JP4753066B2 - Ion complex type clay composition and solidified product thereof - Google Patents

Ion complex type clay composition and solidified product thereof Download PDF

Info

Publication number
JP4753066B2
JP4753066B2 JP2005189086A JP2005189086A JP4753066B2 JP 4753066 B2 JP4753066 B2 JP 4753066B2 JP 2005189086 A JP2005189086 A JP 2005189086A JP 2005189086 A JP2005189086 A JP 2005189086A JP 4753066 B2 JP4753066 B2 JP 4753066B2
Authority
JP
Japan
Prior art keywords
polysaccharide
clay composition
clay
ion
exchange type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005189086A
Other languages
Japanese (ja)
Other versions
JP2007008997A (en
Inventor
重雄 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005189086A priority Critical patent/JP4753066B2/en
Publication of JP2007008997A publication Critical patent/JP2007008997A/en
Application granted granted Critical
Publication of JP4753066B2 publication Critical patent/JP4753066B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、造形中は適当な可塑性を保持し、造形物を単に室温に放置するだけで、イオン結合形成により、造形物を力学的に保持しうる程度に固化する新規イオン複合型粘土組成物及びその固化物に関するものである。   The present invention is a novel ionic composite clay composition that retains suitable plasticity during modeling, and simply solidifies the modeled object at room temperature, and solidifies the modeled object to the extent that it can be mechanically retained by ionic bond formation. And its solidified product.

従来既知の粘土材料としては、カオリン、石膏、珪酸アルミニウム、ミョウバン、デキストリン、ワセリン、ワックス、ひまし油からなる油粘土、小麦粉を主成分とする小麦粘土、ポリエチレン系化合物を主成分とするポリ粘土等が知られているが(特許文献1〜5参照)、これらの粘土材料は、繰り返し使用することを目的としているため、造形物作成後もその塑性は変化しないので、造形物の強度が劣り、また形状保持性が悪いといった問題点がある一方、造形後に固化する材料の代表例としては石膏が知られているが、この石膏材料は強度と形状保持性に優れるものの、固化後は極めて堅い材料となるため、固化した後は元の粘土組成を再現することができず、その加工性・取扱い性に劣るし、また使用後に環境を汚染するといった難点があった。   Conventionally known clay materials include kaolin, gypsum, aluminum silicate, alum, dextrin, petrolatum, wax, oil clay composed of castor oil, wheat clay composed mainly of flour, polyclay composed mainly of polyethylene compounds, etc. Although known (see Patent Documents 1 to 5), since these clay materials are intended to be used repeatedly, the plasticity does not change even after the formation of the model, so that the model has poor strength. While there is a problem that shape retention is poor, gypsum is known as a representative example of a material that solidifies after molding, but this gypsum material is excellent in strength and shape retention, but is extremely hard after solidification. Therefore, after solidification, the original clay composition cannot be reproduced, its workability and handling are inferior, and the environment is difficult to contaminate after use. There was.

特開昭54−36324号公報(特許請求の範囲その他)JP 54-36324 A (Claims and others) 特開昭60−53983号公報(特許請求の範囲その他)JP-A-60-53983 (claims and others) 特開昭61−42679号公報(特許請求の範囲その他)JP 61-42679 A (Claims and others) 特開平11−71524号公報(特許請求の範囲その他)JP-A-11-71524 (Claims and others) 特開2003−98951号公報(特許請求の範囲その他)JP 2003-98951 A (Claims and others)

本発明の課題は、造形中は適当な可塑性を保持し、造形物を単に室温に放置するだけで、イオン結合形成により、造形物を力学的に保持しうる程度に固化する特性を有し、使用後に廃棄されても環境を汚染することのない新規なイオン複合型粘土組成物を提供することにある。   The object of the present invention is to maintain appropriate plasticity during modeling, and by simply leaving the modeled object at room temperature, it has the property of solidifying to an extent that the modeled object can be mechanically retained by ionic bond formation, It is an object of the present invention to provide a novel ionic complex clay composition that does not pollute the environment even if discarded after use.

本発明者等は、前記課題を解決するため、鋭意検討した結果、アニオン交換型及び/又はカチオン交換型多糖類やその誘導体とこれとは逆のイオン交換型の粘土鉱物からなる粘土組成物が、造形中は適当な可塑性を保持し、造形物を単に室温に放置するだけで、イオン結合形成により、造形物を力学的に保持しうる程度に固化する特性を有することを知見し本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that a clay composition comprising an anion exchange type and / or cation exchange type polysaccharide or a derivative thereof and an ion exchange type clay mineral opposite to this. The present invention has been found out that it has a property of solidifying to an extent that the modeled object can be mechanically held by forming an ionic bond by simply holding the modeled object at room temperature during modeling. It came to be completed.

本発明は、以下のとおりのものである。
(1)カチオン交換型多糖類とアニオン交換型粘土鉱物を含有することを特徴とするイオン複合型粘土組成物。
(2)カチオン交換型多糖類がアニオン性多糖類である前記(1)記載のイオン複合型粘土組成物。
(3)アニオン性多糖類が硫酸残基、リン酸残基、カルボン酸残基及びスルホン酸残基の中から選ばれた少なくとも1種のアニオン基を有する前記(2)記載のイオン複合型粘土組成物。
(4)アニオン性多糖類がアルギン酸、ペクチン酸、フィチン酸、硫酸セルロース、デキストラン硫酸、コンドロイチン硫酸、硫酸シクロデキストリン、ヘパリン、グアーガム、キサンタンガム、アラビアガム、ジェランガム、カラギナン、ペクチン、低メトキシペクチン、アガロース、ファーセレラン、カルボキシメチルセルロース及びそれらの塩の中から選ばれた少なくとも1種である前記(2)又は(3)記載のイオン複合型粘土組成物。
(5)アニオン交換型粘土鉱物がアロフェン又はイモゴライトである前記(1)ないし(4)のいずれかに記載のイオン複合型粘土組成物。
(6)アニオン交換型多糖類とカチオン交換型粘土鉱物を含有することを特徴とするイオン複合型粘土組成物。
(7)アニオン交換型多糖類がアミノ基及びアシルアミノ基の一方又は両方を有する前記(6)記載のイオン複合型粘土組成物。
(8)アニオン交換型多糖類がキチン及びキトサンの一方又は両方である前記(7)記載のイオン複合型粘土組成物。
(9)アニオン交換型多糖類が多糖類のオニウム塩である前記(6)記載のイオン複合型粘土組成物。
(10)多糖類のオニウム塩が多糖類の第4級アンモニウム塩である前記(9)記載のイオン複合型粘土組成物。
(11)カチオン交換型粘土鉱物がモンモリロナイト、バーミキュライト及びベントナイトの中から選ばれた少なくとも1種である前記(6)ないし(10)のいずれかに記載のイオン複合型粘土組成物。
(12)溶媒を更に含有する前記(1)ないし(11)のいずれかに記載のイオン複合型粘土組成物。
(13)溶媒が親水性溶媒である前記(12)記載のイオン複合型粘土組成物。
(14)親水性溶媒が、水及び/又はアルコールである前記(13)記載のイオン複合型粘土組成物。
(15) アルコールがエチレングリコール、エチレングリコールオリゴマー、ポリエチレングリコールおよびグリセリンの中から選ばれた少なくとも一種である前記(14)記載のイオン複合型粘土組成物。
(16) 前記(1)ないし(15)のいずれかに記載のイオン複合型粘土組成物を固化することにより得られるイオン複合型粘土固化物。
The present invention is as follows.
(1) An ionic complex type clay composition comprising a cation exchange type polysaccharide and an anion exchange type clay mineral.
(2) The ionic complex clay composition according to the above (1), wherein the cation exchange type polysaccharide is an anionic polysaccharide.
(3) The ionic complex type clay according to the above (2), wherein the anionic polysaccharide has at least one kind of anionic group selected from sulfuric acid residue, phosphoric acid residue, carboxylic acid residue and sulfonic acid residue. Composition.
(4) Anionic polysaccharide is alginic acid, pectic acid, phytic acid, cellulose sulfate, dextran sulfate, chondroitin sulfate, cyclodextrin sulfate, heparin, guar gum, xanthan gum, gum arabic, gellan gum, carrageenan, pectin, low methoxy pectin, agarose, The ionic complex type clay composition according to the above (2) or (3), which is at least one selected from furceleran, carboxymethylcellulose and salts thereof.
(5) The ion composite clay composition according to any one of (1) to (4), wherein the anion exchange clay mineral is allophane or imogolite.
(6) An ionic complex type clay composition comprising an anion exchange type polysaccharide and a cation exchange type clay mineral.
(7) The ionic complex type clay composition according to the above (6), wherein the anion exchange type polysaccharide has one or both of an amino group and an acylamino group.
(8) The ionic complex type clay composition according to the above (7), wherein the anion exchange type polysaccharide is one or both of chitin and chitosan.
(9) The ionic complex clay composition according to the above (6), wherein the anion exchange type polysaccharide is an onium salt of the polysaccharide.
(10) The ionic complex clay composition according to the above (9), wherein the onium salt of the polysaccharide is a quaternary ammonium salt of the polysaccharide.
(11) The ionic complex clay composition according to any one of (6) to (10), wherein the cation exchange clay mineral is at least one selected from montmorillonite, vermiculite, and bentonite.
(12) The ion composite clay composition according to any one of (1) to (11), further including a solvent.
(13) The ionic complex clay composition according to the above (12), wherein the solvent is a hydrophilic solvent.
(14) The ionic complex clay composition according to the above (13), wherein the hydrophilic solvent is water and / or alcohol.
(15) The ionic complex type clay composition according to the above (14), wherein the alcohol is at least one selected from ethylene glycol, ethylene glycol oligomer, polyethylene glycol and glycerin.
(16) An ion composite clay solidified product obtained by solidifying the ion composite clay composition according to any one of (1) to (15).

本発明に係るイオン複合型粘土組成物の最大の特徴は、粘土成分として、カチオン交換型又はアニオン交換型多糖類やその誘導体と、アニオン交換型粘土鉱物又はカチオン交換型粘土鉱物を組み合わせ、多糖類分子の粘結性により組成物の可塑性を調製し、かつ多糖類分子に導入したカチオン基又はアニオン基とこれとは逆イオンを有するアニオン交換型粘土鉱物又はカチオン交換型粘土鉱物のイオン結合の形成により、固化物の力学的強度を促進させた点にある。   The greatest feature of the ion composite clay composition according to the present invention is that the cation exchange type or anion exchange type polysaccharide or a derivative thereof is combined with the anion exchange type clay mineral or the cation exchange type clay mineral as a clay component, Formation of ionic bond between anion-exchanged clay mineral or cation-exchanged clay mineral having a cation group or anion group introduced into the polysaccharide molecule and an opposite ion with the plasticity of the composition prepared by molecular cohesiveness Thus, the mechanical strength of the solidified product is promoted.

本発明のイオン複合型粘土組成物の第一の態様は、カチオン交換型多糖類とアニオン交換型粘土鉱物を含有するものである。
カチオン交換型多糖類はアニオン性解離基を有する多糖類すなわちアニオン性多糖類が好ましく、例えばその無機酸類や有機酸類、中でも硫酸塩、リン酸塩、カルボン酸塩、スルホン酸塩などが挙げられ、さらに具体的にはアルギン酸、ペクチン酸、フィチン酸、硫酸セルロース、デキストラン硫酸、コンドロイチン硫酸、硫酸シクロデキストリン、ヘパリン、グアーガム、キサンタンガム、アラビアガム、ジェランガム、カラギナン、ペクチン、低メトキシペクチン、アガロース、ファーセレラン、カルボキシメチルセルロース、それらの塩等が挙げられ、これらは1種用いてもよいし、また2種以上を組み合わせて用いてもよい。
The 1st aspect of the ion composite type clay composition of this invention contains a cation exchange type | mold polysaccharide and an anion exchange type | mold clay mineral.
The cation exchange type polysaccharide is preferably a polysaccharide having an anionic dissociation group, that is, an anionic polysaccharide, and examples thereof include inorganic acids and organic acids, particularly sulfates, phosphates, carboxylates and sulfonates. More specifically, alginic acid, pectinic acid, phytic acid, cellulose sulfate, dextran sulfate, chondroitin sulfate, cyclodextrin sulfate, heparin, guar gum, xanthan gum, gum arabic, gellan gum, carrageenan, pectin, low methoxy pectin, agarose, fur celerane, carboxy Examples thereof include methyl cellulose and salts thereof. These may be used alone or in combination of two or more.

アニオン交換型粘土鉱物とは、アニオン性化学種を対イオンとして保有することができる、活性カチオンサイトを有する粘土鉱物を意味し、アロフェン、イモゴライト、ハロサイトなどが挙げられるが、アロフェン、イモゴライトが好ましく使用される。   The anion exchange type clay mineral means a clay mineral having an active cation site capable of holding an anionic chemical species as a counter ion, and includes allophane, imogolite, halosite, etc., preferably allophane and imogolite. used.

カチオン交換型多糖類とアニオン交換型粘土鉱物の使用割合に特に制限はないが、カチオン交換型多糖類1質量部に対し、アニオン交換型粘土鉱物0.1〜100質量部、好ましくは0.2〜50質量部である。   Although there is no restriction | limiting in particular in the usage-amount of a cation exchange type | mold polysaccharide and an anion exchange type | mold clay mineral, 0.1-100 mass parts of anion exchange type | mold clay minerals with respect to 1 mass part of cation exchange type | mold polysaccharides, Preferably it is 0.2. -50 mass parts.

第一の態様のイオン複合型粘土組成物の調製は、例えば、カチオン交換型多糖類を溶媒に溶解させた溶液にアニオン交換型粘土鉱物を室温下等で混合すればよい。
使用する溶媒としては、特に制限はないが、人への安全性及び環境への汚染負荷のない溶媒を用いることが望ましく、エチレングリコール、エチレングリコールオリゴマー、ポリエチレングリコール、グリセリン、水等の親水性溶媒を用いることが好ましい。
The ionic complex clay composition of the first aspect may be prepared, for example, by mixing an anion exchange clay mineral in a solution in which a cation exchange polysaccharide is dissolved in a solvent at room temperature or the like.
The solvent to be used is not particularly limited, but it is preferable to use a solvent that is safe for humans and has no pollution load on the environment, and is a hydrophilic solvent such as ethylene glycol, ethylene glycol oligomer, polyethylene glycol, glycerin, and water. Is preferably used.

第一の態様のイオン複合型粘土組成物は、例えば室温付近に適宜時間放置することにより固化し、イオン複合型粘土固化物を与える。   The ionic complex type clay composition of the first aspect is solidified by allowing it to stand for an appropriate period of time, for example, near room temperature to give an ionic complex type clay solidified product.

この固化反応は、カチオン交換型多糖類として、例えば多糖類スルホン酸塩を用いた場合、以下のように表すことができる。
Psa−SO + Inorg
→ Psa−SO Inorg + M
(式中、Psaは多糖類残基、Mはアルカリ金属イオンなどのカチオン基を、Inorgは粘土鉱物残基を、Xはハロゲンイオン、リン酸残基、硫酸残基、ケイ酸残基、アルミン酸残基等のアニオン基を表す。)
This solidification reaction can be expressed as follows when, for example, a polysaccharide sulfonate is used as the cation exchange type polysaccharide.
Psa-SO 3 M + + Inorg + X
→ Psa-SO 3 - Inorg + + M + X -
(Wherein Psa is a polysaccharide residue, M + is a cationic group such as an alkali metal ion, Inorg is a clay mineral residue, X is a halogen ion, a phosphate residue, a sulfate residue, or a silicate residue. And represents an anionic group such as an aluminate residue.)

この固化反応により得られる固化物は、前記のように多糖類分子が含有されているので粘結性が増大し可塑性に富むものであり、しかも、経時により多糖類分子に導入したカチオン基とアニオン交換型粘土鉱物のアニオン基の脱塩反応により、多糖類と粘土鉱物とがイオン結合し、(Psa−SO Inorg)なる複合体を形成するので、力学的に保持しうる程度の強度を有するものである。したがって、その可塑性と強度を利用することにより、造形用粘土としてのみならず、壁材、造粒剤、被膜剤等各種の産業用資材として応用することができる。 Since the solidified product obtained by this solidification reaction contains polysaccharide molecules as described above, the caking property is increased and the plasticity is high, and the cationic groups and anions introduced into the polysaccharide molecules over time. the desalted reaction of the anion group of the exchange type clay mineral, a polysaccharide and clay mineral ionic bonding, (Psa-sO 3 - Inorg +) because it forms a composed complex, strength that can be mechanically held It is what has. Therefore, by utilizing its plasticity and strength, it can be applied not only as modeling clay but also as various industrial materials such as wall materials, granulating agents, and coating agents.

本発明のイオン複合型粘土組成物の第二の態様は、アニオン交換型多糖類とカチオン交換型粘土鉱物を含有するものである。
アニオン交換型多糖類はカチオン性解離基を有する多糖類を意味し、アミノ基やアシルアミノ基を有する多糖類、例えばキチン及びキトサン等や、多糖類のオニウム塩が好ましい。オニウム塩としては、第4級アンモニウム塩、ホスホニウム塩等が挙げられるが、第4級アンモニウム塩が好ましく、例えば多糖類のテトラアルキルアンモニウム塩誘導体やトリメチルアリールアンモニウム塩誘導体等が挙げられ、さらには多糖類とヒドロキシプロピルトリメチルアンモニウム塩とのエーテル等の多糖類誘導体などが挙げられる。
The 2nd aspect of the ion complex type clay composition of this invention contains an anion exchange type polysaccharide and a cation exchange type clay mineral.
An anion exchange-type polysaccharide means a polysaccharide having a cationic dissociation group, and polysaccharides having an amino group or an acylamino group, such as chitin and chitosan, and onium salts of polysaccharides are preferable. Examples of the onium salt include quaternary ammonium salts and phosphonium salts, but quaternary ammonium salts are preferable. Examples thereof include tetraalkylammonium salt derivatives and trimethylarylammonium salt derivatives of polysaccharides. Examples thereof include polysaccharide derivatives such as ethers of saccharides and hydroxypropyltrimethylammonium salts.

カチオン交換型粘土鉱物とは、カチオン性化学種を対イオンとして保有することができる、活性アニオンサイトを有する粘土鉱物を意味し、具体的には、モンモリロナイト、バーミキュライト、ベントナイト、バイデライト、ノントロナイトなどが挙げられるが、モンモリロナイト、バーミキュライト及びベントナイトの中から選ばれた少なくとも一種が好ましく使用される。   The cation exchange type clay mineral means a clay mineral having an active anion site capable of holding a cationic chemical species as a counter ion, specifically, montmorillonite, vermiculite, bentonite, beidellite, nontronite, etc. However, at least one selected from montmorillonite, vermiculite and bentonite is preferably used.

アニオン交換型多糖類とカチオン交換型粘土鉱物の使用割合に特に制限はないが、アニオン交換型多糖類1質量部に対し、カチオン交換型粘土鉱物0.1〜100質量部好ましくは0.2〜50質量部である。   Although there is no restriction | limiting in particular in the usage-amount of an anion exchange type polysaccharide and a cation exchange type clay mineral, 0.1-100 mass parts of cation exchange type clay minerals with respect to 1 mass part of anion exchange type polysaccharides, Preferably 0.2- 50 parts by mass.

第二の態様のイオン複合型粘土組成物の調製は、例えば、アニオン交換型多糖類を溶媒に溶解させた溶液にカチオン交換型粘土鉱物を室温下等で混合すればよい。   The ionic complex clay composition of the second aspect may be prepared, for example, by mixing a cation exchange clay mineral at room temperature or the like with a solution in which an anion exchange polysaccharide is dissolved in a solvent.

使用する溶媒は前記第一の態様で述べたように、人への安全性及び環境への汚染負荷のない溶媒を用いることが望ましく、エチレングリコール、エチレングリコールオリゴマー、ポリエチレングリコール、グリセリン、水等の親水性溶媒を用いることが好ましい。   As described in the first aspect, it is desirable to use a solvent that is safe for humans and has no pollution load on the environment, such as ethylene glycol, ethylene glycol oligomer, polyethylene glycol, glycerin, and water. It is preferable to use a hydrophilic solvent.

第二の態様のイオン複合型粘土組成物は、例えば室温付近に適宜時間放置することにより固化し、イオン複合型粘土固化物を与える。   The ion composite type clay composition of the second aspect is solidified by allowing it to stand for an appropriate period of time, for example, near room temperature to give an ion composite type clay solidified product.

この固化反応は、アニオン交換型多糖類として、例えば下記の多糖類の第4級アンモニウム塩を用いた場合、次のように表すことができる。
Psa−N(CH + Inorg
→ Psa−N(CHInorg + M
(式中、Psaは多糖類残基、Mはアルカリ金属イオンなどのカチオン基を、Inorgは粘土鉱物残基を、Xはハロゲンイオン、リン酸残基、硫酸残基、ケイ酸残基、アルミン酸残基等のアニオン基を表す。)
This solidification reaction can be expressed as follows when, for example, a quaternary ammonium salt of the following polysaccharide is used as the anion exchange type polysaccharide.
Psa-N + (CH 3 ) 3 X + Inorg M +
→ Psa-N + (CH 3 ) 3 Inorg + M + X
(Wherein Psa is a polysaccharide residue, M + is a cationic group such as an alkali metal ion, Inorg is a clay mineral residue, X is a halogen ion, a phosphate residue, a sulfate residue, or a silicate residue. And represents an anionic group such as an aluminate residue.)

この固化反応により得られる固化物は、前記のように多糖類分子が含有されているので粘結性が増大し可塑性に富むものであり、しかも、経時により多糖類分子に導入したアニオン基とアニオン交換型粘土鉱物のカチオン基の脱塩反応により、多糖類と粘土鉱物とがイオン結合し、(Psa−N(CHInorg)なる複合体を形成するので、力学的に保持しうる程度の強度を有するものである。したがって、その可塑性と強度を利用することにより、造形用粘土としてのみならず、壁材、造粒剤、被膜剤等各種の産業用資材として応用することができる。 Since the solidified product obtained by this solidification reaction contains polysaccharide molecules as described above, the caking property is increased and the plasticity is high, and an anionic group and an anion introduced into the polysaccharide molecule over time. The polysaccharide and clay mineral are ionically bonded by the desalting reaction of the cationic group of the exchangeable clay mineral to form a complex of (Psa-N + (CH 3 ) 3 Inorg ). It has a certain degree of strength. Therefore, by utilizing its plasticity and strength, it can be applied not only as modeling clay but also as various industrial materials such as wall materials, granulating agents, and coating agents.

なお、第一の態様のイオン複合型粘土組成物には、必要に応じ、第二の態様で用いるカチオン交換型粘土鉱物を含有させることもできる。この場合の固化反応は、アニオン交換型多糖類として、例えば多糖類のスルホン酸塩を用いた場合、以下のように表すことができる。
(Psa−SO + Inorg) +2Inorg
→(Psa−SO Inorg + Inorg−Inorg)+ 2M
(式中、Psaは多糖類残基、Mはアルカリ金属イオンなどのカチオン基を、Inorgは粘土鉱物残基を、Xはハロゲンイオン、リン酸残基、硫酸残基、ケイ酸残基、アルミン酸残基等のアニオン基を表す。)
In addition, the ionic exchange type clay composition of the first aspect can contain the cation exchange type clay mineral used in the second aspect as needed. The solidification reaction in this case can be expressed as follows when, for example, a sulfonate of a polysaccharide is used as the anion exchange type polysaccharide.
(Psa-SO 3 - M + + Inorg - M +) + 2Inorg + X -
→ (Psa-SO 3 Inorg + + Inorg−Inorg + ) + 2M + X
(Wherein Psa is a polysaccharide residue, M + is a cationic group such as an alkali metal ion, Inorg is a clay mineral residue, X is a halogen ion, a phosphate residue, a sulfate residue, or a silicate residue. And represents an anionic group such as an aluminate residue.)

また、第二の態様のイオン複合型粘土組成物には、必要に応じ、第一の態様で用いるアニオン交換型粘土鉱物を含有させることもできる。この場合の固化反応は、アニオン交換型多糖類として、例えば下記の多糖類の第4級アンモニウム塩を用いた場合、次のように表すことができる。
(Psa−N(CH + Inorg) +2Inorg
→(Psa−N(CHInorg + InorgInorg)+2M
(式中、Psaは多糖類残基、Mはアルカリ金属イオンなどのカチオン基を、Inorgは粘土鉱物残基を、Xはハロゲンイオン、リン酸残基、硫酸残基、ケイ酸残基、アルミン酸残基等のアニオン基を表す。)
In addition, the anion exchange type clay composition of the second aspect may contain the anion exchange type clay mineral used in the first aspect, if necessary. The solidification reaction in this case can be expressed as follows when, for example, a quaternary ammonium salt of the following polysaccharide is used as the anion exchange type polysaccharide.
(Psa-N + (CH 3 ) 3 X + Inorg + X ) +2 Inorg M +
→ (Psa-N + (CH 3) 3 Inorg - + Inorg + Inorg -) + 2M + X -
(Wherein Psa is a polysaccharide residue, M + is a cationic group such as an alkali metal ion, Inorg is a clay mineral residue, X is a halogen ion, a phosphate residue, a sulfate residue, or a silicate residue. And represents an anionic group such as an aluminate residue.)

これらの固化反応により得られる固化物は、第一〜第二の態様のものと同様に、前記のように多糖類分子が含有されているので粘結性が増大し可塑性に富むものであり、しかも、経時により多糖類分子に導入したアニオン基とアニオン交換型粘土鉱物のカチオン基の脱塩反応により、多糖類と粘土鉱物とがイオン結合した複合体を形成するので、力学的に保持しうる程度の強度を有するものである。したがって、その可塑性と強度を利用することにより、造形用粘土としてのみならず、壁材、造粒剤、被膜剤等各種の産業用資材として応用することができる。   Since the solidified product obtained by these solidification reactions contains polysaccharide molecules as described above, the caking property is increased and the plasticity is high, as in the first to second embodiments. In addition, a complex in which the polysaccharide and the clay mineral are ion-bonded by a desalting reaction between the anion group introduced into the polysaccharide molecule over time and the cation group of the anion-exchangeable clay mineral can be maintained dynamically. It has a certain degree of strength. Therefore, by utilizing its plasticity and strength, it can be applied not only as modeling clay but also as various industrial materials such as wall materials, granulating agents, and coating agents.

本発明の新規なイオン複合型粘土組成物は、造形中は適当な可塑性を保持し、しかも造形物を単に室温に放置するだけで、イオン結合形成により、力学的に保持しうる程度に固化する特性を有する。該粘土組成物の原料はもっとも生産量が大きい天然物であり、天然物の有効利用の観点から重要性が高いし、さらに、使用後の廃棄においても環境に負担をかけず、環境を汚染することがないため、環境対応型新規材料として利用できる。したがって、造形用粘土としてのみならず、壁材、造粒剤、被膜剤等各種の産業用資材として応用が可能である。   The novel ionic complex type clay composition of the present invention retains an appropriate plasticity during modeling, and solidifies to a level that can be mechanically retained by ionic bond formation simply by leaving the molded object at room temperature. Has characteristics. The raw material of the clay composition is a natural product having the largest production amount, and is highly important from the viewpoint of effective use of the natural product. Furthermore, it does not place a burden on the environment even after disposal and pollutes the environment. It can be used as an environmentally friendly new material. Therefore, it can be applied not only as modeling clay but also as various industrial materials such as wall materials, granulating agents, and coating agents.

次に、実施例により本発明を実施するための最良の形態を更に詳細に説明するが、本発明はこれらによりなんら限定されるものではない。   Next, the best mode for carrying out the present invention will be described in more detail by way of examples. However, the present invention is not limited to these examples.

キトサン1質量部をエチレングリコール3質量部に分散させ、これに、ポリエチレングリコール400モノメチルエーテルのコハク酸エステルをキトサン中のアミノ基に対し等モル加えて溶液を得た。この溶液についてDSC(示差走査熱量測定;速度10℃/min)によって求めたガラス転移温度(T)は−100.3℃であった。この溶液に、ベントナイト7.5質量部を加えてよく混合し、得られた混合物を室温で2日間放置して固化物を得た。この固化物のTは−70.0℃及び−25.5℃であった。また、この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。 1 part by mass of chitosan was dispersed in 3 parts by mass of ethylene glycol, and an equimolar amount of succinic acid ester of polyethylene glycol 400 monomethyl ether was added to the amino group in chitosan to obtain a solution. The glass transition temperature (T g ) of this solution determined by DSC (Differential Scanning Calorimetry; speed 10 ° C./min) was −100.3 ° C. To this solution, 7.5 parts by mass of bentonite was added and mixed well, and the resulting mixture was allowed to stand at room temperature for 2 days to obtain a solidified product. The T g of the solidified product was -70.0 ° C. and -25.5 ℃. Further, 1 part by mass of this solidified product was put into water and allowed to stand for 2 days and stirred, but the solidified product was not dispersed.

キトサン1質量部をエチレングリコール3質量部、水0.5質量部に分散させ、これにキトサン中のアミノ基の半量を中和する量のポリエチレングリコール400モノメチルエーテルのコハク酸エステルを加えて溶液を得た。これに、ベントナイト7.5質量部を加えてよく混合し、得られた混合物を室温で2日間放置して固化物を得た。この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。   Disperse 1 part by weight of chitosan in 3 parts by weight of ethylene glycol and 0.5 part by weight of water, and add a succinic acid ester of polyethylene glycol 400 monomethyl ether in an amount to neutralize half of the amino groups in the chitosan. Obtained. To this, 7.5 parts by weight of bentonite was added and mixed well, and the resulting mixture was allowed to stand at room temperature for 2 days to obtain a solidified product. 1 part by mass of this solidified product was put into water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

キトサン1質量部をジエチレングリコール3質量部に分散させ、これに、ポリエチレングリコール400モノメチルエーテルのコハク酸エステルをキトサン中のアミノ基に対し等モル加えて溶液を得た。これに、ベントナイトナノ粒子7.5質量部を加えてよく混合し、得られた混合物を室温で2日間放置して固化物を得た。この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。   1 part by mass of chitosan was dispersed in 3 parts by mass of diethylene glycol, and an equimolar amount of succinic acid ester of polyethylene glycol 400 monomethyl ether was added to the amino group in chitosan to obtain a solution. To this, 7.5 parts by weight of bentonite nanoparticles were added and mixed well, and the resulting mixture was allowed to stand at room temperature for 2 days to obtain a solidified product. 1 part by mass of this solidified product was put into water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

ベントナイトに代えてベントナイトナノ粒子を用いた以外は実施例2と同様にして固化物を得た。この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。   A solidified product was obtained in the same manner as in Example 2 except that bentonite nanoparticles were used instead of bentonite. 1 part by mass of this solidified product was put into water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

アルギン酸1質量部をポリエチレングリコールジアミン2質量部及びグリセリン1質量部に分散させ溶液を得た。これに、アロフェン7.5質量部を加えてよく混合し、得られた混合物を室温で2日間放置して固化物を得た。この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。   1 part by mass of alginic acid was dispersed in 2 parts by mass of polyethylene glycol diamine and 1 part by mass of glycerin to obtain a solution. To this, 7.5 parts by mass of allophane was added and mixed well, and the resulting mixture was allowed to stand at room temperature for 2 days to obtain a solidified product. 1 part by mass of this solidified product was put into water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

アルギン酸1質量部を、そのカルボキシル基の半量を中和する量のポリエチレングリコールジアミン、エチレングリコール2質量部及び水0.5質量部に分散させ、溶液を得た。この溶液についてDSCによって求めたTは−99.3℃であった。この溶液に、アロフェン7.5質量部を加えてよく混合し、得られた混合物を室温で2日間放置して固化物を得た。この固化物のDSCによって求めたTは−86.4℃であった。この固化物の1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。 1 part by mass of alginic acid was dispersed in 2 parts by mass of polyethylene glycol diamine, 2 parts by mass of ethylene glycol and 0.5 part by mass of water to neutralize half the amount of the carboxyl group to obtain a solution. The T g determined by DSC for this solution was -99.3 ℃. To this solution, 7.5 parts by mass of allophane was added and mixed well, and the resulting mixture was allowed to stand at room temperature for 2 days to obtain a solidified product. The T g determined by DSC of the solidified product was -86.4 ℃. 1 part by mass of this solidified product was put into water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

硫酸セルロースナトリウム塩1質量部及び50%フィチン酸水溶液0.5質量部をグリセリン3質量部及び水0.5質量部に溶解した。得られた溶液とアロフェン7.5質量部を混合し室温で2日間放置して固化物を得た。この固化物1質量部を水に投入して2日間放置して撹拌したが、固化物は分散しなかった。
1 part by mass of cellulose sulfate sodium salt and 0.5 part by mass of 50% aqueous phytic acid solution were dissolved in 3 parts by mass of glycerin and 0.5 part by mass of water. The obtained solution and 7.5 parts by mass of allophane were mixed and allowed to stand at room temperature for 2 days to obtain a solidified product. 1 part by mass of this solidified product was added to water and allowed to stand for 2 days with stirring, but the solidified product was not dispersed.

Claims (16)

カチオン交換型多糖類とアニオン交換型粘土鉱物を含有することを特徴とするイオン複合型造形用粘土組成物。 An ionic complex-type modeling clay composition comprising a cation-exchange polysaccharide and an anion-exchange clay mineral. カチオン交換型多糖類がアニオン性多糖類である請求項1記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite molding according to claim 1, wherein the cation exchange type polysaccharide is an anionic polysaccharide. アニオン性多糖類が硫酸残基、リン酸残基、カルボン酸残基及びスルホン酸残基の中から選ばれた少なくとも1種のアニオン基を有する請求項2記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite molding according to claim 2, wherein the anionic polysaccharide has at least one anionic group selected from a sulfate residue, a phosphate residue, a carboxylic acid residue and a sulfonic acid residue. . アニオン性多糖類がアルギン酸、ペクチン酸、フィチン酸、硫酸セルロース、デキストラン硫酸、コンドロイチン硫酸、硫酸シクロデキストリン、ヘパリン、グアーガム、キサンタンガム、アラビアガム、ジェランガム、カラギナン、ペクチン、低メトキシペクチン、アガロース、ファーセレラン、カルボキシメチルセルロース及びそれらの塩の中から選ばれた少なくとも1種である請求項2又は3記載のイオン複合型造形用粘土組成物。 Anionic polysaccharides are alginic acid, pectinic acid, phytic acid, cellulose sulfate, dextran sulfate, chondroitin sulfate, cyclodextrin sulfate, heparin, guar gum, xanthan gum, gum arabic, gellan gum, carrageenan, pectin, low methoxy pectin, agarose, fur celerane, carboxy The clay composition for ion composite molding according to claim 2 or 3 , wherein the clay composition is at least one selected from methylcellulose and salts thereof. アニオン交換型粘土鉱物がアロフェン又はイモゴライトである請求項1ないし4のいずれかに記載のイオン複合型造形用粘土組成物。 The ion complex-type modeling clay composition according to any one of claims 1 to 4, wherein the anion exchange type clay mineral is allophane or imogolite. アニオン交換型多糖類とカチオン交換型粘土鉱物を含有することを特徴とするイオン複合型造形用粘土組成物。 An ion composite molding clay composition comprising an anion exchange type polysaccharide and a cation exchange type clay mineral. アニオン交換型多糖類がアミノ基及びアシルアミノ基の一方又は両方を有する請求項6記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite type modeling according to claim 6, wherein the anion exchange type polysaccharide has one or both of an amino group and an acylamino group. アニオン交換型多糖類がキチン及びキトサンの一方又は両方である請求項7記載のイオン複合型造形用粘土組成物。 The clay composition for ion complex molding according to claim 7, wherein the anion exchange type polysaccharide is one or both of chitin and chitosan. アニオン交換型多糖類が多糖類のオニウム塩である請求項6記載のイオン複合型造形用粘土組成物。 The clay composition for ion complex molding according to claim 6, wherein the anion exchange type polysaccharide is an onium salt of the polysaccharide. 多糖類のオニウム塩が多糖類の第4級アンモニウム塩である請求項9記載のイオン複合型造形用粘土組成物。 The clay composition for ion complex molding according to claim 9, wherein the onium salt of the polysaccharide is a quaternary ammonium salt of the polysaccharide. カチオン交換型粘土鉱物がモンモリロナイト、バーミキュライト及びベントナイトの中から選ばれた少なくとも1種である請求項6ないし10のいずれかに記載のイオン複合型造形用粘土組成物。 Ion composite molding clay composition according to any one of 10 cation-exchange-type clay mineral is montmorillonite, 6 claims is at least one selected from vermiculite and bentonite. 溶媒を更に含有する請求項1ないし11のいずれかに記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite molding according to any one of claims 1 to 11, further comprising a solvent. 溶媒が親水性溶媒である請求項12記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite molding according to claim 12, wherein the solvent is a hydrophilic solvent. 親水性溶媒が、水及び/又はアルコールである請求項13記載のイオン複合型造形用粘土組成物。 The clay composition for ion composite molding according to claim 13, wherein the hydrophilic solvent is water and / or alcohol. アルコールがエチレングリコール、エチレングリコールオリゴマー、ポリエチレングリコールおよびグリセリンの中から選ばれた少なくとも一種である請求項14記載のイオン複合型造形用粘土組成物。 The clay composition for ion complex molding according to claim 14, wherein the alcohol is at least one selected from ethylene glycol, ethylene glycol oligomer, polyethylene glycol and glycerin. 請求項1ないし15のいずれかに記載のイオン複合型造形用粘土組成物を固化することにより得られるイオン複合型粘土造形固化物。 An ionic composite type clay modeling solidified product obtained by solidifying the ionic composite modeling clay composition according to any one of claims 1 to 15.
JP2005189086A 2005-06-29 2005-06-29 Ion complex type clay composition and solidified product thereof Expired - Fee Related JP4753066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005189086A JP4753066B2 (en) 2005-06-29 2005-06-29 Ion complex type clay composition and solidified product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005189086A JP4753066B2 (en) 2005-06-29 2005-06-29 Ion complex type clay composition and solidified product thereof

Publications (2)

Publication Number Publication Date
JP2007008997A JP2007008997A (en) 2007-01-18
JP4753066B2 true JP4753066B2 (en) 2011-08-17

Family

ID=37747910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005189086A Expired - Fee Related JP4753066B2 (en) 2005-06-29 2005-06-29 Ion complex type clay composition and solidified product thereof

Country Status (1)

Country Link
JP (1) JP4753066B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572581B2 (en) 2003-06-30 2009-08-11 Roche Molecular Systems, Inc. 2′-terminator nucleotide-related methods and systems
US7947817B2 (en) 2003-06-30 2011-05-24 Roche Molecular Systems, Inc. Synthesis and compositions of 2'-terminator nucleotides
US7745125B2 (en) 2004-06-28 2010-06-29 Roche Molecular Systems, Inc. 2′-terminator related pyrophosphorolysis activated polymerization
US7928207B2 (en) 2004-06-28 2011-04-19 Roche Molecular Systems, Inc Synthesis and compositions of nucleic acids comprising 2′-terminator nucleotides
JP5099049B2 (en) * 2009-03-06 2012-12-12 独立行政法人産業技術総合研究所 Clay composition and clay solidified product
CN102229479B (en) * 2011-04-19 2012-09-05 广东红墙新材料股份有限公司 Water-retaining polycarboxylic acid type water reducer containing beta-cyclodextrin, preparation method thereof and usage method thereof
CN106007478B (en) * 2016-05-19 2018-02-09 衢州贝蒙文教用品制造有限公司 Ultralight clay composition and preparation method thereof
CN107840637A (en) * 2017-11-24 2018-03-27 广西钦州圆盈堂陶艺制作有限公司 The preparation method that hand claps Nixing pottery
CN111646765B (en) * 2020-05-12 2021-11-02 李果 Crack-resistant mortar with few pores and preparation method thereof
JP2023509256A (en) * 2020-12-11 2023-03-08 広東▲凱▼金新能源科技股▲フン▼有限公司 Surface micro-oxidized porous carbon-based negative electrode material and its preparation method
CN115926291B (en) * 2022-12-23 2023-11-03 福建利新德塑胶制品有限公司 Corrosion-resistant polyethylene water supply pipe and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951033B2 (en) * 1991-04-19 1999-09-20 靖 久保 Pigment composition, method for producing the same and cosmetic composition containing the pigment composition
US5458679A (en) * 1993-12-10 1995-10-17 Minerals Technologies, Inc. Treatment of inorganic filler material for paper with polysaccharides
JP2000051690A (en) * 1997-12-22 2000-02-22 Frontier:Kk Absorbing material and absorbing member for salt- containing solution
JP2003104719A (en) * 2001-09-28 2003-04-09 Hiroshi Takimoto Clay composite
JP2004051854A (en) * 2002-07-22 2004-02-19 Kureha Chem Ind Co Ltd Composition containing amino group-containing polysaccharide and film with carbon dioxide permselectivity
CA2443059A1 (en) * 2003-09-29 2005-03-29 Le Groupe Lysac Inc. Polysaccharide-clay superabsorbent nanocomposites

Also Published As

Publication number Publication date
JP2007008997A (en) 2007-01-18

Similar Documents

Publication Publication Date Title
JP4753066B2 (en) Ion complex type clay composition and solidified product thereof
US4677158A (en) Paint thickener
US4517112A (en) Modified organophilic clay complexes, their preparation and non-aqueous systems containing them
Tiwari et al. Synthesis and characterization of novel organo-montmorillonites
US20210253743A1 (en) Thermally stable, dispersible cellulose nanocrystals
US2859234A (en) Chemical compounds and the production thereof
CA2212905C (en) Pumpable organophilic clay/polyamide compositions useful as rheological additives
JPS6250511B2 (en)
JPH0249774B2 (en)
JPS6143657A (en) Thixotropic unsaturated polyester composition containing organophilic clay gelling agent and manufacture
MX2009003145A (en) Dextran functionalized with hydrophobic amino acids.
CN106661275B (en) Adjuvant composition comprising choline chloride as hydration inhibitor
JPH02227433A (en) Preparation of aqueous suspension of carboxymethyl cellulose
Naveau et al. Organomodification of montmorillonite in supercritical carbon dioxide
Rozza et al. Halloysite nanotubes and metal corrosion inhibitors: a computational and experimental study
JP6410372B2 (en) Water-dispersed airgel and method for producing the same
CN107650307A (en) Aqueous, environmental protective releasing agent
JP4406701B2 (en) Ion complex type clay composition and solidified product thereof
KR19990077979A (en) Method for preparation of amphoteric guar gum derivatives
JP2017105684A (en) Organoclay and manufacturing method therefor
BR112017021808B1 (en) DRY ADJUVANT COMPOSITION AND METHOD FOR PREPARING A DRY PESTICIDE COMPOSITION
JP2003238819A (en) Heat-resistant filler
WO2005082516A1 (en) Solvent gelation using particulate additives
JPH0122303B2 (en)
CN1160424C (en) Preparation of organic bentone

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees