JP4705563B2 - Distribution system state estimation device, state estimation method and program thereof - Google Patents

Distribution system state estimation device, state estimation method and program thereof Download PDF

Info

Publication number
JP4705563B2
JP4705563B2 JP2006342484A JP2006342484A JP4705563B2 JP 4705563 B2 JP4705563 B2 JP 4705563B2 JP 2006342484 A JP2006342484 A JP 2006342484A JP 2006342484 A JP2006342484 A JP 2006342484A JP 4705563 B2 JP4705563 B2 JP 4705563B2
Authority
JP
Japan
Prior art keywords
distribution system
power
state estimation
state
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006342484A
Other languages
Japanese (ja)
Other versions
JP2008154418A (en
Inventor
雅浩 渡辺
玲児 高橋
信 山崎
勝弘 松田
勝 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2006342484A priority Critical patent/JP4705563B2/en
Publication of JP2008154418A publication Critical patent/JP2008154418A/en
Application granted granted Critical
Publication of JP4705563B2 publication Critical patent/JP4705563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、設備情報と複数時間断面の計測値とに基づいて、配電系統の電圧、電流等の潮流状態と、各電圧、電流等の計測誤差とを同時に推定する配電系統の状態推定装置、状態推定方法及びそのプログラムに関する。   The present invention is a distribution system state estimation device that simultaneously estimates the power flow state of the distribution system, such as voltage and current, and measurement errors of each voltage, current, and the like, based on the facility information and the measurement values of a plurality of time sections, The present invention relates to a state estimation method and a program thereof.

配電系統への分散型電源導入時の電圧維持や電力会社の設備新設・保守の省力化の要求に対し、配電系統の実状を把握した電圧・電流管理の必要性が増している。電力系統の状態推定技術は、特に高圧送電系統において各変電所(ノード)の計測値が十分に(冗長に)得られる場合を中心に技術開発が進められてきた。例えば、特許文献1には、電力系統の複数の地点で計測される潮流の計測値に重みを持たせ、重み付き最小二乗法によって系統の状態を推定する方法が示されている。   The need for voltage and current management that grasps the actual situation of the power distribution system is increasing in response to demands for maintaining the voltage at the time of introducing the distributed power supply to the power distribution system and labor saving of new installation and maintenance of the power company. The power system state estimation technology has been developed mainly in the case where the measurement values of each substation (node) can be obtained sufficiently (redundantly) in a high-voltage transmission system. For example, Patent Document 1 discloses a method in which a measured value of a tidal current measured at a plurality of points in an electric power system is weighted and the state of the system is estimated by a weighted least square method.

この特許文献1に記載の方法では、計測値が十分に得られない場合、潮流状態を推定することが困難であり、配電系統内の各地点の電圧情報が得られた場合にその情報を活用して推定精度を向上させることが困難であるという課題があった。
そこで、計測情報が十分得られない配電系統の潮流状態推定方法として、特許文献2には、配電変電所の送り出し電流からフィーダ内各区間の電流を推定する技術が示されている。これは、配電系統の送り出し電流を計測し、各区間の負荷特性データベースに基づいて各区間電流として配分し、各区間の負荷電流や電力を推定する方法である。
In the method described in Patent Document 1, it is difficult to estimate a tidal current state when measurement values are not sufficiently obtained, and the information is used when voltage information at each point in the distribution system is obtained. Thus, there is a problem that it is difficult to improve the estimation accuracy.
Thus, as a power flow state estimation method for a distribution system for which sufficient measurement information cannot be obtained, Patent Document 2 discloses a technique for estimating a current in each section in a feeder from a delivery current of a distribution substation. This is a method of measuring the delivery current of the distribution system, allocating it as each section current based on the load characteristic database of each section, and estimating the load current and power in each section.

しかしながら、特許文献2に記載の方法では、配電系統内の各地点の電圧情報が得られた場合であっても、この電圧情報を用いて推定精度を向上させることは困難であるという問題点があった。
そこで、本願出願人は、引用文献3に、配電系統の限られた電圧・電流計測値から、配電系統の潮流状態を精度よく推定する技術を開示した。
特公平7−16289号公報(請求項1) 特開2003−79071号公報(請求項1) 特開2006−87177号公報(段落0015、図4)
However, the method described in Patent Document 2 has a problem that it is difficult to improve estimation accuracy using voltage information even when voltage information at each point in the distribution system is obtained. there were.
Therefore, the applicant of the present application disclosed in Patent Document 3 a technique for accurately estimating the power flow state of the distribution system from the voltage / current measurement values limited to the distribution system.
Japanese Patent Publication No. 7-16289 (Claim 1) JP 2003-79071 A (Claim 1) JP 2006-87177 A (paragraph 0015, FIG. 4)

しかしながら、特許文献3に開示された方法には、配電系統内の各地点の電圧、電流情報が得られた場合に、それを計測した電圧電流計測装置に含まれる固有の計測誤差を補正して、推定精度を向上させることが困難であるという課題があった。そこで、本発明の課題はこの問題点を解決し、配電系統の電圧・電流計測値から配電系統の潮流状態及び各計測装置の誤差を併せて推定する手段を提供することにある。   However, in the method disclosed in Patent Document 3, when voltage and current information at each point in the distribution system is obtained, an inherent measurement error included in the voltage / current measurement device that measures the voltage / current information is corrected. There is a problem that it is difficult to improve the estimation accuracy. Therefore, an object of the present invention is to solve this problem and provide means for estimating the power flow state of the distribution system and the error of each measuring device from the voltage / current measurement values of the distribution system.

前記の課題を解決するためになされた本発明に係る配電系統の状態推定装置は、複数時間断面における配電系統の負荷・発電量、ノード電圧及び線路潮流を含む配電系統状態の計測値を格納している計測データベースと、配電系統の線路のインピーダンスを示す線路定数、負荷・発電量の初期値、線路及びノードの接続状況を表す系統構成データ含んで格納している潮流計算データベースと、潮流計算データベースから、線路定数、負荷・発電量の初期値及び系統構成データを読み込み、潮流計算により配電系統状態の推定値を計算する潮流計算部と、計測データベースに格納された配電系統状態の計測値と潮流計算により計算された配電系統状態の推定値との偏差を計算し、計算した偏差を各計測装置における真値と計測値との関係を表すセンサ誤差データの数式で表して定式化た目的関数を、最適化計算により解くことで、各計測装置における真値と計測値との関係を表すセンサ誤差データの推定値及び配電系統状態の推定値の修正量を計算し、この修正量を用いて配電系統状態の推定値を修正する配電系統状態推定部とを備えることを特徴としている。 State estimating device for a power distribution system according to the present invention has been made to solve the above problems is to store the measured values of the power distribution system conditions including load and the power generation amount of the distribution system at a plurality time section, the node voltage and line flow a measurement database Ru Tei, line constant indicating the impedance of the line of the distribution system, the initial value of the load-power generation, and power flow database that not store contains system configuration data indicating the connection status of the lines and nodes, power flow Load the line constants, initial values of load and power generation, and system configuration data from the database, and calculate the estimated power distribution system state by power flow calculation, and the distribution system state measurement values stored in the measurement database Table the relationship between the true value and the measured value of the deviation between the estimated value of the calculated distribution system state by power flow calculation is calculated and the measuring device the calculated deviation The objective function is formulated expressed in a formula of the sensor error data, by solving the optimization calculation, the estimation of the estimated value and the distribution system state of the sensor error data representing the relationship between the true value and the measured value at each measurement device A distribution system state estimation unit that calculates a correction amount of the value and corrects an estimated value of the distribution system state using the correction amount is provided.

本発明によれば、配電系統に設置された計測装置からの電圧・電流等の複数時間断面の計測値から、配電系統の負荷・発電量、線路潮流、母線電圧等の潮流状態と併せて、各計測装置の計測誤差を、精度よく推定することができる。   According to the present invention, from the measurement values of the cross section of the voltage and current from the measurement device installed in the distribution system, the load and power generation amount of the distribution system, the line power flow, the power flow state such as the bus voltage, The measurement error of each measuring device can be estimated with high accuracy.

以下、添付した図面を参照しつつ、本発明の実施の形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

(装置構成)
図1は、本実施の形態に係る配電系統及び状態推定装置の構成例を示す図である。図1に示すように、本実施の形態は、配電系統100と、状態推定装置10とを通信ネットワーク200を介して接続して構成される。
潮流状態の推定の対象となる本実施の形態の配電系統100は、配電変電所110と、ノード(母線)130と、それらに接続する配電線路140と、ノード130に接続される負荷150及び発電機160と、配電系統に設置されるセンサ170とを含んで構成される。また、配電変電所110は、配電変電所母線120及びセンサ170を含んでいる。
なお、センサ170は、設置地点における線路の電流、電流力率、有効電力P、無効電力Q、電圧Vを含んで計測し、通信線路210及び通信ネットワーク200を介して状態推定装置10にこれらの計測値を含む情報を送信する。
(Device configuration)
FIG. 1 is a diagram illustrating a configuration example of a power distribution system and a state estimation device according to the present embodiment. As shown in FIG. 1, the present embodiment is configured by connecting a power distribution system 100 and a state estimation device 10 via a communication network 200.
The distribution system 100 according to the present embodiment, which is a target for estimating the tidal current state, includes a distribution substation 110, a node (bus) 130, a distribution line 140 connected to them, a load 150 connected to the node 130, and power generation. Machine 160 and sensor 170 installed in the power distribution system. Distribution substation 110 also includes distribution substation bus 120 and sensor 170.
The sensor 170 measures the line current at the installation point, the current power factor, the active power P, the reactive power Q, and the voltage V, and sends them to the state estimation device 10 via the communication line 210 and the communication network 200. Send information including measurement values.

次に、状態推定装置10の構成について説明する。本実施の形態の状態推定装置10は、ディスプレイ装置等で具現される表示装置11、キーボードやマウス等の入力手段12、各種プログラムを実行するCPU(Central Processing Unit)13、通信ネットワーク200との間で情報の送受信を行う通信手段14、RAM(Random Access Memory)15、及びハードディスクドライブ等で具現される記憶装置(潮流計算データベース21、計測データベース22、設備データベース23、状態推定結果データベース24、センサ誤差推定結果データベース25の各データベース及びプログラムデータ26を含む)が、バス線30に接続されて構成される。   Next, the configuration of the state estimation device 10 will be described. The state estimation device 10 according to the present embodiment includes a display device 11 embodied as a display device, an input unit 12 such as a keyboard and a mouse, a CPU (Central Processing Unit) 13 that executes various programs, and a communication network 200. Communication means 14 for transmitting and receiving information, a RAM (Random Access Memory) 15, and a storage device (power flow calculation database 21, measurement database 22, equipment database 23, state estimation result database 24, sensor error, etc. embodied by a hard disk drive or the like. Each database of the estimation result database 25 and the program data 26) are connected to the bus line 30 and configured.

CPU13は、プログラムデータ26に記憶された各プログラムを実行し、画像データの作成、この画像データの表示装置11への表示、記憶装置内のデータの検索等を行う。
RAM15は、プログラムデータ26に記憶された各プログラムを展開し、CPU13の命令により、表示装置11に表示する表示用の画像データ、後記する各プログラムが出力する潮流計算結果、最適化計算結果、状態推定結果等の計算結果データを一時格納するメモリである。
The CPU 13 executes each program stored in the program data 26, creates image data, displays the image data on the display device 11, searches for data in the storage device, and the like.
The RAM 15 expands each program stored in the program data 26, and displays image data to be displayed on the display device 11 in accordance with instructions from the CPU 13, tidal current calculation results, optimization calculation results, and states output by each program described later. It is a memory for temporarily storing calculation result data such as an estimation result.

状態推定装置10内の記憶装置には、5つのデータ領域が設けられている。
潮流計算データベース21には、潮流計算におけるパラメータとなる線路のインピーダンスを示す線路定数Z(=R+jX)、負荷・発電量(有効電力P、無効電力Q)、系統の線路やノードとの接続状況を表す系統構成データ等が記憶されている。
The storage device in the state estimation device 10 is provided with five data areas.
In the tidal current calculation database 21, the line constant Z (= R + jX) indicating the impedance of the line, which is a parameter in tidal current calculation, the load / power generation amount (active power P, reactive power Q), and the connection status with the system lines and nodes are displayed. The system configuration data to be represented is stored.

計測データベース22には、配電系統100内のセンサ170で計測された時間断面毎の線路の電流I、電流力率、有効電力P及び無効電力Q、負荷や発電量の有効電力P及び無効電力Q、ノード電圧Vを含む情報が格納される。これらのデータは、通信線路210及び通信ネットワーク200から、状態推定装置10の通信手段14を介して伝送されて格納される。
設備データベース23には、配電系統100内の負荷や発電量の有効電力P及び無効電力Qの上下限、その日変化パターン、配電系統100内の各計測装置(センサ170)の誤差数式モデル(数式、係数、定数等)等のデータが格納されている。
In the measurement database 22, the current I, current power factor, active power P and reactive power Q, and active power P and reactive power Q of the load and the amount of power generation are measured for each time section measured by the sensor 170 in the distribution system 100. , Information including the node voltage V is stored. These data are transmitted from the communication line 210 and the communication network 200 via the communication means 14 of the state estimation device 10 and stored.
In the equipment database 23, the upper and lower limits of the active power P and reactive power Q of the load and power generation amount in the distribution system 100, the daily change pattern thereof, the error formula model of each measuring device (sensor 170) in the distribution system 100 (formula, Data such as coefficients and constants).

状態推定結果データベース24には、状態推定計算の結果である線路の有効電力P、無効電力Q、電流I、電流力率等や、負荷や発電量の有効電力P及び無効電力Q、ノード電圧V、線路定数Z等の計算結果が格納されている。
センサ誤差推定結果データベース25には、状態推定計算結果と同時に求められる各計測装置の誤差情報推定結果が格納されている。
In the state estimation result database 24, the active power P, reactive power Q, current I, current power factor, etc. of the line, which are the results of the state estimation calculation, active power P and reactive power Q of load and power generation amount, node voltage V The calculation results such as the line constant Z are stored.
The sensor error estimation result database 25 stores error information estimation results of each measuring device that are obtained simultaneously with the state estimation calculation results.

プログラムデータ26には、潮流計算を実行する公知のアルゴリズムである潮流計算プログラムと、二次計画法を解く公知のアルゴリズム(最適化計算を行うアルゴリズム)である最適化計算プログラムと、潮流計算プログラム及び最適化計算プログラムを適宜呼び出して配電系統の状態推定値を計算する状態推定計算プログラムと、状態推定結果を表示する表示画面を作成する表示作成プログラムとが格納されている。
なお、状態推定装置10のCPU13で実行される状態推定計算プログラムが、必要に応じて潮流計算プログラム及び最適化計算プログラムを呼び出すことで、特許請求の範囲の「配電系統状態推定部」、「潮流計算部」、及び「感度係数算出部」が具現される。
また、「表示作成部」は、表示作成プログラムを状態推定装置10のCPU13が実行することで具現される。
The program data 26 includes a tidal current calculation program that is a known algorithm for executing tidal current calculation, an optimization calculation program that is a known algorithm for solving quadratic programming (an algorithm for performing optimization calculation), a tidal current calculation program, A state estimation calculation program that appropriately calls an optimization calculation program to calculate a state estimation value of a distribution system, and a display creation program that creates a display screen that displays a state estimation result are stored.
Note that the state estimation calculation program executed by the CPU 13 of the state estimation device 10 calls the power flow calculation program and the optimization calculation program as necessary, so that the “distribution system state estimation unit”, “power flow” A “calculator” and a “sensitivity coefficient calculator” are implemented.
Further, the “display creation unit” is realized by the CPU 13 of the state estimation device 10 executing the display creation program.

(状態推定方式の概要)
次に、図2を用いて、センサ170の誤差について説明する。例えば、図2は電圧センサの計測値(電圧計測値)と真値(電圧真値)との関係を表すグラフである。図2のグラフにおいて、破線220は計測誤差がない場合の真値と計測値の関係を表し、実線230は計測誤差が含まれる場合を示している。一般的に、センサの計測値には真値からの誤差が含まれた値が示される。ここでは、真値と計測値の関係が1次式(実線230)で表される例について考える。真値とセンサiの計測値との関係を次の数式(1)に示す。
(Overview of state estimation method)
Next, the error of the sensor 170 will be described with reference to FIG. For example, FIG. 2 is a graph showing the relationship between the measured value (voltage measured value) of the voltage sensor and the true value (voltage true value). In the graph of FIG. 2, the broken line 220 represents the relationship between the true value and the measured value when there is no measurement error, and the solid line 230 represents the case where the measurement error is included. In general, a measured value of a sensor indicates a value including an error from a true value. Here, consider an example in which the relationship between the true value and the measured value is represented by a linear expression (solid line 230). The relationship between the true value and the measured value of sensor i is shown in the following formula (1).

Figure 0004705563
Figure 0004705563

この式から、センサiの係数u及び定数bが特定できれば、センサiの計測値から真値を求めることが可能となる。このようにセンサ誤差を求める問題は、真値とセンサiの計測値との関係を表す式の係数や定数を求める問題と考えることができる。真値とセンサiの計測値との関係を、ここでは1次式で表されると仮定したが、一般的に電圧センサ、電流センサとも定格計測値近辺では直線性誤差は絶対値の誤差に比べて十分小さいと考えられる。そのため、1次式の近似によっても誤差低減効果は十分期待できるが、センサ特性がわかっている場合は2次式による近似、定数bの省略等、近似式の変更をおこなってもよい。また、ここでは電圧センサの例を示したが、電流センサに関しても真値と計測値の関係を近似式で表すことを考えればよい。 From this equation, if the coefficient u i and the constant b i of the sensor i can be specified, the true value can be obtained from the measured value of the sensor i. The problem of obtaining the sensor error in this way can be considered as a problem of obtaining a coefficient or a constant of an expression representing the relationship between the true value and the measured value of the sensor i. Here, it is assumed that the relationship between the true value and the measured value of sensor i is expressed by a linear expression. In general, however, the linearity error is an error of the absolute value near the rated measured value for both the voltage sensor and the current sensor. It is thought that it is small enough. Therefore, the error reduction effect can be sufficiently expected by approximation of the linear expression, but if the sensor characteristics are known, the approximation expression may be changed, such as approximation by the quadratic expression or omission of the constant b. Moreover, although the example of the voltage sensor was shown here, regarding the current sensor, it may be considered that the relationship between the true value and the measured value is expressed by an approximate expression.

次に、本実施の形態における状態推定手法の基本的な考え方を、単純な配電系統における時間断面の計測値を示す説明図である図3を用いて説明する。ここで、センサ170(電圧V、電流I、位相θ等を計測)の誤差は、各計測値に固有の特性を持っており、計測時間tによらず、ある所定の数式モデルで近似できると仮定する。
その上で、複数の時間断面(t=1,2,・・・n)のセンサ計測値から、配電系統100内の負荷の有効電力P、無効電力Q、計測誤差係数u、計測誤差定数bを同時に求めることができる特徴を持つ。このような推定手法を用いると、各センサの誤差を補正することが可能となるために単一断面による状態推定結果よりも精度向上が期待できるとともに、誤差係数計算結果を蓄積することで各センサの計測誤差補正を長期的に明らかにすることができる。
Next, the basic idea of the state estimation method in the present embodiment will be described with reference to FIG. 3 which is an explanatory diagram showing measured values of a time section in a simple distribution system. Here, the error of the sensor 170 (measurement of voltage V, current I, phase θ, etc.) has a characteristic characteristic of each measurement value, and can be approximated by a predetermined mathematical model regardless of the measurement time t. Assume.
Then, from the sensor measurement values of a plurality of time sections (t = 1, 2,... N), the active power P, reactive power Q, measurement error coefficient u, and measurement error constant b of the load in the distribution system 100 are calculated. It has the feature that can be obtained at the same time. By using such an estimation method, it is possible to correct the error of each sensor, so that it can be expected to improve accuracy over the result of state estimation using a single section, and each sensor can be accumulated by accumulating the error coefficient calculation results. It is possible to clarify long-term measurement error correction.

(状態推定装置の作用)
次に、図1に示した状態推定装置10が実行する状態推定計算プログラムの計算処理内容について説明する(適宜、図1参照のこと)。
ここで、図4は、状態推定計算プログラムの実行手順を説明するフローチャートの例である。ここでは、ある時刻において、負荷・発電量の有効電力P及び無効電力Q(以下、負荷・発電量P,Qという)を推定し、そのデータを用いて潮流計算をおこなうことで、系統内各所の電圧、電流、有効・無効潮流を計算する。
(Operation of state estimation device)
Next, the calculation processing contents of the state estimation calculation program executed by the state estimation apparatus 10 shown in FIG. 1 will be described (see FIG. 1 as appropriate).
Here, FIG. 4 is an example of a flowchart for explaining the execution procedure of the state estimation calculation program. Here, the active power P and reactive power Q (hereinafter referred to as the load / power generation amount P, Q) of the load / power generation amount are estimated at a certain time, and the tidal current calculation is performed using the data. Calculate the voltage, current, and active / inactive power flow.

まず、ステップS1では、系統条件の設定を行う。ここでは、潮流計算に必要となる線路定数Z(=R+jX)、負荷・発電量P,Qの初期値を、潮流計算データベース21、設備データベース23、及び入力手段12のユーザ入力等から取得してRAM15に読み出すことで設定する。   First, in step S1, system conditions are set. Here, the line constant Z (= R + jX) necessary for the tidal current calculation, the initial values of the load / power generation amount P, Q are acquired from the tidal current calculation database 21, the equipment database 23, the user input of the input means 12, and the like. This is set by reading to the RAM 15.

次に、ステップS2では、負荷・発電量P,Qの上下限値を設備データベース23から取得して、RAM15に読み出すことで、負荷・発電量P,Qの上下限制約を設定する。
そして、ステップS3では、ステップS1及びステップS2で設定したデータを用いて公知のアルゴリズムである潮流計算プログラムを呼び出して潮流計算を実行し、各ノードの電圧、線路潮流(有効・無効電力潮流、線路電流、電流力率を含む)を計算し、この計算結果をRAM15に一時格納する。
Next, in step S <b> 2, the upper and lower limit values of the load / power generation amounts P and Q are acquired from the equipment database 23 and read into the RAM 15, thereby setting the upper and lower limit constraints of the load / power generation amounts P and Q.
In step S3, a tidal current calculation program, which is a known algorithm, is called using the data set in step S1 and step S2, and the tidal current calculation is executed. The voltage of each node, the line tidal current (active / reactive power tidal current, Current and current power factor are calculated), and the calculation result is temporarily stored in the RAM 15.

次に、ステップS4では、計測データベース22に格納された時間断面毎の計測値をRAM15に読み込む。なお、計測データベース22に格納された計測値を用いることなく、通信手段14と通信ネットワーク200を介してセンサ170で計測された複数時間断面の計測値を直接、RAM15に読み込む構成としてもよい。
ここで、計測値のなかで状態推定計算に使用するデータであるか否か、誤差を考慮するセンサであるか否か、どの時間断面を使って状態推定を行うか等については、計測データベース22に予め設定しておくことや、ユーザが入力手段12を介して指定することができる。
Next, in step S <b> 4, the measurement value for each time section stored in the measurement database 22 is read into the RAM 15. In addition, it is good also as a structure which reads the measured value of the multiple time cross section measured with the sensor 170 via the communication means 14 and the communication network 200 directly to RAM15, without using the measured value stored in the measurement database 22. FIG.
Here, the measurement database 22 determines whether the measured value is data used for state estimation calculation, whether the sensor is an error-considering sensor, and which time section is used for state estimation. Or can be designated by the user via the input means 12.

次に、ステップS5では、ステップS3で計算された潮流計算結果に基づいて感度係数α、βを計算する。この感度係数は、負荷・発電量P,Qの変化に対するノード電圧、線路潮流等の変化を表す係数であり、その計算方法の詳細は後記する。
そして、ステップS6では、ステップS3で計算され、RAM15に一時記憶された潮流計算結果と、ステップS4で計測データベース22から読み出した計測値との偏差を計算する。例えば、あるノードmの電圧については、計測値Vm’と潮流計算結果Vmの偏差ΔVmを、-ΔVm=Vm’−Vmを用いて求める。電流、有効・無効電力等についても、状態推定計算に用いる計測値がある場合は、同様に偏差を計算する。
Next, in step S5, sensitivity coefficients α and β are calculated based on the power flow calculation result calculated in step S3. This sensitivity coefficient is a coefficient that represents changes in node voltage, line power flow, etc. with respect to changes in loads / power generation amounts P and Q, and details of the calculation method will be described later.
In step S6, the deviation between the tidal current calculation result calculated in step S3 and temporarily stored in the RAM 15 and the measured value read from the measurement database 22 in step S4 is calculated. For example, for a voltage at a certain node m, a deviation ΔVm between the measured value Vm ′ and the power flow calculation result Vm is obtained using −ΔVm = Vm′−Vm. For current, active / reactive power, etc., if there are measured values used for state estimation calculation, the deviation is calculated in the same manner.

次に、ステップS7で、負荷・発電量P,Qを含む潮流計算結果の修正量、各センサ170の誤差係数及び誤差定数を同時に計算する。ここで、各修正量、センサの誤差係数及び誤差定数は、ステップS5で計算した感度係数及びステップS6で求めた偏差を用いて、問題を二次計画問題として定式化し、この式を、最適化計算プログラムを呼び出して解くことで計算することができる。なお、偏差及び感度係数を用いた定式化については後記する。また、最適化計算プログラムとしては、公知の二次計画法を解くアルゴリズムを用いることで、一意に解が得られる。   Next, in step S7, the correction amount of the power flow calculation result including the load / power generation amounts P and Q, the error coefficient and the error constant of each sensor 170 are simultaneously calculated. Here, each correction amount, the error coefficient of the sensor, and the error constant are formulated as a quadratic programming problem using the sensitivity coefficient calculated in step S5 and the deviation obtained in step S6, and this expression is optimized. It can be calculated by calling and solving a calculation program. The formulation using the deviation and sensitivity coefficient will be described later. As an optimization calculation program, a solution can be uniquely obtained by using an algorithm for solving a known quadratic programming method.

次に、ステップS8では、ステップS7で計算した負荷・発電量P,Qの修正量に基づいて、潮流計算入力データの負荷・発電量P,Qを修正する。このために、状態推定計算プログラムは、潮流計算プログラムを呼び出して、修正後の系統条件(負荷・発電量P,Q)を用いて潮流計算を再度実施し、各ノードの電圧、線路潮流(有効・無効電力潮流、線路電流、電流力率等)を計算し、計算結果を状態推定結果データベース24に格納する。そして、状態推定計算プログラムは、再度計算した潮流計算結果と、ステップS4で読み出した計測値との偏差を計算する。   Next, in step S8, the load / power generation amounts P, Q of the power flow calculation input data are corrected based on the correction amounts of the load / power generation amounts P, Q calculated in step S7. For this purpose, the state estimation calculation program calls the tidal current calculation program, re-executes tidal current calculation using the corrected system conditions (load / power generation amount P, Q), and the voltage and line power (effective) of each node. Reactive power flow, line current, current power factor, etc.) are calculated, and the calculation results are stored in the state estimation result database 24. Then, the state estimation calculation program calculates a deviation between the tidal current calculation result calculated again and the measured value read out in step S4.

次に、ステップS9において、ステップS8で計算した偏差が所定の基準値以内か否かを判定する。この偏差が所定の基準値以上であれば(ステップS9でY)、ステップS5の処理に戻り、再度、負荷・発電量P,Qの修正量を求める。一方、偏差が所定の基準値未満であれば(ステップS9でN)、系統の状態推定結果が得られたものとして状態推定計算プログラムを終了する。   Next, in step S9, it is determined whether or not the deviation calculated in step S8 is within a predetermined reference value. If this deviation is equal to or greater than a predetermined reference value (Y in step S9), the process returns to step S5, and the correction amounts of the load / power generation amounts P and Q are obtained again. On the other hand, if the deviation is less than the predetermined reference value (N in step S9), the state estimation calculation program is terminated assuming that the system state estimation result has been obtained.

次に、図4に示したフローチャートのステップS7における、最適化計算のための定式化の詳細について説明する。
前記のように、負荷・発電量P,Qの修正量計算問題は、二次計画法として定式化される。まず目的関数について説明する。目的関数は、潮流、負荷・発電量等の計測値と推定と値の偏差に重み係数をかけたものの総和とし、次の式(2)で定義される。なお、式(2)は、本発明の「定式化された目的関数」に相当する。
Next, details of the formulation for optimization calculation in step S7 of the flowchart shown in FIG. 4 will be described.
As described above, the correction amount calculation problem of the load / power generation amounts P and Q is formulated as a quadratic programming method. First, the objective function will be described. The objective function is defined as the following equation (2), which is the sum of the measured values of power flow, load / power generation, etc., and the difference between the estimated value and the weighting factor. Equation (2) corresponds to the “formulated objective function” of the present invention.

Figure 0004705563
Figure 0004705563

ここで、yは電流I、電圧V、有効電力P、無効電力Qの計測値と計算値の偏差を定義する中間変数であり、次の式(3)で表される。   Here, y is an intermediate variable that defines the deviation between the measured value and the calculated value of the current I, voltage V, active power P, and reactive power Q, and is expressed by the following equation (3).

Figure 0004705563
Figure 0004705563

これらの式は、二次計画問題の中の等式制約として扱われる。ここで、ΔLpはノードjに接続される負荷・発電量の有効電力Pの修正量を、ΔLqは同じく無効電力Qの修正量を表す。ΔLp、ΔLq及びyが最適化問題の変数となる。 These equations are treated as equality constraints in the quadratic programming problem. Here, ΔLp j represents the correction amount of the active power P of the load / power generation amount connected to the node j, and ΔLq j similarly represents the correction amount of the reactive power Q. ΔLp j , ΔLq j, and y are variables for the optimization problem.

次に、電圧誤差の定式化について示す。電圧計測値は真値に対して比例関係に近いと仮定し、電圧計測値に含まれる誤差係数を変数uとして定式化する。誤差係数も状態推定計算の中で変数として扱い、同様に推定される。これらの条件は、式(4a)〜式(4d)に示すように等式制約で定式化される。   Next, formulation of the voltage error is shown. The voltage measurement value is assumed to be close to a proportional relationship with respect to the true value, and an error coefficient included in the voltage measurement value is formulated as a variable u. The error coefficient is also treated as a variable in the state estimation calculation, and is similarly estimated. These conditions are formulated with equality constraints as shown in equations (4a) to (4d).

Figure 0004705563
Figure 0004705563

次に、不等式制約として、負荷・発電量P,Qの計測値、推定値の修正量上限制約を定式化する。これは、各負荷・発電量P,Qの修正量に上限を設ける制約である。ここで、例えば、計測された値は計測誤差程度に、計測値がない負荷等は大きい値とし、誤差のしわとりを行う負荷を限定させることも可能となる。負荷・発電量P,Qの上下限制約から、負荷・発電量P,Qの修正量ΔLp、ΔLqの上下限も容易に計算できるため、これらの上下限制約として問題を前記の式(4a)〜式(4d)のように定義することができる。   Next, as the inequality constraints, the measured value of the load / power generation amounts P and Q and the correction amount upper limit constraint of the estimated value are formulated. This is a restriction that sets an upper limit on the correction amount of each load / power generation amount P, Q. Here, for example, it is possible to limit the load for error wrinkling by setting the measured value to be about the measurement error and the load without the measured value to be a large value. Since the upper and lower limits of the load and power generation amounts P and Q can be easily calculated from the upper and lower limit constraints of the load and power generation amounts P and Q, the problem can be solved by using the above formula (4a) as the upper and lower limit constraints. -It can be defined like Formula (4d).

次に式(3)で用いた感度係数α、βについて説明する。この感度係数は図4に示したフローチャートのステップS5において計算されるものであり、図5に示すように、例えばノードj130の負荷150のΔLを変化させた場合に、ノードi130の電圧変化量ΔVijや線路k140に流れる電流変化量ΔIkj、有効電力変化量ΔPkj、無効電量変化量ΔQkjを示す指標である。これらの指標は、初期系統条件から負荷(発電量)の有効電力P、無効電力Qを微少量変化させて潮流計算を行い、初期条件での潮流計算結果との偏差を求めることで把握することができる。負荷・発電量の有効電力変化に対する感度係数α、無効電力変化に対する感度係数βの計算式は、次の式(5a)〜式(5d)で表される。 Next, the sensitivity coefficients α and β used in Expression (3) will be described. This sensitivity coefficient is calculated in step S5 of the flowchart shown in FIG. 4. As shown in FIG. 5, for example, when ΔL j of the load 150 of the node j130 is changed, the voltage change amount of the node i130 is changed. It is an index indicating ΔV ij , the amount of change in current ΔI kj flowing through the line k140, the amount of change in active power ΔP kj , and the amount of change in reactive energy ΔQ kj . These indicators should be grasped by calculating the power flow by changing the active power P and reactive power Q of the load (power generation amount) slightly from the initial system conditions and calculating the deviation from the power flow calculation results under the initial conditions. Can do. Formulas for calculating the sensitivity coefficient α for the active power change of the load / power generation amount and the sensitivity coefficient β for the reactive power change are expressed by the following formulas (5a) to (5d).

Figure 0004705563
Figure 0004705563

以上のように定式化された二次計画問題を解くことで,負荷・発電量P,Qの修正量ΔLp,ΔLqを得ることができる。また、このような二次計画問題を、コンピュータを用いて解くためのアルゴリズムは、例えば、特許文献3に記載された公知のものを用いることができる。   By solving the quadratic programming problem formulated as described above, correction amounts ΔLp and ΔLq of the load / power generation amounts P and Q can be obtained. Moreover, the algorithm for solving such a quadratic programming problem using a computer can use the well-known thing described in patent document 3, for example.

(計算結果表示例)
次に、図6を用いて状態推定計算結果の表示の一例を説明する。図6は、状態推定装置10において表示作成プログラムを実行し、配電系統の状態推定計算結果を表示装置11に表示させた例を示す図面である。ここでは、表示装置11への表示を示している。
表示装置11には、潮流計算データベース21に格納された系統構成を示す情報に基づいて、状態推定の対象となる系統図100aが表示され、各ノード130に符号N2〜N5が、また各センサ170に符号a〜iが付されて表示され、負荷150及び発電機160がノードの符号で、センサの測定値がセンサの符号で特定できるように表示される。
なお、図6に示した表示では、表示の便宜のために、配電変電所110の配電変電所母線120にも、ノード130と同様に符号N1を付している。
(Calculation result display example)
Next, an example of the display of the state estimation calculation result will be described with reference to FIG. FIG. 6 is a diagram illustrating an example in which the display creation program is executed in the state estimation device 10 and the state estimation calculation result of the distribution system is displayed on the display device 11. Here, the display on the display device 11 is shown.
On the display device 11, a system diagram 100 a that is a target of state estimation is displayed based on the information indicating the system configuration stored in the tidal current calculation database 21. Are displayed so that the load 150 and the generator 160 can be identified by the node codes, and the measured values of the sensors can be identified by the sensor codes.
In the display shown in FIG. 6, for the convenience of display, the distribution substation bus 120 of the distribution substation 110 is also denoted by the symbol N <b> 1 as in the node 130.

また、計測データベース22、状態推定結果データベース24及びセンサ誤差推定結果データベース25に格納された計測値、計算値及び各センサ170の誤差係数に基づいて、各センサの測定結果、状態推定計算結果、各センサ170の誤差係数及び誤差定数が、一覧表で対比して表示される。ここでは、表91に各測定点での潮流や各センサの誤差係数及び誤差定数(ここでは電圧のみ表示)を、表92に各ノードにおける負荷を、表93に各ノードに接続された発電機160の発電量を、それぞれ測定値(または初期値)と状態推定計算結果である推定値の対比で示している。このように表示することで、ユーザに状態推定計算結果をわかりやすく伝えることが可能となる。ここでは、画面への出力例を示したが、書類等に印刷可能なフォーマットのデータとしてユーザに提供してもよい。   Further, based on the measurement values, calculation values, and error coefficients of each sensor 170 stored in the measurement database 22, the state estimation result database 24, and the sensor error estimation result database 25, the measurement results, state estimation calculation results, The error coefficient and the error constant of the sensor 170 are displayed in comparison with the list. Here, Table 91 shows the power flow at each measurement point, the error coefficient and error constant of each sensor (here, only the voltage is displayed), Table 92 shows the load at each node, and Table 93 shows the generator connected to each node. The amount of power generation 160 is shown as a comparison between the measured value (or initial value) and the estimated value that is the result of the state estimation calculation. By displaying in this way, the state estimation calculation result can be easily communicated to the user. Here, an example of output to the screen is shown, but the data may be provided to the user as data in a format that can be printed on a document or the like.

以上、説明した本実施の形態に係る状態推定装置10は、配電系統に設置されたセンサからの電圧・電流等の計測値から配電系統の負荷・発電量、線路潮流、母線電圧等の潮流状態や各センサの計測誤差特性を表す係数を推定することができる。また、本実施の形態の状態推定装置10によると、各センサ特有の誤差特性を把握することができるため、センサ真値を推定できることに加えて、センサの故障や異常データの判別を行うことができる。
また、各時刻における潮流計算を行うためのデータを用意でき、将来時刻に発生する系統条件変化に対する系統電圧・電流変化量を予め潮流計算によって把握することができるようになるため、配電系統の信頼度評価システムや配電自動化システムの機能として用いることも可能となる。
As described above, the state estimation device 10 according to the present embodiment described above is based on the measured values such as the voltage and current from the sensors installed in the distribution system, and the tidal current state such as the load / power generation amount of the distribution system, the line power flow, and the bus voltage. And a coefficient representing the measurement error characteristic of each sensor can be estimated. Further, according to the state estimation device 10 of the present embodiment, it is possible to grasp the error characteristics peculiar to each sensor, so that in addition to being able to estimate the sensor true value, it is possible to determine sensor failure and abnormal data. it can.
In addition, data for power flow calculation at each time can be prepared, and the amount of system voltage / current change with respect to system condition changes occurring at future times can be grasped in advance by power flow calculation. It can also be used as a function of a degree evaluation system or a distribution automation system.

配電系統と状態推定装置の構成例を示した図面である。It is drawing which showed the example of a structure of a power distribution system and a state estimation apparatus. センサの誤差と真値の関係を示す説明図である。It is explanatory drawing which shows the relationship between the error of a sensor, and a true value. 複数時間断面からセンサ誤差を補正する方法の概念を示す説明図である。It is explanatory drawing which shows the concept of the method of correct | amending a sensor error from a multi-time cross section. 状態推定処理アルゴリズムを示すフローチャートである。It is a flowchart which shows a state estimation process algorithm. 感度係数の求め方を補足する説明図である。It is explanatory drawing supplementing how to obtain | require a sensitivity coefficient. 配電系統の状態推定計算結果の表示例を示す図面である。It is drawing which shows the example of a display of the state estimation calculation result of a power distribution system.

符号の説明Explanation of symbols

10 状態推定装置
12 入力手段
13 CPU
15 RAM
21 潮流計算データベース
22 計測データベース
26 プログラムデータ
170 センサ
DESCRIPTION OF SYMBOLS 10 State estimation apparatus 12 Input means 13 CPU
15 RAM
21 Tidal current calculation database 22 Measurement database 26 Program data 170 Sensor

Claims (8)

配電系統の潮流状態と、各計測装置の誤差とを計算する配電系統の状態推定装置であって、
複数時間断面における前記配電系統の負荷・発電量、ノード電圧及び線路潮流を含む配電系統状態の計測値を格納している計測データベースと、
前記配電系統の線路のインピーダンスを示す線路定数、負荷・発電量の初期値、前記線路及びノードの接続状況を表す系統構成データ含んで格納している潮流計算データベースと、
前記潮流計算データベースから、前記線路定数、前記負荷・発電量の初期値及び前記系統構成データを読み込み、潮流計算により配電系統状態の推定値を計算する潮流計算部と、
前記計測データベースに格納された前記配電系統状態の計測値を読み込み、前記読み込んだ前記配電系統状態の計測値と、前記潮流計算により計算された前記配電系統状態の推定値との偏差を計算し、前記計算した偏差を前記各計測装置における真値と計測値との関係を表すセンサ誤差データの数式で表して定式化た目的関数を、最適化計算により解くことで、前記センサ誤差データの推定値及び前記配電系統状態の推定値の修正量を計算し、この修正量を用いて前記配電系統状態の推定値を修正する配電系統状態推定部と、
を備えることを特徴とする配電系統の状態推定装置。
A distribution system state estimation device that calculates the power flow state of the distribution system and the error of each measuring device,
Load and the power generation amount of the power distribution system at a plurality time section, a measurement database that has stored the measured value of the power distribution system state including the node voltage and line flow,
And load flow database the line constant indicating the impedance of the power distribution system of the line, the initial value of the load and power generation amount, you are stored include system configuration data indicating the connection status of the line and node,
From the load flow database, and the line constants, reads the initial value and the system configuration data of the load-power generation, power flow calculation unit for calculating an estimate of the distribution system state by power flow calculation,
The read measurement values of the power distribution system state stored in the measurement database, the measured value of the read the distribution system state, the deviation between the estimated value of the power distribution system state calculated by the power flow calculation is calculated, the objective function is formulated expressed in a formula of the sensor error data representing the relationship between the true value and the measured value of each measuring device the calculated deviations, by solving the optimization calculation, before xenon capacitors error data A distribution system state estimation unit for calculating an estimated value of the distribution system state and an estimated value of the distribution system state, and correcting the estimated value of the distribution system state using the modified amount;
A state estimation device for a distribution system, comprising:
記配電系統負荷・発電量の上下限値格納している設備データベースをさらに備え
前記潮流計算部は、前記配電系統負荷・発電量の上下限値を制約条件として用いて前記潮流計算を実行すること、
を特徴とする請求項1に記載の配電系統の状態推定装置。
Further comprising a facility database that stores the upper limit value of the load and power generation amount before the SL distribution system,
The tidal current calculation unit executes the tidal current calculation using the upper and lower limit values of the load / power generation amount of the distribution system as a constraint condition,
The state estimation device for a distribution system according to claim 1.
前記配電系統状態推定部は、
前記潮流計算部において計算した前記配電系統状態の推定値を用いて、負荷・発電量の変化に対する配電系統状態の変化量を表す感度係数を算出し、前記偏差及び前記感度係数を用いて定式化前記目的関数を最適化計算により解くことで、前記センサ誤差データの推定値及び前記潮流計算により計算された前記配電系統状態の推定値の修正量を計算すること、
を特徴とする請求項1または請求項に記載の配電系統の状態推定装置。
The power distribution system state estimation unit
Using the estimated value of the distribution system state calculated in the power flow calculation unit, a sensitivity coefficient representing the amount of change in the distribution system state with respect to a change in load / power generation amount is calculated, and formulated using the deviation and the sensitivity coefficient by solving the objective function by optimization calculation, calculating the correction amount of the estimated value and the estimated value of the power distribution system state calculated by the flow calculation of the sensor error data,
The state estimation apparatus for a power distribution system according to claim 1 or 2 , characterized in that:
前記センサ誤差データは、前記計測装置における真値yを、計測値xを変数とするy=ux+bの1次式で表した数式モデルであり、
前記配電系統状態推定部は、前記センサ誤差データの推定値として、前記数式の係数u及び定数bを算出すること、
を特徴とする請求項1ないし請求項3のいずれか1項に記載の配電系統の状態推定装置。
Said sensor error data, the true value y in the measuring device, a mathematical model which represents the measured value x by a linear equation y = ux + b to variables,
The distribution system state estimation unit calculates a coefficient u and a constant b of the mathematical formula as an estimated value of the sensor error data.
Claims 1, characterized in to state estimating device for a power distribution system according to any one of claims 3.
記各計測装置のうち、誤差を考慮する計測装置いずれであるかを指定するための情報を入力する入力部をさらに有し、
前記配電系統状態推定部は、前記入力部から入力された前記情報に応じて、前記誤差を考慮する計測装置の前記センサ誤差データの推定値を計算すること、
を特徴とする請求項1ないし請求項のいずれか1項に記載の配電系統の状態推定装置。
Among previous SL each measuring device, further comprising an input unit which consider measuring device errors to input information for specifying which one,
The distribution system state estimation unit, according to the information inputted from the input unit, to calculate an estimate of the sensor error data consider measuring device the error,
The state estimation device for a power distribution system according to any one of claims 1 to 4 , wherein:
前記修正された配電系統状態の推定値及び前記センサ誤差データの推定値と、前記潮流計算データベースに格納された前記系統構成データとを読み込み、前記配電系統に含まれる計測点、ノード、線路、負荷または発電設備と対応させて表示する表示画面を作成する表示作成部をさらに備えること、
を特徴とする請求項1ないし請求項のいずれか1項に記載の配電系統の状態推定装置。
Reading the corrected estimated value of the distribution system state and the estimated value of the sensor error data, and the system configuration data stored in the power flow calculation database, and measuring points, nodes, lines, and loads included in the distribution system Or further comprising a display creation unit for creating a display screen to be displayed in correspondence with the power generation facility,
The state estimation device for a power distribution system according to any one of claims 1 to 5 , wherein:
配電系統の潮流状態と各計測装置の誤差とを推定する状態推定装置における配電系統の状態推定方法であって、
前記状態推定装置が、
前記状態推定装置の潮流計算データベースに格納された、前記配電系統の線路のインピーダンスを示す線路定数、負荷・発電量の初期値、及び前記線路とノードとの接続状況を表す系統構成データを読み込み、潮流計算により負荷・発電量、ノード電圧及び線路潮流を含む配電系統状態の推定値を計算する手順と、
前記状態推定装置の計測データベースに格納された複数時間断面における前記配電系統状態の計測値を読み込み、前記読み込んだ配電系統状態の計測値と、前記潮流計算により計算された前記配電系統状態の推定値との偏差を計算する手順と、
前記計算した偏差を前記各計測装置における真値と計測値との関係を表すセンサ誤差データの数式で表して定式化た目的関数を、最適化計算により解くことで、前記センサ誤差データの推定値及び前記配電系統状態の推定値の修正量を計算し、この修正量を用いて前記配電系統状態の推定値を修正する手順と、
を含むことを特徴とする配電系統の状態推定方法。
A state estimation method for a distribution system in a state estimation device for estimating a power flow state of the distribution system and an error of each measurement device,
The state estimation device is
Stored in said power flow calculation database state estimating device reads line constant indicating the impedance of the line of the distribution system, the initial value of the load-power generation amount, and the system configuration data indicating the connection status of the line and node , A procedure to calculate the estimated value of the distribution system state including load / power generation, node voltage and line power flow by power flow calculation,
Reads the measured value of the power distribution system states at a plurality time section stored in the measurement database of the state estimation device, the measured value of the read power distribution system state, the estimated value of the power distribution system state calculated by the flow calculation To calculate the deviation from
The objective function is formulated expressed in a formula of the sensor error data representing the relationship between the true value and the measured value of each measuring device the calculated deviations, by solving the optimization calculation, the estimation of the sensor error data Calculating a correction amount of the value and the estimated value of the distribution system state, and correcting the estimated value of the distribution system state using the correction amount;
A method for estimating the state of a distribution system, comprising:
請求項7に記載の状態推定方法を、コンピュータである前記状態推定装置に実行させるためのプログラム。 The program for making the said state estimation apparatus which is a computer perform the state estimation method of Claim 7 .
JP2006342484A 2006-12-20 2006-12-20 Distribution system state estimation device, state estimation method and program thereof Active JP4705563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006342484A JP4705563B2 (en) 2006-12-20 2006-12-20 Distribution system state estimation device, state estimation method and program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006342484A JP4705563B2 (en) 2006-12-20 2006-12-20 Distribution system state estimation device, state estimation method and program thereof

Publications (2)

Publication Number Publication Date
JP2008154418A JP2008154418A (en) 2008-07-03
JP4705563B2 true JP4705563B2 (en) 2011-06-22

Family

ID=39656020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006342484A Active JP4705563B2 (en) 2006-12-20 2006-12-20 Distribution system state estimation device, state estimation method and program thereof

Country Status (1)

Country Link
JP (1) JP4705563B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130011A (en) * 2016-06-30 2016-11-16 中国电力科学研究院 A kind of Load flow calculation initial value based on network loss equivalence load model gives method
CN109586282A (en) * 2018-11-29 2019-04-05 安徽继远软件有限公司 A kind of unknown threat detection system of power grid and method

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2383647T3 (en) 2008-04-18 2012-06-25 Nikkiso Co., Ltd. Adsorbent for the removal of blood cells
JP4972623B2 (en) * 2008-09-09 2012-07-11 株式会社日立製作所 Distribution system state estimation apparatus, method and program
JP5192425B2 (en) * 2009-03-13 2013-05-08 株式会社日立製作所 Control device and control method for automatic voltage regulator
JP5159695B2 (en) * 2009-05-11 2013-03-06 中国電力株式会社 Distribution system state estimation method and distribution system state estimation apparatus
CN101958543B (en) * 2010-04-02 2012-10-10 清华大学 Method for estimating three-phase impedance-free nonlinear multi-source state of transformer substation
KR101132107B1 (en) * 2010-09-29 2012-04-05 한국전력공사 System for controlling voltage and reactive power in electric power system connected with distributed generation and method for the same
KR101221083B1 (en) * 2011-05-25 2013-01-11 주식회사 파워이십일 Method for assume condition of power distribution System
JP5773191B2 (en) * 2011-05-31 2015-09-02 オムロン株式会社 Detection apparatus and method, and program
JP5615785B2 (en) * 2011-09-26 2014-10-29 株式会社日立製作所 Electric power system state estimation device and electric power system using the same
JP5915342B2 (en) * 2012-04-06 2016-05-11 富士電機株式会社 Power system state estimation method
WO2014010030A1 (en) * 2012-07-10 2014-01-16 株式会社日立製作所 Power system control system, and power system control method
US8756556B1 (en) * 2013-02-25 2014-06-17 Mitsubishi Electric Research Laboratories, Inc. Method for optimizing power flows in electric power networks
WO2014132374A1 (en) 2013-02-28 2014-09-04 株式会社日立製作所 Power system control system and distributed controller used in same
FR3006819B1 (en) * 2013-06-11 2015-07-10 Electricite De France METHOD FOR VOLTAGE ADJUSTMENT ON DISTRIBUTION NETWORKS IN THE PRESENCE OF DECENTRALIZED PRODUCTION
WO2015052747A1 (en) * 2013-10-07 2015-04-16 株式会社日立製作所 Power system state estimation device and power system state estimation method for same
JP6144611B2 (en) * 2013-12-03 2017-06-07 株式会社日立製作所 Distribution system state estimation device, state estimation method, and state estimation program
JP6559494B2 (en) * 2015-07-28 2019-08-14 株式会社ダイヘン System impedance estimation device, inverter device, and system impedance estimation method
WO2019003367A1 (en) * 2017-06-29 2019-01-03 株式会社日立製作所 Power system state estimation device and method, and power system stabilization system
JP7292674B2 (en) * 2019-08-30 2023-06-19 富士電機株式会社 State estimation device, state estimation program, state estimation method
JP7355333B2 (en) 2020-02-28 2023-10-03 富士電機株式会社 Information processing device, information processing method, program
CN111799774B (en) * 2020-05-26 2023-07-28 广西电网有限责任公司电力科学研究院 Power distribution network state estimation method
CN112182971B (en) * 2020-09-29 2024-04-16 西安交通大学 Multi-harmonic source identification method, storage medium and identification system for power distribution network
CN113253189B (en) * 2021-04-21 2023-03-24 北京市腾河智慧能源科技有限公司 Method, system, device and medium for carrying out error analysis on platform area metering device
CN113552525B (en) * 2021-07-23 2024-04-02 南方科技大学 Error estimation method, device and equipment of voltage transformer and storage medium
CN114895115B (en) * 2022-03-09 2023-04-18 合肥工业大学 Fault prediction method based on heuristic search analysis in extra-high voltage direct current protection system
JP2024062187A (en) * 2022-10-24 2024-05-09 株式会社日立製作所 Future cross-section creation system, future cross-section creation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327155A (en) * 1993-05-10 1994-11-25 Toshiba Corp Remote supervisory unit for power system
JP2000275278A (en) * 1999-03-23 2000-10-06 Ngk Insulators Ltd Measuring method and device for current value
JP2006087177A (en) * 2004-09-15 2006-03-30 Hitachi Ltd State estimating device, method, and program for distribution system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06327155A (en) * 1993-05-10 1994-11-25 Toshiba Corp Remote supervisory unit for power system
JP2000275278A (en) * 1999-03-23 2000-10-06 Ngk Insulators Ltd Measuring method and device for current value
JP2006087177A (en) * 2004-09-15 2006-03-30 Hitachi Ltd State estimating device, method, and program for distribution system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130011A (en) * 2016-06-30 2016-11-16 中国电力科学研究院 A kind of Load flow calculation initial value based on network loss equivalence load model gives method
CN109586282A (en) * 2018-11-29 2019-04-05 安徽继远软件有限公司 A kind of unknown threat detection system of power grid and method

Also Published As

Publication number Publication date
JP2008154418A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
JP4705563B2 (en) Distribution system state estimation device, state estimation method and program thereof
JP4148208B2 (en) Distribution system state estimation device, method and program
US9964980B2 (en) Method and apparatus for optimal power flow with voltage stability for large-scale electric power systems
CN111313405B (en) Medium-voltage distribution network topology identification method based on multiple measurement sections
JP5872732B2 (en) Power system control system and distributed controller used therefor
CN112904266B (en) Method and device for predicting service life of electric energy meter
JP5915342B2 (en) Power system state estimation method
CN107301570A (en) Traffic prediction method, abnormal traffic quantity measuring method, device and electronic equipment
JP5322716B2 (en) Distributed power output estimation apparatus and method for distribution system
WO2018138973A1 (en) System operation decision-making assistance device and method
JP7480523B2 (en) State estimation device, state estimation program, and state estimation method
JP2017153345A (en) Method and system for dynamic state estimation of power distribution system
JP6702232B2 (en) Maintenance plan creation device and method
JP4261471B2 (en) Distribution system load assumption method and apparatus
JP6135454B2 (en) Estimation program, estimation apparatus, and estimation method
JP6202988B2 (en) Power measurement system, power measurement method, and program
JP6727156B2 (en) Power system state estimation device
JP7033979B2 (en) Estimating method of photovoltaic power generation output
JP4664842B2 (en) Energy plant optimal operation system and method, and program
CN114595980A (en) Energy cost accounting method and system based on parallel network and computer equipment
JP2014135872A (en) Power prediction device
JP2018044958A (en) Bias estimation device, method of the same, and program
JP7462521B2 (en) Power system monitoring and control device and power system monitoring and control method
AU2022204337B2 (en) Run-time reliability reporting for electrical hardware systems
JP7292674B2 (en) State estimation device, state estimation program, state estimation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110311

R150 Certificate of patent or registration of utility model

Ref document number: 4705563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370