JP4731759B2 - Chromogen - Google Patents

Chromogen Download PDF

Info

Publication number
JP4731759B2
JP4731759B2 JP2001241496A JP2001241496A JP4731759B2 JP 4731759 B2 JP4731759 B2 JP 4731759B2 JP 2001241496 A JP2001241496 A JP 2001241496A JP 2001241496 A JP2001241496 A JP 2001241496A JP 4731759 B2 JP4731759 B2 JP 4731759B2
Authority
JP
Japan
Prior art keywords
refractive index
wavelength
color
index layer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001241496A
Other languages
Japanese (ja)
Other versions
JP2003053875A (en
Inventor
彰 ▲さい▼藤
修一 木下
Original Assignee
彰 ▲さい▼藤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彰 ▲さい▼藤 filed Critical 彰 ▲さい▼藤
Priority to JP2001241496A priority Critical patent/JP4731759B2/en
Publication of JP2003053875A publication Critical patent/JP2003053875A/en
Application granted granted Critical
Publication of JP4731759B2 publication Critical patent/JP4731759B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • G02B5/285Interference filters comprising deposited thin solid films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1861Reflection gratings characterised by their structure, e.g. step profile, contours of substrate or grooves, pitch variations, materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1809Diffraction gratings with pitch less than or comparable to the wavelength

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Decoration Of Textiles (AREA)
  • Optical Filters (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、発色体、特に構造色を発する発色体に属する。
【0002】
【従来の技術】
分子や固体そのものの電子的な性質により発色する色素と異なり、それ自体には色が無く光の反射、干渉、回折などの作用で発色する構造体は、紫外線による経時変化が少なく且つ光沢が出やすい等の利点を有することから、自動車の塗装方法や繊維への着色手段として期待されている。
このような発色構造体として、例えば屈折率の異なる2種の高分子物質を交互に積層した構造を有するもの(特開平7−34324、特開2000−246829)や、ラメラを備えたもの(特開平9−157957)が提案されている。
【0003】
【発明が解決しようとする課題】
しかし、従来提案された発色構造体には、構造色を有する自然物として有名なモルフォチョウに匹敵するほど強く反射したり、きらきらと輝いたりするものは無い。
それ故、この発明の課題は、モルフォチョウのように眺める角度変化によって色が緩やかに変化し、且つ緩やかな波長分散、奥行きのある色合い及び高い反射率を有する発色体を提供することにある。
【0004】
【課題を解決するための手段】
その課題を解決するために、この発明の発色体は、
垂直方向への反射が最も強められるべき可視光線の波長をλとするとき、高い屈折率n1と所定の厚さd1波長λより小さい幅を有する高屈折率層と、低い屈折率n2と所定の厚さd2波長λより小さい幅を有する低屈折率層とが交互に積層され、λ=2(n1×d1+n2×d2)を充足する複数の積層体が、波長λより短い10nm以上300nm以下の間隔で基材上に平面方向に配列し、且つ前記各積層体が隣の積層体と1/2層〜2層の範囲で乱雑に異なる高さを有していることを特徴とする。
【0005】
この発明の発色体は、高屈折率層と低屈折率層とが交互に積層された積層体を有するので、入射光が各段の高屈折率層で反射し、その反射光のうち、高屈折率層及び低屈折率層の各屈折率及び厚さとによって定まる前記特定波長λの光が干渉によって強められたり打ち消し合ったりする
【0006】
しかも積層体の幅がその波長より小さいので、強められた反射光が回折効果によって空間的に広がるとともに、そのような積層体がその波長より短い10nm以上300nm以下の間隔で配列しているので、フォトニックバンド効果により高い反射率が得られる。よって、高い反射率を有しつつ、眺める角度によって色が緩やかに変化する。なお、積層体の間隔が10nmよりも狭くなると近似的に連続体となるので回折効果による光の広がりが得られず、他方300nmよりも広いとフォトニックバンド効果が得られないので、間隔を上記の通りに限定した。この点、上記従来の発色構造体がいずれも間隔を波長λ以下に限定することをしていないため、高反射率を得る条件に相当しないのと著しく相違する。
【0007】
更に、各層の厚さから決まる、強めあう波長が可視光線の波長に近似していて例えば波長480nm(青色)の光に対して垂直方向に最も強く反射するとすると、それより短波長、例えば波長420nm(色)の光は干渉により打ち消し合うので垂直方向にはあまり反射しないが30度方向には逆に干渉により強め合うので480nmよりも強く反射する。ただし、積層体が平面方向に長く連続しているのではなく、上記の通り光の波長より小さい幅のものが所定の間隔で断続しているので、ゆるやかな波長分散をもつ奥行きのある色合いが発せられる。この点、上記従来の発色構造体がいずれも虹色反射の和算効果しか生じないのと著しく相違する。
【0008】
このような作用を顕著にするために、積層体の寸法としては、高屈折率層の厚さが30〜120nm、低屈折率層が60〜300nmで、各積層体の幅は100〜400nm以下が好ましく、各層の光学距離を同等にするために高屈折率層よりも低屈折率層を厚くするのが好ましい。尚、基材としては積層体を所定の配列で固定できる物であれば良く、限定されない。例えば各層が後述の無機質誘電体薄膜からなる場合、ガラス基板とすれば発色体を完全に固体無機材料で構成することができる。
【0009】
この発明の発色体において、前記積層体が、隣の積層体と1/2層〜2層の範囲で乱雑に異なる高さを有することから、各積層体からの回折光の位相が積層体の高さの不規則性によって乱雑となり、空間内で偶然干渉し合うスペックルとなるので、きらきらと輝いて見える。
【0010】
前記高屈折率層又は低屈折率層を構成する材質としては、Al23、SiO2、SiO、SnO2、Sb23、PbCl2、PbO、TiO2、TiO、ZrO2、CeO2、CeF3、ZnS、MgO、NaF、MgF2などの無機質誘電体薄膜のうちから選ばれる1種以上からなるものが挙げられ、このように無機質で構成することで耐熱性及び耐光性が向上し、また屈折率の範囲も広がる。これらのうちで屈折率比を大きくして反射率を高めるために、高屈折率層がCeO2、PbO、Sb23、PbCl2、TiO2、ZnS、低屈折率層がSiO2、MgF2の組み合わせが好ましい。
更に前記積層体と基材との間に光吸収体が形成されていると、特定波長の光のみを吸収するので、色合いを変化させることができる。更に、その光吸収体をアルミニウム、金、銅、クロムなどからなる金属薄膜とすると、反射光に光沢が加わる。
【0011】
【発明の実施の形態】
この発明の発色体の実施形態を図面を参照して説明する。図1は、実施形態の発色体を示す断面図である。
発色体1は、表面が30nm〜400nm程度のランダムな粗さとなるように研磨されたガラス基板2と、ガラス基板2の表面上に形成された金属薄膜3と、その上に溝7を隔てて配列した多数(図示は4個)の積層体4とからなる。積層体4は、5段の高屈折率層5及び4段の低屈折率層6を交互に積層して形成されたもので、高屈折率層の厚さDは30〜120nm、低屈折率層の厚さdは60〜300nm、各層の幅Wは100〜400nm以下である。1つの積層体とその隣の積層体の間隔Gは300nm以下である。
【0012】
発色体1は、以下のような工程を経て製造される。先ず上記の研磨されたガラス基板2を準備し、その上に電子ビーム加熱蒸着、ヒータ加熱蒸着などの蒸着手段で金属薄膜3を蒸着する。その後、高屈折率層5、次いで低屈折率層6を電子ビーム加熱蒸着、ヒータ加熱蒸着、酸素雰囲気中の反応蒸着などの蒸着手段で蒸着することを繰り返し、最上面を高屈折率層5とする。次に、電子ビームパターニング装置、集束イオンビーム装置又はリソグラフィー技術によって、最上面より少なくとも金属薄膜3の表面に達する溝7を加工することによって発色体1が完成する。
得られた発色体1は、その積層体4の高さがガラス基板2の表面粗さに倣って30nm以上400nm以下の高さ方向の乱雑さを有するものとなる。
【0013】
【実施例】
−実施例1−
図1において、金属薄膜を取り除いた構造の発色体で、幅Wを400nm、高屈折率層の段数を6、屈折率を2.3、厚さを60nm、低屈折率層の屈折率を1.46、厚さを145nmとし、光の垂直入射による反射強度の角度依存性を計算した。このような層の組み合わせは、高屈折率層をSb23、PbCl2、TiO2、ZnSのうちから選ばれる1種、低屈折率層をSiO2とすることにより可能である。計算しやすくするために、(1)入射光は各段において損失すること無しに考えている段にまで到達する、(2)回折光が他の段により再び回折することも無いと仮定した。その結果、図2のようになった。
【0014】
図2に見られるように、垂直方向への反射は700nmが最も強く、それより短波長になるに連れて反射が弱くなる一方、650nmの光は垂直に対して30度方向、600nmの光は40度方向への反射が垂直方向よりも強くなった。従って、真っ正面から眺めると赤色、垂直に対して40度方向から眺めると橙色に見えると考えられる。
【0015】
−実施例2−
高屈折率層の厚さを40nm、低屈折率層の厚さを100nmとする以外は実施例1と同一条件で光の垂直入射による反射強度の角度依存性を計算した。その結果、図3のようになった。
【0016】
図3に見られるように、垂直方向への反射は480nmが最も強く、それより短波長になるに連れて反射が弱くなる一方、420nmの光は垂直に対して30度方向への反射が垂直方向よりも強くなった。従って、真っ正面から眺めると青色、垂直に対して30度方向から眺めると緑色に見えると考えられる。ちなみに。この角度分布はモルフォチョウから実験的に得られたものと極めて類似している。
【0017】
【発明の効果】
以上のように、この発明の発色体によれば、モルフォチョウのごとくある波長領域の色を主体としつつバンド幅を有する、奥行きのある色合いを発し、高い反射率を有するのでデザイン性に優れ、各種デザイン分野で有益である。
【図面の簡単な説明】
【図1】 実施形態の発色体を示す断面図である。
【図2】 実施例1の発色体による反射強度の角度依存性を示すグラフである。
【図3】 実施例2の発色体による反射強度の角度依存性を示すグラフである。
【符号の説明】
1 発色体
2 ガラス基板
3 金属薄膜
4 積層体
5 高屈折率層
6 低屈折率層
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a color former, particularly a color former that emits a structural color.
[0002]
[Prior art]
Unlike dyes that develop colors due to the electronic properties of molecules and solids themselves, structures that do not have color themselves and develop colors due to the effects of light reflection, interference, diffraction, etc., are less susceptible to changes with time due to ultraviolet rays and gloss. Since it has advantages such as being easy, it is expected as a painting method for automobiles and a means for coloring fibers.
As such a coloring structure, for example, one having a structure in which two kinds of polymer substances having different refractive indexes are alternately laminated (Japanese Patent Laid-Open Nos. 7-34324 and 2000-246829), and one having a lamella (special feature) Kaihei 9-157957) has been proposed.
[0003]
[Problems to be solved by the invention]
However, none of the conventionally proposed coloring structures reflect strongly or shine brightly, comparable to a morpho butterfly that is famous as a natural product having a structural color.
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a color former whose color changes gently according to a change in the angle of viewing like a morpho butterfly, and which has gradual chromatic dispersion, deep hue and high reflectance.
[0004]
[Means for Solving the Problems]
In order to solve the problem, the color former of the present invention is
When λ is the wavelength of visible light that should be most strongly reflected in the vertical direction, a high refractive index n1 , a high refractive index layer having a predetermined thickness d1 , a width smaller than the wavelength λ , a low refractive index n2 and a predetermined refractive index. Thickness d2 and low refractive index layers having a width smaller than the wavelength λ are alternately stacked, and a plurality of stacked bodies satisfying λ = 2 (n1 × d1 + n2 × d2) are shorter than the wavelength λ by 10 nm to 300 nm. The laminates are arranged in a planar direction on the substrate at intervals of the distances , and each laminate has a height that is randomly different from the adjacent laminate in the range of 1/2 to 2 layers .
[0005]
Since the color body of the present invention has a laminate in which high refractive index layers and low refractive index layers are alternately laminated, incident light is reflected by the high refractive index layers at each stage, and among the reflected light, the light of specific wavelength λ determined by the respective refractive index and thickness of the refractive index layers and low refractive index layer or cancel or intensified by interference.
[0006]
Moreover, since the width of the laminate is smaller than that wavelength, the enhanced reflected light is spatially spread by the diffraction effect, and such laminates are arranged at intervals of 10 nm to 300 nm shorter than the wavelength. High reflectivity can be obtained by the photonic band effect. Therefore, the color gradually changes depending on the viewing angle while having a high reflectance. Note that when the interval between the stacked bodies is narrower than 10 nm, a continuum is approximately obtained, so that the spread of light due to the diffraction effect cannot be obtained. On the other hand, when the interval is larger than 300 nm, the photonic band effect cannot be obtained. Limited to street. In this respect, since none of the conventional color forming structures described above limit the interval to the wavelength λ or less, it is significantly different from not corresponding to the condition for obtaining a high reflectance.
[0007]
Furthermore, if the wavelength to be strengthened, which is determined by the thickness of each layer, is close to the wavelength of visible light and reflects most strongly in the vertical direction with respect to light having a wavelength of, for example, 480 nm (blue), a shorter wavelength, for example, a wavelength of 420 nm. reflecting stronger than 480nm the light is too reflected not but 30 degree direction in the vertical direction so canceled by the interference constructive the interference in the opposite (purple). However, the laminate is not long and continuous in the plane direction, but has a width smaller than the wavelength of light as described above. Be emitted. In this respect, all of the above conventional color forming structures are remarkably different from the case where only the summing effect of rainbow color reflection is produced.
[0008]
In order to make such an effect remarkable, as the dimensions of the laminate, the thickness of the high refractive index layer is 30 to 120 nm, the low refractive index layer is 60 to 300 nm, and the width of each laminate is 100 to 400 nm or less. It is preferable to make the low refractive index layer thicker than the high refractive index layer in order to equalize the optical distance of each layer. The substrate is not limited as long as it can fix the laminate in a predetermined arrangement. For example, when each layer is made of an inorganic dielectric thin film, which will be described later, if the glass substrate is used, the color former can be completely composed of a solid inorganic material.
[0009]
In the color body of the present invention, each laminate has a different height from the adjacent laminate in the range of 1/2 layer to 2 layers , so that the phase of the diffracted light from each laminate is a laminate. Because of the irregularity of the height, it becomes messy and speckles that interfere with each other by chance in the space, so it looks shining brightly.
[0010]
Examples of the material constituting the high refractive index layer or the low refractive index layer include Al 2 O 3 , SiO 2 , SiO, SnO 2 , Sb 2 O 3 , PbCl 2 , PbO, TiO 2 , TiO, ZrO 2 , and CeO 2. , CeF 3 , ZnS, MgO, NaF, MgF 2 and other inorganic dielectric thin films are selected from the above, and the heat resistance and light resistance can be improved by using inorganic material. In addition, the range of refractive index is expanded. Among these, in order to increase the refractive index ratio and increase the reflectance, the high refractive index layer is CeO 2 , PbO, Sb 2 O 3 , PbCl 2 , TiO 2 , ZnS, and the low refractive index layer is SiO 2 , MgF. A combination of 2 is preferred.
Furthermore, when a light absorber is formed between the laminate and the base material, only light of a specific wavelength is absorbed, so that the hue can be changed. Further, when the light absorber is a metal thin film made of aluminum, gold, copper, chromium, etc., gloss is added to the reflected light.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the color body of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing a color body of an embodiment.
The color body 1 includes a glass substrate 2 whose surface is polished to have a random roughness of about 30 nm to 400 nm, a metal thin film 3 formed on the surface of the glass substrate 2, and a groove 7 therebetween. It is composed of a large number (4 in the drawing) of stacked bodies 4 arranged. The laminate 4 is formed by alternately laminating five steps of high refractive index layers 5 and four steps of low refractive index layers 6. The thickness D of the high refractive index layer is 30 to 120 nm, and the low refractive index is low. The layer thickness d is 60 to 300 nm, and the width W of each layer is 100 to 400 nm or less. An interval G between one stacked body and the adjacent stacked body is 300 nm or less.
[0012]
The color body 1 is manufactured through the following steps. First, the polished glass substrate 2 is prepared, and a metal thin film 3 is deposited thereon by an evaporation means such as electron beam heating evaporation or heater heating evaporation. Thereafter, the high refractive index layer 5 and then the low refractive index layer 6 are repeatedly deposited by vapor deposition means such as electron beam heating vapor deposition, heater heating vapor deposition, and reactive vapor deposition in an oxygen atmosphere. To do. Next, the color body 1 is completed by processing the groove 7 reaching at least the surface of the metal thin film 3 from the uppermost surface by an electron beam patterning device, a focused ion beam device, or a lithography technique.
The obtained color body 1 has a randomness in the height direction of 30 nm or more and 400 nm or less following the surface roughness of the glass substrate 2 in the height of the laminate 4.
[0013]
【Example】
Example 1
In FIG. 1, a color body having a structure in which the metal thin film is removed, the width W is 400 nm, the number of steps of the high refractive index layer is 6, the refractive index is 2.3, the thickness is 60 nm, and the refractive index of the low refractive index layer is 1. .46, the thickness was set to 145 nm, and the angle dependence of the reflection intensity due to normal incidence of light was calculated. Such a combination of layers is possible by setting the high refractive index layer to one selected from Sb 2 O 3 , PbCl 2 , TiO 2 , and ZnS and the low refractive index layer to SiO 2 . For ease of calculation, it was assumed that (1) the incident light reaches the stage considered without loss at each stage, and (2) the diffracted light does not diffract again by other stages. As a result, it became like FIG.
[0014]
As shown in FIG. 2, the reflection in the vertical direction is strongest at 700 nm, and the reflection becomes weaker as the wavelength becomes shorter, while the light at 650 nm is in the direction of 30 degrees with respect to the vertical, and the light at 600 nm is The reflection in the 40 degree direction was stronger than in the vertical direction. Therefore, it can be seen that it looks red when viewed from the front, and orange when viewed from 40 degrees to the vertical.
[0015]
-Example 2-
The angle dependence of the reflection intensity due to perpendicular incidence of light was calculated under the same conditions as in Example 1 except that the thickness of the high refractive index layer was 40 nm and the thickness of the low refractive index layer was 100 nm. As a result, it became like FIG.
[0016]
As shown in FIG. 3, the reflection in the vertical direction is strongest at 480 nm, and the reflection becomes weaker as the wavelength becomes shorter, while the light of 420 nm has a reflection in the direction of 30 degrees perpendicular to the vertical. It became stronger than the direction. Therefore, it can be considered that it looks blue when viewed from the front, and green when viewed from 30 degrees to the vertical. By the way. This angular distribution is very similar to that obtained experimentally from Morpho butterflies.
[0017]
【The invention's effect】
As described above, according to the color body of the present invention, the color has a bandwidth while having mainly a color in a certain wavelength region like a morpho butterfly, emits a hue with a depth, and has high reflectivity, so it has excellent designability. Useful in various design fields.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a color body of an embodiment.
2 is a graph showing the angle dependence of the reflection intensity by the color body of Example 1. FIG.
3 is a graph showing the angle dependence of the reflection intensity by the color body of Example 2. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Color development body 2 Glass substrate 3 Metal thin film 4 Laminated body 5 High refractive index layer 6 Low refractive index layer

Claims (3)

垂直方向への反射が最も強められるべき可視光線の波長をλとするとき、高い屈折率n1と所定の厚さd1波長λより小さい幅を有する高屈折率層と、低い屈折率n2と所定の厚さd2波長λより小さい幅を有する低屈折率層とが交互に積層され、λ=2(n1×d1+n2×d2)を充足する複数の積層体が、波長λより短い10nm以上300nm以下の間隔で基材上に平面方向に配列し、且つ前記各積層体が隣の積層体と1/2層〜2層の範囲で乱雑に異なる高さを有していることを特徴とする発色体。 When λ is the wavelength of visible light that should be most strongly reflected in the vertical direction, a high refractive index n1 , a high refractive index layer having a predetermined thickness d1 , a width smaller than the wavelength λ , a low refractive index n2 and a predetermined refractive index. Thickness d2 and low refractive index layers having a width smaller than the wavelength λ are alternately stacked, and a plurality of stacked bodies satisfying λ = 2 (n1 × d1 + n2 × d2) are shorter than the wavelength λ by 10 nm to 300 nm. The color development is characterized in that it is arranged in a plane direction on the substrate at an interval of and each of the laminates has a randomly different height from the adjacent laminate in the range of 1/2 to 2 layers. body. 前記高屈折率層及び低屈折率層は、Al、SiO、SiO、SnO、Sb、PbCl、PbO、TiO、TiO、ZrO、CeO、CeF、ZnS、MgO、NaF、MgFなどの無機質誘電体薄膜のうちから選ばれる1種以上からなる請求項1に記載の発色体。The high refractive index layer and the low refractive index layer include Al 2 O 3 , SiO 2 , SiO, SnO 2 , Sb 2 O 3 , PbCl 2 , PbO, TiO 2 , TiO, ZrO 2 , CeO 2 , CeF 3 , ZnS. , MgO, NaF, color body according to claim 1 comprising one or more selected from among inorganic dielectric thin film such as MgF 2. 更に前記積層体と基材との間に光吸収体が形成されている請求項1又は2に記載の発色体。Furthermore color-former according to claim 1 or 2 light-absorbing body is formed between the laminate and the substrate.
JP2001241496A 2001-08-09 2001-08-09 Chromogen Expired - Fee Related JP4731759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001241496A JP4731759B2 (en) 2001-08-09 2001-08-09 Chromogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001241496A JP4731759B2 (en) 2001-08-09 2001-08-09 Chromogen

Publications (2)

Publication Number Publication Date
JP2003053875A JP2003053875A (en) 2003-02-26
JP4731759B2 true JP4731759B2 (en) 2011-07-27

Family

ID=19071926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001241496A Expired - Fee Related JP4731759B2 (en) 2001-08-09 2001-08-09 Chromogen

Country Status (1)

Country Link
JP (1) JP4731759B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10788608B2 (en) 2007-08-12 2020-09-29 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures
US10870740B2 (en) 2007-08-12 2020-12-22 Toyota Jidosha Kabushiki Kaisha Non-color shifting multilayer structures and protective coatings thereon
US10690823B2 (en) 2007-08-12 2020-06-23 Toyota Motor Corporation Omnidirectional structural color made from metal and dielectric layers
US8446666B2 (en) * 2009-05-18 2013-05-21 Toyota Motor Engineering & Manufacturing North America, Inc. UV-reflective structural color
JP5344400B2 (en) * 2009-11-11 2013-11-20 国立大学法人大阪大学 Method for producing morpho type structural color developing body
JP6741586B2 (en) 2014-04-01 2020-08-19 トヨタ モーター エンジニアリング アンド マニュファクチャリング ノース アメリカ,インコーポレイティド Multi-layer structure without color shift
JP6176290B2 (en) * 2015-07-13 2017-08-09 凸版印刷株式会社 Coloring structure and method for producing the same
WO2017010099A1 (en) * 2015-07-13 2017-01-19 凸版印刷株式会社 Color-development structure and method for manufacturing same
JP6801181B2 (en) * 2015-12-15 2020-12-16 凸版印刷株式会社 Color-developing structure and its manufacturing method
CN108121022A (en) * 2016-11-30 2018-06-05 上海矽越光电科技有限公司 A kind of polarization-independent wide band reflection grating

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120642A (en) * 1986-11-10 1988-05-25 東レ株式会社 Sheet-shaped article having interference color and manufacture thereof
JPH03184840A (en) * 1989-12-15 1991-08-12 Oike Ind Co Ltd Luster material
JPH03287863A (en) * 1990-03-30 1991-12-18 Osaka Prefecture Fiber having interference color and production thereof
JPH06128882A (en) * 1992-10-19 1994-05-10 Toray Ind Inc Uneven surface fabric having interference color and its production
JPH0734320A (en) * 1993-07-16 1995-02-03 Nissan Motor Co Ltd Coloring structure by reflection and interference action
JPH09157957A (en) * 1995-12-08 1997-06-17 Tanaka Kikinzoku Kogyo Kk Color developing structure
JPH1059746A (en) * 1996-08-13 1998-03-03 Nippon Sheet Glass Co Ltd Production of optical element
JP2001314761A (en) * 2000-05-09 2001-11-13 Natl Inst Of Advanced Industrial Science & Technology Meti Photocatalytic color developing member and its manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63120642A (en) * 1986-11-10 1988-05-25 東レ株式会社 Sheet-shaped article having interference color and manufacture thereof
JPH03184840A (en) * 1989-12-15 1991-08-12 Oike Ind Co Ltd Luster material
JPH03287863A (en) * 1990-03-30 1991-12-18 Osaka Prefecture Fiber having interference color and production thereof
JPH06128882A (en) * 1992-10-19 1994-05-10 Toray Ind Inc Uneven surface fabric having interference color and its production
JPH0734320A (en) * 1993-07-16 1995-02-03 Nissan Motor Co Ltd Coloring structure by reflection and interference action
JPH09157957A (en) * 1995-12-08 1997-06-17 Tanaka Kikinzoku Kogyo Kk Color developing structure
JPH1059746A (en) * 1996-08-13 1998-03-03 Nippon Sheet Glass Co Ltd Production of optical element
JP2001314761A (en) * 2000-05-09 2001-11-13 Natl Inst Of Advanced Industrial Science & Technology Meti Photocatalytic color developing member and its manufacturing method

Also Published As

Publication number Publication date
JP2003053875A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
JP4228058B2 (en) Colored body and method for producing the same
US9097854B2 (en) Optical device exhibiting color shift upon rotation
CN100374882C (en) High index of refraction coated light management films
JP3041094B2 (en) Optically variable interferometer and method with peak suppression
US5214530A (en) Optically variable interference device with peak suppression and method
TW567343B (en) Achromatic multilayer diffractive pigments and foils
Zhang et al. Broadband optical reflector—an application of light localization in one dimension
US6850366B2 (en) Multi-cavity optical filter
RU2309048C2 (en) Diffraction protective element with inbuilt optical wave conductor
CN102501500B (en) Optical anti-counterfeit element
TW200525171A (en) All-dielectric optically variable pigments
WO2001035128A9 (en) Subwavelength optical microstructure light collimating films
JP2005528503A (en) All-dielectric light diffraction pigment
JP4731759B2 (en) Chromogen
JP7264176B2 (en) DECORATIVE MEMBER AND PRODUCTION METHOD OF DECORATIVE MEMBER
JPH11231128A (en) Light-absorbing coating part having high absorptivity
WO2019024572A1 (en) Anti-reflection structure, display device and fabrication method for anti-reflection structure
KR20180102026A (en) Decoration element and preparing method thereof
JP6500943B2 (en) Chromogenic structure, mold and method for producing chromogenic structure using mold
CA2288416A1 (en) Cut-off filters
CN110673249A (en) Reflective filter
JP5984111B2 (en) Wavelength selective filter having retroreflectivity and window material
JP4178583B2 (en) Anti-reflection coating
WO2021145340A1 (en) Coloring structure
CN109597152B (en) Narrow-band reflective film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080708

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080728

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110420

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees