JP4733882B2 - Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal - Google Patents

Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal Download PDF

Info

Publication number
JP4733882B2
JP4733882B2 JP2001301935A JP2001301935A JP4733882B2 JP 4733882 B2 JP4733882 B2 JP 4733882B2 JP 2001301935 A JP2001301935 A JP 2001301935A JP 2001301935 A JP2001301935 A JP 2001301935A JP 4733882 B2 JP4733882 B2 JP 4733882B2
Authority
JP
Japan
Prior art keywords
silicon carbide
single crystal
vanadium
crystal
carbide single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001301935A
Other languages
Japanese (ja)
Other versions
JP2003104798A (en
Inventor
昇 大谷
正和 勝野
辰雄 藤本
弘克 矢代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001301935A priority Critical patent/JP4733882B2/en
Publication of JP2003104798A publication Critical patent/JP2003104798A/en
Application granted granted Critical
Publication of JP4733882B2 publication Critical patent/JP4733882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、炭化珪素単結晶及びその製造方法に係わり、特に、高周波電子デバイスの基板ウェハとなる良質で大型の単結晶インゴット及びその製造方法に関するものである。
【0002】
【従来の技術】
炭化珪素(SiC)は耐熱性及び機械的強度も優れ、放射線に強いなどの物理的、化学的性質から耐環境性半導体材料として注目されている。また近年、青色から紫外にかけての短波長光デバイス、高周波高耐圧電子デバイス等の基板ウェハとしてSiC単結晶ウェハの需要が高まっている。しかしながら、大面積を有する高品質のSiC単結晶を、工業的規模で安定に供給し得る結晶成長技術は、いまだ確立されていない。それゆえ、SiCは、上述のような多くの利点及び可能性を有する半導体材料にもかかわらず、その実用化が阻まれていた。
【0003】
従来、研究室程度の規模では、例えば昇華再結晶法(レーリー法)でSiC単結晶を成長させ、半導体素子の作製が可能なサイズのSiC単結晶を得ていた。しかしながら、この方法では、得られた単結晶の面積が小さく、その寸法及び形状を高精度に制御することは困難である。また、SiCが有する結晶多形及び不純物キャリア濃度の制御も容易ではない。また、化学気相成長法(CVD法)を用いて珪素(Si)などの異種基板上にヘテロエピタキシャル成長させることにより立方晶の炭化珪素単結晶を成長させることも行われている。この方法では、大面積の単結晶は得られるが、基板との格子不整合が約20%もあること等により多くの欠陥(〜107cm-2)を含むSiC単結晶しか成長させることができず、高品質のSiC単結晶を得ることは容易でない。これらの問題点を解決するために、SiC単結晶ウェハを種結晶として用いて昇華再結晶を行う改良型のレーリー法が提案されている(Yu.M.Tairov and V.F.Tsvetkov,Journal of Crystal Growth,vol.52(1981)pp.146−150)。この方法では、種結晶を用いているため結晶の核形成過程が制御でき、また不活性ガスにより雰囲気圧力を100Paから15kPa程度に制御することにより結晶の成長速度等を再現性良くコントロールできる。改良レーリー法の原理を、図1を用いて説明する。種結晶となるSiC単結晶と原料となるSiC結晶粉末(通常、Acheson法で作製された研磨材を洗浄・前処理したものが使用される)は坩堝(通常黒鉛)の中に収納され、アルゴン等の不活性ガス雰囲気中(133Pa〜13.3kPa)、摂氏2000〜2400度に加熱される。この際、原料粉末に比べ種結晶がやや低温になるように温度勾配が設定される。原料は昇華後、濃度勾配(温度勾配により形成される)により種結晶方向へ拡散、輸送される。単結晶成長は、種結晶に到着した原料ガスが種結晶上で再結晶化することにより実現される。改良レーリー法を用いれば、SiC単結晶の結晶多形(6H型、4H型、15R型等)及び形状、キャリア型及び濃度を制御しながら、SiC単結晶を成長させることができる。
【0004】
現在、上記の改良レーリー法で作製したSiC単結晶から口径2インチ(50mm)から3インチ(75mm)のSiC単結晶ウェハが切り出され、エピタキシャル薄膜成長、デバイス作製に供されている。このようなSiC単結晶基板の高周波応用として、基板の高抵抗率化(106 Ωcm以上)が望まれている。基板の高抵抗率化は、その上に作製される素子の寄生容量低減と素子間分離において不可欠な技術となっている。現在このような高抵抗率基板は、SiC単結晶にバナジウム元素を添加することによって、工業的に得られる。具体的には上記した昇華再結晶法において、原料となるSiC結晶粉末中に金属バナジウムあるいはバナジウム化合物(酸化物、珪化物等)を含有させ、SiC原料と共に昇華させることにより、成長結晶中に添加している(例えば、S.A.Reshanov et al.,Materials Science Forum,vols.353−356(2001)pp.53−56)。しかしながら、このようにして作製したSiC単結晶は高抵抗率を有するものの結晶品質が悪く、また高抵抗率を有する結晶部位は成長結晶中の極めて限られた部分となっていた。
【0005】
【発明が解決しようとする課題】
上記したように、従来技術で作られたバナジウム添加の高抵抗率SiC単結晶は結晶品質が低く、また高抵抗率を有する結晶部位は成長結晶の極めて限られた部分となっていた。このことはSiC原料の昇華速度に比べ、バナジウム原料の昇華あるいは蒸発速度が極めて大きいことに起因していた。バナジウムの昇華あるいは蒸発速度がSiC原料の昇華速度に比べ大きいために成長初期に多くのバナジウムが成長結晶に取り込まれる(図2(a))。その結果、成長結晶中のバナジウムの量が固溶限界(3×1017atom/cm3)を超え、析出物の発生を伴って結晶性を劣化させる(この成長初期部の結晶性劣化は、その後に成長されるSiC単結晶の結晶性にも悪影響する)。また、通常の研磨材を基にしたSiC結晶粉末を原料として用いた場合、SiC単結晶中に取り込まれる他の残留不純物濃度が1×1017atom/cm3程度と高く、その結果高抵抗率の単結晶が得られる部位が極めて限られたものとなっていた。これは、図2(a)に示したように、バナジウム原料の昇華ガス圧が高いために成長開始後数時間でバナジウム原料が枯渇してしまい、その結果残留不純物濃度以上にバナジウムが添加される領域が成長結晶の極めて限られた部位となっていたためである。SiC単結晶中のバナジウムの濃度が残留不純物濃度以下であると、SiC単結晶の電気的特性が他の不純物によって決まってしまい高抵抗率の単結晶が得られない。
【0006】
本発明は上記事情に鑑みてなされたものであり、高抵抗率で高品質な大口径インゴットと、それを再現性良く製造し得るSiC単結晶の製造方法及び原料を提供するものである。
【0007】
【課題を解決するための手段】
従って、本発明のSiC単結晶の製造方法は、
(1)昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、原料としてバナジウムの濃度が1×1018〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1015atom/cm以下である炭化珪素結晶のみを用いて、不活性ガス雰囲気中で炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法、
(2)昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、原料としてバナジウムの濃度が1×1019〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1016atom/cm以下である炭化珪素結晶のみを用いて、不活性ガス雰囲気中で炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法、
(3)バナジウムの濃度が1×1018〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1015atom/cm以下である、炭化珪素単結晶育成用炭化珪素結晶原料、
(4)バナジウムの濃度が1×1019〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1016atom/cm以下である、炭化珪素単結晶育成用炭化珪素結晶原料、
(5)(1)又は(2)に記載の製造方法で得られた炭化珪素単結晶であって、50mm以上の口径を有し、種結晶を除く炭化珪素単結晶の全長に亘って、バナジウムの濃度が1×1015〜3×1017atom/cmであることを特徴とする、炭化珪素単結晶、
(6)前記バナジウムの濃度が1×1016〜3×1017atom/cmである、(5)に記載の炭化珪素単結晶、
(7)バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が、バナジウムの濃度未満であり、1×1016 atom/cm 以下である(5)又は(6)に記載の炭化珪素単結晶、
(8)(5)〜(7)のいずれかに記載の炭化珪素単結晶を切断、研磨してなる炭化珪素単結晶基板、
(9)(8)に記載の炭化珪素単結晶基板に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素エピタキシャルウェハ、
(10)(8)に記載の炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ、
である。
【0008】
【発明の実施の形態】
本発明の製造方法では、炭化珪素(以下、「SiC」とも称する)原料として、予めバナジウムの濃度が1×1018〜6×1019atom/cm、好ましくは1×1019〜6×1019atom/cmであり、且つバナジウム以外のSiC単結晶の高抵抗率化を阻害する不純物の濃度が前記バナジウムの濃度未満、好ましくはバナジウムの濃度が1×1018〜6×1019atom/cmの場合には1×1015atom/cm以下、バナジウムの濃度が1×1019〜6×1019atom/cmの場合には1×1016atom/cm以下であるSiC単結晶を用いることにより、高抵抗率(10Ωcm以上)で高品質な大口径のSiC単結晶インゴットを得ることができる。
【0009】
図2(b)を用いて、本発明の効果を説明する。昇華再結晶法によるSiC単結晶の成長において、バナジウムを予めSiC結晶に結晶内不純物として含むSiC結晶原料を用いてバナジウムを成長結晶中に添加した場合、原料からのバナジウムの昇華あるいは蒸発はSiC結晶原料の分解(昇華)により律速されることになる。従ってこの場合バナジウムの昇華あるいは蒸発速度は、従来法のように金属バナジウムあるいはバナジウム化合物の昇華あるいは蒸発速度によって決定されるのではなく、常にSiC結晶原料のそれと同じになり、従来法で問題となっていたバナジウムとSiC間の昇華あるいは蒸発速度差は生じない。このように、バナジウムの昇華あるいは蒸発速度がSiC結晶の昇華速度と同じになった場合には、成長開始後数時間でバナジウムが枯渇してしまうようなことはなく、成長中常に一定量のバナジウムを昇華あるいは蒸発させることができる。その結果、バナジウムを成長結晶中に常に一定量添加することが可能となる。また、SiC結晶原料中へのバナジウムの添加量を予め調整しておけば、成長結晶中への添加量も調整できる。例えば、SiC結晶原料中のバナジウム量を2×1019atom/cm3としておけば、成長結晶に取り込まれるバナジウム量は、2×1016atom/cm3〜1×1017atom/cm3となる。バナジウムの濃度が原料中よりも成長結晶中で低くなるのは、原料からのSiC単結晶中へのバナジウム取り込み率(成長結晶中のバナジウム濃度÷結晶原料中のバナジウム濃度)が0.001〜0.005と低いためである。この取り込み率はSiC単結晶の成長条件に依存し、SiC結晶原料中に仕込むバナジウム濃度は、このことを考慮した上で決定されなければならない。このように、成長結晶への取り込み率を考慮に入れながら、SiC結晶原料中のバナジウム濃度を決定し、この原料を用いて昇華再結晶法によりSiC単結晶を成長すれば、成長されたSiC単結晶全体に渡って一定且つ固溶限界量以下のバナジウムを再現性良く添加することができ、その結果高品質のSiC単結晶を得ることができる。
【0010】
本発明のSiC単結晶の製造方法では、SiC結晶原料中のバナジウム以外のSiC単結晶の高抵抗率化を阻害する不純物濃度をバナジウムの濃度未満であるSiC結晶原料を用いることを特徴とする。当該不純物の濃度はバナジウムの濃度未満であればよく、好ましくは、バナジウムの濃度が1×1018〜6×1019atom/cmの場合には1×1015atom/cm以下、あるいは、バナジウムの濃度が1×1019〜6×1019atom/cmの場合には1×1016atom/cm以下である。これら濃度範囲の条件は、成長したSiC単結晶中のバナジウム濃度が常にSiC単結晶の高抵抗率化を阻害する不純物濃度以上になるようにするためであり、上記具体例の濃度条件において特に好ましいSiC単結晶を製造することが出来る。バナジウムを添加したSiC単結晶で高抵抗率を得るためには、添加したバナジウムの量を上回る量のSiC単結晶の高抵抗率化を阻害する不純物がSiC単結晶中に存在してはならない。成長結晶中のバナジウム濃度よりもSiC単結晶の高抵抗率化を阻害する不純物濃度が高くなってしまった場合には、単結晶の電気的特性は、その不純物により決定されてしまい、高抵抗率(10Ωcm以上)にはなり得ない。バナジウム以外のSiC単結晶の高抵抗率化を阻害する不純物の取り込み率は、高いものではほぼ1.0となるので、SiC結晶原料中のバナジウム以外のSiC単結晶の高抵抗率化を阻害する不純物濃度は、成長結晶中で許容される濃度と同程度、あるいはそれ以下にしておかなければならない。
【0011】
昇華再結晶法の原料として用いるSiC結晶中のバナジウム及びバナジウム以外のSiC単結晶の高抵抗率化を阻害する不純物濃度を本発明の範囲に設定すれば、再現性良く高抵抗率(10Ωcm以上)のSiC単結晶が得られることは、発明者らが数多くの実験から見出したものである。
【0012】
本発明に用いられるSiC単結晶育成用SiC結晶原料は、例えば、高純度の二酸化珪素(SiO)と黒鉛を高温で反応させることにより製造される。SiOに含まれている酸素は、高温(摂氏2000度以上)での反応では、一酸化炭素として系外に排出され、SiC結晶には残らない。バナジウムは上記SiO+黒鉛に高純度金属バナジウムの形で添加され、上記反応中にSiC結晶中に取り込まれる。SiC結晶中のバナジウム濃度は、成長部位によって異なるが、成長後、結晶を粉砕・粒度調節(粉末化)する際に均一化される。SiC結晶原料中のバナジウム濃度を1×1019〜6×1019atom/cm、あるいは1×1018〜6×1019atom/cmの範囲とするには、モル比で1:1に調合されたSiO+黒鉛中に、Siに対するモル比で4〜24%、あるいは0.4〜24%の高純度バナジウムを添加すればよい。ただしこの際、製造された結晶粒の周囲には、SiC結晶に取り込まれず残存した金属バナジウムが付着しているので、所望のバナジウム濃度のSiC結晶原料を得るためには、結晶を粉砕・粒度調節する前に、酸洗浄によりこの付着層を取り除く必要がある。また、このように製造されるSiC結晶原料中のSiC単結晶の高抵抗率化を阻害する不純物濃度を前記バナジウム濃度未満、好ましくは1×1016atom/cm以下、あるいは、1×1015atom/cm以下とするには、出発原料となるSiO、黒鉛、バナジウム中の不純物濃度を原子濃度で0.2ppm以下、あるいは0.02ppm以下とする必要がある。
【0013】
本発明の製造方法で作製されたSiC単結晶インゴットは、50mm以上の大口径を有し、且つ高抵抗率で、さらにバナジウムの析出物に起因した結晶欠陥が少ないという特徴を有し得る。また、種結晶を除く炭化珪素単結晶の全長に亘って、バナジウム濃度が1×1015〜3×1017atom/cm、好ましくは1×1016〜3×1017atom/cmであれば、SiC単結晶の高抵抗率化を阻害する不純物の影響を受けずに、10Ωcm以上の高抵抗率を示す。3×1017atom/cmを超えるバナジウム濃度ではSiC単結晶中にバナジウムが析出するので好ましくない。
【0014】
このようにして製造したSiC単結晶インゴットを切断、研磨してなるSiC単結晶基板は、50mm以上の口径を有しているので、この基板を用いて各種デバイスを製造する際、工業的に確立されている従来の半導体(Si、GaAs等)ウェハ用の製造ラインを使用することができ、量産に適している。特に、当該基板の抵抗率は高いので、動作周波数の高いデバイスへの適用が可能である。さらに、このSiC単結晶基板上にCVD法等によりエピタキシャル薄膜を成長して作製されるSiC単結晶エピタキシャルウェハ、あるいはGaN、AlN、InN及びこららの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハは、その基板となるSiC単結晶基板中にバナジウム析出物に起因した結晶欠陥が極めて少ないために、良好な特性(エピタキシャル薄膜の表面モフォロジー、電気特性等)を有するようになる。
【0015】
【実施例】
(実施例)
以下に、本発明の実施例を図3を用いて述べる。まず、この単結晶成長装置について簡単に説明する。結晶成長は、SiC結晶粉末原料2を昇華させ、種結晶として用いたSiC単結晶1上で再結晶化させることによりに行われる。種結晶のSiC単結晶1は、高純度黒鉛製の坩堝3の黒鉛製坩堝蓋4の内面に取り付けられる。SiC結晶粉末原料2は、坩堝3の内部に充填されている。このような坩堝3は、二重石英管5の内部に、黒鉛の支持棒6により設置される。坩堝3の周囲には、熱シールドのための黒鉛製フェルト7が設置されている。二重石英管5は、真空排気装置11により高真空排気(10-3Pa以下)することができ、かつ内部雰囲気をArガスにより圧力制御することができる。また、二重石英管5の外周には、ワークコイル8が設置されており、高周波電流を流すことにより坩堝3を加熱し、原料及び種結晶を所望の温度に加熱することができる。坩堝温度の計測は、坩堝上部及び下部を覆うフェルトの中央部に直径2〜4mmの光路を設け坩堝上部及び下部からの光を取りだし、二色温度計を用いて行う。坩堝下部の温度を原料温度、坩堝上部の温度を種温度とする。
【0016】
次に、この結晶成長装置を用いたSiC単結晶の製造について実施例を説明する。まず、種結晶として、口径50mmの(0001)面を有した六方晶系のSiC単結晶ウェハを用意した。次に、種結晶1を坩堝3の黒鉛製坩堝蓋4の内面に取り付けた。坩堝3の内部には、SiC結晶原料粉末2を充填した。原料粉末となるSiC結晶は、モル比で1:1に調合されたSiO+黒鉛中に、高純度バナジウムをSiに対するモル比で8%添加して、高温炉で反応させて作製した。この際用いたSiO、黒鉛、バナジウム中の不純物濃度は1×1016atom/cm以下であった。得られたSiC結晶粉末中のバナジウム濃度は2×1019atom/cmであった。また、バナジウム以外の不純物濃度は、1×1016atom/cm以下であった。次いで、原料を充填した坩堝3を、黒鉛製坩堝蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を摂氏2000度まで上げた。その後、雰囲気ガスとして高純度Arガスを、高純度Arガス配管9を介し、高純度Arガス用マスフローコントローラ10で制御しながら流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である摂氏2400度まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は摂氏15度/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51mmで、高さは16mm程度であった。
【0017】
こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、六方晶系のSiC単結晶が成長したことを確認できた。結晶の不純物濃度を測定する目的で、成長した単結晶インゴットから厚さ1mmのウェハを9枚切り出した。ウェハの面方位は(0001)面から<11−20>方向に3.5度オフとした。成長結晶の上部、中部、下部(種結晶近傍)に相当するウェハ(それぞれ種結晶から数えて9枚目、5枚目、2枚目)中の不純物濃度をしらべたところ、バナジウムの濃度は、どのウェハにおいても6×1016atom/cm程度で、それ以外の不純物の濃度は全て1×1016atom/cm以下であった。また、得られたウェハを顕微鏡で観察したところ、バナジウムの析出物に起因すると思われる欠陥は観察されなかった。また、電気測定により各ウェハの抵抗率を調べたところ、どのウェハも10Wcm以上という高い抵抗率を示した。
【0018】
次に、このようにして製造したSiC単結晶ウェハを研磨して、厚さ300ミクロン、口径51mmのSiC単結晶鏡面ウェハを作製した。
【0019】
さらに、この51mm口径のSiC単結晶鏡面ウェハを基板として用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度摂氏1500度、シラン(SiH4)、プロパン(C38)、水素(H2)の流量が、それぞれ5.0×10-93/sec、3.3×10-93/sec、5.0×10-53/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。
【0020】
エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、ウェハ全面に渡って非常に平坦で、ピット等の表面欠陥の非常に少ない良好な表面モフォロジーを有するSiCエピタキシャル薄膜が成長されているのが分かった。
【0021】
また、同様にして作製した別のSiC単結晶インゴットからオフ角度が0度の(0001)面ウェハを切り出し、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度摂氏1050度、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型の窒化ガリウムを3μmの膜厚で成長させた。
【0022】
得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察した。ウェハ全面に渡って非常に平坦なモフォロジーが得られ、全面に渡って高品質なGaN薄膜が形成されているのが分かった。
【0023】
(比較例)
比較例として、従来法による高抵抗率SiC単結晶の製造について述べる。上記実施例と同じく、種結晶として、口径50mmの(0001)面を有した六方晶系のSiC単結晶ウェハを用意した。次に、種結晶1を黒鉛製の坩堝3の黒鉛製坩堝蓋4の内面に取り付け、坩堝3の内部に、研磨材を洗浄処理したSiC結晶原料粉末2を充填した。さらに、この原料粉末に金属バナジウムをSiに対するモル比で0.4%添加した。原料を充填した坩堝3を、黒鉛製坩堝蓋4で閉じ、黒鉛製フェルト7で被覆した後、黒鉛製支持棒6の上に乗せ、二重石英管5の内部に設置した。そして、石英管の内部を真空排気した後、ワークコイルに電流を流し原料温度を摂氏2000度まで上げた。その後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を約80kPaに保ちながら、原料温度を目標温度である摂氏2400度まで上昇させた。成長圧力である1.3kPaには約30分かけて減圧し、その後約20時間成長を続けた。この際の坩堝内の温度勾配は摂氏15度/cmで、成長速度は約0.8mm/時であった。得られた結晶の口径は51mmで、高さは17mm程度であった。
【0024】
こうして得られた炭化珪素単結晶をX線回折及びラマン散乱により分析したところ、六方晶系のSiC単結晶が成長したことを確認できた。結晶の不純物濃度を測定する目的で、成長した単結晶インゴットから厚さ1mmのウェハを9枚切り出した。ウェハの面方位は(0001)面から<11−20>方向に3.5度オフとした。成長結晶の上部、中部、下部(種結晶近傍)に相当するウェハ(それぞれ種結晶から数えて9枚目、5枚目、2枚目)中の不純物濃度をしらべたところ、バナジウムの濃度は、成長結晶の下部に相当するウェハで5×1018atom/cmで、中部、上部に相当するウェハでは5×1016atom/cm以下であった。また、全てのウェハにおいてバナジウム以外の不純物の濃度は2×1017atom/cm程度であった。得られたウェハを顕微鏡で観察したところ、成長結晶の下部に相当するウェハでバナジウムの析出物に起因すると思われる結晶欠陥が観察された。また、電気測定により各ウェハの抵抗率を調べたところ、成長結晶の下部に相当するウェハは10Wcm以上という高い抵抗率を示したが、中部、上部に相当するウェハは、0.4Wcmと低い抵抗率を示した。
【0025】
次に、このようにして製造したSiC単結晶ウェハの内、高抵抗率のもの(成長結晶の下部に相当するウェハ)を研磨して、厚さ300ミクロン、口径51mmのSiC単結晶鏡面ウェハを作製した。
【0026】
さらに、この51mm口径のSiC単結晶鏡面ウェハを基板として用いて、SiCのエピタキシャル成長を行った。SiCエピタキシャル薄膜の成長条件は、成長温度摂氏1500度、シラン(SiH4)、プロパン(C38)、水素(H2)の流量が、それぞれ5.0×10-93/sec、3.3×10-93/sec、5.0×10-53/secであった。成長圧力は大気圧とした。成長時間は2時間で、膜厚としては約5μm成長した。
【0027】
エピタキシャル薄膜成長後、ノマルスキー光学顕微鏡により、得られたエピタキシャル薄膜の表面モフォロジーを観察したところ、基板ウェハ中にバナジウム析出物に起因する欠陥が存在する場所上に成長した部位には、ピット状の表面欠陥が現れていた。
【0028】
また、同様にして作製した別のSiC単結晶インゴットからオフ角度が0度の高抵抗率(0001)面ウェハを切り出し(種結晶近傍の領域から切り出した)、鏡面研磨した後、その上にGaN薄膜を有機金属化学気相成長(MOCVD)法によりエピタキシャル成長させた。成長条件は、成長温度摂氏1050度、トリメチルガリウム(TMG)、アンモニア(NH3)、シラン(SiH4)をそれぞれ、54×10-6モル/min、4リットル/min、22×10-11モル/min流した。また、成長圧力は大気圧とした。成長時間は60分間で、n型の窒化ガリウムを3μmの膜厚で成長させた。
【0029】
得られたGaN薄膜の表面状態を調べる目的で、成長表面をノマルスキー光学顕微鏡により観察したところ、やはりウェハ中にバナジウム析出物に起因した欠陥が存在する場所上に成長した部位には、ピット状の表面欠陥が発生していた。
【0030】
【発明の効果】
以上説明したように、本発明によれば、種結晶を用いた改良型昇華再結晶法(レーリー法)により、高抵抗率で且つ良質のSiC単結晶を再現性良く成長させることができる。このような結晶から切り出したSiC単結晶ウェハを用いれば、特性の優れた高周波電子デバイスを低価格で製作することができる。
【図面の簡単な説明】
【図1】 改良レーリー法の原理を説明する図である。
【図2】 本発明の効果を説明する図であって、(a)は従来法によって製造されたSiC単結晶中のバナジウムおよび残留不純物濃度分布を、および、(b)は本発明によって製造されたSiC単結晶中のバナジウムおよび残留不純物濃度分布を示す。
【図3】 本発明の製造方法に用いられる単結晶成長装置の一例を示す構成図である。
【符号の説明】
1 種結晶(SiC単結晶)
2 SiC結晶粉末原料
3 坩堝(黒鉛あるいはタンタル等の高融点金属)
4 黒鉛製坩堝蓋
5 二重石英管
6 支持棒
7 黒鉛製フェルト(断熱材)
8 ワークコイル
9 高純度Arガス配管
10 高純度Arガス用マスフローコントローラ
11 真空排気装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a silicon carbide single crystal and a method for manufacturing the same, and more particularly, to a high-quality and large-sized single crystal ingot that becomes a substrate wafer of a high-frequency electronic device and a method for manufacturing the same.
[0002]
[Prior art]
Silicon carbide (SiC) has excellent heat resistance and mechanical strength, and has attracted attention as an environmentally resistant semiconductor material because of its physical and chemical properties such as resistance to radiation. In recent years, the demand for SiC single crystal wafers as substrate wafers for short-wavelength optical devices from blue to ultraviolet and high-frequency high-voltage electronic devices has been increasing. However, a crystal growth technique that can stably supply a high-quality SiC single crystal having a large area on an industrial scale has not yet been established. Therefore, practical use of SiC has been hindered despite the semiconductor material having many advantages and possibilities as described above.
[0003]
Conventionally, on a laboratory scale scale, for example, a SiC single crystal was grown by a sublimation recrystallization method (Rayleigh method) to obtain a SiC single crystal of a size capable of producing a semiconductor element. However, with this method, the area of the obtained single crystal is small, and it is difficult to control its size and shape with high accuracy. Moreover, it is not easy to control the crystal polymorphism and impurity carrier concentration of SiC. Also, a cubic silicon carbide single crystal is grown by heteroepitaxial growth on a heterogeneous substrate such as silicon (Si) using chemical vapor deposition (CVD). In this method, a single crystal having a large area can be obtained, but many defects (−107cm-2Can be grown only, and it is not easy to obtain a high-quality SiC single crystal. In order to solve these problems, an improved Rayleigh method for performing sublimation recrystallization using a SiC single crystal wafer as a seed crystal has been proposed (Yu. M. Tailov and VF Tsvetkov, Journal of). Crystal Growth, vol. 52 (1981) pp. 146-150). In this method, since the seed crystal is used, the nucleation process of the crystal can be controlled, and the growth rate of the crystal can be controlled with good reproducibility by controlling the atmospheric pressure from about 100 Pa to about 15 kPa with an inert gas. The principle of the improved Rayleigh method will be described with reference to FIG. SiC single crystal as seed crystal and SiC crystal powder as raw material (usually used after cleaning and pretreatment of abrasive prepared by Acheson method) are housed in crucible (usually graphite) and argon In an inert gas atmosphere (133 Pa to 13.3 kPa) or the like, and heated to 2000 to 2400 degrees Celsius. At this time, the temperature gradient is set so that the seed crystal has a slightly lower temperature than the raw material powder. After sublimation, the raw material is diffused and transported in the direction of the seed crystal by a concentration gradient (formed by a temperature gradient). Single crystal growth is realized by recrystallization of the source gas that has arrived at the seed crystal on the seed crystal. By using the modified Rayleigh method, it is possible to grow a SiC single crystal while controlling the crystal polymorphism (6H type, 4H type, 15R type, etc.), shape, carrier type and concentration of the SiC single crystal.
[0004]
  Currently, SiC single crystal wafers having a diameter of 2 inches (50 mm) to 3 inches (75 mm) are cut out from the SiC single crystal produced by the above-described improved Rayleigh method, and are used for epitaxial thin film growth and device production. As a high frequency application of such a SiC single crystal substrate, high resistivity (106 Ωcm or more) is desired. Increasing the resistivity of a substrate has become an indispensable technique for reducing parasitic capacitance and isolating elements produced on the substrate. Currently, such a high resistivity substrate is industrially obtained by adding a vanadium element to a SiC single crystal. Specifically, in the above-mentioned sublimation recrystallization method, a metal vanadium or vanadium compound (oxide, silicide, etc.) is contained in the SiC crystal powder as a raw material and added to the grown crystal by sublimation with the SiC raw material. (For example, SA Reshanov et al., Materials Science Forum, vols. 353-356 (2001) pp. 53-56). However, although the SiC single crystal thus produced has a high resistivity, the crystal quality is poor, and the crystal portion having a high resistivity is an extremely limited portion in the grown crystal.
[0005]
[Problems to be solved by the invention]
As described above, the vanadium-added high resistivity SiC single crystal produced by the prior art has a low crystal quality, and the crystal portion having the high resistivity is an extremely limited portion of the grown crystal. This is due to the fact that the sublimation or evaporation rate of the vanadium material is much higher than the sublimation rate of the SiC material. Since the sublimation or evaporation rate of vanadium is larger than the sublimation rate of the SiC raw material, a large amount of vanadium is taken into the growth crystal at the initial stage of growth (FIG. 2A). As a result, the amount of vanadium in the grown crystal is the solid solution limit (3 × 1017atom / cmThree), And the crystallinity is deteriorated with the generation of precipitates (the crystallinity deterioration in the initial growth part also adversely affects the crystallinity of the SiC single crystal grown thereafter). Further, when a SiC crystal powder based on a normal abrasive is used as a raw material, the concentration of other residual impurities taken into the SiC single crystal is 1 × 1017atom / cmThreeAs a result, the portion where a single crystal having a high resistivity was obtained was extremely limited. As shown in FIG. 2 (a), the vanadium raw material is depleted several hours after the start of growth because the sublimation gas pressure of the vanadium raw material is high. As a result, vanadium is added in excess of the residual impurity concentration. This is because the region is a very limited portion of the grown crystal. If the concentration of vanadium in the SiC single crystal is lower than the residual impurity concentration, the electrical characteristics of the SiC single crystal are determined by other impurities, and a high resistivity single crystal cannot be obtained.
[0006]
This invention is made | formed in view of the said situation, and provides the manufacturing method and raw material of the SiC single crystal which can manufacture it with high reproducibility and high quality large-diameter ingot.
[0007]
[Means for Solving the Problems]
  Therefore, the manufacturing method of the SiC single crystal of the present invention is:
  (1) A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the concentration of vanadium as a raw material is 1 × 1018~ 6 × 1019atom / cm3Inhibits the high resistivity of silicon carbide single crystals other than vanadiumRuPure product concentration is 1 × 1015atom / cm3A method for producing a silicon carbide single crystal, characterized by growing a silicon carbide single crystal in an inert gas atmosphere using only a silicon carbide crystal that is:
  (2) A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the concentration of vanadium as a raw material is 1 × 1019~ 6 × 1019atom / cm3Inhibits the high resistivity of silicon carbide single crystals other than vanadiumRuPure product concentration is 1 × 1016atom / cm3A method for producing a silicon carbide single crystal, characterized by growing a silicon carbide single crystal in an inert gas atmosphere using only a silicon carbide crystal that is:
  (3) Vanadium concentration is 1 × 1018~ 6 × 1019atom / cm3Inhibits the high resistivity of silicon carbide single crystals other than vanadiumRuPure product concentration is 1 × 1015atom / cm3A silicon carbide crystal raw material for growing a silicon carbide single crystal,
  (4) Vanadium concentration is 1 × 1019~ 6 × 1019atom / cm3Inhibits the high resistivity of silicon carbide single crystals other than vanadiumRuPure product concentration is 1 × 1016atom / cm3A silicon carbide crystal raw material for growing a silicon carbide single crystal,
  (5) A silicon carbide single crystal obtained by the production method according to (1) or (2), having a diameter of 50 mm or more, and covering the entire length of the silicon carbide single crystal excluding the seed crystal, vanadium Concentration of 1 × 1015~ 3x1017atom / cm3A silicon carbide single crystal, characterized in that
(6) The vanadium concentration is 1 × 1016~ 3x1017atom / cm3The silicon carbide single crystal according to (5),
  (7) Impeding high resistivity of silicon carbide single crystals other than vanadiumRuThe concentration of pure product isLess than the concentration of vanadium,1 × 1016 atom / cm 3 The silicon carbide single crystal according to (5) or (6),
  (8) A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal according to any one of (5) to (7),
  (9) A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to (8),
  (10) A thin film epitaxial wafer obtained by epitaxially growing gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof on the silicon carbide single crystal substrate according to (8),
It is.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
  In the production method of the present invention, the concentration of vanadium as a raw material for silicon carbide (hereinafter also referred to as “SiC”) is 1 × 10 5 in advance.18~ 6 × 1019atom / cm3, Preferably 1 × 1019~ 6 × 1019atom / cm3And inhibits the high resistivity of SiC single crystals other than vanadium.RuThe concentration of pure substance is less than the concentration of vanadium, preferably the concentration of vanadium is 1 × 1018~ 6 × 1019atom / cm3In case of 1 × 1015atom / cm3Hereinafter, the concentration of vanadium is 1 × 1019~ 6 × 1019atom / cm3In case of 1 × 1016atom / cm3By using the following SiC single crystal, high resistivity (106A high-quality large-diameter SiC single crystal ingot can be obtained.
[0009]
The effect of this invention is demonstrated using FIG.2 (b). In the growth of SiC single crystal by the sublimation recrystallization method, when vanadium is added to the grown crystal using a SiC crystal raw material that contains vanadium as an intracrystalline impurity in the SiC crystal in advance, the sublimation or evaporation of vanadium from the raw material is caused by the SiC crystal. It is rate-limited by decomposition | disassembly (sublimation) of a raw material. Therefore, in this case, the sublimation or evaporation rate of vanadium is not determined by the sublimation or evaporation rate of metal vanadium or vanadium compounds as in the conventional method, but is always the same as that of the SiC crystal raw material, which is a problem in the conventional method. There is no sublimation or evaporation rate difference between the vanadium and SiC. Thus, when the sublimation or evaporation rate of vanadium is the same as the sublimation rate of the SiC crystal, vanadium is not depleted within a few hours after the start of growth, and a constant amount of vanadium is always present during growth. Can be sublimated or evaporated. As a result, it becomes possible to always add a certain amount of vanadium into the grown crystal. If the amount of vanadium added to the SiC crystal raw material is adjusted in advance, the amount added to the grown crystal can also be adjusted. For example, the amount of vanadium in the SiC crystal raw material is 2 × 1019atom / cmThreeAs a result, the amount of vanadium incorporated into the grown crystal is 2 × 1016atom / cmThree~ 1x1017atom / cmThreeIt becomes. The vanadium concentration is lower in the grown crystal than in the raw material because the vanadium uptake rate from the raw material into the SiC single crystal (vanadium concentration in the grown crystal ÷ vanadium concentration in the crystal raw material) is 0.001 to 0. This is because it is as low as 0.005. This uptake rate depends on the growth conditions of the SiC single crystal, and the vanadium concentration charged into the SiC crystal raw material must be determined in consideration of this fact. As described above, if the concentration of vanadium in the SiC crystal raw material is determined in consideration of the incorporation rate into the grown crystal, and the SiC single crystal is grown by the sublimation recrystallization method using this raw material, the grown SiC single crystal is obtained. Vanadium that is constant and below the solid solution limit can be added with good reproducibility over the entire crystal, and as a result, a high-quality SiC single crystal can be obtained.
[0010]
  In the method for producing a SiC single crystal according to the present invention, high resistivity of SiC single crystals other than vanadium in the SiC crystal raw material is inhibited.RuAn SiC crystal raw material having a pure substance concentration less than the vanadium concentration is used. ThisThisThe concentration of the pure material may be less than the concentration of vanadium, and preferably the concentration of vanadium is 1 × 10.18~ 6 × 1019atom / cm3In case of 1 × 1015atom / cm3Or the concentration of vanadium is 1 × 1019~ 6 × 1019atom / cm3In case of 1 × 1016atom / cm3It is as follows. In these concentration range conditions, the vanadium concentration in the grown SiC single crystal always inhibits the high resistivity of the SiC single crystal.RuThis is because the concentration of the pure material is not less than that, and a particularly preferable SiC single crystal can be manufactured under the concentration conditions of the above specific examples. In order to obtain a high resistivity with a SiC single crystal to which vanadium is added, the increase in the resistivity of the SiC single crystal in an amount exceeding the amount of the added vanadium is inhibited.RuPure products should not be present in the SiC single crystal. Inhibits higher resistivity of SiC single crystal than vanadium concentration in grown crystalRuIf the concentration of pure substance has increased, the electrical characteristics of the single crystalIncongruityHigh resistivity (106Ωcm or more). Since the incorporation rate of impurities that inhibit the increase in resistivity of SiC single crystals other than vanadium is approximately 1.0 at high values, the increase in resistivity of SiC single crystals other than vanadium in the SiC crystal raw material is inhibited. The impurity concentration must be the same as or lower than that allowed in the grown crystal.
[0011]
  Inhibits high resistivity of vanadium and other SiC single crystals in SiC crystals used as raw materials for sublimation recrystallizationRuIf the pure substance concentration is set within the range of the present invention, high resistivity (106It has been found by the inventors from numerous experiments that an SiC single crystal of Ωcm or more can be obtained.
[0012]
  The SiC crystal raw material for growing SiC single crystal used in the present invention is, for example, high-purity silicon dioxide (SiO 2).2) And graphite at a high temperature. SiO2In the reaction at a high temperature (2000 ° C. or more), oxygen contained in is discharged out of the system as carbon monoxide and does not remain in the SiC crystal. Vanadium is the above-mentioned SiO.2+ Added to graphite in the form of high purity metal vanadium and incorporated into SiC crystals during the reaction. The vanadium concentration in the SiC crystal varies depending on the growth site, but is uniformized when the crystal is crushed and adjusted in particle size (powdered) after growth. The vanadium concentration in the SiC crystal raw material is 1 × 1019~ 6 × 1019atom / cm3Or 1 × 1018~ 6 × 1019atom / cm3SiO in a molar ratio of 1: 12+ High purity vanadium having a molar ratio with respect to Si of 4 to 24% or 0.4 to 24% may be added to graphite. At this time, however, the remaining metal vanadium that has not been incorporated into the SiC crystal is attached around the produced crystal grains. Therefore, in order to obtain an SiC crystal raw material having a desired vanadium concentration, the crystal is crushed and the particle size is adjusted. Before this is done, it is necessary to remove this adhesion layer by acid cleaning. Moreover, the high resistivity of the SiC single crystal in the SiC crystal raw material manufactured in this way is inhibited.RuPure substance concentration is less than the vanadium concentration, preferably 1 × 1016atom / cm3Or 1 × 1015atom / cm3To make the following, the starting SiO2In graphite, vanadiumIncongruityThe pure substance concentration must be 0.2 ppm or less or 0.02 ppm or less in terms of atomic concentration.
[0013]
  The SiC single crystal ingot produced by the production method of the present invention can be characterized by having a large diameter of 50 mm or more, high resistivity, and few crystal defects due to vanadium precipitates. Further, the vanadium concentration is 1 × 10 6 over the entire length of the silicon carbide single crystal excluding the seed crystal.15~ 3x1017atom / cm3, Preferably 1 × 1016~ 3x1017atom / cm3If so, the high resistivity of SiC single crystal is hindered.Ru10 without being affected by pure products6High resistivity of Ωcm or higher is shown. 3 × 1017atom / cm3A vanadium concentration exceeding 1 is not preferable because vanadium precipitates in the SiC single crystal.
[0014]
Since the SiC single crystal substrate obtained by cutting and polishing the SiC single crystal ingot thus manufactured has a diameter of 50 mm or more, it is industrially established when manufacturing various devices using this substrate. A conventional production line for semiconductor (Si, GaAs, etc.) wafers can be used, which is suitable for mass production. In particular, since the resistivity of the substrate is high, it can be applied to a device having a high operating frequency. Furthermore, an SiC single crystal epitaxial wafer produced by growing an epitaxial thin film on this SiC single crystal substrate by a CVD method or the like, or a thin film epitaxial wafer formed by epitaxially growing a mixed crystal of GaN, AlN, InN and these, Since the SiC single crystal substrate as the substrate has very few crystal defects due to vanadium precipitates, the SiC single crystal substrate has good characteristics (surface morphology, electrical characteristics, etc. of the epitaxial thin film).
[0015]
【Example】
(Example)
An embodiment of the present invention will be described below with reference to FIG. First, this single crystal growth apparatus will be briefly described. Crystal growth is performed by sublimating the SiC crystal powder raw material 2 and recrystallizing it on the SiC single crystal 1 used as a seed crystal. The seed crystal SiC single crystal 1 is attached to the inner surface of a graphite crucible lid 4 of a high-purity graphite crucible 3. The SiC crystal powder raw material 2 is filled in the crucible 3. Such a crucible 3 is installed inside a double quartz tube 5 by a support rod 6 made of graphite. Around the crucible 3, a graphite felt 7 for heat shielding is installed. The double quartz tube 5 is subjected to high vacuum exhaust (10-3Pa or less) and the internal atmosphere can be pressure controlled by Ar gas. In addition, a work coil 8 is provided on the outer periphery of the double quartz tube 5, and the crucible 3 can be heated by flowing a high-frequency current to heat the raw material and the seed crystal to a desired temperature. The temperature of the crucible is measured using a two-color thermometer by providing an optical path having a diameter of 2 to 4 mm at the center of the felt covering the upper and lower parts of the crucible and extracting light from the upper and lower parts of the crucible. The temperature at the bottom of the crucible is the raw material temperature, and the temperature at the top of the crucible is the seed temperature.
[0016]
  Next, an example of manufacturing a SiC single crystal using this crystal growth apparatus will be described. First, a hexagonal SiC single crystal wafer having a (0001) face with a diameter of 50 mm was prepared as a seed crystal. Next, the seed crystal 1 was attached to the inner surface of the graphite crucible lid 4 of the crucible 3. The inside of the crucible 3 was filled with SiC crystal raw material powder 2. The SiC crystal used as the raw material powder is SiO prepared at a molar ratio of 1: 1.2It was prepared by adding 8% of high-purity vanadium in a molar ratio with respect to Si in + graphite and reacting in a high temperature furnace. SiO used at this time2In graphite, vanadiumIncongruityPure substance concentration is 1 × 1016atom / cm3It was the following. The vanadium concentration in the obtained SiC crystal powder was 2 × 10.19atom / cm3Met. Other than vanadiumIncongruityPure substance concentration is 1 × 1016atom / cm3It was the following. Next, the crucible 3 filled with the raw material was closed with a graphite crucible lid 4, covered with a graphite felt 7, placed on a graphite support rod 6, and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, an electric current was passed through the work coil to raise the raw material temperature to 2000 degrees Celsius. Thereafter, high purity Ar gas is introduced as atmospheric gas through the high purity Ar gas pipe 9 while being controlled by the mass flow controller 10 for high purity Ar gas, and the raw material temperature is set to the target temperature while maintaining the pressure in the quartz tube at about 80 kPa. It was raised to 2400 degrees Celsius. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 degrees Celsius / cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51 mm, and the height was about 16 mm.
[0017]
  When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a hexagonal SiC single crystal was grown. For the purpose of measuring the impurity concentration of crystals, nine wafers having a thickness of 1 mm were cut out from the grown single crystal ingot. The plane orientation of the wafer was 3.5 degrees off from the (0001) plane in the <11-20> direction. When the impurity concentrations in the wafers corresponding to the upper, middle, and lower portions (near the seed crystal) of the grown crystal (the ninth, fifth, and second wafers from the seed crystal, respectively) were examined, the vanadium concentration was 6 × 10 for any wafer16atom / cm3Degree, otherwiseIncongruityThe concentration of pure substances is 1 × 1016atom / cm3It was the following. Further, when the obtained wafer was observed with a microscope, no defect that might be caused by vanadium precipitates was observed. Further, when the resistivity of each wafer was examined by electrical measurement, every wafer was found to be 106The resistivity was as high as Wcm or more.
[0018]
Next, the SiC single crystal wafer thus manufactured was polished to produce a SiC single crystal mirror wafer having a thickness of 300 microns and a diameter of 51 mm.
[0019]
Further, SiC was epitaxially grown using this 51 mm diameter SiC single crystal mirror wafer as a substrate. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 degrees Celsius, and silane (SiHFour), Propane (CThreeH8), Hydrogen (H2) Flow rate of 5.0 × 10 respectively-9mThree/ Sec, 3.3 × 10-9mThree/ Sec, 5.0 × 10-FivemThree/ Sec. The growth pressure was atmospheric pressure. The growth time was 2 hours, and the film thickness was about 5 μm.
[0020]
After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. It turns out that a thin film is growing.
[0021]
In addition, a (0001) plane wafer having an off angle of 0 degrees was cut out from another SiC single crystal ingot produced in the same manner, mirror-polished, and then a GaN thin film was formed thereon by metal organic chemical vapor deposition (MOCVD). Epitaxially grown. The growth conditions are as follows: growth temperature 1050 degrees Celsius, trimethylgallium (TMG), ammonia (NHThree), Silane (SiH)Four) 54 × 10 respectively-6Mol / min, 4 liters / min, 22 × 10-11Mol / min flowed. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type gallium nitride was grown to a thickness of 3 μm.
[0022]
For the purpose of examining the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. It was found that a very flat morphology was obtained over the entire wafer surface, and a high-quality GaN thin film was formed over the entire surface.
[0023]
(Comparative example)
As a comparative example, the production of a high resistivity SiC single crystal by a conventional method will be described. As in the above example, a hexagonal SiC single crystal wafer having a (0001) plane with a diameter of 50 mm was prepared as a seed crystal. Next, the seed crystal 1 was attached to the inner surface of the graphite crucible lid 4 of the graphite crucible 3, and the inside of the crucible 3 was filled with the SiC crystal raw material powder 2 obtained by washing the abrasive. Furthermore, 0.4% of metal vanadium was added to this raw material powder in a molar ratio with respect to Si. The crucible 3 filled with the raw material was closed with a graphite crucible lid 4, covered with a graphite felt 7, placed on a graphite support rod 6, and installed inside the double quartz tube 5. Then, after evacuating the inside of the quartz tube, an electric current was passed through the work coil to raise the raw material temperature to 2000 degrees Celsius. Thereafter, high-purity Ar gas was introduced as the atmospheric gas, and the raw material temperature was raised to the target temperature of 2400 degrees Celsius while maintaining the pressure in the quartz tube at about 80 kPa. The growth pressure was reduced to 1.3 kPa over about 30 minutes, and then the growth was continued for about 20 hours. At this time, the temperature gradient in the crucible was 15 degrees Celsius / cm, and the growth rate was about 0.8 mm / hour. The diameter of the obtained crystal was 51 mm, and the height was about 17 mm.
[0024]
  When the silicon carbide single crystal thus obtained was analyzed by X-ray diffraction and Raman scattering, it was confirmed that a hexagonal SiC single crystal was grown. For the purpose of measuring the impurity concentration of crystals, nine wafers having a thickness of 1 mm were cut out from the grown single crystal ingot. The plane orientation of the wafer was 3.5 degrees off from the (0001) plane in the <11-20> direction. When the impurity concentrations in the wafers corresponding to the upper, middle, and lower portions (near the seed crystal) of the grown crystal (the ninth, fifth, and second wafers from the seed crystal, respectively) were examined, the vanadium concentration was 5 × 10 for the wafer corresponding to the lower part of the grown crystal18atom / cm3In the case of wafers corresponding to the middle and upper parts, 5 × 1016atom / cm3It was the following. All wafers except vanadiumIncongruityThe concentration of pure product is 2 × 1017atom / cm3It was about. When the obtained wafer was observed with a microscope, crystal defects thought to be caused by vanadium precipitates were observed on the wafer corresponding to the lower part of the grown crystal. Further, when the resistivity of each wafer was examined by electrical measurement, 10 wafers corresponding to the lower part of the grown crystal were found.6Although a high resistivity of Wcm or more was shown, wafers corresponding to the middle and upper portions showed a low resistivity of 0.4 Wcm.
[0025]
Next, among the SiC single crystal wafers manufactured in this way, those having a high resistivity (wafer corresponding to the lower part of the grown crystal) are polished, and a SiC single crystal mirror wafer having a thickness of 300 microns and a diameter of 51 mm is obtained. Produced.
[0026]
Further, SiC was epitaxially grown using this 51 mm diameter SiC single crystal mirror wafer as a substrate. The growth conditions of the SiC epitaxial thin film are as follows: the growth temperature is 1500 degrees Celsius, and silane (SiHFour), Propane (CThreeH8), Hydrogen (H2) Flow rate of 5.0 × 10 respectively-9mThree/ Sec, 3.3 × 10-9mThree/ Sec, 5.0 × 10-FivemThree/ Sec. The growth pressure was atmospheric pressure. The growth time was 2 hours, and the film thickness was about 5 μm.
[0027]
After the epitaxial thin film was grown, the surface morphology of the obtained epitaxial thin film was observed with a Nomarski optical microscope. A defect appeared.
[0028]
Further, a high resistivity (0001) plane wafer having an off angle of 0 degree was cut out from another SiC single crystal ingot produced in the same manner (cut out from a region in the vicinity of the seed crystal), mirror-polished, and then GaN thereon The thin film was epitaxially grown by metal organic chemical vapor deposition (MOCVD). The growth conditions are as follows: growth temperature 1050 degrees Celsius, trimethylgallium (TMG), ammonia (NHThree), Silane (SiH)Four) 54 × 10 respectively-6Mol / min, 4 liters / min, 22 × 10-11Mol / min flowed. The growth pressure was atmospheric pressure. The growth time was 60 minutes, and n-type gallium nitride was grown to a thickness of 3 μm.
[0029]
For the purpose of investigating the surface state of the obtained GaN thin film, the growth surface was observed with a Nomarski optical microscope. As a result, the portion grown on the wafer where defects due to vanadium precipitates existed was found to be pit-like. A surface defect occurred.
[0030]
【The invention's effect】
As described above, according to the present invention, a high-resistivity, high-quality SiC single crystal can be grown with good reproducibility by an improved sublimation recrystallization method (Rayleigh method) using a seed crystal. If a SiC single crystal wafer cut out from such a crystal is used, a high-frequency electronic device having excellent characteristics can be manufactured at a low price.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining the principle of an improved Rayleigh method.
FIGS. 2A and 2B are diagrams for explaining the effects of the present invention, in which FIG. 2A shows vanadium and residual impurity concentration distribution in a SiC single crystal manufactured by a conventional method, and FIG. 2B shows the effect of the present invention. 2 shows vanadium and residual impurity concentration distribution in a SiC single crystal.
FIG. 3 is a configuration diagram showing an example of a single crystal growth apparatus used in the manufacturing method of the present invention.
[Explanation of symbols]
1 Seed crystal (SiC single crystal)
2 SiC crystal powder raw material
3 Crucible (high melting point metal such as graphite or tantalum)
4 Graphite crucible lid
5 Double quartz tube
6 Support rod
7 Graphite felt (heat insulation)
8 Work coil
9 High purity Ar gas piping
10 Mass flow controller for high purity Ar gas
11 Vacuum exhaust system

Claims (10)

昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、原料としてバナジウムの濃度が1×1018〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1015atom/cm以下である炭化珪素結晶のみを用いて、不活性ガス雰囲気中で炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the concentration of vanadium as a raw material is 1 × 10 18 to 6 × 10 19 atoms / cm 3. , and the concentration of non neat you inhibit high resistivity of the silicon carbide single crystal other than vanadium using only is 1 × 10 15 atom / cm 3 or less silicon carbide crystals in an inert gas atmosphere A method for producing a silicon carbide single crystal, comprising growing a silicon carbide single crystal. 昇華再結晶法により種結晶上に炭化珪素単結晶を成長させる工程を包含する炭化珪素単結晶の製造方法であって、原料としてバナジウムの濃度が1×1019〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1016atom/cm以下である炭化珪素結晶のみを用いて、不活性ガス雰囲気中で炭化珪素単結晶を成長させることを特徴とする炭化珪素単結晶の製造方法。A method for producing a silicon carbide single crystal comprising a step of growing a silicon carbide single crystal on a seed crystal by a sublimation recrystallization method, wherein the concentration of vanadium as a raw material is 1 × 10 19 to 6 × 10 19 atoms / cm 3. , and the concentration of non neat you inhibit high resistivity of the silicon carbide single crystal other than vanadium using alone is silicon carbide crystals below 1 × 10 16 atom / cm 3 , in an inert gas atmosphere A method for producing a silicon carbide single crystal, comprising growing a silicon carbide single crystal. バナジウムの濃度が1×1018〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1015atom/cm以下である、炭化珪素単結晶育成用炭化珪素結晶原料。The concentration of vanadium is that 1 × 10 18 ~6 × 10 19 atom / cm 3, the concentration of non neat you inhibit high resistivity of the silicon carbide single crystal other than vanadium 1 × 10 15 atom / cm 3 The silicon carbide crystal raw material for silicon carbide single crystal growth which is the following. バナジウムの濃度が1×1019〜6×1019atom/cmであり、バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が1×1016atom/cm以下である、炭化珪素単結晶育成用炭化珪素結晶原料。The concentration of vanadium is that 1 × 10 19 ~6 × 10 19 atom / cm 3, the concentration of non neat you inhibit high resistivity of the silicon carbide single crystal other than vanadium 1 × 10 16 atom / cm 3 The silicon carbide crystal raw material for silicon carbide single crystal growth which is the following. 請求項1又は2に記載の製造方法で得られた炭化珪素単結晶であって、50mm以上の口径を有し、種結晶を除く炭化珪素単結晶の全長に亘って、バナジウムの濃度が1×1015〜3×1017atom/cmであることを特徴とする、炭化珪素単結晶。A silicon carbide single crystal obtained by the production method according to claim 1, wherein the concentration of vanadium is 1 × over the entire length of the silicon carbide single crystal having a diameter of 50 mm or more excluding the seed crystal. A silicon carbide single crystal characterized by being 10 15 to 3 × 10 17 atoms / cm 3 . 前記バナジウムの濃度が1×1016〜3×1017atom/cmである、請求項5に記載の炭化珪素単結晶。The silicon carbide single crystal according to claim 5, wherein the vanadium concentration is 1 × 10 16 to 3 × 10 17 atoms / cm 3 . バナジウム以外の炭化珪素単結晶の高抵抗率化を阻害する不純物の濃度が、バナジウムの濃度未満であり、1×1016 atom/cm 以下である請求項5又は6に記載の炭化珪素単結晶。Is not neat concentration you inhibit high resistivity of the silicon carbide single crystal other than vanadium, less than the concentration of vanadium carbide according to claim 5 or 6 is 1 × 10 16 atom / cm 3 or less Silicon single crystal. 請求項5〜7のいずれか一項に記載の炭化珪素単結晶を切断、研磨してなる炭化珪素単結晶基板。  A silicon carbide single crystal substrate obtained by cutting and polishing the silicon carbide single crystal according to any one of claims 5 to 7. 請求項8に記載の炭化珪素単結晶基板に、炭化珪素薄膜をエピタキシャル成長してなる炭化珪素エピタキシャルウェハ。  A silicon carbide epitaxial wafer obtained by epitaxially growing a silicon carbide thin film on the silicon carbide single crystal substrate according to claim 8. 請求項8に記載の炭化珪素単結晶基板に、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶をエピタキシャル成長してなる薄膜エピタキシャルウェハ。  A thin film epitaxial wafer formed by epitaxially growing gallium nitride, aluminum nitride, indium nitride or a mixed crystal thereof on the silicon carbide single crystal substrate according to claim 8.
JP2001301935A 2001-09-28 2001-09-28 Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal Expired - Fee Related JP4733882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001301935A JP4733882B2 (en) 2001-09-28 2001-09-28 Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001301935A JP4733882B2 (en) 2001-09-28 2001-09-28 Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal

Publications (2)

Publication Number Publication Date
JP2003104798A JP2003104798A (en) 2003-04-09
JP4733882B2 true JP4733882B2 (en) 2011-07-27

Family

ID=19122269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001301935A Expired - Fee Related JP4733882B2 (en) 2001-09-28 2001-09-28 Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal

Country Status (1)

Country Link
JP (1) JP4733882B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005008472A (en) * 2003-06-18 2005-01-13 Nippon Steel Corp High quality 4h-type silicon carbide single crystal and single crystal wafer
JP4460236B2 (en) * 2003-07-23 2010-05-12 新日本製鐵株式会社 Silicon carbide single crystal wafer
JP2005239496A (en) * 2004-02-27 2005-09-08 Nippon Steel Corp Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JP2006096578A (en) * 2004-09-28 2006-04-13 Nippon Steel Corp Method for producing silicon carbide single crystal and ingot of silicon carbide single crystal
JP5068423B2 (en) 2004-10-13 2012-11-07 新日本製鐵株式会社 Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP4470690B2 (en) 2004-10-29 2010-06-02 住友電気工業株式会社 Silicon carbide single crystal, silicon carbide substrate, and method for producing silicon carbide single crystal
US7794842B2 (en) 2004-12-27 2010-09-14 Nippon Steel Corporation Silicon carbide single crystal, silicon carbide single crystal wafer, and method of production of same
KR100821360B1 (en) * 2006-08-23 2008-04-11 신닛뽄세이테쯔 카부시키카이샤 Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
CN102597337A (en) 2009-08-27 2012-07-18 住友金属工业株式会社 Sic single crystal wafer and process for production thereof
JP5370025B2 (en) * 2009-09-08 2013-12-18 新日鐵住金株式会社 Silicon carbide single crystal ingot
JP5131262B2 (en) * 2009-11-30 2013-01-30 新日鐵住金株式会社 Silicon carbide single crystal and method for producing the same
JP5777437B2 (en) * 2011-07-27 2015-09-09 京セラ株式会社 Single crystal substrate and semiconductor device using the same
US9279192B2 (en) * 2014-07-29 2016-03-08 Dow Corning Corporation Method for manufacturing SiC wafer fit for integration with power device manufacturing technology
KR101614325B1 (en) 2015-01-21 2016-04-21 한국세라믹기술원 Method of manufacturing silicon carbide powder contaning vanadium and silicon carbide single cryctal thereof
CN113981528A (en) * 2020-07-27 2022-01-28 环球晶圆股份有限公司 Method for manufacturing silicon carbide wafer and semiconductor structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4325804C3 (en) * 1993-07-31 2001-08-09 Daimler Chrysler Ag Process for the production of high-resistance silicon carbide
EP0956594A1 (en) * 1997-01-31 1999-11-17 Northrop Grumman Corporation High resistivity silicon carbide substrates for high power microwave devices
US6218680B1 (en) * 1999-05-18 2001-04-17 Cree, Inc. Semi-insulating silicon carbide without vanadium domination

Also Published As

Publication number Publication date
JP2003104798A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP5068423B2 (en) Silicon carbide single crystal ingot, silicon carbide single crystal wafer, and manufacturing method thereof
JP5779171B2 (en) Method and apparatus for sublimation growth of SiC single crystal
JP4733485B2 (en) Method for producing seed crystal for silicon carbide single crystal growth, seed crystal for silicon carbide single crystal growth, method for producing silicon carbide single crystal, and silicon carbide single crystal
JP4733882B2 (en) Silicon carbide single crystal, method for producing the same, and silicon carbide crystal raw material for growing silicon carbide single crystal
JP4818754B2 (en) Method for producing silicon carbide single crystal ingot
JP4603386B2 (en) Method for producing silicon carbide single crystal
US20080050844A1 (en) Surface Reconstruction Method for Silicon Carbide Substrate
JP2002220299A (en) SINGLE CRYSTAL SiC AND METHOD OF PRODUCING THE SAME AND SiC SEMI CONDUCTOR DEVICE AND SiC COMPOSITE MATERIAL
WO2006070480A1 (en) Silicon carbide single crystal, silicon carbide single crystal wafer, and process for producing the same
JPH06316499A (en) Production of sic single crystal
JP4523733B2 (en) Method for producing silicon carbide single crystal ingot and method for mounting seed crystal for growing silicon carbide single crystal
JP4460236B2 (en) Silicon carbide single crystal wafer
JP2008110907A (en) Method for producing silicon carbide single crystal ingot, and silicon carbide single crystal ingot
JP4690906B2 (en) Seed crystal for growing silicon carbide single crystal, method for producing the same, and method for producing silicon carbide single crystal
JP2005239496A (en) Silicon carbide raw material for growing silicon carbide single crystal, silicon carbide single crystal, and method for producing the same
JP5131262B2 (en) Silicon carbide single crystal and method for producing the same
JP4408247B2 (en) Seed crystal for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP2002274994A (en) Method and apparatus of manufacturing silicon carbide single crystal and silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JPH06219898A (en) Production of n-type silicon carbide single crystal
JP3590464B2 (en) Method for producing 4H type single crystal silicon carbide
JP5333363B2 (en) Silicon carbide raw material for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP4157326B2 (en) 4H type silicon carbide single crystal ingot and wafer
JP2005314167A (en) Seed crystal for use in silicon carbide single crystal growth, manufacturing method thereof, and method for growing crystal using it
JP5370025B2 (en) Silicon carbide single crystal ingot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4733882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees