JP4731847B2 - Petri dish, chamber apparatus, optical microscope observation method and sample analysis method - Google Patents

Petri dish, chamber apparatus, optical microscope observation method and sample analysis method Download PDF

Info

Publication number
JP4731847B2
JP4731847B2 JP2004209175A JP2004209175A JP4731847B2 JP 4731847 B2 JP4731847 B2 JP 4731847B2 JP 2004209175 A JP2004209175 A JP 2004209175A JP 2004209175 A JP2004209175 A JP 2004209175A JP 4731847 B2 JP4731847 B2 JP 4731847B2
Authority
JP
Japan
Prior art keywords
petri dish
sample
observation
lid
container body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004209175A
Other languages
Japanese (ja)
Other versions
JP2006030583A (en
Inventor
徹 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004209175A priority Critical patent/JP4731847B2/en
Publication of JP2006030583A publication Critical patent/JP2006030583A/en
Application granted granted Critical
Publication of JP4731847B2 publication Critical patent/JP4731847B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Microscoopes, Condenser (AREA)

Description

本発明は、例えば生きた細胞の観察、分析及び処理に適し、蓋体を装着したままで蛍光観察と微分干渉観察を併用することができるペトリディッシュ、チャンバー装置、光学顕微鏡観察方法及び試料分析方法の提供を目的とする。   The present invention is suitable for, for example, observation, analysis and processing of living cells, and can be used in combination with fluorescence observation and differential interference observation with a lid attached, a petri dish, a chamber apparatus, an optical microscope observation method, and a sample analysis method The purpose is to provide.

図8は従来の一般的なガラスボトムのペトリディッシュを示す断面図である。同図において、従来のペトリディッシュ100は、主として透明なスチロール樹脂等からなる蓋体110と容器体20とからなり、容器体20の底部に形成した透孔21にガラススリップ22を接着した構成となっていた。これら蓋体110の上面と容器体20の下面とには、それぞれ円環状の高台111及び23が一体的成形してあり、これら蓋体110の上面と容器体20の下面とに傷が付くのを防止している。なお、蓋体110の高台111の内径を、容器体20の高台23の外径よりも大きくして、複数のペトリディッシュ100を重ねて置けるようにしてある。   FIG. 8 is a cross-sectional view showing a conventional general glass bottom petri dish. In the figure, a conventional Petri dish 100 is composed of a lid body 110 and a container body 20 mainly made of transparent styrene resin and the like, and a glass slip 22 is bonded to a through hole 21 formed in the bottom of the container body 20. It was. The upper surface of the lid body 110 and the lower surface of the container body 20 are integrally formed with annular hills 111 and 23, respectively, and the upper surface of the lid body 110 and the lower surface of the container body 20 are damaged. Is preventing. The inner diameter of the hill 111 of the lid body 110 is larger than the outer diameter of the hill 23 of the container body 20 so that a plurality of Petri dishes 100 can be placed on top of each other.

このようなペトリディッシュ100を用いて培養細胞等の試料31を処理、観察又は分析する場合は、容器20内を培養液やバッファ又は生理食塩水等の溶液(メディウム)32で満たすとともに、ガラススリップ22に前記試料31を植え付ける。その後、容器20に蓋体110を装着することによって、溶液32へのゴミや不要物の混入、及び、溶液32の蒸発を防ぐ。   When processing, observing or analyzing a sample 31 such as cultured cells using such a Petri dish 100, the container 20 is filled with a solution (medium) 32 such as a culture solution, a buffer or physiological saline, and a glass slip. 22 in which the sample 31 is planted. Thereafter, the lid 110 is attached to the container 20 to prevent dust and unnecessary substances from being mixed into the solution 32 and evaporation of the solution 32.

次に、上記ペトリディッシュ中の試料を正立顕微鏡で観察する場合について図8及び図9を参照しつつ説明する。図9は正立顕微鏡を示す概略図である。同図において、正立顕微鏡200における試料31の照明光の投下方法には、透過照明と反射又は落射照明の2種類がある。   Next, the case where the sample in the Petri dish is observed with an upright microscope will be described with reference to FIGS. FIG. 9 is a schematic view showing an upright microscope. In the figure, there are two types of illumination light dropping methods for the sample 31 in the upright microscope 200: transmitted illumination and reflected or epi-illumination.

まず、透過照明について説明すると、光源201から出射された照明光は、鏡基202を通って照明レンズ203を透過し、コンデンサレンズ204により集光された後、ペトリディッシュ100の下面側からステージ205上に載置した試料に到達する。その後、試料31を透過した光、又は試料31から出た光は対物レンズ206に到達し、鏡筒207を経て接眼レンズ208から観察されるか、図示しない撮像装置で記録される。なお、ペトリディッシュ100の蓋体110を外して容器体20内の溶液32に直接、対物レンズ206の先端を浸して観察する方法も行われている。   First, the transmitted illumination will be described. Illumination light emitted from the light source 201 passes through the illumination lens 203 through the mirror base 202, is collected by the condenser lens 204, and then from the lower surface side of the Petri dish 100 to the stage 205. Reach the sample placed on top. Thereafter, the light transmitted through the sample 31 or the light emitted from the sample 31 reaches the objective lens 206 and is observed from the eyepiece lens 208 through the lens barrel 207 or recorded by an imaging device (not shown). In addition, a method in which the lid 110 of the Petri dish 100 is removed and the tip of the objective lens 206 is immersed directly in the solution 32 in the container body 20 for observation is also performed.

次いで、反射又は落射照明について説明すると、光源209から出射された照明光は、投光管210を経て対物レンズ206に到達する。該対物レンズ206により試料31に集光された光は、該試料31により反射、散乱、又は蛍光励起されて再び対物レンズ206に戻り、投光管210を通過して鏡筒207を経て接眼レンズ208から観察されるか、前記撮像装置で記録される。   Next, the reflection or epi-illumination will be described. Illumination light emitted from the light source 209 reaches the objective lens 206 through the light projection tube 210. The light condensed on the sample 31 by the objective lens 206 is reflected, scattered, or fluorescently excited by the sample 31 and returns to the objective lens 206 again, passes through the light projection tube 210, passes through the lens barrel 207, and the eyepiece. It is observed from 208 or recorded by the imaging device.

次に、上記ペトリディッシュ中の試料を倒立顕微鏡で観察する場合について図8及び図10を参照しつつ説明する。図10は倒立顕微鏡を示す概略図である。同図において、倒立顕微鏡300も上記と同様、試料31の照明光の投下方法に、透過照明と反射又は落射照明の2種類を採用している。   Next, the case where the sample in the Petri dish is observed with an inverted microscope will be described with reference to FIGS. FIG. 10 is a schematic view showing an inverted microscope. In the same figure, the inverted microscope 300 also employs two types of illumination light for the sample 31: transmission illumination and reflection or epi-illumination, as described above.

まず、透過照明について説明すると、光源301から出射された照明光は、透過照明支柱302に取り付けた投光管303を経てコンデンサレンズ304を透過し、ステージ305上に載置したペトリディッシュ100内の試料31に集光される。試料31を透過した光、又は試料31から出た光は、対物レンズ306に到達し、鏡体307を経て接眼レンズ308から観察されるか、前記撮像装置で記録される。   First, transmission illumination will be described. Illumination light emitted from the light source 301 is transmitted through a condenser tube 304 through a light projection tube 303 attached to the transmission illumination support column 302, and in the Petri dish 100 placed on the stage 305. The sample 31 is condensed. The light transmitted through the sample 31 or the light emitted from the sample 31 reaches the objective lens 306 and is observed from the eyepiece lens 308 through the mirror body 307 or recorded by the imaging device.

次いで、反射又は落射照明について説明すると、光源309から出射された照明光は、鏡体307を経て対物レンズ306に到達する。該対物レンズ306によって試料31に集光された光は、該試料31により反射,散乱,又は蛍光励起されて再び対物レンズ306に戻り、鏡体307を経て接眼レンズ308から観察されるか、前記撮像装置で記録される。   Next, the reflection or epi-illumination will be described. Illumination light emitted from the light source 309 reaches the objective lens 306 through the mirror body 307. The light condensed on the sample 31 by the objective lens 306 is reflected, scattered, or fluorescently excited by the sample 31 and returns to the objective lens 306 again, and is observed from the eyepiece lens 308 through the mirror body 307, or Recorded by the imaging device.

このような正立顕微鏡200又は倒立顕微鏡300を用いた試料31の処理、観察又は分析では、ペトリディッシュ100の容器体20の底面がスチロール樹脂等の樹脂の方がガラスよりも細胞の定着性が良好であるが、光学的にはガラスの方が好都合であることが多い。   In the processing, observation or analysis of the sample 31 using such an upright microscope 200 or an inverted microscope 300, the bottom surface of the container body 20 of the Petri dish 100 is made of a resin such as styrene resin, which has better cell fixability than glass. Although good, glass is often more convenient optically.

例えば、試料31となる細胞は、光学的に透明に近く、明視野透過照明観察ではコントラストがつき難い。そこで、位相差観察や微分干渉観察が行われるのであるが、位相差観察の場合は、容器体20の底面が透明樹脂製であると、該透明樹脂と細胞膜との角度が90°に近い程過剰なコントラストを生じてハーレーションが現れてしまう。一方、微分干渉観察の場合は、容器体20の底面が透明樹脂製であると、微分干渉観察のコントラストの要素であるシアリング量が均一にならない。このような透明樹脂の光学的な不均質性がコントラストを生み、細胞のイメージと重なり、目的の細胞観察が行えないという不都合を生じる。   For example, the cell to be the sample 31 is optically close to transparency, and it is difficult to obtain contrast in bright field transmission illumination observation. Therefore, phase difference observation and differential interference observation are performed. In the case of phase difference observation, if the bottom surface of the container body 20 is made of a transparent resin, the angle between the transparent resin and the cell membrane is closer to 90 °. Halation appears due to excessive contrast. On the other hand, in the case of differential interference observation, if the bottom surface of the container body 20 is made of a transparent resin, the amount of shearing that is an element of contrast in differential interference observation is not uniform. Such optical inhomogeneity of the transparent resin produces contrast, and overlaps with the image of the cell, resulting in inconvenience that the target cell cannot be observed.

また、上述のような光学顕微鏡観察を行うために試料31を支持するには、該支持部材が光学的に均質な性質を有している必要であり、さらに、分析や処理を行うためには熱的に安定であることが要求される。これに加え、試料31が生体や細胞である場合では、該試料31への影響が少ない性質であることが必要である。そこで、上記構成からなるガラスボトムのペトリディッシュ100を採用し、細胞に代表される透明性の高い試料31の観察が可能となった。   Further, in order to support the sample 31 in order to perform the optical microscope observation as described above, it is necessary that the support member has an optically homogeneous property. Further, in order to perform analysis and processing, It is required to be thermally stable. In addition, in the case where the sample 31 is a living body or a cell, it is necessary that the sample 31 has a property that has little influence on the sample 31. Therefore, the glass bottom Petri dish 100 having the above-described configuration is employed, and the highly transparent sample 31 represented by cells can be observed.

このようなガラスボトムのペトリディッシュ100を用いて、哺乳動物の細胞分裂における染色体と微小管の挙動に関する研究論文を下記非特許文献として挙げる。該非特許文献の379ページに35mm径のガラスボトム培養ディッシュ内の細胞を油浸(オイル)対物レンズで観察する方法と装置が開示されている。
Tokuko Haraguchi, Toru Kaneda, Yasushi Hiraoka [Dynamics of chromosomes and microtubules visualized by multiple-wavelength fluorescence imaging in living mammalian cell: effects of mitotic inhibitors on cell cycle progression] Genes to cell (1997) 2, 369-380
Using such a glass bottom Petri dish 100, research papers on the behavior of chromosomes and microtubules in mammalian cell division are listed as the following non-patent documents. On page 379 of this non-patent document, a method and apparatus for observing cells in a 35 mm diameter glass bottom culture dish with an oil immersion objective lens is disclosed.
Tokuko Haraguchi, Toru Kaneda, Yasushi Hiraoka [Dynamics of chromosomes and microtubules visualized by multiple-wavelength fluorescence imaging in living mammalian cell: effects of mitotic inhibitors on cell cycle progression] Genes to cell (1997) 2, 369-380

上述した従来のペトリディッシュ100の容器20内を培養液等の溶液32で満たした場合は、液表面の波、蒸発による濃度変化や濃度勾配の発生、蒸発の二次的効果による対流の影響がない、又は少なければならない。したがって、このような外部からの影響を遮断するために蓋体110は必須といえる。一方で、生きた細胞の所定部分(例えば、核など)を蛍光観察する場合に、位相差観察、ホフマン観察、又は微分干渉観察を併用して細胞全体の形態を観察することが行われている。   When the container 20 of the conventional Petri dish 100 described above is filled with a solution 32 such as a culture solution, the influence of convection due to wave on the liquid surface, concentration change or concentration gradient due to evaporation, and secondary effects of evaporation. There must be little or no. Therefore, it can be said that the lid 110 is indispensable in order to cut off such external influences. On the other hand, when observing a predetermined part (for example, nucleus) of a living cell with fluorescence, observation of the morphology of the whole cell using phase difference observation, Hoffman observation, or differential interference observation is performed. .

しかし、透明樹脂製の蓋体110を装着したままで微分干渉観察を行うと、該透明樹脂の光学的性質が不均質であるために偏光が生じてしまい、蓋体110を介した試料31への集光が適正に行えず、又は蓋体110を介した観察では十分な解像が得られず、結局、蓋体110を外さなければ微分干渉観察を行うことができないという問題があった。   However, if differential interference observation is performed with the cover 110 made of transparent resin attached, polarized light is generated because the optical properties of the transparent resin are inhomogeneous, and the sample 31 passes through the cover 110. However, there is a problem in that differential interference observation cannot be performed unless the lid 110 is removed.

すなわち、微分干渉観察は、偏光を使った光学系であるため、光路途中に歪みや組成等に起因する光学的性質が不均質なプラスチック部材が介在すると、解像(ないし見え方)が著しく悪くなる。このため、従来のガラスボトムのペトリディッシュ100を使用して蛍光観察と微分干渉観察を併用する場合は蓋体110を取り外さなければならない。   That is, since differential interference observation is an optical system using polarized light, if a plastic member having non-homogeneous optical properties due to distortion, composition, or the like is interposed in the optical path, the resolution (or appearance) is extremely poor. Become. For this reason, when using the conventional glass bottom Petri dish 100 and using both fluorescence observation and differential interference observation, the lid 110 must be removed.

ところが、生きた細胞の観察において、蓋体110を取り外すことは雑菌の混入につながるため、数時間程度の短時間の観察に限られてしまう。また、一度蓋体110を開けて観察したペトリディッシュ100は雑菌が繁殖してしまうおそれがあるため、その後の形態の観察に期待できない。ここで、溶液32に抗生物質を添加する手法もあるが、試料たる細胞への影響が懸念され、近年では敬遠されている手法である。このため、生きた細胞を数日に渡って観察する場合は、該細胞の所定部分を蛍光観察するとともに、該蛍光観察用の対物レンズを使用して、前記細胞の全体の外観形状を、わずかなコントラストのある画像か、対物外位相差観察するほかなかった。   However, in observing living cells, removing the lid 110 leads to contamination with various germs, and thus is limited to observation in a short time of about several hours. In addition, since the petri dish 100 that has been observed with the lid 110 opened once may be propagated with various germs, it cannot be expected to observe the subsequent form. Here, there is a method of adding an antibiotic to the solution 32, but this method has been avoided in recent years because of concern about the influence on the cell as a sample. For this reason, when observing a living cell for several days, a predetermined portion of the cell is observed with fluorescence, and the overall appearance of the cell is slightly changed by using the objective lens for fluorescence observation. There was no choice but to observe an image with good contrast or out-of-object phase contrast.

また、高倍の対物レンズを使用する場合では、対物レンズのワーキングディスタンス(WD)が短い。例えば、100倍の対物レンズのWDは0.15mm程度のものがある。これに対応するコンデンサレンズのWDは0.7mm程度になる。このため、ペトリディッシュ100の蓋体110が厚さ0.5〜1mm程度の透明樹脂で形成されているならば、もはや微分干渉観察を行うことができないという問題もあった。   In addition, when a high-magnification objective lens is used, the working distance (WD) of the objective lens is short. For example, the WD of a 100 × objective lens is about 0.15 mm. The WD of the condenser lens corresponding to this is about 0.7 mm. For this reason, if the lid 110 of the Petri dish 100 is formed of a transparent resin having a thickness of about 0.5 to 1 mm, there is a problem that differential interference observation can no longer be performed.

なお、蛍光観察と位相差観察又はホフマン観察とを組み合わせた場合は、オイル対物の使用を前提とする蛍光観察から、ドライタイプの対物レンズの使用を前提とする位相差観察又はホフマン観察に切り替えるときに、今まで観察していた領域がずれてしまったり、蛍光観察時の残留オイルの付着によって位相差観察又はホフマン観察時に結像不良が生じてしまったりするという問題があった。また、対物レンズの交換をなくすために、位相差観察又はホフマン観察と同じ対物レンズで蛍光観察を行うと、対物レンズ内のスリット、位相膜又はナイフエッジ等のモジュレータによる光量ロスが発生してしまうという問題がある。   When fluorescence observation and phase contrast observation or Hoffman observation are combined, when switching from fluorescence observation assuming the use of an oil objective to phase difference observation or Hoffman observation assuming the use of a dry type objective lens In addition, there has been a problem that a region that has been observed until now is shifted, or that an imaging failure occurs during phase difference observation or Hoffman observation due to adhesion of residual oil during fluorescence observation. In addition, if the fluorescence observation is performed with the same objective lens as the phase difference observation or Hoffman observation in order to eliminate the replacement of the objective lens, a light amount loss due to a modulator such as a slit, a phase film or a knife edge in the objective lens occurs. There is a problem.

本発明は、上記問題点に鑑みてなされたものであり、蓋体を装着したままで蛍光観察と微分干渉観察を併用することができるとともに、当該微分干渉観察においてコンデンサレンズと対物レンズ間の空気層をなくすことができ、高解像度及び高倍の微分干渉観察と蛍光観察の併用が可能となるペトリディッシュ、チャンバー装置、光学顕微鏡観察方法及び試料分析方法の提供を目的とする。   The present invention has been made in view of the above problems, and can be used in combination with fluorescence observation and differential interference observation with the lid attached, and the air between the condenser lens and the objective lens in the differential interference observation. It is an object of the present invention to provide a petri dish, a chamber apparatus, an optical microscope observation method, and a sample analysis method that can eliminate the layer and can be used in combination with high resolution and high magnification differential interference observation and fluorescence observation.

上記目的を達成するために、本発明の第1のペトリディッシュは、試料を入れる容器体と、該容器体を覆う、貫通孔を備えた蓋体と、前記貫通孔に押通され、前記容器体に溶液の供給と排出を行うための少なくとも2本のパイプと、前記貫通孔を封止し、前記パイプを密着保持するシール部材とを備え、前記蓋体と前記容器体の双方に互いに対向する透孔をそれぞれ形成し、これら透孔を、自家蛍光を抑え且つ光学的に均質処理したガラスである光の透過が可能な板部材によってそれぞれ閉塞した構成とし、より好ましくは、前記貫通孔に押通され、前記溶液以外の添加物質を前記容器体内に供給するための他のパイプをさらに備えた構成、若しくは、前記板部材を石英ガラスとした構成、又は、前記蓋体の透孔を、前記容器体の透孔のより大きくした構成とする。 In order to achieve the above object, a first Petri dish of the present invention includes a container body for storing a sample, a lid body having a through hole covering the container body, and being pushed through the through hole, At least two pipes for supplying and discharging the solution to and from the body, and a sealing member for sealing the through hole and holding the pipe in close contact with each other, facing both the lid and the container Each of the through-holes is formed, and each of the through-holes is closed by a plate member capable of transmitting light, which is glass that suppresses autofluorescence and is optically homogenized. A configuration further provided with another pipe that is pushed through and supplies an additive substance other than the solution into the container, or a configuration in which the plate member is made of quartz glass, or a through hole of the lid, From the through hole of the container body And listen to the configuration.

上記目的を達成するために、本発明のチャンバー装置は、上記ペトリディッシュにおける、前記蓋体に溶液の供給と排出を行うための少なくとも2本のパイプを貫通させ、これらパイプを通じて前記容器体内に入れた前記溶液を循環させた構成としてあり、好ましくは、前記蓋体に前記溶液以外の添加物質を前記容器体内に供給するための他のパイプを貫通させた構成とする。   In order to achieve the above object, the chamber apparatus of the present invention is configured such that at least two pipes for supplying and discharging the solution are passed through the lid body in the Petri dish, and are put into the container body through these pipes. The solution is circulated, and preferably, the lid is made to pass through another pipe for supplying an additive substance other than the solution into the container.

上記目的を達成するために、本発明の光学顕微鏡観察方法は、上記ペトリディッシュ又はチャンバー装置における、前記蓋体の板部材の上方から前記容器体内に照明光を照射するとともに、該容器体の板部材の下方から対物レンズによって試料の観察を行うようにしている。好ましくは、前記照明光を試料に集光させるためのコンデンサレンズと前記蓋体の板部材との間にオイル又は液体を介在させ、前記試料の観察を、蛍光観察と微分干渉観察との併用とする。上記目的を達成するために、本発明の試料分析方法は、上記光学顕微鏡観察方法により得た観察画像に基づいて前記試料の分析を行うようにしている。   In order to achieve the above object, the optical microscope observation method of the present invention irradiates illumination light into the container body from above the plate member of the lid body in the Petri dish or chamber apparatus, and the plate of the container body The sample is observed by the objective lens from below the member. Preferably, oil or liquid is interposed between the condenser lens for condensing the illumination light on the sample and the plate member of the lid, and the observation of the sample is a combination of fluorescence observation and differential interference observation. To do. In order to achieve the above object, the sample analysis method of the present invention analyzes the sample based on the observation image obtained by the optical microscope observation method.

本発明のペトリディッシュ、チャンバー装置、光学顕微鏡観察方法及び試料分析方法によれば、ペトリディッシュ又はチャンバー装置における蓋体の板部材を介して偏光のない照明光を試料に照射することができる。これにより、蓋体を取り外すことなく、一般的なオイル対物レンズを使用して、生きた細胞の蛍光観察と微分干渉観察を行うことが可能となる。また、蓋体を取り外すことがないので、生きた細胞の蛍光観察と微分干渉観察を長時間に渡って行った場合でも該細胞が劣化しないという効果を奏する。   According to the Petri dish, the chamber apparatus, the optical microscope observation method, and the sample analysis method of the present invention, it is possible to irradiate the sample with unpolarized illumination light through the plate member of the lid in the Petri dish or the chamber apparatus. This makes it possible to perform fluorescence observation and differential interference observation of living cells using a general oil objective lens without removing the lid. Further, since the lid is not removed, there is an effect that the cells are not deteriorated even when fluorescence observation and differential interference observation of living cells are performed for a long time.

さらに、ペトリディッシュ又はチャンバー装置における蓋体に、容器体の内側に向かって突出する透孔部を形成し、該透孔部の下端開口を光の透過が可能な板部材によって閉塞した場合は、該蓋体の板部材が容器体内の溶液に浸かり、該板部材と試料の間に存在していた空気層をなくすことができ、照明光の集光にオイルコンデンサレンズを用いることによって、これまで生きた細胞の蛍光観察と併用が不可能であった高解像、高倍の微分干渉観察が可能となる。   Furthermore, when a through-hole part protruding toward the inside of the container body is formed on the lid in the Petri dish or chamber apparatus, and the lower end opening of the through-hole part is closed by a plate member capable of transmitting light, The plate member of the lid body is immersed in the solution in the container body, the air layer existing between the plate member and the sample can be eliminated, and by using an oil condenser lens to collect the illumination light, High-resolution, high-magnification differential interference observation that cannot be used in combination with fluorescence observation of living cells is possible.

これに加え、本発明のチャンバー装置、光学顕微鏡観察方法及び試料分析方法によれば、容器体内の溶液を一定の成分、濃度、温度に保つとともに、該容器体内の溶液を新鮮に保つことができる。また、あらかじめ設定した時間、濃度、量の添加物質をパイプから供給することにより、試料たる生きた細胞に刺激を与え、又は環境変化への反応を知るための実験を行うことができる。   In addition, according to the chamber apparatus, the optical microscope observation method, and the sample analysis method of the present invention, the solution in the container can be kept at a constant component, concentration, and temperature, and the solution in the container can be kept fresh. . In addition, by supplying an additive substance having a preset time, concentration, and amount from the pipe, it is possible to perform an experiment for stimulating a living cell as a sample or knowing a reaction to an environmental change.

以下、本発明の実施形態に係るペトリディッシュ、チャンバー装置、光学顕微鏡観察方法及び試料分析方法について図面を参照しつつ説明する。まず、本発明の第1実施形態に係るペトリディッシュについて、図1を参照して説明する。図1は本発明の第1実施形態に係るペトリディッシュを示す断面図である。なお、上述した従来技術と同様の箇所については、同一の符号を付して詳細な説明は省略する。   Hereinafter, a petri dish, a chamber apparatus, an optical microscope observation method, and a sample analysis method according to an embodiment of the present invention will be described with reference to the drawings. First, a petri dish according to the first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a sectional view showing a petri dish according to the first embodiment of the present invention. In addition, about the location similar to the prior art mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

同図において、本実施例のペトリディッシュ1は、透明なスチロール樹脂等からなる蓋体10と容器体20とからなっている。蓋体10のほぼ中央には円形の透孔11が形成してある。該透孔11は、容器体20の底部に形成した透孔21と対向する位置関係を有しており、その裏側(容器体20側)から光の透過が可能な板部材12を接着することにより閉塞してある。   In the figure, a petri dish 1 of this embodiment is composed of a lid body 10 and a container body 20 made of transparent styrene resin or the like. A circular through hole 11 is formed in the approximate center of the lid 10. The through-hole 11 has a positional relationship facing the through-hole 21 formed in the bottom of the container body 20, and a plate member 12 capable of transmitting light is bonded from the back side (the container body 20 side). It is blocked by.

該板部材12は、その偏光や複屈折などの光学的な解像低下要因を低減するために、自家蛍光を抑え、且つ光学的に均質処理したものが好ましい。例えば、自家蛍光を抑えるために、極めて肉厚の薄い板ガラス、無蛍光材により形成した板ガラスなどを用いることができる。また、光学的な均質処理として、板部材12の波長選択性を低減するために反射防止膜を施すこと、歪みをなくすこと、光学的性質を均質にしやすい組成物を使用すること、内部応力を均一化することなどを挙げることができる。このような観点から、板部材12の材料としては、化学的に合成した不純物の少ない合成石英ガラスが好ましい。但し、容器体20の板部材22と同様のガラススリップであっても十分な解像を得ることが可能である。なお、蓋体10の板部材12と、容器体20の板部材22とは、観察方法に応じて光学的、熱的又は形状的に同じ材質の場合もあれば、異なる材質の場合もある。   The plate member 12 is preferably one that suppresses autofluorescence and is optically homogenized in order to reduce optical resolution reduction factors such as polarization and birefringence. For example, in order to suppress autofluorescence, a very thin plate glass, a plate glass formed of a non-fluorescent material, or the like can be used. Further, as an optical homogenization treatment, an antireflection film is applied to reduce the wavelength selectivity of the plate member 12, a distortion is eliminated, a composition that easily homogenizes optical properties, an internal stress is reduced. For example, it can be made uniform. From such a viewpoint, the material of the plate member 12 is preferably a synthetic quartz glass that is chemically synthesized and has few impurities. However, sufficient resolution can be obtained even with a glass slip similar to the plate member 22 of the container body 20. Note that the plate member 12 of the lid body 10 and the plate member 22 of the container body 20 may be made of the same material or different materials depending on the observation method.

一方、板部材12を透孔11に固定するための接着剤としては、膨潤性と自家蛍光性をともに有しないもの、又は目的に応じていずれか一方のみを有しないものが望ましく、蓋体10と板部材12の接合面を全て該接着剤で満たした構成、又は、少量の接着剤により気密及び水密を確保することができる最低限の範囲で封止した構成としてもよい。なお、これら蓋体10と板部材12の接合は、接着剤による接着に限らず、熱接合などの他の接合手段によることもできる。   On the other hand, the adhesive for fixing the plate member 12 to the through-hole 11 is preferably one that does not have both swellability and autofluorescence, or one that does not have only one depending on the purpose. Further, a configuration in which all the joint surfaces of the plate member 12 and the plate member 12 are filled with the adhesive, or a configuration in which airtightness and watertightness can be secured with a small amount of adhesive may be employed. Note that the bonding of the lid 10 and the plate member 12 is not limited to bonding with an adhesive, but may be performed by other bonding means such as thermal bonding.

また、透孔11と板部材12の形状は、本実施形態の如き円形に限らず、例えば、矩形や楕円形などとしてもよい。但し、透孔11から入射される照明光の一部が容器体20内の試料31に到達する途中で遮られることのない形状及び大きさとする必要がある。したがって、蓋体10の透孔11の直径L1を、容器体20の透孔21の直径L2と同じ又は大きくすることが望ましい。ここで、図2は上記ペトリディッシュ1の変更例を示す断面図であり、同図に示すように、蓋体10の板部材12は、透孔11の表側から接着又は接合してもよい。 Moreover, the shape of the through-hole 11 and the plate member 12 is not limited to a circle as in the present embodiment, and may be, for example, a rectangle or an ellipse. However, it is necessary to make the shape and size such that a part of the illumination light incident from the through hole 11 is not blocked in the middle of reaching the sample 31 in the container body 20. Therefore, it is desirable that the diameter L 1 of the through hole 11 of the lid 10 is the same as or larger than the diameter L 2 of the through hole 21 of the container body 20. Here, FIG. 2 is a cross-sectional view showing a modified example of the Petri dish 1, and the plate member 12 of the lid 10 may be bonded or joined from the front side of the through-hole 11 as shown in FIG.

次に、本発明の第1実施形態に係る光学顕微鏡観察方法について、図3を参照しつつ説明する。図3は本発明の第1実施形態に係る光学顕微鏡観察方法を説明するための概略図である。   Next, the optical microscope observation method according to the first embodiment of the present invention will be described with reference to FIG. FIG. 3 is a schematic view for explaining an optical microscope observation method according to the first embodiment of the present invention.

本実施形態では、図2に示すペトリディッシュ1と、図10に示す倒立顕微鏡300とを用いて試料31の蛍光観察と微分干渉観察を行う。まず、図10に示す倒立顕微鏡300のステージ305に本ペトリディッシュ1を載置する。次いで、図3に示すように、本ペトリディッシュ1における蓋体10の板部材12の上方から容器体20内に照明光Sを照射するとともに、該容器体20の板部材22の下方から対物レンズ306によって試料31の蛍光観察と微分干渉観察を同時ないし交互に行う。なお、板部材22と対物レンズ306の相互間(間隔=約0.1mm)はオイル306aで満たしてある。その後、このような蛍光観察と微分干渉観察により得た観察画像に基づいて試料31の分析を行う。   In this embodiment, fluorescence observation and differential interference observation of the sample 31 are performed using the Petri dish 1 shown in FIG. 2 and the inverted microscope 300 shown in FIG. First, the Petri dish 1 is placed on the stage 305 of the inverted microscope 300 shown in FIG. Next, as shown in FIG. 3, the illumination light S is irradiated into the container body 20 from above the plate member 12 of the lid body 10 in the present Petri dish 1, and the objective lens from below the plate member 22 of the container body 20. By 306, fluorescence observation and differential interference observation of the sample 31 are performed simultaneously or alternately. The space between the plate member 22 and the objective lens 306 (interval = about 0.1 mm) is filled with oil 306a. Thereafter, the sample 31 is analyzed based on observation images obtained by such fluorescence observation and differential interference observation.

このような本実施形態のペトリディッシュ及び光学顕微鏡観察方法によれば、蓋体10の板部材12を光学的に均質としたことによって、該板部材12を介して偏光のない照明光を試料31に照射することができる。これにより、蓋体10を取り外すことなく、一般的なオイル対物レンズを使用して、生きた細胞の蛍光観察と微分干渉観察を行うことが可能となる。また、蓋体10を取り外すことがないので、生きた細胞の蛍光観察と微分干渉観察を長時間に渡って行った場合でも該細胞が劣化しないという効果を奏する。   According to such a Petri dish and an optical microscope observation method of this embodiment, the plate member 12 of the lid 10 is optically homogenized, so that illumination light having no polarization is transmitted through the plate member 12 to the sample 31. Can be irradiated. This makes it possible to perform fluorescence observation and differential interference observation of living cells using a general oil objective lens without removing the lid 10. Further, since the lid 10 is not removed, there is an effect that the cells are not deteriorated even when fluorescence observation and differential interference observation of living cells are performed for a long time.

また、光学的に均質な板部材12を透過した照明光により良好な微分干渉観察、又は蛍光観察と微分干渉観察の観察画像を得ることができるので、該観察画像に基づいて試料31の分析が良好に行えるようになる。   In addition, since a good differential interference observation, or an observation image of fluorescence observation and differential interference observation can be obtained by the illumination light transmitted through the optically uniform plate member 12, the sample 31 can be analyzed based on the observation image. It will be possible to do well.

次に、本発明の第2実施形態に係るペトリディッシュについて、図4を参照して説明する。図4は本発明の第2実施形態に係るペトリディッシュを示す断面図である。なお、上述した実施形態と同様の箇所については、同一の符号を付して詳細な説明は省略する。   Next, a petri dish according to the second embodiment of the present invention will be described with reference to FIG. FIG. 4 is a sectional view showing a petri dish according to the second embodiment of the present invention. In addition, about the location similar to embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

同図において、本実施例のペトリディッシュ2は、蓋体40に、容器体20の内側に向かって突出する円筒状の透孔部41を形成し、該透孔部41の下端開口41aを光の透過が可能な板部材42によって閉塞した構成としてある。このような構成により、蓋体40の板部材42が容器体20内の溶液32に浸かり、該板部材42と試料31の間に存在していた空気層をなくしている。また、該板部材42と試料31の間隔は約1.5mm程度に設定してある。   In the figure, the Petri dish 2 of the present embodiment forms a cylindrical through-hole portion 41 projecting toward the inside of the container body 20 in the lid body 40, and the lower end opening 41 a of the through-hole portion 41 is light-transmitted. It is set as the structure obstruct | occluded by the plate member 42 which can permeate | transmit. With such a configuration, the plate member 42 of the lid body 40 is immersed in the solution 32 in the container body 20, and the air layer existing between the plate member 42 and the sample 31 is eliminated. The distance between the plate member 42 and the sample 31 is set to about 1.5 mm.

なお、上記第1実施形態と同様に、板部材42は、その偏光や複屈折などの光学的な解像低下要因を低減するために、自家蛍光を抑え、且つ光学的に均質処理したものが好ましい。また、照明光の入射損失を防止するために蓋体40の透孔部41の直径L1を、容器体20の透孔21の直径L2と同じ又は大きくすることが望ましい。 As in the first embodiment, the plate member 42 is made by suppressing autofluorescence and optically homogenizing in order to reduce optical resolution reduction factors such as polarization and birefringence. preferable. Further, it is desirable that the diameter L 1 of the through-hole portion 41 of the lid body 40 is the same as or larger than the diameter L 2 of the through-hole 21 of the container body 20 in order to prevent the incident loss of illumination light.

次に、本発明の第2実施形態に係る光学顕微鏡観察方法について、図5を参照しつつ説明する。図5は本発明の第2実施形態に係る光学顕微鏡観察方法を説明するための概略図である。   Next, an optical microscope observation method according to the second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a schematic view for explaining an optical microscope observation method according to the second embodiment of the present invention.

上記第1実施形態と同様に、図4に示すペトリディッシュ2と、図10に示す倒立顕微鏡300とを用いて試料31の蛍光観察と微分干渉観察を行うが、本実施形態では、コンデンサレンズ304と蓋体40の板部材42の相互間(間隔=約0.1mm)をオイル304aで満たしたオイルコンデンサレンズを使用している。   As in the first embodiment, fluorescence observation and differential interference observation of the sample 31 are performed using the Petri dish 2 shown in FIG. 4 and the inverted microscope 300 shown in FIG. 10. In this embodiment, the condenser lens 304 is used. And an oil condenser lens in which the space between the plate members 42 of the lid 40 (interval = about 0.1 mm) is filled with oil 304a is used.

まず、図10に示す倒立顕微鏡300のステージ305に本ペトリディッシュ2を載置する。次いで、図5に示すように、本ペトリディッシュ2における蓋体40の透孔部41にコンデンサレンズ304を挿入し、オイル304a及び板部材42を介して容器体20内に照明光Sを照射する。一方で、該容器体20の板部材22の下方から対物レンズ306によって試料31の蛍光観察と微分干渉観察を同時ないし交互に行う。その後、このような蛍光観察と微分干渉観察により得た観察画像に基づいて試料31の分析を行う。   First, the Petri dish 2 is placed on the stage 305 of the inverted microscope 300 shown in FIG. Next, as shown in FIG. 5, the condenser lens 304 is inserted into the through-hole portion 41 of the lid body 40 in the Petri dish 2, and the illumination light S is irradiated into the container body 20 through the oil 304a and the plate member 42. . On the other hand, fluorescence observation and differential interference observation of the sample 31 are simultaneously or alternately performed from below the plate member 22 of the container body 20 by the objective lens 306. Thereafter, the sample 31 is analyzed based on observation images obtained by such fluorescence observation and differential interference observation.

このような本実施形態のペトリディッシュ及び光学顕微鏡観察方法によれば、ペトリディッシュ2における蓋体40の板部材42が容器体20内の溶液32に浸かり、該板部材42と試料31の間に存在していた空気層をなくすことができ、オイルコンデンサレンズの使用と相まって、これまで生きた細胞の蛍光観察と併用が不可能であった高解像の微分干渉観察が可能となる。   According to the Petri dish and the optical microscope observation method of this embodiment, the plate member 42 of the lid 40 in the Petri dish 2 is immersed in the solution 32 in the container body 20, and the plate member 42 and the sample 31 are interposed between the plate member 42 and the sample 31. The existing air layer can be eliminated, and coupled with the use of an oil condenser lens, high-resolution differential interference observation that cannot be used together with fluorescence observation of living cells so far becomes possible.

詳述すると、図1及び図2に示すような、板部材12と空気の界面、及び空気と溶液32の界面は屈折率差、すなわち、反射率と屈折率が大きい。反射率が大きいことは試料31に到達する光量が減少し、かつ、屈折率が大きいことは収差が大きく、焦点でのエアリーディスクが大きくなって空間分解能が落ちることを意味する。   More specifically, as shown in FIGS. 1 and 2, the interface between the plate member 12 and the air and the interface between the air and the solution 32 have a large difference in refractive index, that is, a reflectance and a refractive index. A large reflectance means that the amount of light reaching the sample 31 is reduced, and a large refractive index means that the aberration is large and the Airy disk at the focal point becomes large and the spatial resolution is lowered.

本実施形態のペトリディッシュ2の如く、蓋体40の板部材42が容器体20内の溶液32が浸かれば、反射率と屈折率が大きい2つの界面を排除することができ、反射率と屈折率の小さい板部材42と溶液32の界面のみが残ることになる。そして、該界面の影響は、板部材42と溶液32の屈折率を同じ又は極めて近い値とすることにより無視することができる。   If the plate member 42 of the lid body 40 is immersed in the solution 32 in the container body 20 as in the Petri dish 2 of the present embodiment, two interfaces having a high reflectance and a refractive index can be eliminated, and the reflectance and the refractive index can be eliminated. Only the interface between the plate member 42 and the solution 32 having a small rate remains. The influence of the interface can be ignored by setting the refractive indexes of the plate member 42 and the solution 32 to the same or very close values.

これに加え、オイルコンデンサレンズは、高いNA(開口角)の照明が可能であり、これがシングルセルの観察に適した照明を可能にする。また、コンデンサレンズ304と対物レンズ306の間には空気層が一切介在しない。この結果、高倍の観察に適した照明と、微弱な蛍光を検知するような観察とが可能となる。   In addition, the oil condenser lens can illuminate with a high NA (aperture angle), which enables illumination suitable for single-cell observation. Further, no air layer is interposed between the condenser lens 304 and the objective lens 306. As a result, illumination suitable for high-magnification observation and observation that detects weak fluorescence are possible.

なお、上記実施形態では、コンデンサレンズ304と、蓋体40の板部材42との間にオイルを介在させているが、該板部材42の表面に凹部を形成してオイルその他の液体を保持するようにしてもよい。また、コンデンサレンズの切り替えや作動距離(WD)を考慮して、蓋部40における透孔部41の直径を大きくするとともに、その深さを浅くすることにより、該コンデンサレンズの焦点位置を上下に移動することなく、交換又は切り替え可能とすることができる。   In the above embodiment, oil is interposed between the condenser lens 304 and the plate member 42 of the lid body 40. However, a recess is formed on the surface of the plate member 42 to hold oil and other liquids. You may do it. In addition, considering the switching of the condenser lens and the working distance (WD), the diameter of the through-hole portion 41 in the lid portion 40 is increased and the depth thereof is reduced, so that the focal position of the condenser lens is raised and lowered. It can be exchanged or switched without moving.

次に、本発明の一実施形態に係るチャンバー装置について、図6を参照して説明する。図6は本発明の一実施形態に係るチャンバー装置を示す断面図である。なお、上述した実施形態と同様の箇所については、同一の符号を付して詳細な説明は省略する。   Next, a chamber apparatus according to an embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view showing a chamber apparatus according to an embodiment of the present invention. In addition, about the location similar to embodiment mentioned above, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.

同図において、本実施形態のチャンバー装置3は、図2に示す本ペトリディッシュ1の蓋体10に2つの貫通孔14,15を穿設するとともに、これら貫通孔14,15のそれぞれにパイプ51,52を挿通し、前記貫通孔14,15をそれぞれシール部材61,62で封止した構成としてある。   In the figure, the chamber apparatus 3 of the present embodiment has two through holes 14 and 15 formed in the lid 10 of the petri dish 1 shown in FIG. 2 and a pipe 51 in each of the through holes 14 and 15. 52, and the through holes 14 and 15 are sealed with seal members 61 and 62, respectively.

パイプ51は、容器体20内に溶液32を供給するためのものであり、また、パイプ52は、容器体20内の溶液32を排出するためのものである。これらパイプ51,52をガラス、金属又はプラスチック製とし、図示しない溶液循環装置のポンプに接続して、容器体20内の溶液32が循環するようになっている。   The pipe 51 is for supplying the solution 32 into the container body 20, and the pipe 52 is for discharging the solution 32 in the container body 20. These pipes 51 and 52 are made of glass, metal, or plastic, and are connected to a pump of a solution circulating device (not shown) so that the solution 32 in the container body 20 circulates.

また、図7は上記チャンバー装置3の変更例を示す断面図である。同図に示すように、供給側の貫通孔14に溶液32供給用の前記パイプ51のほかに、添加物質を容器体20内に供給するためのパイプ53を追加した構成としてある。貫通孔14は2つ孔のシール部材63により封止してある。   FIG. 7 is a cross-sectional view showing a modified example of the chamber device 3. As shown in the figure, a pipe 53 for supplying an additive substance into the container body 20 is added to the supply-side through-hole 14 in addition to the pipe 51 for supplying the solution 32. The through hole 14 is sealed by a two-hole seal member 63.

なお、シール部材61,62,63として、例えば、シリコンゴムやフッ素ゴムなどのシール性の良好な材料を用い、これらシール部材61,62には、パイプ51,52の挿通前は弾性で閉じた状態となって、圧入したパイプ51,52を密着保持可能な孔を設ける。このようなシール部材61,62,63によって、各パイプ51,52,53の先端を所定の高さに保持することができる。例えば、排出用のパイプ52を所定の高さに保持することによって、溶液32の液面を一定に保つことができる。   In addition, as the sealing members 61, 62, 63, for example, a material having a good sealing property such as silicon rubber or fluorine rubber is used, and these sealing members 61, 62 are elastically closed before the pipes 51, 52 are inserted. In this state, a hole capable of tightly holding the press-fitted pipes 51 and 52 is provided. By such seal members 61, 62, 63, the tips of the pipes 51, 52, 53 can be held at a predetermined height. For example, the liquid level of the solution 32 can be kept constant by holding the discharge pipe 52 at a predetermined height.

このような本実施形態のチャンバー装置3によれば、容器体20内の溶液32を一定の成分、濃度、温度に保つとともに、容器体20内の溶液32を新鮮に保つことができる。また、あらかじめ設定した時間、濃度、量の添加物質をパイプ53から供給することにより、試料31たる生きた細胞に刺激を与え、又は環境変化への反応を知るための実験を行うことができる。   According to the chamber apparatus 3 of this embodiment, the solution 32 in the container body 20 can be kept at a constant component, concentration, and temperature, and the solution 32 in the container body 20 can be kept fresh. In addition, by supplying an additive substance having a preset time, concentration, and amount from the pipe 53, it is possible to perform an experiment for stimulating a living cell as the sample 31 or knowing a reaction to an environmental change.

例えば、パイプ51から所定温度に保たれた溶液32を供給するとともに、パイプ53から炭酸ガスを供給することにより、容器体20内の溶液32を温度37℃弱、CO2濃度5%に保つことができ、これに加えて、本チャンバー装置3が置かれた環境の湿度を90%に保つことにより、試料31たる生きた細胞の活性を長期間に渡って維持することができる。 For example, the solution 32 kept at a predetermined temperature is supplied from the pipe 51 and the carbon dioxide gas is supplied from the pipe 53 to keep the solution 32 in the container body 20 at a temperature of less than 37 ° C. and a CO 2 concentration of 5%. In addition, by maintaining the humidity of the environment in which the chamber apparatus 3 is placed at 90%, the activity of living cells as the sample 31 can be maintained for a long period of time.

また、本チャンバー装置3は、上述した実施形態に係るペトリディッシュ1と同様の顕微鏡観察に用いることができ、この場合は、蓋体10と容器体20を挟み込んで固定したり、クランプやクレンメルで押さえたりするとよい。   The chamber apparatus 3 can be used for microscopic observation similar to the Petri dish 1 according to the above-described embodiment. In this case, the lid body 10 and the container body 20 are sandwiched and fixed, or a clamp or a clemmel is used. It is good to hold down.

なお、本発明のペトリディッシュ、チャンバー装置、光学顕微鏡観察方法及び試料分析方法は、上述した各実施形態に限定されるものではない。例えば、本発明のペトリディッシュは、正立顕微鏡、倒立顕微鏡、実体顕微鏡、又はペトリディッシュの上下から観察する顕微鏡の他、写真装置にも適用可能である。光学や磁気、放射線を利用する分析装置にも適用可能である。また、本発明のペトリディッシュ及びチャンバー装置は、上記実施形態の如き、光学顕微鏡観察方法及び試料分析方法に限らず、試料準備段階における種々の処理方法にも適用可能である。   The petri dish, chamber apparatus, optical microscope observation method, and sample analysis method of the present invention are not limited to the above-described embodiments. For example, the Petri dish of the present invention can be applied to a photographic apparatus in addition to an upright microscope, an inverted microscope, a stereomicroscope, or a microscope that is observed from above and below the Petri dish. It can also be applied to analyzers that use optics, magnetism, and radiation. Moreover, the petri dish and chamber apparatus of this invention are applicable not only to an optical microscope observation method and a sample analysis method like the said embodiment but to the various processing methods in a sample preparation stage.

本発明の第1実施形態に係るペトリディッシュを示す断面図である。It is sectional drawing which shows the petri dish which concerns on 1st Embodiment of this invention. 上記ペトリディッシュの変更例を示す断面図である。It is sectional drawing which shows the example of a change of the said Petri dish. 発明の第1実施形態に係る光学顕微鏡観察方法を説明するための概略図である。It is the schematic for demonstrating the optical microscope observation method which concerns on 1st Embodiment of invention. 本発明の第2実施形態に係るペトリディッシュを示す断面図である。It is sectional drawing which shows the petri dish which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態に係る光学顕微鏡観察方法を説明するための概略図である。It is the schematic for demonstrating the optical microscope observation method which concerns on 2nd Embodiment of this invention. 本発明の一実施形態に係るチャンバー装置を示す断面図である。It is sectional drawing which shows the chamber apparatus which concerns on one Embodiment of this invention. 上記チャンバー装置の変更例を示す断面図である。It is sectional drawing which shows the example of a change of the said chamber apparatus. 従来の一般的なガラスボトムのペトリディッシュを示す断面図である。It is sectional drawing which shows the conventional common glass bottom Petri dish. 正立顕微鏡を示す概略図である。It is the schematic which shows an erecting microscope. 倒立顕微鏡を示す概略図である。It is the schematic which shows an inverted microscope.

符号の説明Explanation of symbols

1,2 ペトリディッシュ
10 蓋体
11 透孔
12 板部材
13 高台
14,15 貫通孔
20 容器体
21 透孔
22 板部材(ガラススリップ)
23 高台
31 試料
32 溶液
40 蓋体
41 透孔部
42 板部材
43 高台
3 チャンバー装置
51,52,53 パイプ
61,62,63 パッキン
DESCRIPTION OF SYMBOLS 1, 2 Petri dish 10 Cover body 11 Through-hole 12 Plate member 13 Elevation 14,15 Through-hole 20 Container body 21 Through-hole 22 Plate member (glass slip)
23 Plateau 31 Sample 32 Solution 40 Lid 41 Through-hole 42 Plate member 43 Plateau 3 Chamber device 51, 52, 53 Pipe 61, 62, 63 Packing

Claims (10)

試料を入れる容器体と
該容器体を覆う、貫通孔を備えた蓋体と、
前記貫通孔に押通され、前記容器体に溶液の供給と排出を行うための少なくとも2本のパイプと、
前記貫通孔を封止し、前記パイプを密着保持するシール部材と、
を備え、
前記蓋体と前記容器体の双方に互いに対向する透孔をそれぞれ形成し、
これら透孔を、自家蛍光を抑え且つ光学的に均質処理したガラスである光の透過が可能な板部材によって、それぞれ閉塞したことを特徴とするペトリディッシュ。
A container for containing a sample ;
A lid body with a through hole covering the container body;
At least two pipes that are pushed through the through-holes to supply and discharge the solution to and from the container body;
A sealing member that seals the through hole and holds the pipe tightly;
With
Forming through-holes facing each other in both the lid and the container,
A petri dish characterized in that these through-holes are respectively closed by a plate member capable of transmitting light, which is glass that is optically homogenized and suppresses autofluorescence .
前記貫通孔に押通され、前記溶液以外の添加物質を前記容器体内に供給するための他のパイプを
さらに備えたことを特徴とする請求項1記載のペトリディッシュ。
Another pipe that is pushed through the through-hole and supplies an additive substance other than the solution into the container.
The petri dish according to claim 1, further comprising:
前記板部材を石英ガラスとしたことを特徴とする請求項1又は2いずれか記載のペトリディッシュ。 Claim 1 or 2 petri dish according to any one, characterized in that said plate member is a quartz glass. 前記蓋体の透孔を、前記容器体の透孔のより大きくしたことを特徴とする請求項いずれか記載のペトリディッシュ。 The petri dish according to any one of claims 1 to 3 , wherein the through hole of the lid body is made larger than the through hole of the container body. 請求項1〜いずれか記載のペトリディッシュにおける、前記蓋体に溶液の供給と排出を行うための少なくとも2本のパイプを貫通させ、これらパイプを通じて前記容器体内に入れた前記溶液を循環させたことを特徴とするチャンバー装置。 In the claims 1-4 petri dish according to any one, the lid is penetrated at least two pipes for conducting exhaust the supply of the solution was circulated the solution was placed in the container body through these pipes The chamber apparatus characterized by the above-mentioned. 前記蓋体に前記溶液以外の添加物質を前記容器体内に供給するための他のパイプを貫通させ、前記パイプを通じて前記容器体内に入れた前記溶液を循環させたことを特徴とする請求項記載のチャンバー装置。 Wherein the additive material other than the solution is passed through the other pipe to be supplied to the container body, according to claim 5, characterized in that the solution was put into the container body through the pipe was circulated through the lid Chamber equipment. 請求項いずれか記載のペトリディッシュ若しくは請求項又は記載のチャンバー装置における、前記蓋体の板部材の上方から前記容器体内に照明光を照射するとともに、該容器体の板部材の下方から対物レンズによって試料の観察を行うことを特徴とする光学顕微鏡観察方法。 The petri dish according to any one of claims 1 to 4 or the chamber apparatus according to claim 5 or 6 , wherein the container body is irradiated with illumination light from above the plate member of the lid, and the plate member of the container body An optical microscope observation method characterized by observing a sample from below with an objective lens. 前記照明光を試料に集光させるためのコンデンサレンズと前記蓋体の板部材との間にオイル又は液体を介在させたことを特徴とする請求項記載の光学顕微鏡観察方法。 8. The optical microscope observation method according to claim 7 , wherein oil or liquid is interposed between a condenser lens for condensing the illumination light on a sample and a plate member of the lid. 前記試料の観察を、蛍光観察と微分干渉観察との併用としたことを特徴とする請求項又は記載の光学顕微鏡観察方法。 The optical microscope observation method according to claim 7 or 8 , wherein the observation of the sample is a combination of fluorescence observation and differential interference observation. 請求項いずれか記載の光学顕微鏡観察方法により得た観察画像に基づいて前記試料の分析を行うことを特徴とする試料分析方法。 A sample analysis method, wherein the sample is analyzed based on an observation image obtained by the optical microscope observation method according to any one of claims 7 to 9 .
JP2004209175A 2004-07-15 2004-07-15 Petri dish, chamber apparatus, optical microscope observation method and sample analysis method Expired - Fee Related JP4731847B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209175A JP4731847B2 (en) 2004-07-15 2004-07-15 Petri dish, chamber apparatus, optical microscope observation method and sample analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209175A JP4731847B2 (en) 2004-07-15 2004-07-15 Petri dish, chamber apparatus, optical microscope observation method and sample analysis method

Publications (2)

Publication Number Publication Date
JP2006030583A JP2006030583A (en) 2006-02-02
JP4731847B2 true JP4731847B2 (en) 2011-07-27

Family

ID=35897011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209175A Expired - Fee Related JP4731847B2 (en) 2004-07-15 2004-07-15 Petri dish, chamber apparatus, optical microscope observation method and sample analysis method

Country Status (1)

Country Link
JP (1) JP4731847B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770098A (en) * 2016-12-01 2017-05-31 王琪 The detection method of fluorescer in a kind of cleaning product
CN106770097A (en) * 2016-12-01 2017-05-31 王琪 The detection means of fluorescer in a kind of cleaning product

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5034328B2 (en) * 2006-06-08 2012-09-26 株式会社ニコン Observation device and observation program
WO2009050886A1 (en) * 2007-10-19 2009-04-23 Nikon Corporation Program, computer, and culture state analysis method
KR100969248B1 (en) * 2008-08-04 2010-07-14 한국해양연구원 Apparatus and method for photographing marine organism specimen
JP5207300B2 (en) * 2008-10-14 2013-06-12 独立行政法人科学技術振興機構 High pressure sample container for optical microscopy
FR2946157B1 (en) * 2009-06-02 2015-03-27 Commissariat Energie Atomique MICROLENTILIC IMAGING SYSTEM AND ASSOCIATED DEVICE FOR DETECTING A SAMPLE.
JP5662927B2 (en) * 2011-12-22 2015-02-04 株式会社日立製作所 Packaging container
WO2014016952A1 (en) * 2012-07-27 2014-01-30 株式会社日立製作所 Holder for probe microscope, probe microscope and specimen measurement method
EP2801855B1 (en) * 2013-05-10 2019-07-17 European Molecular Biology Laboratory A microscope module for imaging a sample
JP6176053B2 (en) * 2013-10-18 2017-08-09 株式会社ニコン Cover member, microscope, observation method and observation instrument
JP2016130673A (en) * 2015-01-14 2016-07-21 オリンパス株式会社 Sample holding container for microscopic observation
JP6619025B2 (en) 2015-12-11 2019-12-11 オリンパス株式会社 Observation device
JP6633650B2 (en) 2015-12-18 2020-01-22 オリンパス株式会社 Observation device
JP6951349B2 (en) 2016-09-30 2021-10-20 オリンパス株式会社 Observation device
CN109791275B (en) 2016-09-30 2022-05-27 奥林巴斯株式会社 Observation device
JP6911112B2 (en) 2017-05-29 2021-07-28 オリンパス株式会社 Observation device
JP2020112633A (en) * 2019-01-09 2020-07-27 国立大学法人 筑波大学 Micro observation method, and micro observation-purpose sample holding jig

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350896U (en) * 1989-09-25 1991-05-17
JPH0550413U (en) * 1991-12-09 1993-07-02 株式会社ニコン Inverted microscope
JP2001061464A (en) * 1999-08-26 2001-03-13 Bunshi Biophotonics Kenkyusho:Kk Biological sample culture vessel
JP2002537579A (en) * 1999-02-17 2002-11-05 ルーシド インコーポレーテッド Tissue specimen holder
JP2003029162A (en) * 2001-07-11 2003-01-29 Nikon Corp Objective lens for microscope and microscope
JP2004085833A (en) * 2002-08-26 2004-03-18 Japan Science & Technology Corp Long-term observation device for one cell
JP2004141143A (en) * 2002-08-28 2004-05-20 Tokai Hit:Kk Culturing container for microscopic observation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4821621Y1 (en) * 1968-04-11 1973-06-23
JPH0350896A (en) * 1989-07-19 1991-03-05 Matsushita Electric Ind Co Ltd Board rack device
JPH06222270A (en) * 1993-01-25 1994-08-12 Nikon Corp Condenser lens
JP3480546B2 (en) * 1997-02-26 2003-12-22 セイコーインスツルメンツ株式会社 Scanning probe microscope
JPH11206366A (en) * 1998-01-27 1999-08-03 Matsunami Glass Kogyo Kk Culture dish
JPH11237392A (en) * 1998-02-20 1999-08-31 Olympus Optical Co Ltd Plate for suppressing vibration of liquid

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350896U (en) * 1989-09-25 1991-05-17
JPH0550413U (en) * 1991-12-09 1993-07-02 株式会社ニコン Inverted microscope
JP2002537579A (en) * 1999-02-17 2002-11-05 ルーシド インコーポレーテッド Tissue specimen holder
JP2001061464A (en) * 1999-08-26 2001-03-13 Bunshi Biophotonics Kenkyusho:Kk Biological sample culture vessel
JP2003029162A (en) * 2001-07-11 2003-01-29 Nikon Corp Objective lens for microscope and microscope
JP2004085833A (en) * 2002-08-26 2004-03-18 Japan Science & Technology Corp Long-term observation device for one cell
JP2004141143A (en) * 2002-08-28 2004-05-20 Tokai Hit:Kk Culturing container for microscopic observation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106770098A (en) * 2016-12-01 2017-05-31 王琪 The detection method of fluorescer in a kind of cleaning product
CN106770097A (en) * 2016-12-01 2017-05-31 王琪 The detection means of fluorescer in a kind of cleaning product
CN106770098B (en) * 2016-12-01 2019-02-26 创严检测(天津)有限公司 The detection method of fluorescer in a kind of cleaning product
CN109682810A (en) * 2016-12-01 2019-04-26 王琪 A kind of imaging sensor motion structure and the fluorescer detection device with the structure
CN106770097B (en) * 2016-12-01 2019-06-18 广州市盛邦化工科技有限公司 The detection device of fluorescer in a kind of cleaning product

Also Published As

Publication number Publication date
JP2006030583A (en) 2006-02-02

Similar Documents

Publication Publication Date Title
JP4731847B2 (en) Petri dish, chamber apparatus, optical microscope observation method and sample analysis method
Radtke et al. IBEX: an iterative immunolabeling and chemical bleaching method for high-content imaging of diverse tissues
US10656404B2 (en) Microscope module for a microscope arrangement for imaging a sample
Ettinger et al. Fluorescence live cell imaging
Kumar et al. Dual-view plane illumination microscopy for rapid and spatially isotropic imaging
JP5307539B2 (en) Biological sample imaging method and biological sample imaging apparatus
JP6492073B2 (en) Equipment for optical sheet microscopy
US7807108B2 (en) Apparatus for receiving biological specimens
US9816916B2 (en) Capillary cell, arrangement and method for accommodating, positioning and examining a microscopic specimen
JP6513802B2 (en) Laser light coupling for nanoparticle detection
KR100813915B1 (en) Cell culture detection apparatus
JP2016525228A (en) Equipment for optical sheet microscopy
Johnson et al. Total internal reflection fluorescence (TIRF) microscopy illuminator for improved imaging of cell surface events
Hedde et al. sideSPIM–selective plane illumination based on a conventional inverted microscope
Wiklund et al. Acoustofluidics 18: Microscopy for acoustofluidic micro-devices
CN111492295A (en) Microscope for imaging a sample and sample holder for such a microscope
Fairlamb et al. Construction of a three-color prism-based TIRF microscope to study the interactions and dynamics of macromolecules
JP2009178078A (en) Microbiological testing chip and microbiological testing instrument
JP6875375B2 (en) PCR container
Tuna et al. Simultaneous interference reflection and total internal reflection Fluorescence microscopy for imaging dynamic Microtubules and Associated Proteins
Radtke et al. IBEX: an open and extensible method for high content multiplex imaging of diverse tissues
Soeller et al. Correlative single-molecule localization microscopy and confocal microscopy
Yuan et al. A flexible chamber for time-lapse live-cell imaging with stimulated raman scattering microscopy
CN104921838A (en) Constant temperature and humidity perfusion device for observation of mesentery microcirculation and application of constant temperature and humidity perfusion device
AU2021101521A4 (en) A laser confocal microscope carrier device for eukaryotic cell culture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4731847

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees