JP4728405B2 - Surface treatment equipment - Google Patents

Surface treatment equipment Download PDF

Info

Publication number
JP4728405B2
JP4728405B2 JP2008552171A JP2008552171A JP4728405B2 JP 4728405 B2 JP4728405 B2 JP 4728405B2 JP 2008552171 A JP2008552171 A JP 2008552171A JP 2008552171 A JP2008552171 A JP 2008552171A JP 4728405 B2 JP4728405 B2 JP 4728405B2
Authority
JP
Japan
Prior art keywords
electrode
current
plasma
resonance
lower electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008552171A
Other languages
Japanese (ja)
Other versions
JPWO2009005148A1 (en
Inventor
由紀 香村
靖 新野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Anelva Corp
Original Assignee
Canon Anelva Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Anelva Corp filed Critical Canon Anelva Corp
Priority to JP2008552171A priority Critical patent/JP4728405B2/en
Publication of JPWO2009005148A1 publication Critical patent/JPWO2009005148A1/en
Application granted granted Critical
Publication of JP4728405B2 publication Critical patent/JP4728405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks

Description

本発明は、半導体基板等の表面処理を行う表面処理装置に関する。   The present invention relates to a surface treatment apparatus that performs surface treatment of a semiconductor substrate or the like.

従来から、半導体装置等の製造プロセスにおいては、エッチング、スパッタリング、プラズマCVD、アッシング等のプラズマ処理を利用した表面処理装置が用いられている。この種の表面処理装置は、真空容器内にプラズマを発生させ、被処理基板あるいはウェハの表面に所定の処理を行うように構成されている。   Conventionally, in a manufacturing process of a semiconductor device or the like, a surface processing apparatus using plasma processing such as etching, sputtering, plasma CVD, or ashing has been used. This type of surface processing apparatus is configured to generate a plasma in a vacuum vessel and to perform a predetermined process on the surface of a substrate to be processed or a wafer.

特に高周波プラズマを利用した表面処理装置では、整合回路を介して電極に高周波が印加され、放電が始まる。従来の装置では整合回路でインピーダンスの整合を行い、電源からの入射電力に対する反射波を最小にしている。しかし、このインピーダンスの整合は高周波電源から見たものであり、負荷であるプラズマから見た整合ではない。このため、整合回路での整合では、電極を含む伝送系内で共振を起こさせることはできない。しかし、電極を含む高周波回路が共振状態になれば、電極へ効率よくパワーを供給でき、プラズマ密度を向上させたり、放電開始圧力を下げたりすることが可能である。   In particular, in a surface treatment apparatus using high-frequency plasma, a high frequency is applied to an electrode via a matching circuit, and discharge starts. In a conventional apparatus, impedance matching is performed by a matching circuit to minimize a reflected wave with respect to incident power from a power source. However, this impedance matching is seen from the high frequency power source, not from the plasma as the load. For this reason, the matching in the matching circuit cannot cause resonance in the transmission system including the electrodes. However, if the high-frequency circuit including the electrodes is in a resonance state, power can be efficiently supplied to the electrodes, and the plasma density can be improved or the discharge start pressure can be lowered.

ここで、スパッタリング装置を例に挙げて従来技術について説明する。特許文献1には、平行平板の上下の電極に異なる周波数の高周波電力を印加する、いわゆる2周波方式の容量結合形のスパッタリング装置が開示されている。この装置の回路構成と動作について、図8を参照して説明する。   Here, the prior art will be described by taking a sputtering apparatus as an example. Patent Document 1 discloses a so-called two-frequency capacitive coupling type sputtering apparatus that applies high-frequency power having different frequencies to upper and lower electrodes of a parallel plate. The circuit configuration and operation of this apparatus will be described with reference to FIG.

図8にて、符号1001は真空容器、符号1002はターゲット、符号1003は上部電極、符号1004はウェハ、符号1005は下部電極、符号200はプラズマを磁化するための磁石をそれぞれ示している。ターゲット1002とウェハ1004との間にプラズマが形成される。上部電極1003には整合回路を介して13.56MHzのRF電源が接続され、下部電極1005には整合回路を介して100MHzのRF電源が接続されている。下部電極1005と整合回路との間にはC5、L、CSで構成される共振回路104bが接続されており、この中のL、Csで構成される直列共振回路の共振周波数f0が、ターゲット1002に印加される周波数13.56MHzに等しくなっている。In FIG. 8, reference numeral 1001 indicates a vacuum vessel, reference numeral 1002 indicates a target, reference numeral 1003 indicates an upper electrode, reference numeral 1004 indicates a wafer, reference numeral 1005 indicates a lower electrode, and reference numeral 200 indicates a magnet for magnetizing plasma. Plasma is formed between the target 1002 and the wafer 1004. An RF power source of 13.56 MHz is connected to the upper electrode 1003 via a matching circuit, and an RF power source of 100 MHz is connected to the lower electrode 1005 via a matching circuit. A resonance circuit 104b composed of C 5 , L, and C S is connected between the lower electrode 1005 and the matching circuit, and the resonance frequency f 0 of the series resonance circuit composed of L and C s therein. Is equal to the frequency of 13.56 MHz applied to the target 1002.

すなわち、   That is,

Figure 0004728405
Figure 0004728405

とすることにより、下部電極(サセプタ)1005に13.56MHzの高周波が印加されること防止することができ、ウェハに損傷を与えずに絶縁性薄膜のバイアススパッタリングを行うことを可能にしている。
特開昭63−50025号公報
By doing so, it is possible to prevent a high frequency of 13.56 MHz from being applied to the lower electrode (susceptor) 1005, and it is possible to perform bias sputtering of the insulating thin film without damaging the wafer.
JP 63-50025 A

しかしながら、上記従来技術には次のような問題が認められる。   However, the following problems are recognized in the above prior art.

上述した従来の装置では、共振回路が下部電極を接地させるように構成されているため、電極を含む回路での共振が発生しない。より広範囲で共振が起れば回路に流れる電流値が増え、電極間での電位差も大きくなる。   In the conventional apparatus described above, the resonance circuit is configured to ground the lower electrode, so that resonance does not occur in the circuit including the electrode. If resonance occurs in a wider range, the value of current flowing in the circuit increases and the potential difference between the electrodes also increases.

また、このような共振が発生したとき、分布常数回路上での電極位置により同じ共振でも共振の節では電流最大/電圧最小となり、共振の腹では電圧最大/電流最小となり、中間位置では電圧と電流の比が変わる。実際の装置では、装置一台毎に電極の位置や誘電物質の誘電率の差などが完全に同一にならず、いわゆる機差と言うものが生じて一台毎にプラズマ状態が変わる。また、装置を稼動させていると次第に処理室の壁に膜が付着し、これによって回路状態が変化して、ロット毎にプラズマ状態が変化する。   Also, when such a resonance occurs, the maximum current / minimum voltage is at the resonance node, the maximum voltage / minimum voltage at the resonance node, and the maximum voltage / minimum current at the antinode of the resonance due to the electrode position on the distributed constant circuit. The current ratio changes. In an actual apparatus, the position of the electrode and the difference in dielectric constant of the dielectric material are not completely the same for each apparatus, so that a so-called machine difference occurs and the plasma state changes for each apparatus. In addition, when the apparatus is operated, a film gradually adheres to the walls of the processing chamber, thereby changing the circuit state and changing the plasma state for each lot.

また、例えば誘導結合型のプラズマ発生装置においては、コイルに電流を流すとコイルのインピーダンスにより電圧が発生する。そのため、誘導結合だけではなく容量結合も生じ、誘導結合の効率が低下するだけでなく、電極を覆う絶縁物やSi板等がエッチングされる。   For example, in an inductively coupled plasma generator, a voltage is generated by the impedance of the coil when a current is passed through the coil. For this reason, not only inductive coupling but also capacitive coupling occurs, not only inductive coupling efficiency is reduced, but also the insulator covering the electrode, the Si plate, and the like are etched.

そこで本発明は、電極を含む線路上で共振を発生させることが可能な表面処理装置を提供することを目的とする。   Therefore, an object of the present invention is to provide a surface treatment apparatus capable of generating resonance on a line including electrodes.

上記目的を達成するため、本発明の表面処理装置は、処理が施される基板が収容され、真空排気が可能な真空容器と、
該真空容器内に互いに対向して配置された上部電極および下部電極と、
前記上部電極に第1の整合回路を介して第1の高周波電力を供給する第1の高周波電力供給手段と、
前記下部電極に第2の整合回路を介して第2の高周波電力を供給する第2の高周波電力供給手段と、
前記下部電極とグラウンドとの間に接続された共振回路と、
前記真空容器内に処理ガスを供給する処理ガス供給手段と、
を備え、前記上部電極と前記下部電極との間に前記処理ガスのプラズマを生成して前記基板の表面に処理を施す表面処理装置において、
前記電極の位相位置を調整する電極位相位置調整手段を備え、
前記電極位相位置調整手段は、可変キャパシタまたは可変インダクタで構成され、前記上部電極と前記第1の整合回路との間と、前記下部電極と前記共振回路との間との少なくとも一方に接続されていることを特徴とする。
In order to achieve the above object, a surface treatment apparatus of the present invention includes a vacuum container that accommodates a substrate to be processed and can be evacuated,
An upper electrode and a lower electrode disposed opposite to each other in the vacuum vessel;
First high-frequency power supply means for supplying a first high-frequency power to the upper electrode via a first matching circuit;
Second high frequency power supply means for supplying a second high frequency power to the lower electrode via a second matching circuit;
A resonant circuit connected between the lower electrode and ground;
A processing gas supply means for supplying a processing gas into the vacuum vessel;
In a surface treatment apparatus for producing a plasma of the processing gas between the upper electrode and the lower electrode and processing the surface of the substrate,
E Bei electrode phase position adjusting means for adjusting the phase position of the electrode,
The electrode phase position adjusting means is composed of a variable capacitor or a variable inductor, and is connected to at least one of between the upper electrode and the first matching circuit and between the lower electrode and the resonance circuit. and said that you are.

本発明によれば、電極を含む線路上で共振を発生させることが可能な表面処理装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the surface treatment apparatus which can generate | occur | produce resonance on the track | line containing an electrode can be provided.

本発明の一実施形態に係る表面処理装置を示す図である。It is a figure which shows the surface treatment apparatus which concerns on one Embodiment of this invention. 共振状態を説明するための簡略化された回路図である。It is the simplified circuit diagram for demonstrating a resonance state. 端部での電気線の実効長さを説明する図である。It is a figure explaining the effective length of the electric wire in an end. 電気線の実効長さをインピーダンスで説明した図である。It is the figure explaining the effective length of the electric wire by impedance. 電極部分での電流の流れを示す図である。It is a figure which shows the flow of the electric current in an electrode part. 電極部分での電流の流れを示す図である。It is a figure which shows the flow of the electric current in an electrode part. 電極部分での電流最大と電圧最大モードを示す図である。It is a figure which shows the electric current maximum and voltage maximum mode in an electrode part. 従来技術によるスパッタリング装置の断面図である。It is sectional drawing of the sputtering device by a prior art.

以下、本発明の成膜装置の実施形態について詳細に説明する。ただし、この実施形態に記載されている構成要素はあくまで例示であり、本発明の技術的範囲は、請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。   Hereinafter, embodiments of the film forming apparatus of the present invention will be described in detail. However, the components described in this embodiment are merely examples, and the technical scope of the present invention is determined by the scope of the claims, and is not limited by the following individual embodiments. .

次に、本発明の実施形態について図面を参照して説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態に係る表面処理装置を示す図である。図1に示す実施形態に係る表面処理装置はエッチング装置である。   FIG. 1 is a view showing a surface treatment apparatus according to an embodiment of the present invention. The surface treatment apparatus according to the embodiment shown in FIG. 1 is an etching apparatus.

図1において、符号1は真空容器、符号3は上部電極、符号8は上部電極導入棒、符号5は下部電極、符号9は下部電極導入棒、符号4は真空容器1内に収容された処理が施されるウェハ(基板)を示している。符号6はウェハ吸着用の静電チャック、符号7は下部電極シールドを示している。さらに、符号50はキャパシタやインダクタ等よりなる電気長調整部、符号51はp−p電流検出器、符号52はp−p電圧検出器を示している。上部電極3と下部電極5は、真空容器内に互いに対向して配置されている。上部電極3はアース電位の外壁から絶縁材料10によって絶縁され、下部電極5はアース電位の外壁から絶縁材料11によって絶縁されている。また、上部電極3は整合装置17内の第1の整合回路を介してVHF帯(好ましくは60MHz)の高周波電源16(第1の高周波電力供給手段)に接続されている。下部電極5は整合装置19内の第2の整合回路を介してMF帯からHF帯(好ましくは1.6MHz)の高周波電源18(第2の高周波電力供給手段)に接続されている。図には示していないが、この真空容器1には排気機構や処理ガス供給機構が設置され、基板搬送機構も具備されている。   In FIG. 1, reference numeral 1 is a vacuum vessel, reference numeral 3 is an upper electrode, reference numeral 8 is an upper electrode introduction bar, reference numeral 5 is a lower electrode, reference numeral 9 is a lower electrode introduction bar, and reference numeral 4 is a process accommodated in the vacuum container 1. The wafer (substrate | substrate) to which is given is shown. Reference numeral 6 denotes an electrostatic chuck for wafer adsorption, and reference numeral 7 denotes a lower electrode shield. Further, reference numeral 50 denotes an electrical length adjusting unit made of a capacitor, an inductor, etc., reference numeral 51 denotes a pp current detector, and reference numeral 52 denotes a pp voltage detector. The upper electrode 3 and the lower electrode 5 are disposed facing each other in the vacuum vessel. The upper electrode 3 is insulated from the outer wall of the earth potential by the insulating material 10, and the lower electrode 5 is insulated from the outer wall of the earth potential by the insulating material 11. The upper electrode 3 is connected to a high frequency power supply 16 (first high frequency power supply means) in the VHF band (preferably 60 MHz) via a first matching circuit in the matching device 17. The lower electrode 5 is connected to a high frequency power source 18 (second high frequency power supply means) from the MF band to the HF band (preferably 1.6 MHz) through a second matching circuit in the matching device 19. Although not shown in the drawing, the vacuum vessel 1 is provided with an exhaust mechanism and a processing gas supply mechanism, and is also provided with a substrate transport mechanism.

このエッチング装置を動作させるには、真空排気機構を用いて真空容器1を所定の圧力まで減圧した後、ガス供給機構(不図示)を経由して上部電極3の下面から処理ガスを真空容器内に供給して所定の圧力にする。その後、上部電極3にVHF帯(好ましくは60MHz)の第1の高周波電力を、下部電極5にMF帯からHF帯(好ましくは1.6MHz)の第2の高周波電力をそれぞれ印加する。   In order to operate this etching apparatus, the vacuum vessel 1 is depressurized to a predetermined pressure using a vacuum exhaust mechanism, and then a processing gas is introduced into the vacuum vessel from the lower surface of the upper electrode 3 via a gas supply mechanism (not shown). To a predetermined pressure. Thereafter, a first high-frequency power in the VHF band (preferably 60 MHz) is applied to the upper electrode 3, and a second high-frequency power in the MF band to HF band (preferably 1.6 MHz) is applied to the lower electrode 5.

そうすると、上部電極3に印加されるVHF帯の高周波電力によって比較的高密度のプラズマ及びエッチャントが生成される。そして、イオン衝撃エネルギが、下部電極5に印加されるMF帯からHF帯の高周波電力によってプラズマ密度とは独立に制御されて、目的とするエッチング処理が実行される。このプラズマ密度をより高くするために、次の操作を行う。   Then, relatively high density plasma and etchant are generated by the high frequency power in the VHF band applied to the upper electrode 3. The ion bombardment energy is controlled independently of the plasma density by the high frequency power from the MF band to the HF band applied to the lower electrode 5, and the intended etching process is executed. In order to increase the plasma density, the following operation is performed.

投入パワーが定常運転の60%に達してプラズマ密度が一定状態になると、下部電極5のIpp検出器(電流測定器)61とVpp検出器(電圧測定器)62とが示す電流電圧を用いて共振ピークが実現されるように可変キャパシタ63を調整する。そして、下部電極5の下方空間での共振を実現する。このように共振させると両電極間のプラズマ電子密度が上昇し、反応ガスの解離が進み、解離ラジカルが高密度となり、高い選択性と、ボーイングの無いエッチング形状と、均一な面内分布とが得られる。   When the input power reaches 60% of the steady operation and the plasma density becomes constant, the current voltage indicated by the Ipp detector (current measuring device) 61 and the Vpp detector (voltage measuring device) 62 of the lower electrode 5 is used. The variable capacitor 63 is adjusted so that the resonance peak is realized. Then, resonance in the lower space of the lower electrode 5 is realized. When resonating in this way, the plasma electron density between the two electrodes increases, the dissociation of the reaction gas proceeds, the dissociated radicals become dense, high selectivity, etching shape without bowing, and uniform in-plane distribution. can get.

次に、図2を参照して、本実施形態の要部であるマッチングの調整および共振の調整を説明する。図2では、下部電極5の高周波電源18と整合装置19とは省略されている。高周波電源16は整合装置17を介して上部電極3に繋がっている。整合装置17は、位相と振幅を測定するインピーダンス測定器21と、プラズマの発生を検知するプラズマ発生測定器28と、整合回路を構成する可変キャパシタ22,23と、コイル27とを有している。可変キャパシタ22,23の制御はモーターユニット24,25が行う。整合制御器26は、プラズマ発生測定器28からの信号とインピーダンス測定器21からの信号とを受け取り、キャパシタ22,23が目的の値を取るようモーターユニット24,25に指令信号を送る。   Next, with reference to FIG. 2, the adjustment of matching and the adjustment of resonance, which are the main parts of the present embodiment, will be described. In FIG. 2, the high-frequency power source 18 and the matching device 19 for the lower electrode 5 are omitted. The high frequency power supply 16 is connected to the upper electrode 3 through the matching device 17. The matching device 17 includes an impedance measuring device 21 that measures phase and amplitude, a plasma generation measuring device 28 that detects the generation of plasma, variable capacitors 22 and 23 that form a matching circuit, and a coil 27. . Control of the variable capacitors 22 and 23 is performed by the motor units 24 and 25. The matching controller 26 receives a signal from the plasma generation measuring device 28 and a signal from the impedance measuring device 21 and sends a command signal to the motor units 24 and 25 so that the capacitors 22 and 23 take a target value.

下部電極5は、電気長調整部70と共振調整部60を介してグラウンドに接地されている。共振調整部60は、共振回路を構成する可変インダクタ67及び可変キャパシタ63と、可変キャパシタ63を駆動するモーターユニット64に指令信号を送る共振制御器65とを有している。共振調整部60は、さらに、peak−to−peak電流の値を検出して共振制御器65に送るp−p電流検出器61と、peak−to−peak電圧値を検出して共振制御器65に信号を送るp−p電圧検出器62とを有している。   The lower electrode 5 is grounded via the electrical length adjusting unit 70 and the resonance adjusting unit 60. The resonance adjustment unit 60 includes a variable inductor 67 and a variable capacitor 63 that constitute a resonance circuit, and a resonance controller 65 that sends a command signal to a motor unit 64 that drives the variable capacitor 63. The resonance adjustment unit 60 further detects a value of the peak-to-peak current and sends it to the resonance controller 65, and detects a peak-to-peak voltage value and detects the peak-to-peak voltage value. And a p-p voltage detector 62 that sends a signal to.

整合装置17と共振調整部60は次のように動作する。高周波電源16より両電極3,5の間に高周波電力を供給すると、プラズマが発生する。プラズマの発生を感知したプラズマ発生測定器28は整合制御器26に信号を送る。また、インピーダンス測定器21は検知した電流/電圧の位相差と、測定された電圧と電流から得られるインピーダンスの値を整合制御器26に送る。整合制御器26はインピーダンスの値が高周波電源16の値と同じになるように、また電流/電圧位相差がゼロになるように、モーターユニット25,24に信号を送る。モーターユニット25,24はこの信号の値に応じて回転し、可変キャパシタ23,22の値を調整する。   The matching device 17 and the resonance adjusting unit 60 operate as follows. When high frequency power is supplied between the electrodes 3 and 5 from the high frequency power supply 16, plasma is generated. Upon detecting the generation of the plasma, the plasma generation measuring device 28 sends a signal to the matching controller 26. Further, the impedance measuring device 21 sends the detected current / voltage phase difference and the impedance value obtained from the measured voltage and current to the matching controller 26. The matching controller 26 sends signals to the motor units 25 and 24 so that the impedance value is the same as that of the high frequency power supply 16 and the current / voltage phase difference is zero. The motor units 25 and 24 rotate according to the value of this signal and adjust the values of the variable capacitors 23 and 22.

一方、共振調整部60は、パワーが定常状態の60%に達した付近で共振回路の制御を開始する。p−p電流検出器61は検知したpeak−to−peak電流値を共振制御器65に送り、p−p電圧検出器62は検知したpeak−to−peak電圧値を共振制御器65に送る。共振制御器65はこの電圧×電流の値が最大になるように可変キャパシタ63のキャパシタンス値の変化する方向と値を決め、モーターユニット64に信号を送り、モーターユニット64は指示に従って可変キャパシタ63を変化させる。本実施形態では共振調整部60には位相測定器は備えられていない。しかしながら、位相測定器により電流電圧の位相差を検出し共振制御器に値を送れば、可変キャパシタ63をどの方向にどれくらい変化させれば良いか容易に計算できるので、位相測定器を備えていることが好ましい。また、可変キャパシタではなく可変インダクタ67を調整して共振させてもよい。   On the other hand, the resonance adjustment unit 60 starts control of the resonance circuit when the power reaches 60% of the steady state. The pp current detector 61 sends the detected peak-to-peak current value to the resonance controller 65, and the pp voltage detector 62 sends the detected peak-to-peak voltage value to the resonance controller 65. The resonance controller 65 determines the changing direction and value of the capacitance value of the variable capacitor 63 so that the value of the voltage × current is maximized, sends a signal to the motor unit 64, and the motor unit 64 sets the variable capacitor 63 according to the instruction. Change. In the present embodiment, the resonance adjusting unit 60 is not provided with a phase measuring device. However, if the phase difference of the current voltage is detected by the phase meter and a value is sent to the resonance controller, it can be easily calculated in which direction and how much the variable capacitor 63 should be changed. It is preferable. Further, instead of the variable capacitor, the variable inductor 67 may be adjusted to resonate.

このようにして共振を実現した後、次の手順で電極の共振位置を調整する。電極5,3の共振状態での位相位置を調整するには、上部電極3の上部に設けられた電気長調整部50と下部電極の下に設けられた電気長調整部70とを使って、上下電極の位相位置を変える。なお、電気長調整部50,70は、それぞれ電極位相位置調整手段を構成している。このように上下電極の位相位置が変わると、上下電極での電圧と電流の比が変わり、プラズマを望ましい状態に変化させることができる。   After realizing resonance in this way, the resonance position of the electrode is adjusted by the following procedure. In order to adjust the phase position of the electrodes 5 and 3 in the resonance state, the electrical length adjustment unit 50 provided above the upper electrode 3 and the electrical length adjustment unit 70 provided below the lower electrode are used. Change the phase position of the upper and lower electrodes. The electrical length adjusters 50 and 70 each constitute electrode phase position adjusting means. Thus, when the phase position of the upper and lower electrodes changes, the ratio of the voltage and current at the upper and lower electrodes changes, and the plasma can be changed to a desired state.

図3は、電極の位相位置調整を示す図である。一端がショートされ電極が中心部付近にある分布常数回路では1/2波長の整数倍の長さが無いと上手く共振しない。さらに電極付近が電流ピークになるには、1波長の中心付近に電極が位置する必要がある。可変キャパシタは短絡の回路端を短くする(実効長さを長くする)効果があるため、キャパシタの大きさを変化させ共振回路の実効長さを変えることができる。図3の30bを参照すると、可変キャパシタ位置Bから可変キャパシタ位置Cまでの「実際の電送線長さ」が1波長の共振回路長さより長い。この場合でも、キャパシタの値を適当に変更することにより、見かけの共振回路長さを1波長分と同じである共振端部E,Dまでの「見かけの電送線長さ」にすることができる。   FIG. 3 is a diagram showing the phase position adjustment of the electrodes. In a distributed constant circuit in which one end is short-circuited and the electrode is in the vicinity of the center, resonance does not occur well unless the length is an integral multiple of ½ wavelength. Furthermore, in order for the vicinity of the electrode to have a current peak, the electrode needs to be positioned near the center of one wavelength. Since the variable capacitor has the effect of shortening the short circuit end (increasing the effective length), the effective length of the resonant circuit can be changed by changing the size of the capacitor. Referring to 30b of FIG. 3, the “actual transmission line length” from the variable capacitor position B to the variable capacitor position C is longer than the resonant circuit length of one wavelength. Even in this case, by changing the value of the capacitor appropriately, the apparent resonance circuit length can be set to the “apparent transmission line length” to the resonance ends E and D which are the same as one wavelength. .

さらに、このような可変キャパシタを用いると、上下のキャパシタ値のバランスを調整することで、図3の30aに示す電極位置Aを電流ピーク位置に配置することができる。キャパシタでなくインダクタを変えても同様の調整ができる。なお、共振回路の一方をオープン、他方をショートにすれば、半波長で共振を起こさせることができる。   Further, when such a variable capacitor is used, the electrode position A shown by 30a in FIG. 3 can be arranged at the current peak position by adjusting the balance between the upper and lower capacitor values. The same adjustment can be made by changing the inductor instead of the capacitor. If one of the resonance circuits is open and the other is short-circuited, resonance can be caused at half wavelength.

本実施形態では、下部電極に共振調整部60と電気長調整部70とを設けたが、どちらか一方を省略してもよい。例えば電気長調整部70を省略した場合、残された共振調整部60は共振と電気長調整の両方の役割を果たす。こうすれば装置が簡便化してコストが低下し、さらに共振調整と電気長調整を同じ所で行うため、調整がすばやくできるようになる。   In the present embodiment, the resonance adjustment unit 60 and the electrical length adjustment unit 70 are provided on the lower electrode, but either one may be omitted. For example, when the electrical length adjustment unit 70 is omitted, the remaining resonance adjustment unit 60 plays both roles of resonance and electrical length adjustment. This simplifies the apparatus and reduces the cost, and furthermore, since the resonance adjustment and the electrical length adjustment are performed at the same place, the adjustment can be performed quickly.

共振の実効線路長さの調整及び電極位置の調整方法の基礎となる考えを、式を用いて説明する。   The concept that is the basis of the adjustment of the effective line length of resonance and the adjustment method of the electrode position will be described using equations.

Lは両線単位長さ当りのインダクタンス、Cは両線間の単位長さ当りの静電容量、Rは両線の単位長さ当りの往復導線抵抗、Sは両線間の単位長さ当りの漏洩コンダクタンスとする。左端電源側より測ってyなる距離にある導線上の点において、Eyを両線間の電位差、Iyを導線上の電流とすると、次の式が得られる。L is the inductance per unit length of both wires, C is the capacitance per unit length between both wires, R is the reciprocal conductor resistance per unit length of both wires, and S is the unit length between both wires Of leakage conductance. In point on lead at a distance y becomes measure from left power supply side, the potential difference between the E y both lines, if the current on the conductive wire I y, the following equation is obtained.

−dEy/dy=(R+jωL)・Iy=Z・Iy
−dIy/dy=(S+jωC)・Ey=Y・Ey
この式を解くと、次の式が得られる。
-DEy / dy = (R + jωL) · Iy = Z · Iy
-DIy / dy = (S + jωC) · Ey = Y · Ey
Solving this equation gives the following equation:

Figure 0004728405
Figure 0004728405

送電端すなわちy=0における電位および電流を各々EsおよびIsとすれば、次の式(1)が得られる。If the potential and current at the power transmission end, that is, y = 0, are E s and I s , the following equation (1) is obtained.

Figure 0004728405
Figure 0004728405

次に、受電端すなわちy=lにおける電圧および電流をErおよびIrとすると、次の式(2)が得られる。Next, when the voltage and current at the power receiving end, that is, y = l are E r and I r , the following equation (2) is obtained.

Figure 0004728405
Figure 0004728405

受電端短絡の場合、Er=0となる。従って、式(2)より以下の式が得られる。In the case of a receiving end short circuit, E r = 0. Therefore, the following formula is obtained from the formula (2).

Figure 0004728405
Figure 0004728405

ただし、無損失としてR=0、S=0で、   However, lossless R = 0, S = 0,

Figure 0004728405
Figure 0004728405

これを式(2)に代入すると、次の式(3)が得られる。   Substituting this into equation (2) yields the following equation (3).

Figure 0004728405
Figure 0004728405

y点を右から見たimpedanceである式(3)についてl−y=xを用いると、送電端インピーダンスZxは次の純リアクタンスを得る。   When l−y = x is used for Equation (3), which is impedance when the y point is viewed from the right, the transmission end impedance Zx obtains the following pure reactance.

Figure 0004728405
Figure 0004728405

これより、x=λ/2なる長さであればこの系は直列共振になる。   Thus, if the length is x = λ / 2, the system is in series resonance.

この系をLで終端させた場合、Er=jωL・Irとの関係に基づき、導線を無損失とし、lをxと考えて送電端のimpedance:Zxを求めると、When this system is terminated at L, based on the relationship of E r = jωL · I r , assuming that the conducting wire is lossless and l is x, the impedance of the power transmission end: Z x is obtained.

Figure 0004728405
Figure 0004728405

ここで、   here,

Figure 0004728405
Figure 0004728405

これは、xLだけ長い短絡共振線と同一の特性を持ち、短絡共振線をxLだけ伸ばしたことと同等であることを意味している。This means that have the same characteristics as the only long short resonant line x L, it is equivalent to a short circuit resonance line extended by x L.

また、この系をCで終端させた場合、Er=Ir/jωCとの関係に基づき、導線を無損失とし、lをxと考えて送電端のimpedance:Zxを求めると、Further, when this system is terminated at C, based on the relationship of E r = I r / jωC, assuming that the conducting wire is lossless and l is assumed to be x, the impedance: Z x of the power transmission end is obtained.

Figure 0004728405
Figure 0004728405

Figure 0004728405
Figure 0004728405

これは、xLだけ短い短絡共振線と同一の特性を持ち、短絡共振線をxLだけ短縮したことと同等であることを意味している。This means that have the same characteristics as a short short resonant line x L, is equivalent to a short circuit resonance line was shortened by x L.

この線路長さの変更は、式(4)や式(5)で示されている。これを図示すると図4のようになる。LやCで終端した場合の実効距離の変化は終端するキャパシタンスやインダクタンスの大きさと線路の特性インピーダンスと電源周波数で決まる。このため、例えば下部電極5側の可変キャパシタ73を変化させた場合、実効線路長さが変化して電極の位相位置が変わるが、線路長さが変わるため共振しなくなる。この線路長さの変化をキャンセルして共振を維持するには、上部電極3側の可変キャパシタ53を反対方向に同量だけ変化させればよい。しかし、実際には線路の特性インピーダンスが場所により違っているため、これを考慮して式を満たすように変化させる必要がある。おおよその変化の目安はこのように計算できるが、実際にはプラズマ状態の変化など計算できないものが残る。このため、計算値により大まかな調整を行うにしても、細部の調整には共振を満たすように電流電圧状態をモニターして、それに応じて回路状態を調整しながら電極位置を目的の電流電圧の状態にさせていく必要がある。   This change in the line length is expressed by Equation (4) or Equation (5). This is illustrated in FIG. Changes in the effective distance when terminated with L or C are determined by the size of the terminating capacitance or inductance, the characteristic impedance of the line, and the power supply frequency. For this reason, for example, when the variable capacitor 73 on the lower electrode 5 side is changed, the effective line length is changed and the phase position of the electrode is changed. In order to cancel the change in the line length and maintain the resonance, it is only necessary to change the variable capacitor 53 on the upper electrode 3 side in the opposite direction by the same amount. However, since the characteristic impedance of the line actually differs depending on the location, it is necessary to change it so that the equation is satisfied in consideration of this. Although the rough change guideline can be calculated in this way, there are actually some things that cannot be calculated, such as changes in the plasma state. For this reason, even if a rough adjustment is performed based on the calculated value, the current / voltage state is monitored so as to satisfy the resonance for fine adjustment, and the electrode position is adjusted to the target current / voltage while adjusting the circuit state accordingly. It is necessary to keep it in a state.

実際の調整では次のように行うが、整合回路や共振回路の調整と似た点が多く考え方のみ示す。Ipp検出器71とVpp検出器72の位相距離の差、及び上部下部電極3、5までの位相距離を予め計算し、さらに測定によってその位相距離を確かめておく。そしてIpp検出器71やVpp検出器72で測定した値から上下電極3,5でのVpp(電圧)とIpp(電流)の比が予め設定した望ましい値になるように可変キャパシタ73や可変インダクタ77を変化させる。この変化に応じて上部電極側の可変キャパシタ53や可変インダクタ77を変え、必要であれば共振調整部60も変える。   The actual adjustment is performed as follows, but there are many similarities to the adjustment of the matching circuit and the resonance circuit, and only the concept is shown. The difference in phase distance between the Ipp detector 71 and the Vpp detector 72 and the phase distance to the upper and lower electrodes 3 and 5 are calculated in advance, and the phase distance is confirmed by measurement. The variable capacitor 73 and the variable inductor 77 are set so that the ratio of Vpp (voltage) and Ipp (current) at the upper and lower electrodes 3 and 5 becomes a preset desirable value from the values measured by the Ipp detector 71 and Vpp detector 72. To change. In response to this change, the variable capacitor 53 and the variable inductor 77 on the upper electrode side are changed, and the resonance adjustment unit 60 is also changed if necessary.

次に、図5、図6と図1を用いて、装置構造上注意すべき点と上部電極3側、下部電極5側どちらに共振回路用の共振調整部や電気長調整部を設けてもかまわないことを説明する。図において符号8は上部電極導電棒を示しており、この表面を高周波の導電電流8aが流れる。さらにこの導電電流8aは上部電極3の表面を上部電極外部電流3aとして流れ、さらに上部電極プラズマ側電流12bとなって上部電極3の表面を流れる。この電流は行き場が無いため電荷が電極表面に溜まり、この電荷に誘起された電界に従い上部シース12には変位電流、イオン電流、電子電流の合計を示す上部シース電流12aが流れる。プラズマ15は同電位であり、この上部シース電流12aに応じた導電電流であるプラズマ電流15aが流れ、電極の反対側の下部電極シース13に電界を発生させ、この電界に応じた変位電流とイオン電流と電子電流の合計である下部シース電流13aが流れる。この電流及び電圧により、下部電極5の表面には下部電極プラズマ側電流13bが流れ、さらにこれが下部電極外部電流5a及び導入棒電流9aとなって流れ出す。電流保存則より、上部シース電流12aと下部シース電流13aの電流値は同じになっている。この一定の電流値は、例えば電極の一方がアースされている比対称電界においても保たれる。従って、上部電極側に共振回路を設けても、下部電極側に共振回路を設けても上下電極が共振回路内に含まれるように設定すればどちらに共振回路を設けてもかまわない。   Next, using FIG. 5, FIG. 6, and FIG. 1, a resonance adjustment unit and an electrical length adjustment unit for a resonance circuit may be provided on either the upper electrode 3 side or the lower electrode 5 side, which should be noted in the device structure. Explain that it doesn't matter. In the figure, reference numeral 8 denotes an upper electrode conductive rod, and a high-frequency conductive current 8a flows through this surface. Further, the conductive current 8a flows on the surface of the upper electrode 3 as the upper electrode external current 3a, and further flows on the surface of the upper electrode 3 as the upper electrode plasma side current 12b. Since this current has no place to go, charges accumulate on the electrode surface, and an upper sheath current 12a indicating the sum of displacement current, ion current, and electron current flows through the upper sheath 12 in accordance with the electric field induced by this charge. The plasma 15 has the same potential, and a plasma current 15a, which is a conductive current corresponding to the upper sheath current 12a, flows to generate an electric field in the lower electrode sheath 13 on the opposite side of the electrode, and a displacement current and an ion corresponding to the electric field are generated. A lower sheath current 13a, which is the sum of current and electron current, flows. Due to this current and voltage, a lower electrode plasma side current 13b flows on the surface of the lower electrode 5, and further flows out as a lower electrode external current 5a and an introduction rod current 9a. From the current conservation law, the upper sheath current 12a and the lower sheath current 13a have the same current value. This constant current value is maintained even in a specific symmetry electric field in which one of the electrodes is grounded. Therefore, it does not matter whether the resonance circuit is provided on the upper electrode side or the resonance circuit on the lower electrode side as long as the upper and lower electrodes are included in the resonance circuit.

しかし、実際にはこのような電流ではなく、図6に示すように一部の電流は電極以外に逃げる。すなわち、上部電極外部電流3aの一部は外導線の役割を果たす上部電極シールド7aからアースへ電流7c1,7b1として逃げ、上部電極外部電流3aの値は下部電極外部電流5aの値より大きい。また下部電極でも下部電極外部電流5aの一部は、下部電極シールド7へ逃げるので、下部電極導入棒9の表面を流れる導入棒電流9aはさらに小さくなる。しかし、共振状態になれば、共振線路のインピーダンスはゼロに近づくので、この寄生容量に逃げる電流量は減る。   However, in reality, this current is not such, and a part of the current escapes to other than the electrodes as shown in FIG. That is, a part of the upper electrode external current 3a escapes from the upper electrode shield 7a serving as an external conductor to the ground as currents 7c1 and 7b1, and the value of the upper electrode external current 3a is larger than the value of the lower electrode external current 5a. In the lower electrode, part of the lower electrode external current 5a escapes to the lower electrode shield 7, so that the introduction rod current 9a flowing on the surface of the lower electrode introduction rod 9 is further reduced. However, when the resonance state is reached, the impedance of the resonance line approaches zero, and the amount of current that escapes to the parasitic capacitance is reduced.

しかし、寄生容量に逃げる電流、すなわち皮相電力は、その分電極にかかる電流や電圧の大きさを小さくする。このため、上部電極シールド7aや下部電極シールド7の寄生容量が小さくなるように電極とシールドのギャップを広げ、対向する面積を小さくするなどして容量を下げることが好ましい。   However, the current escaping to the parasitic capacitance, that is, the apparent power, reduces the magnitude of the current and voltage applied to the electrode accordingly. For this reason, it is preferable to reduce the capacitance by widening the gap between the electrode and the shield so that the parasitic capacitance of the upper electrode shield 7a and the lower electrode shield 7 is reduced and reducing the opposing area.

共振状態が実現されれば、電極でのインピーダンスは下がり共振端部で電力は反射される。一方、整合回路により共振部に電流が反射されること無く流れ込むため、電流が共振部に溜まり、共振部におかれた上下電極の間のプラズマで効率良くパワーが消費される。   When the resonance state is realized, the impedance at the electrode is lowered and the power is reflected at the resonance end. On the other hand, since the current flows into the resonance part without being reflected by the matching circuit, the current is accumulated in the resonance part, and the power is efficiently consumed by the plasma between the upper and lower electrodes placed in the resonance part.

次に、電流最大と電圧最大モードの状態について説明する。   Next, the state of the maximum current and maximum voltage modes will be described.

図7の70aは電流最大モードを示している。電流最大モードでは、本来は電極とシールドとの間の電位差を示すA1や、シールド付近の薄いプラズマと電極との間の電位差A3はほとんど無視できる値であるはずである。また、電流が溜まらなければ電極間の電圧A2も小さいはずである。しかし、実際にはプラズマと上部電極間、プラズマと下部電極間には余り電流が流れず、ほとんどが変位電流となり、電荷が電極やプラズマの表面に蓄積し、大きな電圧が生まれる。   Reference numeral 70a in FIG. 7 denotes the maximum current mode. In the maximum current mode, A1 indicating the potential difference between the electrode and the shield and the potential difference A3 between the thin plasma near the shield and the electrode should be almost negligible values. If no current is accumulated, the voltage A2 between the electrodes should be small. However, in reality, not much current flows between the plasma and the upper electrode, and between the plasma and the lower electrode, most of which becomes a displacement current, and electric charges accumulate on the electrode and the surface of the plasma, generating a large voltage.

一方、プラズマ内では変位電流はほとんど流れず大きな伝導電流が流れ、効率良くイオン化が起こる。また、電流の一部は実電流としてプラズマに流れ込むが、残りの電流は電極の外周から内周に流れ込むため、電極長さの位相差分だけ電極周辺と電極中心で電位差が生じる。電極中心が電流最大・電圧最小になっている場合、外周ほど電極電位とプラズマ電位の差が大きくなり電極中心より電極外周で大きなプラズマ生成密度が得られ、拡散により失われるプラズマを補う。このためより均一なプラズマ密度が得られやすい。しかし、波として伝わる電流が電極中心に集中する現象もありプラズマ密度は中心部が濃くなる。このように均一なプラズマが得られない時は後で述べるように電圧の割合を増やせば良い。   On the other hand, a displacement current hardly flows in the plasma and a large conduction current flows, and ionization occurs efficiently. A part of the current flows into the plasma as an actual current, but the remaining current flows from the outer periphery to the inner periphery of the electrode, so that a potential difference is generated between the electrode periphery and the electrode center by the phase difference of the electrode length. When the electrode center has the maximum current and the minimum voltage, the difference between the electrode potential and the plasma potential increases toward the outer periphery, and a larger plasma generation density is obtained at the electrode outer periphery than at the electrode center, thus compensating for the plasma lost by diffusion. For this reason, it is easy to obtain a more uniform plasma density. However, there is also a phenomenon in which a current transmitted as a wave is concentrated at the center of the electrode, and the plasma density becomes deep at the center. When uniform plasma cannot be obtained in this way, the voltage ratio may be increased as described later.

ここで、電極間の電位差A2が大きくなるとシールドと電極との電位差A1やシールドとシールド付近のプラズマとの電位差A3が変化すること、及びそれに伴う影響を考える。   Here, the potential difference A2 between the shield and the electrode and the potential difference A3 between the shield and the plasma in the vicinity of the shield change as the potential difference A2 between the electrodes increases, and the accompanying effects are considered.

電極中心が電圧ゼロの位相位置にある場合、上部電極での電圧と下部電極での電圧は絶対値が同じで符号が逆になる。プラズマは電極より低い電位にならず、プラズマ電位は電極間電位差の半分の大きさ、即ちゼロとpeak電位との間を変動することになる。この時、プラズマと同電位の電極ではプラズマ生成は起らないが、プラズマと逆電位の電極ではpeak−to−peak電位と同じ電位が生まれ、プラズマが大量に発生する。   When the electrode center is at a phase position of zero voltage, the voltage at the upper electrode and the voltage at the lower electrode have the same absolute value and opposite signs. The plasma is not at a lower potential than the electrodes, and the plasma potential will fluctuate between half the potential difference between the electrodes, that is, between zero and the peak potential. At this time, plasma generation does not occur at an electrode having the same potential as plasma, but an electrode having the same potential as the peak-to-peak potential is generated at an electrode having a potential opposite to that of plasma, and a large amount of plasma is generated.

一方、外周部プラズマと電極との電位差は電極部分のシースで消費され、外周部プラズマの発生には寄与しない。また、上部電極3、下部電極5の電位差が大きくなると、上下電極と外導線を構成するシールド7,7aとの電位差も大きくなるが、シールドと電極との間には絶縁物があるため、シールドと電極との間の電位差A1が大きくなってもプラズマは発生しない。   On the other hand, the potential difference between the outer peripheral plasma and the electrode is consumed by the sheath of the electrode portion, and does not contribute to the generation of the outer peripheral plasma. Further, when the potential difference between the upper electrode 3 and the lower electrode 5 increases, the potential difference between the upper and lower electrodes and the shields 7 and 7a constituting the external conductor also increases. However, since there is an insulator between the shield and the electrode, the shield No plasma is generated even if the potential difference A1 between the electrode and the electrode increases.

しかし、電極間電位差の半分の大きさで変動する外周部プラズマとシールド間の電位差A3が問題になる。シールドが完全に接地されていればシールドの電位はゼロである。すでに考察したように外周部プラズマの電位は電極でのpeak−to−peak電位の半分の値で変動し、シールドと外周部プラズマの電位差は電極とプラズマの電位差の半分になり、電極部ほどではないにしてもプラズマが発生する。ただし、プラズマが十分減衰してプラズマがシールド部で消滅していればこのような電位差は生まれないが、本実施形態の手法だけでは外周部でのプラズマ減衰を十分に行えず、プラズマの発生を抑制できない。したがって別の手法が必要になる。   However, the potential difference A3 between the outer peripheral plasma and the shield, which varies by half the potential difference between the electrodes, becomes a problem. If the shield is fully grounded, the potential of the shield is zero. As already discussed, the potential of the peripheral plasma fluctuates by half the value of the peak-to-peak potential at the electrode, and the potential difference between the shield and the peripheral plasma is half of the potential difference between the electrode and the plasma. Even if not, plasma is generated. However, if the plasma is sufficiently attenuated and the plasma is extinguished at the shield part, such a potential difference is not produced, but the method of this embodiment alone cannot sufficiently attenuate the plasma at the outer peripheral part, and the plasma is not generated. It cannot be suppressed. Therefore, another method is required.

図7の70bは電圧最大モードを示している。この場合、電極電圧は大きく振れるが、この電圧は電極とシールドとの間の電圧B1やB3にかかり、Peak−to−peak電位の半分で変動する外周部プラズマとシールドとの間にプラズマが発生する。これに対し、B2で示される電圧はほとんどゼロであるはずである。しかし、実際にはプラズマは接触している部分の電位より高くなることはできないので、peak−to−peak電位の半分の電位差がプラズマと電極との間にかかることになる。実際には外導線(シールド)は内導線(電極)と180°位相のずれた電流と電圧が流れているので、この考察では不十分であるが、定性的には同じになる。   Reference numeral 70b in FIG. 7 denotes a voltage maximum mode. In this case, the electrode voltage fluctuates greatly, but this voltage is applied to the voltage B1 or B3 between the electrode and the shield, and plasma is generated between the outer peripheral plasma and the shield that fluctuates by half of the peak-to-peak potential. To do. In contrast, the voltage indicated by B2 should be almost zero. However, in actuality, since the plasma cannot be higher than the potential of the contacted portion, a potential difference that is half the peak-to-peak potential is applied between the plasma and the electrode. Actually, the current and voltage that are 180 ° out of phase with the inner conductor (electrode) flow through the outer conductor (shield), so this consideration is not sufficient, but it is qualitatively the same.

内導線(電極)と外導線(シールド)を十分離せば、電流最大モードでの内導線での電圧の上昇が外導線に与える影響は少ない。問題は電流最大モードで電極間に生じた電圧が電圧に応じた電流を生むことである。これは、次のように考えれば良い。電極の近くに電極とインピーダンスの絶対値が同じで極性が逆のインダクタを繋ぐと、インダクタで生まれる電圧は、電極で生まれる電圧と相互にキャンセルされる。このようにするのが望ましいが、これがなくても、図2の電気長調整部70は同様の働きをし、電極で発生した電圧をキャンセルして他に及ばない働きをさせることができる。   If the inner conductor (electrode) and the outer conductor (shield) are separated sufficiently, the increase in the voltage of the inner conductor in the maximum current mode has little influence on the outer conductor. The problem is that the voltage generated between the electrodes in the maximum current mode generates a current corresponding to the voltage. This can be considered as follows. If an inductor having the same absolute value of impedance as the electrode and an opposite polarity is connected near the electrode, the voltage generated by the inductor is canceled with the voltage generated by the electrode. Although it is desirable to do this, even without this, the electrical length adjusting unit 70 of FIG. 2 can perform the same function, and can cancel the voltage generated at the electrode and perform an unrivaled function.

以上を纏めると次のようになる。電流最大モードでは電極でのプラズマはpeak−to−peak電位に基づき発生し、周辺ではpeak−to−peak電位の半分で生成される。一方、電圧最大モードでは電極部でも周辺部でもpeak−to−peak電位の半分でプラズマが生成される。このように電圧の割合を増やしていくと、電流最大モードに比べて外周部のプラズマ密度が上昇し、中心部でプラズマ密度が下がる。こうして、プラズマ密度の均一化を共振状態での電流と電圧との比、即ち共振回路上での電極の位置を変化させることにより変えることができる。   The above is summarized as follows. In the current maximum mode, plasma at the electrode is generated based on the peak-to-peak potential, and is generated at a half of the peak-to-peak potential in the periphery. On the other hand, in the maximum voltage mode, plasma is generated at half of the peak-to-peak potential in both the electrode portion and the peripheral portion. As the voltage ratio is increased in this way, the plasma density in the outer peripheral portion increases and the plasma density decreases in the central portion as compared with the maximum current mode. Thus, the uniformity of the plasma density can be changed by changing the ratio of the current and voltage in the resonance state, that is, the position of the electrode on the resonance circuit.

電流最大モードで分布が取れない場合、電極を短絡端とみなされる位相位置である電流最大モードでの位相位置から±1/20波長分ずらせば電流/電圧比は3/1程度になり最初エッチングの面内分布が±15%だったのが±4%に改善する。   If the distribution cannot be obtained in the maximum current mode, the current / voltage ratio becomes about 3/1 when the electrode is shifted by ± 1/20 wavelength from the phase position in the maximum current mode, which is the phase position regarded as the short-circuited end. The in-plane distribution of ± 15% improves to ± 4%.

上部電極3の電源周波数に対して、下部電極5をアースに落ちるように設定しておく場合、すなわち下部電極5が外導体の役割を担う場合には、今までの説明とは逆に上部電極3では電圧最大モードにする必要がある。しかし、この場合には共振状態では上部電極が開放端になっているため、電圧最大は自動的に達成できる。実際には、完全な外導体になることは無く、キャパシタの要素が多少とも入る。このため電圧最大に調整する余地が生じる。今までの説明でこの実現は可能であるが、詳しい説明は省く。   When the lower electrode 5 is set to fall to the ground with respect to the power supply frequency of the upper electrode 3, that is, when the lower electrode 5 serves as an outer conductor, the upper electrode is contrary to the above description. 3 requires the voltage maximum mode. However, in this case, the maximum voltage can be achieved automatically because the upper electrode is open at resonance. Actually, it does not become a perfect outer conductor, and some elements of the capacitor are included. For this reason, there is room for adjustment to the maximum voltage. Although this can be realized by the above explanation, a detailed explanation is omitted.

電圧最大モードで分布が取れない場合、電極を短絡端とみなされる位相位置である電圧最大モードとなる位相位置から±1/20波長分ずらせば電流/電圧比は1/3程度になり最初エッチングの面内分布が±10%だったのが±4%に改善する。   If the distribution cannot be obtained in the maximum voltage mode, the current / voltage ratio becomes about 1/3 when the electrode is shifted by ± 1/20 wavelength from the phase position in the maximum voltage mode, which is the phase position regarded as a short-circuited end, and the first etching is performed. The in-plane distribution of ± 10% improves to ± 4%.

以上説明したように、本実施形態では可変キャパシタや可変インダクタを設けて位相位置を調整したが、計算又は実験により電極の位相位置が最適になるよう装置の電気回路長さを設定して、共振させても良い。この場合、図1を例に取れば、共振を起こさせる電気長調整部50,70は不用になり、当該部分でのキャパシタやインダクタを省略するか、固定のキャパシタやインダクタを用いることが可能になる。また、望ましい共振位相位置に電極を持ってくるため、電極棒の長さを望ましい値になるように設計することもできる。   As described above, in this embodiment, the phase position is adjusted by providing a variable capacitor and a variable inductor. However, by calculating or experimenting, the electric circuit length of the device is set so as to optimize the phase position of the electrode, and the resonance is achieved. You may let them. In this case, if FIG. 1 is taken as an example, the electrical length adjusting units 50 and 70 that cause resonance are unnecessary, and it is possible to omit the capacitors and inductors at those portions or to use fixed capacitors and inductors. Become. In addition, since the electrode is brought to a desired resonance phase position, the length of the electrode rod can be designed to a desired value.

また、説明を簡単にするため、整合回路からアースまでの間で共振が起るとしたが、整合回路から電極や電気長調整部を経て整合回路に戻る全経路での回路長さを考え、そこでの共振を考慮することがより好ましい。   In addition, for simplicity of explanation, resonance occurred between the matching circuit and the ground, but considering the circuit length in all paths from the matching circuit to the matching circuit via the electrodes and the electrical length adjuster, It is more preferable to consider the resonance there.

以上説明したように、本実施形態によれば、共振状態において電極が共振における位相のどの位置を占めるかを決定でき、例えば電流値を大きくしたり電圧値を大きくしたりすることができる。また、位相位置を選べることで、プラズマ処理の再現性を高めるだけでなく、高いプラズマ密度等のプラズマ状態を決めることができる。   As described above, according to the present embodiment, it is possible to determine which position of the phase in the resonance the electrode occupies in the resonance state. For example, the current value can be increased or the voltage value can be increased. Further, by selecting the phase position, not only the reproducibility of the plasma processing can be improved, but also a plasma state such as a high plasma density can be determined.

このように、本実施形態によれば、プラズマ状態を精度良く制御できる、使いよく信頼性の高いプラズマ表面処理装置を提供することができる。   Thus, according to the present embodiment, it is possible to provide an easy-to-use and reliable plasma surface treatment apparatus that can control the plasma state with high accuracy.

上述した手法を低いガス圧での放電開始や維持に使えることは勿論である。電極間の電圧が高くなるため、放電が開始しにくい低気圧においても容易に放電開始できる。このため、例えばエッチング処理する場合にイオンの斜め入射量が減り、アスペクト比が高いコンタクトホールにおいてもボーイングの無い望ましいエッチング形状が得られるという効果がある。また、プラズマ密度が増すため、高速でしかもアスペクト比の高いコンタクトホールなどを高い選択比でエッチングできる。   Of course, the above-described method can be used for starting and maintaining discharge at a low gas pressure. Since the voltage between the electrodes becomes high, the discharge can be easily started even at a low pressure where the discharge is difficult to start. For this reason, for example, when performing an etching process, there is an effect that an oblique incident amount of ions is reduced and a desirable etching shape without bowing can be obtained even in a contact hole having a high aspect ratio. Further, since the plasma density is increased, contact holes having a high aspect ratio can be etched at a high selectivity.

本実施形態ではプラズマ装置一般を例に取って説明した。しかし、本実施形態はプラズマを利用するエッチング装置、スパッタリング、プラズマCVD、アッシング、表面酸化、窒化や表面の酸化物等の化合物を取り除く表面改質装置等にも適用できることは明らかである。   In the present embodiment, the plasma apparatus in general has been described as an example. However, it is obvious that this embodiment can be applied to an etching apparatus using plasma, sputtering, plasma CVD, ashing, surface oxidation, nitridation, a surface modification apparatus for removing compounds such as surface oxides, and the like.

以上、本発明の好ましい実施形態を添付図面の参照により説明したが、本発明はかかる実施形態に限定されるものではなく、請求の範囲の記載から把握される技術的範囲において種々な形態に変更可能である。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings. However, the present invention is not limited to such embodiments, and various modifications can be made within the technical scope grasped from the description of the scope of claims. Is possible.

本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。   The present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

本願は、2007年7月4日提出の日本国特許出願特願2007−176287を基礎として優先権を主張するものであり、その記載内容の全てを、ここに援用する。   This application claims priority based on Japanese Patent Application No. 2007-176287 filed on Jul. 4, 2007, the entire contents of which are incorporated herein by reference.

Claims (4)

処理が施される基板が収容され、真空排気が可能な真空容器と、
該真空容器内に互いに対向して配置された上部電極および下部電極と、
前記上部電極に第1の整合回路を介して第1の高周波電力を供給する第1の高周波電力供給手段と、
前記下部電極に第2の整合回路を介して第2の高周波電力を供給する第2の高周波電力供給手段と、
前記下部電極とグラウンドとの間に接続された共振回路と、
前記真空容器内に処理ガスを供給する処理ガス供給手段と、
を備え、前記上部電極と前記下部電極との間に前記処理ガスのプラズマを生成して前記基板の表面に処理を施す表面処理装置において、
前記電極の位相位置を調整する電極位相位置調整手段を備え、
前記電極位相位置調整手段は、可変キャパシタまたは可変インダクタで構成され、前記上部電極と前記第1の整合回路との間と、前記下部電極と前記共振回路との間との少なくとも一方に接続されていることを特徴とする表面処理装置。
A vacuum container that accommodates a substrate to be processed and can be evacuated;
An upper electrode and a lower electrode disposed opposite to each other in the vacuum vessel;
First high-frequency power supply means for supplying a first high-frequency power to the upper electrode via a first matching circuit;
Second high frequency power supply means for supplying a second high frequency power to the lower electrode via a second matching circuit;
A resonant circuit connected between the lower electrode and ground;
A processing gas supply means for supplying a processing gas into the vacuum vessel;
In a surface treatment apparatus for producing a plasma of the processing gas between the upper electrode and the lower electrode and processing the surface of the substrate,
E Bei electrode phase position adjusting means for adjusting the phase position of the electrode,
The electrode phase position adjusting means is composed of a variable capacitor or a variable inductor, and is connected to at least one of between the upper electrode and the first matching circuit and between the lower electrode and the resonance circuit. surface treatment apparatus characterized by there.
前記電極位相位置調整手段は、前記電極で電圧が最大となり電流が最小となる位相位置、または、前記電極で電圧が最小となり電流が最大となる位相位置に前記電極が配置されるように各々の前記電極の位相位置を調整することを特徴とする請求項1に記載の表面処理装置。  The electrode phase position adjusting means is arranged so that the electrodes are arranged at the phase position where the voltage is maximum and the current is minimum at the electrode, or at the phase position where the voltage is minimum and the current is maximum at the electrode. The surface treatment apparatus according to claim 1, wherein a phase position of the electrode is adjusted. 処理が施される基板が収容され、真空排気が可能な真空容器と、
該真空容器内に互いに対向して配置された上部電極および下部電極と、
前記上部電極に第1の整合回路を介して第1の高周波電力を供給する第1の高周波電力供給手段と、
前記下部電極に第2の整合回路を介して第2の高周波電力を供給する第2の高周波電力供給手段と、
前記下部電極とグラウンドとの間に接続された共振回路と、
前記真空容器内に処理ガスを供給する処理ガス供給手段と、
を備え、前記上部電極と前記下部電極との間に前記処理ガスのプラズマを生成して前記基板の表面に処理を施す表面処理装置において、
前記上部電極は、短絡端とみなされる位相位置から前記第1の高周波電力の±1/20波長分ずらした位置に配置され、
前記下部電極は、短絡端とみなされる位相位置から前記第2の高周波電力の±1/20波長分ずらした位置に配置されていることを特徴とする表面処理装置。
A vacuum container that accommodates a substrate to be processed and can be evacuated;
An upper electrode and a lower electrode disposed opposite to each other in the vacuum vessel;
First high-frequency power supply means for supplying a first high-frequency power to the upper electrode via a first matching circuit;
Second high frequency power supply means for supplying a second high frequency power to the lower electrode via a second matching circuit;
A resonant circuit connected between the lower electrode and ground;
A processing gas supply means for supplying a processing gas into the vacuum vessel;
In a surface treatment apparatus for producing a plasma of the processing gas between the upper electrode and the lower electrode and processing the surface of the substrate,
The upper electrode is arranged at a position shifted by ± 1/20 wavelength of the first high-frequency power from a phase position regarded as a short-circuit end,
The surface treatment apparatus, wherein the lower electrode is arranged at a position shifted by ± 1/20 wavelength of the second high-frequency power from a phase position regarded as a short-circuit end.
前記共振回路は電圧測定器と電流測定器とを含んでいることを特徴とする請求項1またはに記載の表面処理装置。The resonant circuit of the surface treatment apparatus according to claim 1 or 3, characterized in that it contains a voltage measuring device and a current measuring device.
JP2008552171A 2007-07-04 2008-07-04 Surface treatment equipment Active JP4728405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008552171A JP4728405B2 (en) 2007-07-04 2008-07-04 Surface treatment equipment

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007176287 2007-07-04
JP2007176287 2007-07-04
JP2008552171A JP4728405B2 (en) 2007-07-04 2008-07-04 Surface treatment equipment
PCT/JP2008/062198 WO2009005148A1 (en) 2007-07-04 2008-07-04 Surface treatment apparatus

Publications (2)

Publication Number Publication Date
JPWO2009005148A1 JPWO2009005148A1 (en) 2010-08-26
JP4728405B2 true JP4728405B2 (en) 2011-07-20

Family

ID=40226186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008552171A Active JP4728405B2 (en) 2007-07-04 2008-07-04 Surface treatment equipment

Country Status (4)

Country Link
US (1) US20100193128A1 (en)
JP (1) JP4728405B2 (en)
CN (1) CN101568997B (en)
WO (1) WO2009005148A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103166595A (en) * 2011-12-09 2013-06-19 北京北方微电子基地设备工艺研究中心有限责任公司 Impedance matcher, semiconductor equipment and impedance matching method
US9230779B2 (en) * 2012-03-19 2016-01-05 Lam Research Corporation Methods and apparatus for correcting for non-uniformity in a plasma processing system
US9401264B2 (en) * 2013-10-01 2016-07-26 Lam Research Corporation Control of impedance of RF delivery path
JP2017069209A (en) * 2013-02-12 2017-04-06 株式会社日立ハイテクノロジーズ Method for controlling plasma processing device, plasma processing method, and plasma processing device
JP6249659B2 (en) * 2013-07-25 2017-12-20 東京エレクトロン株式会社 Plasma processing equipment
US10580623B2 (en) * 2013-11-19 2020-03-03 Applied Materials, Inc. Plasma processing using multiple radio frequency power feeds for improved uniformity
CN104752134B (en) * 2013-12-29 2017-02-15 北京北方微电子基地设备工艺研究中心有限责任公司 Reaction chamber and plasma processing equipment
WO2016017047A1 (en) * 2014-07-28 2016-02-04 キヤノンアネルバ株式会社 Film formation method, vacuum treatment device, method for producing semiconductor light-emitting element, semiconductor light-emitting element, method for producing semiconductor electronic element, semiconductor electronic element, and lighting device
US20180175819A1 (en) * 2016-12-16 2018-06-21 Lam Research Corporation Systems and methods for providing shunt cancellation of parasitic components in a plasma reactor
KR20240000530A (en) * 2021-04-27 2024-01-02 도쿄엘렉트론가부시키가이샤 tabernacle device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185998A (en) * 1997-12-17 1999-07-09 Fron Tec:Kk Plasma processing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0343500B1 (en) * 1988-05-23 1994-01-19 Nippon Telegraph And Telephone Corporation Plasma etching apparatus
US6214162B1 (en) * 1996-09-27 2001-04-10 Tokyo Electron Limited Plasma processing apparatus
US6562190B1 (en) * 2000-10-06 2003-05-13 Lam Research Corporation System, apparatus, and method for processing wafer using single frequency RF power in plasma processing chamber
JP4819244B2 (en) * 2001-05-15 2011-11-24 東京エレクトロン株式会社 Plasma processing equipment
US20050069651A1 (en) * 2003-09-30 2005-03-31 Tokyo Electron Limited Plasma processing system
CN100550273C (en) * 2003-12-18 2009-10-14 应用材料公司 Double frequency RF coupling
JP4773079B2 (en) * 2004-11-26 2011-09-14 株式会社日立ハイテクノロジーズ Control method of plasma processing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11185998A (en) * 1997-12-17 1999-07-09 Fron Tec:Kk Plasma processing device

Also Published As

Publication number Publication date
JPWO2009005148A1 (en) 2010-08-26
CN101568997A (en) 2009-10-28
CN101568997B (en) 2011-03-30
WO2009005148A1 (en) 2009-01-08
US20100193128A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP4728405B2 (en) Surface treatment equipment
JP4866243B2 (en) Method and apparatus for optimizing a substrate in a plasma processing system
KR101813490B1 (en) Plasma processing apparatus, plasma processing method and control method of the plasma processing apparatus
JP6539113B2 (en) Plasma processing apparatus and plasma processing method
KR101387067B1 (en) Dry etching apparatus and dry etching method
TWI239794B (en) Plasma processing apparatus and method
US20060021580A1 (en) Plasma processing apparatus and impedance adjustment method
JP2007208084A (en) Plasma processor
JP6620078B2 (en) Plasma processing equipment
JP2011014579A (en) Device and method of plasma processing
US6954033B2 (en) Plasma processing apparatus
JP6808782B2 (en) Plasma processing equipment and plasma processing method
JP3923323B2 (en) Plasma processing apparatus and plasma processing method
JP2006278219A (en) Icp circuit, plasma treatment device, and plasma processing method
KR101712263B1 (en) helical resonance plasma antenna and plasma generating equipment including the same
JP7071008B2 (en) Plasma processing equipment and plasma processing method
JPH08253862A (en) Cvd apparatus
JP2017069209A (en) Method for controlling plasma processing device, plasma processing method, and plasma processing device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081120

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110414

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4728405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140422

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250