JP4734120B2 - Aircraft body inspection method and apparatus - Google Patents

Aircraft body inspection method and apparatus Download PDF

Info

Publication number
JP4734120B2
JP4734120B2 JP2006001582A JP2006001582A JP4734120B2 JP 4734120 B2 JP4734120 B2 JP 4734120B2 JP 2006001582 A JP2006001582 A JP 2006001582A JP 2006001582 A JP2006001582 A JP 2006001582A JP 4734120 B2 JP4734120 B2 JP 4734120B2
Authority
JP
Japan
Prior art keywords
inspection
aircraft
ultrasonic
aircraft body
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006001582A
Other languages
Japanese (ja)
Other versions
JP2007183172A (en
Inventor
悟 谷中
博一 唐沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006001582A priority Critical patent/JP4734120B2/en
Priority to KR1020060138284A priority patent/KR100849106B1/en
Priority to SG200609001-3A priority patent/SG134222A1/en
Priority to CNB200710001801XA priority patent/CN100523802C/en
Publication of JP2007183172A publication Critical patent/JP2007183172A/en
Application granted granted Critical
Publication of JP4734120B2 publication Critical patent/JP4734120B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • B64F5/60Testing or inspecting aircraft components or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Pathology (AREA)
  • Manufacturing & Machinery (AREA)
  • Acoustics & Sound (AREA)
  • Transportation (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、航空機の製造段階だけでなく営業飛行運転に入ったのちにも航空機機体の表面を非破壊的に検査する航空機機体の検査方法および装置に関する。   The present invention relates to an aircraft fuselage inspection method and apparatus that non-destructively inspects the surface of an aircraft fuselage not only at the aircraft manufacturing stage but also after entering commercial flight operation.

従来の航空機機体は主にジュラルミンやアルミ合金あるいはそれらの複合材料を主体とする金属材料で構成されていたが、昨今では飛行の経済性や環境汚染対策等の観点から、機体をより軽量化するためにCFRP(炭素繊維強化プラスチックス)材料が採用されている。一般的にCFRP材料自体の強度特性は飛行性能として充分であるが、就航後の経年劣化や環境劣化あるいは運転による材料疲労等によるCFRP層間の接着異常等の有無を常に分析・評価しておくことは極めて重要であり、定期的な検査が要求される(特許文献1)。   Conventional aircraft fuselage was mainly composed of metallic materials mainly composed of duralumin, aluminum alloy or their composite materials, but nowadays, the aircraft is lighter from the viewpoint of flight economy and environmental pollution countermeasures. Therefore, CFRP (carbon fiber reinforced plastics) material is used. In general, the strength characteristics of the CFRP material itself are sufficient for flight performance, but always analyze and evaluate the presence of abnormal bonding between the CFRP layers due to aging deterioration, environmental deterioration, or material fatigue due to operation, etc. Is extremely important, and periodic inspection is required (Patent Document 1).

しかし、航空機のように巨大な構造物に対する検査方法は、従来技術では適切な方法がなく、目視による点検や触診あるいは液体浸透検査やマニュアルスキャニングの手動型超音波検査装置によるものが主体である。これらはいずれも非効率的であり、熟練した作業者の勘に頼るケースが多く作業効率や検査精度が悪いという問題を有している。これらの従来の検査方法では就航後の履歴を分析評価できる客観的なデータの取得が困難であり、品質を確保するうえでの課題もある。   However, the inspection method for a huge structure such as an aircraft is not an appropriate method in the prior art, and mainly uses a visual inspection, a palpation, a liquid penetration inspection, or a manual ultrasonic inspection apparatus for manual scanning. All of these are inefficient and have a problem that work efficiency and inspection accuracy are poor because many cases rely on the intuition of skilled workers. With these conventional inspection methods, it is difficult to obtain objective data that can analyze and evaluate the history after service, and there are also problems in ensuring quality.

また、従来技術では一部X線による機体の非破壊検査が実施されているものの、X線では放射線に被曝しないための遮蔽構造物が必要であり、そのためジェット機等の小型の機体に限定されており、限定された場所でしか検査が実施できないという問題を有している。
特開平7−76289号公報
In addition, although some non-destructive inspections of the aircraft by X-rays are carried out in the prior art, a shielding structure for preventing exposure to radiation by X-rays is required, and therefore limited to small aircraft such as jet aircraft. In addition, there is a problem that the inspection can be performed only in a limited place.
JP 7-76289 A

本発明は上記の問題点に鑑みてなされたもので、航空機機体に対して目視点検や触診に頼ることなく正確で効率的な非破壊検査を行うことのできる航空機機体の検査方法および装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an aircraft fuselage inspection method and apparatus capable of performing accurate and efficient nondestructive inspection on an aircraft fuselage without relying on visual inspection or palpation. The purpose is to do.

上記課題を解決するために、本発明に係る航空機機体の検査装置は、水平面内を前後左右に走行可能な検査車両と、前記検査車両に搭載され検査すべき航空機機体の胴体に設けられた複数のレーザー受光器に対してレーザー光を照射し反射光を受けるレーザー発光器と、前記検査車両に搭載された多軸のロボットアームの先端に設けられ前記航空機機体に超音波を発射し反射を受信する超音波プローブと、前記レーザー発光器からの信号によって前記検査車両の走行を制御するとともに前記超音波プローブからの信号によって前記航空機機体の超音波検査データを表示する制御装置とを備え、前記検査車両は地面に設置された磁気テープに感応する磁気センサーを備えている構成とする。 In order to solve the above-described problems, an aircraft fuselage inspection apparatus according to the present invention includes an inspection vehicle capable of traveling in front, back, left, and right in a horizontal plane, and a plurality of aircraft aircraft mounted on the inspection vehicle to be inspected. A laser emitter that irradiates the laser receiver with laser light and receives reflected light, and is provided at the tip of a multi-axis robot arm mounted on the inspection vehicle to emit ultrasonic waves to the aircraft body to generate reflected waves . An ultrasonic probe for receiving, and a controller for controlling the traveling of the inspection vehicle by a signal from the laser emitter and displaying ultrasonic inspection data of the aircraft body by a signal from the ultrasonic probe, The inspection vehicle includes a magnetic sensor that is sensitive to a magnetic tape placed on the ground.

本発明に係る航空機機体の検査方法は、地面に設置された磁気テープに感応する磁気センサーを備え水平面内の前後左右に走行可能な検査車両をこの検査車両に搭載されたレーザー発光器から検査すべき航空機機体の胴体に設けられた複数のレーザー受光器に対して照射するレーザー光を利用して前記航空機機体に対して位置決めし、前記検査車両に搭載された多軸のロボットアームの先端に設けられた超音波プローブによって前記航空機機体の超音波検査を行う方法とする。 According to the aircraft fuselage inspection method of the present invention, an inspection vehicle equipped with a magnetic sensor sensitive to a magnetic tape placed on the ground and capable of traveling in front, back, left, and right in a horizontal plane is inspected from a laser emitter mounted on the inspection vehicle. Positioned with respect to the aircraft fuselage using laser light applied to a plurality of laser receivers provided on the fuselage of the aircraft to be mounted, and provided at the tip of a multi-axis robot arm mounted on the inspection vehicle A method of performing an ultrasonic inspection of the aircraft body using the ultrasonic probe thus obtained.

本発明によれば、航空機機体に対して目視点検や触診に頼ることなく正確で効率的な非破壊検査装置を行うことのできる航空機機体の検査方法および装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the inspection method and apparatus of the aircraft body which can perform an accurate and efficient nondestructive inspection apparatus without relying on visual inspection and palpation with respect to an aircraft body can be provided.

以下、本発明の第1および第2の実施の形態に係る航空機機体の検査装置を図面を参照して説明する。   Hereinafter, aircraft aircraft inspection apparatuses according to first and second embodiments of the present invention will be described with reference to the drawings.

(第1の実施の形態)
本実施の形態の航空機機体の検査装置は、レーザーシステムと、超音波リニアアレイプローブを把持した6軸マニプレータ式ロボットと、前記ロボットを垂直方向に移動させる昇降機構と水平方向に移動させる水平移動機構とを搭載し左右前後方向に移動して航空機機体に自在にアクセス可能な検査車両を備えている。検査車両はレーザーシステムによって航空機機体に対して位置決めされる。前記ロボットと昇降機構および水平移動機構の動作は無線リモート伝送システムを介して制御装置によって制御される。超音波リニアアレイプローブから得られた超音波波形データは無線リモート伝送システムを経て制御装置へ送られ、制御装置においてあらかじめ設定された探傷条件により演算され結果は画像表示される。また過去のデータと照合して評価分析される。
(First embodiment)
The aircraft fuselage inspection apparatus according to the present embodiment includes a laser system, a six-axis manipulator robot that holds an ultrasonic linear array probe, a lifting mechanism that moves the robot in a vertical direction, and a horizontal movement mechanism that moves the robot in a horizontal direction. Equipped with an inspection vehicle that can move in the left-right and front-back directions and can freely access the aircraft body. The inspection vehicle is positioned relative to the aircraft body by a laser system. Operations of the robot, the lifting mechanism and the horizontal movement mechanism are controlled by a control device via a wireless remote transmission system. The ultrasonic waveform data obtained from the ultrasonic linear array probe is sent to the control device via the wireless remote transmission system, and is calculated according to the flaw detection conditions set in advance in the control device, and the result is displayed as an image. In addition, it is evaluated and analyzed against past data.

検査車両はレーザーシステムにより航空機機体に1m内外にアクセスし、その後レーザーシステムにより航空機機体との位置決めを行い、計測原点位置を設定することにより航空機機体の3次元データを基に超音波プローブを航空機機体表面に倣わせる。   The inspection vehicle accesses the aircraft body 1 m inside and outside with the laser system, then positions the aircraft body with the laser system, sets the measurement origin position, and sets the ultrasonic probe based on the three-dimensional data of the aircraft body. Follow the surface.

検査車両は下部に磁気センサーを備え、地面に設置された磁気テープを感知して航空機機体に添って移動して航空機機体全体の検査を行う。超音波リニアアレイプローブにはスプリングによる倣い機構を採用して10mm以内の位置ずれを吸収できるよう構成されている。   The inspection vehicle is provided with a magnetic sensor at the bottom, detects the magnetic tape installed on the ground, moves along with the aircraft body, and inspects the entire aircraft body. The ultrasonic linear array probe is configured so as to be able to absorb a positional deviation within 10 mm by employing a scanning mechanism using a spring.

レーザーシステムにより検査車両と航空機機体との位置決めを行ったあと、航空機機体のCAD(Computer Aided Design)データと実物の機体表面位置との間で製作誤差や位置決め誤差があったとしても、プローブホルダー側に設けられたスプリングによる倣い機構が作用してプローブシュー接触部誤差を吸収する。また、仮に曲面形状が前記CADデータと異なっている場合や変形していて倣い動作範囲外になった場合においても、プローブ近傍に設けた接触式のタッチセンサーにより航空機機体の形状不整を検知して無駄な検査を行わないようにする。   After positioning the inspection vehicle and aircraft body with the laser system, even if there is a manufacturing error or positioning error between the CAD (Computer Aided Design) data of the aircraft body and the actual body surface position, the probe holder side A scanning mechanism provided by a spring acts on the probe shoe to absorb the probe shoe contact portion error. In addition, even if the curved surface shape is different from the CAD data, or even if it is deformed and falls outside the scanning operation range, an irregular shape of the aircraft body is detected by a contact type touch sensor provided in the vicinity of the probe. Avoid unnecessary inspections.

以下、図1〜図6を参照して本発明の第1の実施の形態を詳細に説明する。
図1(a),(b)は、本実施の形態に係る航空機機体の検査装置の全体を示す平面図および正面図である。図に示すように、主としてCFRP材やCFRPの複合材で製作された航空機機体1に対して、超音波検査装置を搭載した検査車両10がレーザーシステムを使用して位置決めされる。検査車両10を航空機機体1に正確に位置決めするため、検査車両10は前後左右に走行可能となるよう、走行車輪と90度回動可能な自在型車輪を設けた構造を採用している。さらに、レーザー光30を受光するレーザー受光器31を航空機機体1の胴体下部に設けている。
Hereinafter, a first embodiment of the present invention will be described in detail with reference to FIGS.
FIGS. 1A and 1B are a plan view and a front view showing the entire aircraft inspection apparatus according to the present embodiment. As shown in the figure, an inspection vehicle 10 equipped with an ultrasonic inspection apparatus is positioned using a laser system with respect to an aircraft body 1 mainly made of a CFRP material or a composite material of CFRP. In order to accurately position the inspection vehicle 10 on the aircraft body 1, the inspection vehicle 10 employs a structure provided with traveling wheels and 90-degree rotatable free wheels so that the inspection vehicle 10 can travel forward, backward, left and right. Further, a laser receiver 31 that receives the laser beam 30 is provided at the lower fuselage of the aircraft body 1.

図2(a)はレーザーシステムを示す平面図であり、図2(b)は側面図である。レベル調整機構33上に設けたレーザー発光器32によって発射したレーザー光30をレーザー受光器31で受光し、レーザー受光器31により反射するレーザー光をレーザー発光器32によって受けて通信変換器34において光信号から電気信号に変換し、電気信号を通信ケーブル36を介して制御装置35へ導く構成としている。   FIG. 2A is a plan view showing a laser system, and FIG. 2B is a side view. The laser beam 30 emitted by the laser emitter 32 provided on the level adjusting mechanism 33 is received by the laser receiver 31, and the laser beam reflected by the laser receiver 31 is received by the laser emitter 32 and received by the communication converter 34. The signal is converted into an electric signal, and the electric signal is guided to the control device 35 via the communication cable 36.

図3は、レーザーシステムと超音波システムを搭載し、前後左右に移動可能な検査車両10を示す。すなわち、台車11には走行車輪41と、走行車輪41を駆動するための走行用サーボモータ44と、左右方向に方向転換するためのジャッキ機構43と、左右方向移動用の自在型車輪42と、自在型車輪42を駆動するためのサーボモータ45が設けられている。また台車11の上部には昇降ガイド47が立設され、昇降ガイド47には昇降ブラケット46が図示しない昇降軸およびサーボモータにより取り付けられ、昇降ブラケット46には水平移動機構20が取り付けられている。   FIG. 3 shows an inspection vehicle 10 that is equipped with a laser system and an ultrasonic system and that can move forward, backward, left and right. That is, the carriage 11 includes a traveling wheel 41, a traveling servo motor 44 for driving the traveling wheel 41, a jack mechanism 43 for changing the direction in the left-right direction, a free wheel 42 for moving in the left-right direction, A servo motor 45 for driving the universal wheel 42 is provided. An elevating guide 47 is erected on the top of the carriage 11, and an elevating bracket 46 is attached to the elevating guide 47 by an elevating shaft and a servo motor (not shown), and the horizontal moving mechanism 20 is attached to the elevating bracket 46.

水平移動機構20の上部にはレーザー発光器32のレベル調整機構33が取り付けられ、下部にはLM(リニアモータ)ガイドブロック21が取付けられ、レール22が昇降ブラケット46上部に取付けられて、図示しない水平移動用サーボモータにより水平方向に移動可能な構成となっている。さらに、昇降ガイド47の上部には6軸ロボット12の基部が昇降可能に取り付けられ、6軸ロボット12の先端には超音波プローブ13が設けられ、超音波プローブ13には水供給ホース14が接続されている。   The level adjustment mechanism 33 of the laser emitter 32 is attached to the upper part of the horizontal movement mechanism 20, the LM (linear motor) guide block 21 is attached to the lower part, and the rail 22 is attached to the upper part of the lifting bracket 46, not shown. It can be moved in the horizontal direction by a horizontal movement servomotor. Further, the base of the 6-axis robot 12 is attached to the upper part of the lifting guide 47 so as to be able to move up and down, and the ultrasonic probe 13 is provided at the tip of the 6-axis robot 12, and the water supply hose 14 is connected to the ultrasonic probe 13. Has been.

図4は検査車両10の変形例を示す。すなわち、昇降ガイド47a,47bによりレーザー発光器32のレベル調整機構33と6軸ロボット12を両サイドより支持した構成である。この構成によれば、検査車両10の安定性が向上し転倒しにくくなる。   FIG. 4 shows a modification of the inspection vehicle 10. In other words, the level adjustment mechanism 33 of the laser emitter 32 and the 6-axis robot 12 are supported from both sides by the lifting guides 47a and 47b. According to this configuration, the stability of the inspection vehicle 10 is improved and it is difficult for the vehicle to fall.

このように検査車両10に設けたレーザーシステムを使用して、以下のようにして検査車両10を航空機機体1に位置決めし移動する。航空機機体1の先端部と後部を結ぶ線上にレーザー受光器31を置き、レーザー受光器31とレーザー発光器32により検査車両10とのパラレルを測定し演算することにより検査車両10と航空機機体1との位置を平行状態に調整する。航空機機体1と平行に位置決めしたライン上にレーザー光をガイドとして磁気テープ48を床面上に設置し、検査車両10に設けられた磁気センサー49によって磁気テープ48を検出して検査車両10を航空機機体1に平行に移動させる。   Using the laser system provided in the inspection vehicle 10 as described above, the inspection vehicle 10 is positioned on the aircraft body 1 and moved as follows. The laser receiver 31 is placed on a line connecting the front end and the rear of the aircraft body 1, and the parallel between the laser receiver 31 and the laser emitter 32 is used to measure and calculate the parallel between the inspection vehicle 10 and the aircraft body 1. Adjust the position of to parallel. A magnetic tape 48 is placed on the floor surface using a laser beam as a guide on a line positioned in parallel with the aircraft body 1, and the magnetic tape 48 is detected by a magnetic sensor 49 provided in the inspection vehicle 10, so that the inspection vehicle 10 can be Move parallel to Airframe 1.

図5は6軸ロボット12の先端部に取り付けられるプローブの倣い機構を示す。すなわち、ロボットハンド15の先端部にプローブホルダー軸24が取り付けられ、スプリング軸16およびスプリング17によりプレート27a,27bを介して上下に倣い動作するように構成している。さらに、ガイドプレート25およびピン18によって超音波プローブ13を保持し、ピン18を支点として超音波プローブ13が回動可能な構成にし、超音波プローブ13が航空機機体1の曲面に倣うようにしている。さらに水供給ホース14を介してプローブシュー26と航空機機体1の表面の間に水23を供給して超音波19が効率よく伝送されるようにしている。   FIG. 5 shows a scanning mechanism of a probe attached to the tip of the 6-axis robot 12. That is, the probe holder shaft 24 is attached to the distal end portion of the robot hand 15, and is configured to be moved up and down by the spring shaft 16 and the spring 17 via the plates 27a and 27b. Further, the ultrasonic probe 13 is held by the guide plate 25 and the pin 18, and the ultrasonic probe 13 is configured to be rotatable with the pin 18 as a fulcrum, so that the ultrasonic probe 13 follows the curved surface of the aircraft body 1. . Further, the water 23 is supplied between the probe shoe 26 and the surface of the aircraft body 1 through the water supply hose 14 so that the ultrasonic waves 19 are efficiently transmitted.

図6は無線通信による検査データの伝送を説明する図であり、航空機機体1の超音波検査データを検査車両10に搭載された無線システム39により電波38に乗せて離れた位置にあるデータ受信装置37を介して制御装置35へ送るように構成したものである。超音波プローブ13の近傍に3次元センサーを付加し、3次元センサーと6軸ロボットの動作により得られる位置データを超音波検査データとともに無線伝送するようにしてもよい。   FIG. 6 is a diagram for explaining the transmission of inspection data by wireless communication. The data receiving apparatus is located at a position separated from the ultrasonic inspection data of the aircraft body 1 by placing it on the radio wave 38 by the wireless system 39 mounted on the inspection vehicle 10. This is configured to send to the control device 35 via 37. A three-dimensional sensor may be added in the vicinity of the ultrasonic probe 13, and position data obtained by the operation of the three-dimensional sensor and the six-axis robot may be wirelessly transmitted together with the ultrasonic inspection data.

本実施の形態によれば、磁気誘導型の検査車両10に搭載した6軸ロボット12と超音波プローブ13の構成により、巨大な構造物である航空機機体1に対して、地面上を自在に移動して比較的簡単な段取りで超音波非破壊検査を実施することができる。検査車両10の位置決め方法として図3に示すようにレーザーシステムと磁気テープ48を使用することにより、正確に検査車両10を航空機機体1にアクセスさせることができる。検査車両10に超音波センサーを複数個設けておくことにより、航空機機体1との接触を回避することができる。   According to the present embodiment, the configuration of the six-axis robot 12 and the ultrasonic probe 13 mounted on the magnetic induction type inspection vehicle 10 allows the aircraft body 1 that is a huge structure to freely move on the ground. Thus, ultrasonic nondestructive inspection can be performed with a relatively simple setup. By using a laser system and a magnetic tape 48 as a method of positioning the inspection vehicle 10 as shown in FIG. 3, the inspection vehicle 10 can be accurately accessed by the aircraft body 1. By providing a plurality of ultrasonic sensors in the inspection vehicle 10, contact with the aircraft body 1 can be avoided.

また、超音波検査データを無線によって送信するデータ発信装置37を設けることにより、欠陥を分析表示する制御装置35を離れた位置におくことができるため、設置スペースを緩和させることができる。さらに、レーザー計測システムと機体のCADデータおよび倣い機構により、粗い位置精度でも検査を行うことができ、検査効率を高めることができる。また、3次元センサーを超音波プローブ13の近傍に配置して無線送信することにより、特に必要となる部分のみの非破壊検査をすることができ、極めてシンプルな検査が可能となる。さらに、各回の検査データを記録保管しておくことにより、新たに検査した検査結果と詳細に比較することができ、機体疲労による影響を予測評価することができる。   In addition, by providing the data transmission device 37 that wirelessly transmits ultrasonic inspection data, the control device 35 that analyzes and displays the defect can be placed at a remote position, so that the installation space can be reduced. Furthermore, the laser measurement system and the CAD data of the machine body and the copying mechanism can perform inspection with coarse positional accuracy, and can increase inspection efficiency. In addition, by arranging a three-dimensional sensor in the vicinity of the ultrasonic probe 13 and wirelessly transmitting it, it is possible to perform a nondestructive inspection of only a particularly required portion, and an extremely simple inspection can be performed. Furthermore, by recording and storing the inspection data of each time, it is possible to compare in detail with the newly inspected inspection result, and to predict and evaluate the influence due to body fatigue.

(第2の実施の形態)
図7〜図9を用いて第2の実施の形態を説明する。図7(a)は台車11を2台並列に並べて水平に移動可能な水平移動機構40にレーザーシステムと超音波プローブを搭載した実施例の平面図であり、図7(b)は図7(a)の側面図である。
(Second Embodiment)
A second embodiment will be described with reference to FIGS. FIG. 7A is a plan view of an embodiment in which a laser system and an ultrasonic probe are mounted on a horizontal movement mechanism 40 that can move horizontally by arranging two carriages 11 in parallel, and FIG. It is a side view of a).

また、請求項2に係る航空機機体の超音波非破壊検査装置は、航空機機体の検査エリアに応じて車両を水平移動機構により複数台連結できるため、1回のセッティングでより広い範囲の検査データを効率よく取得できる利点を有し検査作業を大幅に向上させることができる。   In addition, since the ultrasonic nondestructive inspection apparatus for an aircraft fuselage according to claim 2 can connect a plurality of vehicles by a horizontal movement mechanism in accordance with the inspection area of the aircraft fuselage, a wider range of inspection data can be obtained with one setting. It has the advantage that it can be acquired efficiently and can greatly improve the inspection work.

図8および図9は、図7に示した検査車両10を2台あるいは4台用いる構成であり、この構成によれば検査効率を同時に複数箇所の検査を実施することができるため、全体の検査時間を短縮することができる。   8 and 9 show a configuration in which two or four inspection vehicles 10 shown in FIG. 7 are used. According to this configuration, since inspection efficiency can be simultaneously performed at a plurality of locations, the entire inspection is performed. Time can be shortened.

なお、上記第1および第2の実施の形態は前後左右に走行する車輪を装着した検査車両10を説明したが、航空機機体1に平行に配置したレール上を走行する台車方式を採用することも可能である。   In the first and second embodiments described above, the inspection vehicle 10 equipped with wheels that run in the front, rear, left, and right directions has been described. However, a cart system that runs on rails arranged in parallel to the aircraft body 1 may be adopted. Is possible.

本発明の第1の実施の形態の航空機機体の検査装置を示し、(a)は平面図、(b)は正面図。BRIEF DESCRIPTION OF THE DRAWINGS The aircraft body inspection apparatus of the 1st Embodiment of this invention is shown, (a) is a top view, (b) is a front view. 本発明の第1の実施の形態の航空機機体の検査装置に備えられるレーザーシステムを示し、(a)は平面図、(b)は側面図。The laser system with which the inspection apparatus of the aircraft body of the 1st Embodiment of this invention is equipped is shown, (a) is a top view, (b) is a side view. 本発明の第1の実施の形態の航空機機体の検査装置に備えられる検査車両の第1の例を示す立面図。1 is an elevation view illustrating a first example of an inspection vehicle provided in an aircraft fuselage inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態の航空機機体の検査装置に備えられる検査車両の第2の例を示す立面図。The elevation view which shows the 2nd example of the inspection vehicle with which the aircraft body inspection apparatus of the 1st Embodiment of this invention is equipped. 本発明の第1の実施の形態の航空機機体の検査装置に備えられるプローブ倣い機構を示す正面図。1 is a front view showing a probe copying mechanism provided in an aircraft airframe inspection apparatus according to a first embodiment of the present invention. 本発明の第1の実施の形態の航空機機体の検査装置における無線通信による検査データの伝送を説明する図。The figure explaining transmission of the inspection data by radio | wireless communication in the inspection apparatus of the aircraft body of the 1st Embodiment of this invention. 本発明の第2の実施の形態の第1の実施例の航空機機体の検査装置を示し、(a)は平面図、(b)は側面図。The aircraft body inspection apparatus of the 1st Example of the 2nd Embodiment of this invention is shown, (a) is a top view, (b) is a side view. 本発明の第2の実施の形態の第2の実施例の航空機機体の検査装置を示す平面図。The top view which shows the inspection apparatus of the aircraft body of the 2nd Example of the 2nd Embodiment of this invention. 本発明の第2の実施の形態の第3の実施例の航空機機体の検査装置を示す平面図。The top view which shows the inspection apparatus of the aircraft body of the 3rd Example of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

1…航空機機体、10…検査車両、11…台車、12…6軸ロボット、13…超音波プローブ、14…水供給ホース、15…ロボットハンド、16…スプリング軸、17…スプリング、18…ピン、19…超音波、20…水平移動機構、21…LM(リニアモータ)ガイドブロック、22…レール、23…水、24…プローブホルダー軸、25…ガイドプレート、26…プローブシュー、27a、27b…プレート、30…レーザー光、31…レーザー受光器、32…レーザー発光器、33…レベル調整機構、34…通信変換器、35…制御装置、36…通信ケーブル、37…データ受信装置、38…電波、39…無線システム、40…水平移動機構、41…走行車輪、42…自在型車輪、43…ジャッキ機構、44…走行用サーボモータ、45…自在車輪用サーボモータ、46,46a,46b…昇降ブラケット、47,47a,47b…昇降ガイド、48…磁気テープ、49…磁気センサー。   DESCRIPTION OF SYMBOLS 1 ... Aircraft body, 10 ... Inspection vehicle, 11 ... Bogie, 12 ... 6 axis robot, 13 ... Ultrasonic probe, 14 ... Water supply hose, 15 ... Robot hand, 16 ... Spring shaft, 17 ... Spring, 18 ... Pin, DESCRIPTION OF SYMBOLS 19 ... Ultrasonic, 20 ... Horizontal moving mechanism, 21 ... LM (linear motor) guide block, 22 ... Rail, 23 ... Water, 24 ... Probe holder shaft, 25 ... Guide plate, 26 ... Probe shoe, 27a, 27b ... Plate , 30 ... Laser light, 31 ... Laser receiver, 32 ... Laser emitter, 33 ... Level adjustment mechanism, 34 ... Communication converter, 35 ... Control device, 36 ... Communication cable, 37 ... Data receiver, 38 ... Radio wave, DESCRIPTION OF SYMBOLS 39 ... Wireless system, 40 ... Horizontal movement mechanism, 41 ... Traveling wheel, 42 ... Swivel type wheel, 43 ... Jacking mechanism, 44 ... Servo motor for traveling, 5 ... free wheel servomotor, 46, 46a, 46b ... lift bracket, 47, 47a, 47b ... lifting guide, 48 ... magnetic tape, 49 ... magnetic sensor.

Claims (7)

水平面内を前後左右に走行可能な検査車両と、前記検査車両に搭載され検査すべき航空機機体の胴体に設けられた複数のレーザー受光器に対してレーザー光を照射し反射光を受けるレーザー発光器と、前記検査車両に搭載された多軸のロボットアームの先端に設けられ前記航空機機体に超音波を発射し反射を受信する超音波プローブと、前記レーザー発光器からの信号によって前記検査車両の走行を制御するとともに前記超音波プローブからの信号によって前記航空機機体の超音波検査データを表示する制御装置とを備え、前記検査車両は地面に設置された磁気テープに感応する磁気センサーを備えていることを特徴とする航空機機体の検査装置。 An inspection vehicle capable of traveling forward, backward, left and right in a horizontal plane, and a laser emitter for receiving reflected light by irradiating laser light to a plurality of laser receivers mounted on the fuselage of an aircraft fuselage mounted on the inspection vehicle An ultrasonic probe that is provided at the tip of a multi-axis robot arm mounted on the inspection vehicle and that emits ultrasonic waves to the aircraft body and receives reflected waves; and a signal from the laser light emitter A control device that controls traveling and displays ultrasonic inspection data of the aircraft body according to a signal from the ultrasonic probe, and the inspection vehicle includes a magnetic sensor that is sensitive to a magnetic tape placed on the ground. An aircraft fuselage inspection apparatus characterized by the above. 前記超音波プローブの近傍に航空機機体の曲面精度の影響が前記超音波検査データに混入しないようにする接触式のタッチセンサーを備えていることを特徴とする請求項1記載の航空機機体の検査装置。   2. The aircraft fuselage inspection apparatus according to claim 1, further comprising a contact-type touch sensor that prevents an influence of curved surface accuracy of the aircraft fuselage from being mixed into the ultrasonic inspection data in the vicinity of the ultrasonic probe. . 前記超音波プローブの近傍に3次元センサーを備え、前記制御装置は、前記超音波検査データと前記3次元センサーによる位置データとを組合せて表示するようにしたことを特徴とする請求項1記載の航空機機体の検査装置。   The three-dimensional sensor is provided in the vicinity of the ultrasonic probe, and the control device displays the ultrasonic inspection data and position data obtained by the three-dimensional sensor in combination. Aircraft body inspection equipment. 前記制御装置は、得られた超音波検査データをそれより前の検査データと比較することにより、飛行運転による航空機機体の疲労を分析評価する機能を有することを特徴とする請求項1記載の航空機機体の検査装置。   2. The aircraft according to claim 1, wherein the control device has a function of analyzing and evaluating fatigue of the aircraft body due to flight operation by comparing the obtained ultrasonic inspection data with previous inspection data. Aircraft inspection device. 前記制御装置は前記航空機機体から離れた場所に設置され、前記超音波プローブからの信号を無線受信するようにしたことを特徴とする請求項1記載の航空機機体の検査装置。   2. The aircraft fuselage inspection apparatus according to claim 1, wherein the control device is installed at a location distant from the aircraft fuselage and wirelessly receives a signal from the ultrasonic probe. 複数の前記検査車両を水平移動機構により連結し、前記水平移動機構に前記超音波プローブと前記レーザー発光器を搭載したことを特徴とする請求項1記載の航空機機体の検査装置。   The aircraft inspection apparatus according to claim 1, wherein a plurality of the inspection vehicles are connected by a horizontal movement mechanism, and the ultrasonic probe and the laser emitter are mounted on the horizontal movement mechanism. 地面に設置された磁気テープに感応する磁気センサーを備え水平面内の前後左右に走行可能な検査車両をこの検査車両に搭載されたレーザー発光器から検査すべき航空機機体の胴体に設けられた複数のレーザー受光器に対して照射するレーザー光を利用して前記航空機機体に対して位置決めし、前記検査車両に搭載された多軸のロボットアームの先端に設けられた超音波プローブによって前記航空機機体の超音波検査を行うことを特徴とする航空機機体の検査方法。 A plurality of inspection vehicles equipped with magnetic sensors that are sensitive to magnetic tape installed on the ground and capable of traveling in front, back, left, and right within a horizontal plane are mounted on the fuselage of an aircraft body to be inspected from a laser emitter mounted on the inspection vehicle . Positioning with respect to the aircraft body using a laser beam irradiated to a laser receiver, and an ultrasonic probe provided at the tip of a multi-axis robot arm mounted on the inspection vehicle An inspection method for an aircraft body, characterized by performing a sound wave inspection.
JP2006001582A 2006-01-06 2006-01-06 Aircraft body inspection method and apparatus Expired - Fee Related JP4734120B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006001582A JP4734120B2 (en) 2006-01-06 2006-01-06 Aircraft body inspection method and apparatus
KR1020060138284A KR100849106B1 (en) 2006-01-06 2006-12-29 Method for inspecting airframe and device of the same
SG200609001-3A SG134222A1 (en) 2006-01-06 2006-12-29 Apparatus for inspecting aircraft body and method of inspecting same
CNB200710001801XA CN100523802C (en) 2006-01-06 2007-01-05 Airplane body checking method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006001582A JP4734120B2 (en) 2006-01-06 2006-01-06 Aircraft body inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2007183172A JP2007183172A (en) 2007-07-19
JP4734120B2 true JP4734120B2 (en) 2011-07-27

Family

ID=38339399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006001582A Expired - Fee Related JP4734120B2 (en) 2006-01-06 2006-01-06 Aircraft body inspection method and apparatus

Country Status (4)

Country Link
JP (1) JP4734120B2 (en)
KR (1) KR100849106B1 (en)
CN (1) CN100523802C (en)
SG (1) SG134222A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9418496B2 (en) 2009-02-17 2016-08-16 The Boeing Company Automated postflight troubleshooting
US9541505B2 (en) * 2009-02-17 2017-01-10 The Boeing Company Automated postflight troubleshooting sensor array
US8812154B2 (en) 2009-03-16 2014-08-19 The Boeing Company Autonomous inspection and maintenance
US9046892B2 (en) 2009-06-05 2015-06-02 The Boeing Company Supervision and control of heterogeneous autonomous operations
US8773289B2 (en) 2010-03-24 2014-07-08 The Boeing Company Runway condition monitoring
DE102010020116A1 (en) * 2010-05-10 2011-11-10 Helmut Fischer GmbH Institut für Elektronik und Messtechnik Method and device for measuring the thickness of thin layers on large-area measuring surfaces
CN101852774B (en) * 2010-05-14 2012-10-24 西安金波检测仪器有限责任公司 Flaw detection system and flaw detection method
US9149929B2 (en) * 2010-05-26 2015-10-06 The Boeing Company Methods and systems for inspection sensor placement
US8599044B2 (en) 2010-08-11 2013-12-03 The Boeing Company System and method to assess and report a health of a tire
US8712634B2 (en) 2010-08-11 2014-04-29 The Boeing Company System and method to assess and report the health of landing gear related components
US8982207B2 (en) * 2010-10-04 2015-03-17 The Boeing Company Automated visual inspection system
US8573076B2 (en) * 2011-07-11 2013-11-05 The Boeing Company Non-destructive inspection systems and methods that incorporate interchangeable probes
CN102331454A (en) * 2011-07-15 2012-01-25 南昌航空大学 In-situ ultrasonic imaging detection method and device for diameter-variable non-removable spindles
US8833169B2 (en) * 2011-12-09 2014-09-16 General Electric Company System and method for inspection of a part with dual multi-axis robotic devices
CN102759570A (en) * 2012-07-04 2012-10-31 北京理工大学 Single-manipulator automatic ultrasonic non-destructive detection device
US9117185B2 (en) 2012-09-19 2015-08-25 The Boeing Company Forestry management system
KR101366258B1 (en) * 2013-11-26 2014-02-20 김규원 Industrial robotic device, non-destructive testing of spot welds
CN105467005B (en) * 2015-11-28 2018-11-13 浙江国盛铜业有限公司 A kind of weld seam detection robot
WO2018018075A1 (en) * 2016-07-25 2018-02-01 Hegel Industrial Solutions Pty Ltd Vessel inspection system
US11238675B2 (en) * 2018-04-04 2022-02-01 The Boeing Company Mobile visual-inspection system
US11066838B2 (en) 2018-07-12 2021-07-20 The Boeing Company Work platform mover system
KR102204738B1 (en) * 2019-01-09 2021-01-19 한국항공우주산업 주식회사 Rovingness Non-destructive testing device for airplane
CN111413343A (en) * 2020-03-17 2020-07-14 电子科技大学 Infrared detection device and operation method thereof
CN113955132B (en) * 2021-11-08 2023-06-23 陕西飞机工业有限责任公司 Airplane transfer limiting device and method
CN114165686A (en) * 2021-11-24 2022-03-11 重庆零壹空间航天科技有限公司 Multi-probe flaw detection device adaptable to complex curved surface of rocket solid engine shell
KR102613005B1 (en) * 2023-06-07 2023-12-11 (주)위플로 Inspection robot for aircraft and inspection method for aircraft using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022833A (en) * 2000-07-12 2002-01-23 Denso Corp Reflection-measuring apparatus
JP2003043019A (en) * 2001-07-31 2003-02-13 Taisei Corp Condition measuring instrument for concrete
JP2004301665A (en) * 2003-03-31 2004-10-28 Toshiba Plant Systems & Services Corp Wall surface inspection robot system and wall surface inspection method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06103242B2 (en) * 1987-10-09 1994-12-14 高砂熱学工業株式会社 Leak position detector
JPH04201696A (en) * 1990-11-30 1992-07-22 Mitsubishi Heavy Ind Ltd Aircraft diagnosis system
DE4102797C1 (en) 1991-01-31 1992-05-27 Mbb Foerder- Und Hebesysteme Gmbh, 2870 Delmenhorst, De
JP3007474B2 (en) * 1991-04-19 2000-02-07 川崎重工業株式会社 Ultrasonic inspection method and apparatus
JPH06273400A (en) * 1993-03-24 1994-09-30 Mitsubishi Heavy Ind Ltd Inspection apparatus running through quite narrow gap between walls
US5487440A (en) 1993-05-18 1996-01-30 Seemann; Henry R. Robotic apparatus
US5773721A (en) 1996-07-31 1998-06-30 General Electric Company Laser beam aiming apparatus for ultrasonic inspection
JP3691653B2 (en) * 1998-02-25 2005-09-07 日産ディーゼル工業株式会社 Conveying device on the route of automatic guided vehicle
US6940212B2 (en) 2002-02-08 2005-09-06 Metscan Technologies, Llc (A Georgia Limited Liability Corporation) Non-fluid acoustic coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002022833A (en) * 2000-07-12 2002-01-23 Denso Corp Reflection-measuring apparatus
JP2003043019A (en) * 2001-07-31 2003-02-13 Taisei Corp Condition measuring instrument for concrete
JP2004301665A (en) * 2003-03-31 2004-10-28 Toshiba Plant Systems & Services Corp Wall surface inspection robot system and wall surface inspection method

Also Published As

Publication number Publication date
KR100849106B1 (en) 2008-07-30
CN100523802C (en) 2009-08-05
SG134222A1 (en) 2007-08-29
CN101003307A (en) 2007-07-25
KR20070074463A (en) 2007-07-12
JP2007183172A (en) 2007-07-19

Similar Documents

Publication Publication Date Title
JP4734120B2 (en) Aircraft body inspection method and apparatus
US7499772B2 (en) Method and system for navigating a nondestructive evaluation device
US20190145909A1 (en) Automated Detection of Fatigue Cracks Around Fasteners Using Millimeter Waveguide Probe
JP4874499B2 (en) System and method for positioning and positioning an ultrasonic signal generator for test purposes
JP2019060888A (en) Apparatus for non-destructive inspection of stringer
US7267020B2 (en) Apparatus for structural testing
WO2020171090A1 (en) Self-propelled inspection device and inspection method for metal sheet, and manufacturing method for metal sheet
JP5954241B2 (en) Self-propelled inspection device and inspection method for metal plate
KR101605629B1 (en) Automatic test equipment and method for wheel set of railway vehicles
CN102590245A (en) Intelligent X-ray digital flat imaging detection system device and detection method
JP6051751B2 (en) Method and apparatus for detecting position and orientation of metal plate, and method for inspecting metal plate
KR101898586B1 (en) A portable phased array ultrasound rail inspection device
US20150032387A1 (en) Novel systems and methods that facilitate underside inspection of crafts
CN110057914B (en) Automatic nondestructive testing device and method for composite material curved surface structure
JP4528711B2 (en) Working device and working method
JP2015001501A (en) Nondestructive inspection system and mobile body for nondestructive inspection
CN112278011A (en) Robot device for comprehensive detection of crane track and comprehensive detection method
JP2000206098A (en) Apparatus for inspecting wall structure of building
TWI752635B (en) Mobile inspection device, mobile inspection method, and manufacturing method of steel
CN213676699U (en) Robot device for comprehensive detection of crane track
CN108027275A (en) Method for the sound pressure level for measuring high pressure choke or high-tension transformer
KR20190025149A (en) Wind turbine blade inspection platform device and inspection device to maintain constant inspection pressure
JP2001289827A (en) Method for remotely inspecting interior of concrete structure or the like by ultrasonic wave
JPH06347250A (en) Plate-thickness measuring apparatus
RU2772682C1 (en) Device for automatic checking of metal plates, method for checking and method for manufacturing metal plates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4734120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees