの向きを変更することができる。   The light projection axis adjustment unit 86 performs such adjustment of the posture of the measurement head 3 before moving the measurement head 3 to the next measurement point after calculating the position at each measurement point. The spot light can make the current projection position P known. Further, since the position of the measuring head 3 and the optical axis position of the spot light of the light projecting unit 6 are also known, the light projecting axis adjusting unit 86 maintains the state in which the spot light of the light projecting unit 6 projects to this position P. The measuring head 3 can be moved relative to the workpiece by the head position changing mechanism 5 and the direction of the measuring head can be changed by the measuring head direction changing unit.

例えば図7の(B)の例では、測定ヘッド3を図の矢印91に示す方向に移動させ、図の矢印92に示す方向に回転させることで投光部6のスポット光の投射位置Pを一定に保ちながら、受光位置が受光面71の中央Cの位置に位置するように測定ヘッド3の位置及び姿勢を微調整する。または、単純に、スポット光の投光軸と平行な方向である矢印97の方向に測定ヘッド3を移動させることで、投射位置Pを一定に保ちながら測定ヘッド3の位置を微調整する。   For example, in the example of FIG. 7B, the projection position P of the spot light of the light projecting unit 6 is set by moving the measuring head 3 in the direction indicated by the arrow 91 in the figure and rotating it in the direction indicated by the arrow 92 in the figure. While keeping constant, the position and posture of the measuring head 3 are finely adjusted so that the light receiving position is located at the center C of the light receiving surface 71. Alternatively, the position of the measurement head 3 is finely adjusted while keeping the projection position P constant by simply moving the measurement head 3 in the direction of an arrow 97 that is parallel to the light projection axis of the spot light.

投光軸調整部86は、既知のスポット光の投射位置P、スポット光の光軸位置と、受光位置Aの位置情報に基づいて、投射位置Pにおける測定面MPの傾斜方向を算出して、受光位置が受光面71の中央Cの位置に位置するように測定ヘッド3の位置及び姿勢を調整する移動量及び回転量を算出することとしてよい。
又は、投光軸調整部86は、測定ヘッド3の位置及び姿勢を各方向に微動させながら、それぞれの場合の受光位置の変化方向を求めて、受光位置が受光面71の中央Cの方向に移動する位置及び姿勢の変化方向を取得し、この受光位置が受光面71の中央Cに至るまで変化方向に調整してもよい。
The light projection axis adjustment unit 86 calculates the inclination direction of the measurement surface MP at the projection position P based on the known projection position P of the spot light, the optical axis position of the spot light, and the position information of the light reception position A, The amount of movement and the amount of rotation for adjusting the position and orientation of the measuring head 3 may be calculated so that the light receiving position is located at the center C of the light receiving surface 71.
Alternatively, the light projection axis adjusting unit 86 obtains the change direction of the light receiving position in each case while finely moving the position and orientation of the measuring head 3 in each direction, and the light receiving position is in the direction of the center C of the light receiving surface 71. The moving direction and the changing direction of the posture may be acquired, and the light receiving position may be adjusted in the changing direction until it reaches the center C of the light receiving surface 71.

図8〜図10を参照して、図2の表面形状測定装置1を用いた測定面の傾斜方向を決定する方法を説明する。以下、図8の(A)に示すような所定の基準面RPに対する測定面MPの傾斜方向を測定する場合を考える。なおこの基準面RPは、図2に示した表面形状測定装置1のステージ2のXYZ座標系に対して自由に設定してよく、単純にステージ2のXY面と考えてもよい。以下説明の簡単のため基準面RP内の直交する2方向をX2軸及びY2軸とし、基準面RPに直交する方向をZ2軸と定めることとする。   With reference to FIGS. 8-10, the method to determine the inclination direction of the measurement surface using the surface shape measuring apparatus 1 of FIG. 2 is demonstrated. Hereinafter, a case where the inclination direction of the measurement surface MP with respect to a predetermined reference surface RP as shown in FIG. The reference plane RP may be freely set with respect to the XYZ coordinate system of the stage 2 of the surface shape measuring apparatus 1 shown in FIG. 2, and may simply be considered as the XY plane of the stage 2. For the sake of simplicity, the two orthogonal directions in the reference plane RP are defined as the X2 axis and the Y2 axis, and the direction orthogonal to the reference plane RP is defined as the Z2 axis.

まず、上述した測定ヘッド3の光軸面LPが基準面RPに対して直交するように、測定ヘッド3の姿勢を制御する。そして光軸面LPが基準面RPに対して直交する関係を保ったまま、すなわち光軸面LPに直交する方向ALを回転軸にして、図の矢印93に示すように測定ヘッド3を回転させる。ここに測定面MPに対するスポット光の入射角度θiを、図9の(A)に示すようにスポット光の入射方向と、測定点Pにおける測定面MPの法線方向nとが成す角度と定義すれば、測定ヘッド3の回転に伴って測定面MPに対するスポット光の入射角度θiが変化する。 First, the posture of the measurement head 3 is controlled so that the optical axis plane LP of the measurement head 3 described above is orthogonal to the reference plane RP. The measurement head 3 is rotated as indicated by an arrow 93 in the figure while maintaining the relationship in which the optical axis plane LP is orthogonal to the reference plane RP, that is, using the direction AL orthogonal to the optical axis plane LP as a rotation axis. . Here, the incident angle θ i of the spot light with respect to the measurement surface MP is defined as the angle formed by the incident direction of the spot light and the normal direction n of the measurement surface MP at the measurement point P as shown in FIG. Then, the incident angle θ i of the spot light with respect to the measurement surface MP changes as the measurement head 3 rotates.

スポット光の入射角度θiの変化に伴って、反射光を受光面71に受ける受光位置も変化する。図8の(B)に、図8の(A)の状態においてスポット光の入射角度θiを変化させたときに受光位置が描く軌跡を、実線94で記す。図8の(A)に示す状態では、基準面RPに対するスポット光の入射方位θaが、基準面RPに対する測定面の傾斜方向と異なっている。
ここに、基準面RPに対するスポット光の入射方位θaは、図9の(B)に示すように基準面RPの所定の基準方向(図示の例ではX2方向)を基準とするスポット光が入射する方位角θa(すなわち光軸面LPと基準面RPとが交わる交点と、基準面RPの所定の基準方向とが成す角)として定義してよい。
As the incident angle θ i of the spot light changes, the light receiving position at which the reflected light is received by the light receiving surface 71 also changes. In FIG. 8B, the locus drawn by the light receiving position when the incident angle θ i of the spot light is changed in the state of FIG. In the state shown in (A) in FIG. 8, incident orientation theta a spot light to the reference plane RP is different from the inclination direction of the measurement surface relative to the reference plane RP.
Here, incident orientation theta a spot light to the reference plane RP is incident spot light relative to the (X2 direction in the illustrated example) a predetermined reference direction of the reference plane RP as shown in (B) of FIG. 9 Azimuth angle θ a (that is, an angle formed by an intersection point between the optical axis plane LP and the reference plane RP and a predetermined reference direction of the reference plane RP).

このとき測定面MPで反射するスポット光は、入射方位に対する基準面RPについての反対方位に反射しないため反射光は光軸面LPから外れる。したがって反射光を受光面71で受ける受光位置は、図8の(B)に示すように受光面71と光軸面LPとが交差する直線である中心線上から外れた位置を移動する。   At this time, since the spot light reflected by the measurement surface MP is not reflected in the opposite direction with respect to the reference surface RP with respect to the incident direction, the reflected light deviates from the optical axis plane LP. Accordingly, the light receiving position at which the reflected light is received by the light receiving surface 71 moves at a position deviated from the center line, which is a straight line where the light receiving surface 71 and the optical axis plane LP intersect, as shown in FIG.

次に、図10の(A)に示すように、基準面RPに対するスポット光の入射方位θaを、基準面RPに対する測定面の傾斜方向と一致させて、図8と同様に測定ヘッド3を回転させる場合を考える。すると測定面MPで反射するスポット光は、入射方位に対して基準面RPにおいて反対方位にのみ反射するために反射光は光軸面LPから外れることはない。したがって反射光を受光面71で受ける受光位置は、図10の(B)に示すように受光面71と光軸面LPとが交差する直線である中心線上を移動する。 Next, as shown in (A) of FIG. 10, the incident orientation theta a spot light to the reference plane RP, to match the inclination direction of the measurement surface relative to the reference plane RP, the measuring head 3 in the same manner as FIG. 8 Consider the case of rotating. Then, since the spot light reflected on the measurement surface MP is reflected only in the opposite azimuth on the reference plane RP with respect to the incident azimuth, the reflected light does not deviate from the optical axis plane LP. Accordingly, the light receiving position at which the reflected light is received by the light receiving surface 71 moves on the center line which is a straight line where the light receiving surface 71 and the optical axis plane LP intersect as shown in FIG.

したがって、傾斜方向決定部87は、ヘッド位置変更機構6及びヘッド方向変更機構4を制御して測定ヘッド3の位置及び向きを変えることによって、測定面MPへのスポット光の入射方位を順次変更する。
このとき、各入射方位において、測定ヘッド3の位置及び向きを変えて光軸面LPを基準面RPに直交させた状態を保ったまま、光軸面LPに直交する方向を回転軸にして測定ヘッド3を回転させて測定面MPへのスポット光の入射角度を変化させる。
Therefore, the tilt direction determination unit 87 sequentially changes the incident direction of the spot light on the measurement surface MP by controlling the head position change mechanism 6 and the head direction change mechanism 4 to change the position and orientation of the measurement head 3. .
At this time, in each incident azimuth, the position and orientation of the measuring head 3 are changed to keep the optical axis plane LP orthogonal to the reference plane RP, and the direction orthogonal to the optical axis plane LP is measured as the rotation axis. The head 3 is rotated to change the incident angle of the spot light on the measurement surface MP.

そして、入射角度の変化に伴う受光位置の軌跡を受光面71に出力信号から検出して、受光位置の軌跡が光軸面LPと受光面71との交差線上(すなわち受光面71の中心線上)で生じるとき、そのスポット光の入射方位を、基準面RPに対する測定点Pにおける測定面MPの傾斜方向として決定する。   The locus of the light receiving position accompanying the change in the incident angle is detected on the light receiving surface 71 from the output signal, and the locus of the light receiving position is on the intersection line between the optical axis plane LP and the light receiving surface 71 (that is, on the center line of the light receiving surface 71). The incident direction of the spot light is determined as the inclination direction of the measurement surface MP at the measurement point P with respect to the reference surface RP.

さて、測定物表面の傾斜方向にスポット光が入射するとき、測定物表面の法線方向は、スポット光の投光軸方向と反射光の光軸方向とが成す角度の2等分線の方向と等しくなる。ここでスポット光の光軸の方向は既知であり、反射光の光軸の方向もまた上述の通り反射光軸位置決定部83によって測定可能である。
法線方向決定部88は、傾斜方向決定部87によって前記傾斜方向に前記スポット光の入射方位を方向付けた状態において反射光軸位置決定部83によって測定される反射光の光軸方向と、前記スポット光の既知の投光軸の方向と、に基づいて、その2つの光軸の成す角度の2等分線の方向を算出して、測定物表面の法線方向を決定する。
When the spot light is incident in the tilt direction of the surface of the measurement object, the normal direction of the surface of the measurement object is the direction of the bisector of the angle formed by the light projection axis direction of the spot light and the optical axis direction of the reflected light Is equal to Here, the direction of the optical axis of the spot light is known, and the direction of the optical axis of the reflected light can also be measured by the reflected optical axis position determining unit 83 as described above.
The normal direction determining unit 88 includes the optical axis direction of the reflected light measured by the reflected optical axis position determining unit 83 in a state where the incident direction of the spot light is oriented in the tilt direction by the tilt direction determining unit 87, and Based on the known projection axis direction of the spot light, the direction of the bisector of the angle formed by the two optical axes is calculated to determine the normal direction of the surface of the measurement object.

本発明は、測定物表面の輪郭形状を測定する表面形状測定装置及び表面形状測定方法に利用可能であり、特に測定物表面が鏡面である場合に、その輪郭形状を非接触で測定する表面形状測定装置及び表面形状測定方法に関する。   INDUSTRIAL APPLICABILITY The present invention can be used for a surface shape measuring apparatus and a surface shape measuring method for measuring a contour shape of a measurement object surface, and particularly when the measurement object surface is a mirror surface, the surface shape for measuring the contour shape in a non-contact manner. The present invention relates to a measuring apparatus and a surface shape measuring method.

従来の光走査式の形状計測法を説明する図である。It is a figure explaining the conventional optical scanning type shape measuring method. 本発明の実施例による表面形状測定装置の全体斜視図である。1 is an overall perspective view of a surface shape measuring apparatus according to an embodiment of the present invention. 図2に示す測定ヘッドの断面図である。It is sectional drawing of the measuring head shown in FIG. (A)は、図2に示すヘッド方向変更機構の斜視図であり、(B)及び(C)はヘッド方向変更機構の動作説明図である。(A) is a perspective view of the head direction changing mechanism shown in FIG. 2, and (B) and (C) are operation explanatory views of the head direction changing mechanism. 図1の表面形状測定装置のブロック図である。It is a block diagram of the surface shape measuring apparatus of FIG. 本発明の実施例による表面形状測定方法の説明図である。It is explanatory drawing of the surface shape measuring method by the Example of this invention. 投光部光軸の調整方法の説明図である。It is explanatory drawing of the adjustment method of a light projection part optical axis. 傾斜方向決定方法の説明図(その1)である。It is explanatory drawing (the 1) of the inclination direction determination method. スポットビームの入射角度と入射方位を説明する図である。It is a figure explaining the incident angle and incident azimuth | direction of a spot beam. 傾斜方向決定方法の説明図(その2)である。It is explanatory drawing (the 2) of the inclination direction determination method.

符号の説明Explanation of symbols

1 表面形状測定装置
2 テーブル
3 測定ヘッド
4 ヘッド方向変更機構
5 ヘッド位置変更機構
DESCRIPTION OF SYMBOLS 1 Surface shape measuring apparatus 2 Table 3 Measuring head 4 Head direction change mechanism 5 Head position change mechanism

Claims (5)

鏡面である測定物表面にスポット光を投射する投光部と、前記測定物表面で反射したスポット光の反射光を受光する受光面を有する受光部と、を有し、前記測定物表面上の各測定点について、前記スポット光を投射してその反射光を前記受光部で受光し、前記受光面上の受光位置に基づいて該測定点の位置を求めることにより、前記測定物表面の表面形状を測定する表面形状測定装置において、
前記受光面を、その法線成分を含む方向に駆動する受光面駆動部と、
前記受光面の法線方向の変位に伴う前記受光位置の変化に基づいて前記反射光の光軸位置を決定する反射光軸位置決定部と、
該反射光の光軸と前記スポット光の投光軸との交差位置を、前記測定点の位置として決定する位置測定部と、
所定の基準面に対する、前記測定点における前記測定物表面の傾斜方向を決定する傾斜方向決定部と、
前記スポット光の投光軸と前記受光面の所定の法線とが同一平面に含まれるように、前記投光部と前記受光部とが設けられる測定ヘッドと、
前記測定ヘッドの向きを変更する測定ヘッド方向変更部と、を備え
前記傾斜方向決定部は、前記測定ヘッド方向変更部によって、前記スポット光の投光軸と前記受光面の所定の法線とを含む前記平面を前記所定の基準面に直交させた状態で、前記測定物表面への前記スポット光の入射角度を変化させ、このとき入射角度の変化に伴う前記受光位置の移動が、前記投光軸及び前記受光面の所定の法線を含む前記平面と前記受光面とが交差する直線上で生じる、前記スポット光の前記測定物表面への入射方位を探索して、該入射方位を、前記測定物表面の傾斜方向として決定する、
ことを特徴とする表面形状測定装置。
A light projecting unit for projecting spot light onto the surface of the measurement object, which is a mirror surface, and a light receiving unit having a light receiving surface for receiving reflected light of the spot light reflected on the surface of the measurement object, on the surface of the measurement object For each measurement point, the surface shape of the surface of the object to be measured is obtained by projecting the spot light and receiving the reflected light by the light receiving unit, and determining the position of the measurement point based on the light receiving position on the light receiving surface. In a surface shape measuring device for measuring
A light receiving surface driving unit that drives the light receiving surface in a direction including the normal component;
A reflected optical axis position determining unit that determines an optical axis position of the reflected light based on a change in the light receiving position accompanying a displacement in a normal direction of the light receiving surface;
A position measurement unit that determines an intersection position of the optical axis of the reflected light and the light projection axis of the spot light as the position of the measurement point;
An inclination direction determination unit that determines an inclination direction of the surface of the measurement object at the measurement point with respect to a predetermined reference plane;
A measuring head provided with the light projecting unit and the light receiving unit so that the light projecting axis of the spot light and the predetermined normal of the light receiving surface are included in the same plane;
A measuring head direction changing unit for changing the direction of the measuring head;
In the state where the plane including the light projection axis of the spot light and the predetermined normal line of the light receiving surface is orthogonal to the predetermined reference plane by the measuring head direction changing unit, The incident angle of the spot light on the surface of the object to be measured is changed. At this time, the movement of the light receiving position accompanying the change in the incident angle is caused by the plane including the light projecting axis and the predetermined normal line of the light receiving surface, and the light receiving. Searching for the incident azimuth of the spot light to the surface of the measurement object, which occurs on a straight line intersecting the surface, and determining the incident azimuth as an inclination direction of the surface of the measurement object;
The surface shape measuring apparatus characterized by the above-mentioned.
所定の基準面に対する、前記測定点における前記測定物表面の法線方向を決定する法線方向決定部をさらに備えることを特徴とする請求項に記載の表面形状測定装置。 The surface shape measuring apparatus according to claim 1 , further comprising a normal direction determining unit that determines a normal direction of the surface of the measurement object at the measurement point with respect to a predetermined reference plane. 前記法線方向決定部は、決定された前記傾斜方向に前記スポット光の入射方位を方向付けた状態で前記反射光軸位置決定部により決定される前記反射光の光軸の方向と、前記スポット光の既知の投光軸の方向と、に基づいて前記測定物表面の法線方向を決定することを特徴とする請求項に記載の表面形状測定装置。 The normal direction determining unit is configured to determine the direction of the optical axis of the reflected light determined by the reflected optical axis position determining unit in a state where the incident azimuth of the spot light is oriented in the determined tilt direction, and the spot The surface shape measuring apparatus according to claim 2 , wherein a normal direction of the surface of the object to be measured is determined based on a direction of a known light projecting axis. 鏡面である測定物表面上の各測定点について、スポット光を投射してその反射光を受光面で受光し、この受光面上の受光位置に基づいて該測定点の位置を求めることにより、前記測定物表面の表面形状を測定する表面形状測定方法において、
前記スポット光の投光軸と前記受光面の所定の法線とが同一平面に含まれるように、前記スポット光の投光部と前記スポット光の受光部とを測定ヘッドに設け、
前記受光面を、その法線成分を含む方向に駆動し、
前記受光面の法線方向の変位に伴う前記受光位置の変化に基づいて前記反射光の光軸位置を決定し、
該反射光の光軸と前記スポット光の投光軸との交差位置を、前記測定点の位置として決定し、更に、
前記測定ヘッドの向きを変えることによって、前記測定物表面への前記スポット光の入射方位を変更し、
各入射方位において、前記測定ヘッドの向きを変えることによって前記スポット光の投光軸と前記受光面の所定の法線とを含む前記平面を所定の基準面に直交させた状態で、前記測定物表面への前記スポット光の入射角度を変化させ、
前記入射角度の変化に伴う前記受光位置の移動が、前記スポット光の投光軸及び前記受光面の所定の法線を含む前記平面と前記受光面とが交差する直線上で生じる、前記スポット光の入射方位を、前記所定の基準面に対する前記スポット光の投射位置における前記測定物表面の傾斜方向として決定する、ことを特徴とする表面形状測定方法。
For each measurement point on the surface of the measurement object that is a mirror surface, spot light is projected and the reflected light is received by the light receiving surface, and the position of the measurement point is obtained based on the light receiving position on the light receiving surface, In the surface shape measuring method for measuring the surface shape of the surface of the measurement object,
The measuring head is provided with the spot light projecting portion and the spot light receiving portion so that the spot light projecting axis and the predetermined normal of the light receiving surface are included in the same plane,
Driving the light receiving surface in a direction including its normal component;
Determining the optical axis position of the reflected light based on the change in the light receiving position accompanying the displacement in the normal direction of the light receiving surface;
Determining the intersection position of the optical axis of the reflected light and the light projection axis of the spot light as the position of the measurement point ;
By changing the direction of the measurement head, the incident direction of the spot light on the surface of the measurement object is changed,
In each incident azimuth, by changing the direction of the measurement head, the measurement object is in a state where the plane including the light projection axis of the spot light and the predetermined normal line of the light receiving surface is orthogonal to a predetermined reference plane. Changing the incident angle of the spot light on the surface,
The spot light in which the movement of the light receiving position accompanying the change in the incident angle occurs on a straight line intersecting the light receiving surface with the plane including the light projection axis of the spot light and a predetermined normal line of the light receiving surface. Is determined as an inclination direction of the surface of the object to be measured at the projection position of the spot light with respect to the predetermined reference plane .
決定された前記傾斜方向に前記スポット光の入射方位を方向付けた状態で決定される前記反射光の光軸の方向と、前記スポット光の既知の投光軸の方向と、に基づいて前記測定物表面の法線方向を決定することを特徴とする請求項に記載の表面形状測定方法。 The measurement based on the direction of the optical axis of the reflected light determined in a state in which the incident azimuth of the spot light is oriented in the determined inclination direction, and the direction of the known light projection axis of the spot light The surface shape measuring method according to claim 4 , wherein the normal direction of the object surface is determined.
JP2005229311A 2005-08-08 2005-08-08 Surface shape measuring apparatus and surface shape measuring method Expired - Fee Related JP4753657B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005229311A JP4753657B2 (en) 2005-08-08 2005-08-08 Surface shape measuring apparatus and surface shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005229311A JP4753657B2 (en) 2005-08-08 2005-08-08 Surface shape measuring apparatus and surface shape measuring method

Publications (2)

Publication Number Publication Date
JP2007046937A JP2007046937A (en) 2007-02-22
JP4753657B2 true JP4753657B2 (en) 2011-08-24

Family

ID=37849879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005229311A Expired - Fee Related JP4753657B2 (en) 2005-08-08 2005-08-08 Surface shape measuring apparatus and surface shape measuring method

Country Status (1)

Country Link
JP (1) JP4753657B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009113528A1 (en) 2008-03-11 2009-09-17 株式会社ニコン Shape measuring apparatus
JP5206344B2 (en) * 2008-11-14 2013-06-12 オムロン株式会社 Optical measuring device
CN111895956B (en) * 2019-12-20 2022-08-26 中国航发长春控制科技有限公司 Feedback rod inner cone high-precision angle measurement method and auxiliary measurement device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59190607A (en) * 1983-04-13 1984-10-29 Hitachi Ltd Contactless measuring device for measuring shape of body
JP2830943B2 (en) * 1989-12-18 1998-12-02 株式会社日立製作所 Optical shape measurement method
JPH03229108A (en) * 1990-02-05 1991-10-11 Ricoh Co Ltd Inclined surface displacement measuring instrument
JPH074932A (en) * 1993-06-17 1995-01-10 Mazda Motor Corp Method and apparatus for measurement of shape of object
JP2891410B2 (en) * 1996-11-28 1999-05-17 工業技術院長 Method and apparatus for measuring three-dimensional shape and normal vector of specular object
JPH1138123A (en) * 1997-07-23 1999-02-12 Toyota Motor Corp Apparatus for measuring optical axis of radar and method for adjusting optical axis of radar
JP2001201331A (en) * 2000-01-20 2001-07-27 Hitachi Metals Ltd Tilt angle measuring method and device
JP4027605B2 (en) * 2001-01-26 2007-12-26 株式会社リコー Optical surface shape measuring method and apparatus, and recording medium

Also Published As

Publication number Publication date
JP2007046937A (en) 2007-02-22

Similar Documents

Publication Publication Date Title
JP4791118B2 (en) Image measuring machine offset calculation method
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JP3678915B2 (en) Non-contact 3D measuring device
CN1550754A (en) Displacement meter and displacement measuring method
JP6147022B2 (en) Spatial accuracy measuring method and spatial accuracy measuring apparatus for machine tool
JP6288280B2 (en) Surface shape measuring device
JP4753657B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP2008089393A (en) Optical device and optical measurement system
JP5171108B2 (en) 3D shape measuring device
JP2001280964A (en) Laser surveying instrument
JP2014174047A (en) Measuring device, measurement method and article manufacturing method
JP2007232629A (en) Lens shape measuring instrument
JP2008102014A (en) Apparatus and method for measuring surface profile
JP2005221422A (en) Gear measuring machine
JP4451374B2 (en) Stage equipment
WO2017038902A1 (en) Surface-shape measuring device
JP3600763B2 (en) Method and apparatus for controlling irradiation position of wedge prism
JP7109185B2 (en) Non-contact coordinate measuring device
JP2000193429A (en) Shape measuring device
JP2008286734A (en) Shape measuring instrument and shape measuring method
EP3346232B1 (en) Surface-shape measuring device, surface-shape measuring method and surface-shape measuring program
JP3740373B2 (en) 3D measuring device
JPH10332327A (en) Stage structure
JP2577950B2 (en) Non-contact digitizer
JPH10103937A (en) Optical axis inclination measuring method for laser light and apparatus therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110524

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees