JP4684581B2 - Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Download PDF

Info

Publication number
JP4684581B2
JP4684581B2 JP2004198816A JP2004198816A JP4684581B2 JP 4684581 B2 JP4684581 B2 JP 4684581B2 JP 2004198816 A JP2004198816 A JP 2004198816A JP 2004198816 A JP2004198816 A JP 2004198816A JP 4684581 B2 JP4684581 B2 JP 4684581B2
Authority
JP
Japan
Prior art keywords
negative electrode
electrode material
lithium ion
ion secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004198816A
Other languages
Japanese (ja)
Other versions
JP2006024374A (en
Inventor
憲二 福田
英二 安部
達夫 梅野
孝士 岩尾
孝平 村山
十五 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Coke and Engineering Co Ltd
Original Assignee
Nippon Coke and Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Coke and Engineering Co Ltd filed Critical Nippon Coke and Engineering Co Ltd
Priority to JP2004198816A priority Critical patent/JP4684581B2/en
Publication of JP2006024374A publication Critical patent/JP2006024374A/en
Application granted granted Critical
Publication of JP4684581B2 publication Critical patent/JP4684581B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用の負極材、特に、大容量で優れたハイレート充放電特性を有する負極材に関し、並びに、同負極材を備えたリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, in particular, a negative electrode material having a large capacity and excellent high rate charge / discharge characteristics, and a lithium ion secondary battery including the negative electrode material.

リチウムイオン二次電池は、リチウムポリマー電池も含め、一方では、携帯電話、携帯パソコン等の携帯電子機器の電源として急速に発達している。これら携帯機器用の電源において、最も必要とされる特性はエネルギー密度、即ち、単位体積当たりのエネルギー貯蔵量であり、いかに長時間携帯機器が使用できるかに関心が持たれている。   Lithium ion secondary batteries, including lithium polymer batteries, are rapidly developing as power sources for portable electronic devices such as mobile phones and portable personal computers. In these power sources for portable devices, the most required characteristic is energy density, that is, energy storage amount per unit volume, and there is an interest in how long a portable device can be used.

他方、リチウムイオン二次電池は、ハイブリッド自動車(HEV)用の電池等を対象の中心として大型化が図られている。大型電池で最も必要とされる特性は、出力である。言い換えれば、単位時間でいかに急速に充電或は放電できるかのハイレート充放電特性に関心が持たれている。即ち、大型電池は、そのパワーに関心が持たれている。   On the other hand, the size of lithium ion secondary batteries has been increased mainly for batteries for hybrid vehicles (HEV). The most required characteristic of a large battery is output. In other words, there is an interest in the high rate charge / discharge characteristics of how quickly can be charged or discharged in a unit time. That is, large batteries are interested in their power.

なお、リチウムイオン二次電池の正極として用いられるLiCoO2、LiNiO2、LiMn24、TiS3、TiS2、TiO2等の遷移金属カルコゲン化合物は、過充電により酸素を放出し、有機質電解液を燃焼、爆発させる危険性をはらんでいる。 In addition, transition metal chalcogen compounds such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , TiS 3 , TiS 2 , and TiO 2 used as the positive electrode of the lithium ion secondary battery release oxygen by overcharge, and the organic electrolyte solution There is a risk of burning and exploding.

また、リチウムイオン二次電池の負極として用いられる黒鉛は、特に電解液の溶媒にプロピレンカーボネート(PC)を用い、この溶媒にLiPF6、LiBF4等の電解質を添加混合して有機質電解液とした場合、過充電により有機質電解液を分解して密閉された電池内にガスを放出する。その結果、電池の内部圧が上昇して電池が爆発する危険性をはらんでいる(例えば特許文献1参照)。従って、リチウムイオン二次電池は、その大型化に伴い一層の安全対策が必要となる。 In addition, graphite used as a negative electrode of a lithium ion secondary battery uses propylene carbonate (PC) as a solvent for an electrolytic solution, and an electrolyte such as LiPF 6 or LiBF 4 is added to and mixed with the solvent to obtain an organic electrolytic solution. In this case, the organic electrolyte solution is decomposed by overcharging and gas is released into the sealed battery. As a result, there is a risk that the internal pressure of the battery will rise and the battery will explode (see, for example, Patent Document 1). Therefore, the lithium ion secondary battery requires further safety measures as its size increases.

大型電池、とりわけハイレート充放電特性を必要とするHEV用電池には、従来より負極材として非晶質炭素が用いられている。非晶質炭素をHEV用リチウムイオン二次電池の負極材として用いた場合、その電池は、放電時には良好な加速性能が得られ、充電時には効率よく回生エネルギーを取り込めるとされている。   Conventionally, amorphous carbon has been used as a negative electrode material for large batteries, particularly for HEV batteries that require high-rate charge / discharge characteristics. When amorphous carbon is used as a negative electrode material for a lithium ion secondary battery for HEV, the battery is said to have good acceleration performance at the time of discharging and to efficiently take in regenerative energy at the time of charging.

非晶質炭素と同じく黒鉛も、前述したようにリチウムイオン二次電池の負極材として用いられている。この黒鉛に比較して非晶質炭素は、一般に溶媒に対する触媒的な反応性が低く、安全性に優れる。また、充電特性に優れる。これら優れた物性が、非晶質炭素をリチウムイオン二次電池用負極材として黒鉛よりも賞用する一因となっている。   Like amorphous carbon, graphite is also used as a negative electrode material for lithium ion secondary batteries as described above. Compared to graphite, amorphous carbon generally has a low catalytic reactivity with a solvent and is excellent in safety. Moreover, it is excellent in charging characteristics. These excellent physical properties contribute to the use of amorphous carbon as a negative electrode material for lithium ion secondary batteries over graphite.

しかし、非晶質炭素は高価であり、大型リチウムイオン二次電池用負極材には不適である。そのため、大型リチウムイオン二次電池用負極材には低価格でハイレート充放電特性に優れ、且つ安全性の高い負極材の出現が求められている。
特開2002−141062号公報 (段落番号[0005]〜[0008])
However, amorphous carbon is expensive and unsuitable for a negative electrode material for a large lithium ion secondary battery. Therefore, a negative electrode material for large-sized lithium ion secondary batteries is required to have a negative electrode material that is low in price, excellent in high-rate charge / discharge characteristics, and high in safety.
JP 2002-141062 A (paragraph numbers [0005] to [0008])

本発明者等は、ハイレート充放電特性が負極材粒子の大きさに依存すること、更には負極材と、これを湿潤する電解液との接触状態に大きく影響を受けることを見出した。更には、二次粒子化により比表面積が低下して初期クーロン効率が向上すること、安全性が高まること、並びに、この二次粒子化に炭素を結合剤とすることにより高い電気伝導性が保持されるため、いっそうのハイレート充放電特性が得られることを見出し、本発明を完成するに到った。   The present inventors have found that the high-rate charge / discharge characteristics depend on the size of the negative electrode material particles, and are greatly influenced by the contact state between the negative electrode material and the electrolyte solution that wets the negative electrode material. Furthermore, secondary particle formation reduces the specific surface area and improves initial coulomb efficiency, increases safety, and retains high electrical conductivity by using carbon as a binder for this secondary particle formation. Therefore, it has been found that further high rate charge / discharge characteristics can be obtained, and the present invention has been completed.

従って、本発明の目的とするところは、上記問題を解決した、大型リチウムイオン二次電池用の負極材であって、ハイレート特性に優れ、安全で安価な負極材を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode material for a large-sized lithium ion secondary battery, which has solved the above-described problems, is excellent in high rate characteristics, and is safe and inexpensive.

上記目的を達成する本発明は、以下に記載するものである。   The present invention for achieving the above object is described below.

〔1〕 平均粒子径が0.1〜20μmの結晶性炭素粒子と、前記結晶性炭素粒子間を結合する結合炭素とからなる平均粒子径が2.5〜40μmのリチウムイオン二次電池用負極材。   [1] A negative electrode for a lithium ion secondary battery having an average particle diameter of 2.5 to 40 μm, comprising crystalline carbon particles having an average particle diameter of 0.1 to 20 μm and bonded carbon bonding between the crystalline carbon particles. Wood.

〔2〕 負極材全体に対する結合炭素の割合が0.2〜30質量%である〔1〕に記載のリチウムイオン二次電池用負極材。   [2] The negative electrode material for a lithium ion secondary battery according to [1], wherein the ratio of bonded carbon to the entire negative electrode material is 0.2 to 30% by mass.

〔3〕 満充電した負極材の7Li−NMRスペクトルが、LiCl水溶液基準で10〜20ppmに一つのシグナルを有する〔1〕に記載のリチウムイオン二次電池用負極材。 [3] The negative electrode material for a lithium ion secondary battery according to [1], wherein the 7 Li-NMR spectrum of the fully charged negative electrode material has one signal at 10 to 20 ppm based on the LiCl aqueous solution.

〔4〕 結晶性炭素粒子のXRD法による002格子定数が0.68〜0.70nmである請求項1に記載のリチウムイオン二次電池用負極材。   [4] The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the crystalline carbon particles have a 002 lattice constant of 0.68 to 0.70 nm according to the XRD method.

〔5〕 結晶性炭素粒子の炭素が光学的に異方性である〔1〕に記載のリチウムイオン二次電池用負極材。   [5] The negative electrode material for a lithium ion secondary battery according to [1], wherein the carbon of the crystalline carbon particles is optically anisotropic.

〔6〕 平均粒子径が0.1〜20μmの結晶性炭素粒子の表面に化学蒸着処理を施すリチウムイオン二次電池用負極材の製造方法であって、化学蒸着処理中、結晶性炭素粒子の流動化を間欠的に行って粒子を結合炭素で結合する事を特徴とするリチウムイオン二次電池用負極材の製造方法。   [6] A method for producing a negative electrode material for a lithium ion secondary battery, wherein the surface of crystalline carbon particles having an average particle size of 0.1 to 20 μm is subjected to chemical vapor deposition, A method for producing a negative electrode material for a lithium ion secondary battery, wherein the particles are bonded with bonded carbon by intermittently fluidizing.

〔7〕 結晶性炭素粒子の流動化の間欠操作が、1〜10分の流動化操作と、1〜5分の静置操作とを、3回以上繰返す操作である〔6〕に記載のリチウムイオン二次電池用負極材の製造方法。   [7] The lithium according to [6], wherein the intermittent operation of fluidizing the crystalline carbon particles is an operation of repeating the fluidization operation for 1 to 10 minutes and the stationary operation for 1 to 5 minutes three times or more. The manufacturing method of the negative electrode material for ion secondary batteries.

〔8〕 〔6〕に記載の製造方法で製造された負極材を分級して細粒分を除去し、平均粒子径を分級前の1.1倍以上にする〔6〕に記載のリチウムイオン二次電池用負極材の製造方法。   [8] The lithium ion according to [6], wherein the negative electrode material produced by the production method according to [6] is classified to remove fine particles, and the average particle size is 1.1 times or more that before classification. A method for producing a negative electrode material for a secondary battery.

〔9〕 〔1〕に記載の負極材を用いて形成したリチウムイオン二次電池。   [9] A lithium ion secondary battery formed using the negative electrode material according to [1].

本発明のリチウムイオン二次電池用負極材は、安価な結晶性炭素材を一次粒子とし、この一次粒子を炭素で結合して二次粒子としているので、10C〜20Cの非常にハイレート充放電におけるエネルギー密度が高く、初期クーロン効率が高く、且つ、安全で安価なリチウムイオン二次電池を実現することができる。   The negative electrode material for a lithium ion secondary battery of the present invention uses an inexpensive crystalline carbon material as primary particles, and these primary particles are bonded with carbon to form secondary particles. Therefore, in a very high rate charge / discharge of 10C to 20C. A safe and inexpensive lithium ion secondary battery with high energy density, high initial coulomb efficiency, and low cost can be realized.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の負極材は、結晶性炭素粒子(一次粒子)の表面に炭素被覆層が形成され、前記炭素被覆層を介して一次粒子が結合された炭素二次粒子である。   The negative electrode material of the present invention is a carbon secondary particle in which a carbon coating layer is formed on the surface of crystalline carbon particles (primary particles) and primary particles are bonded via the carbon coating layer.

一次粒子の平均径は0.1〜20μm、好ましくは1〜5μmである。一次粒子平均径が0.1μm未満では初期クーロン効率が大きく低下する。また、一次粒子平均径が20μmを超えるとハイレート充放電特性が低下する。   The average diameter of the primary particles is 0.1 to 20 μm, preferably 1 to 5 μm. If the average primary particle diameter is less than 0.1 μm, the initial Coulomb efficiency is greatly reduced. On the other hand, when the average primary particle diameter exceeds 20 μm, the high-rate charge / discharge characteristics deteriorate.

一次粒子の粒度分布はシャープであることが好ましく、具体的には粒度分布域が平均径±50%の範囲であることが好ましい。   The particle size distribution of the primary particles is preferably sharp, and specifically, the particle size distribution region is preferably in the range of the average diameter ± 50%.

本発明の負極材に核として用いる炭素一次粒子は、結晶性炭素でも非晶性炭素でも良いが、価格や電池特性を総合すると結晶性炭素が好ましい。この炭素一次粒子は、石炭系のピッチやタールを原料とするディレイドコークス、又は石油系重質油を原料としたディレイドコークスやフリュードコークスを原料とし、これを900〜1400℃で焼成したコークスを用いることができる。   The primary carbon particles used as the nucleus in the negative electrode material of the present invention may be crystalline carbon or amorphous carbon, but crystalline carbon is preferred in terms of cost and battery characteristics. This carbon primary particle uses a delayed coke made from coal-based pitch or tar, or a delayed coke made from petroleum heavy oil or a fluid coke as a raw material, and a coke obtained by firing this at 900 to 1400 ° C. be able to.

一次粒子の粒度調節は、焼成前或は焼成後の何れの段階で行っても良いが、焼成前に行う事が更に好ましい。即ち、一次粒子の粒度調節は、焼成前の原料コークス等、炭素前駆体の粉砕程度により決定することが出来る。   The particle size adjustment of the primary particles may be performed at any stage before firing or after firing, but is more preferably performed before firing. That is, the particle size adjustment of the primary particles can be determined by the degree of pulverization of the carbon precursor such as raw material coke before firing.

一次粒子の炭素は、後述するXRD法による002格子定数が0.68nm〜0.70nmであることが好ましい。XRD法による002格子定数が0.68nm未満の場合は、放電容量が低下し、XRD法による002格子定数が0.70nmを超える場合は、ハイレート充放電特性が低下する。   The primary particle carbon preferably has a 002 lattice constant of 0.68 nm to 0.70 nm according to the XRD method described later. When the 002 lattice constant by the XRD method is less than 0.68 nm, the discharge capacity decreases, and when the 002 lattice constant by the XRD method exceeds 0.70 nm, the high-rate charge / discharge characteristics decrease.

一次粒子の炭素は、光学的に異方性であることが好ましい。光学的異方性は、非晶性炭素には認められない特徴である。多くの光学的異方性炭素は、その前駆体である樹脂、タール、ピッチなどが液相状態で350〜500℃で加熱処理されたときにメソフェースとして生成し、更に加熱処理を継続する事によって相全体が光学的に異方性の組織を有する炭素に変換したものである。   The primary particles of carbon are preferably optically anisotropic. Optical anisotropy is a feature not found in amorphous carbon. Many optically anisotropic carbons are formed as mesophases when the precursor resin, tar, pitch, etc. are heat-treated at 350-500 ° C. in a liquid phase state, and further, by continuing the heat treatment, The entire phase is converted to carbon having an optically anisotropic structure.

一次粒子の炭素に含まれる灰分は、0.2質量%以下が好ましく、0.1質量%以下が更に好ましい。灰分が0.2質量%を超えると、異常電極反応が起こる危険性が増える。   The ash content in the carbon of the primary particles is preferably 0.2% by mass or less, and more preferably 0.1% by mass or less. If the ash content exceeds 0.2% by mass, the risk of an abnormal electrode reaction increases.

ハイレート充放電特性は、負極材炭素の結晶性のみで一義的に決定されるのではなく、電極の空間構造が重要である。ハイレート充放電特性から見ると負極材は小粒子である事が好ましいが、負極材の周りに潤沢な電解液が存在することが必須である。   The high-rate charge / discharge characteristics are not uniquely determined only by the crystallinity of the negative electrode material carbon, but the spatial structure of the electrodes is important. In view of the high rate charge / discharge characteristics, the negative electrode material is preferably small particles, but it is essential that abundant electrolyte be present around the negative electrode material.

このためには、負極材の粒子径は小さいことが好ましく、且つ粒子間に十分な空隙が存在することが必須である。このために大型リチウムイオン二次電池用負極材としては二次粒子化により予め一次粒子間に十分な空隙を維持した構造である事が好ましい。電極中の空隙率は20〜50%が好ましく、25〜35%が更に好ましい。   For this purpose, the particle size of the negative electrode material is preferably small, and it is essential that sufficient voids exist between the particles. For this reason, it is preferable that the negative electrode material for a large-sized lithium ion secondary battery has a structure in which sufficient voids are maintained between primary particles in advance by forming secondary particles. The porosity in the electrode is preferably 20 to 50%, more preferably 25 to 35%.

上記一次粒子が結合されて形成される二次粒子は、その平均径が2.5〜40μmである。二次粒子平均径が2.5μm未満では比表面積が大きくなり安全性に問題が生ずる。二次粒子平均径が40を超える場合は高いハイレート充放電特性が得られ難い。   The secondary particles formed by combining the primary particles have an average diameter of 2.5 to 40 μm. When the secondary particle average diameter is less than 2.5 μm, the specific surface area becomes large, which causes a problem in safety. When the secondary particle average diameter exceeds 40, it is difficult to obtain high high-rate charge / discharge characteristics.

二次粒子の粒子径は、結合剤の種類や量で異なるが、その粒径調節は、一次粒子を化学蒸着処理(CVD)法で二次粒子化することが最も好ましい。CVD法による一次粒子の二次粒子化は、流動床化学蒸着や固定床化学蒸着等の方法によって行う事ができる。   Although the particle size of the secondary particles varies depending on the type and amount of the binder, it is most preferable to adjust the particle size by converting the primary particles into secondary particles by a chemical vapor deposition (CVD) method. The primary particles can be made into secondary particles by the CVD method by a method such as fluidized bed chemical vapor deposition or fixed bed chemical vapor deposition.

図1は、CVD法による一次粒子の二次粒子化で得られる本発明の負極材の一例を示す概略断面図である。図1に示されるように、CVD法では二次粒子化と同時に一次粒子2の表面を少量の蒸着炭素4で均一に被覆することが可能となる。特に、流動床で行う場合には、一次粒子2の表面を少量の蒸着炭素4で均一に被覆することが可能である。そのため、得られる二次粒子は、その表面積が低下し、その結果、表面に生成する不導体膜が減少して電極抵抗が低下するためと考えられる。また、表面積の低下により、溶剤との反応に対する炭素系負極の安全性を一層向上させることができる。   FIG. 1 is a schematic cross-sectional view showing an example of the negative electrode material of the present invention obtained by converting primary particles into secondary particles by a CVD method. As shown in FIG. 1, in the CVD method, it becomes possible to uniformly coat the surfaces of the primary particles 2 with a small amount of vapor-deposited carbon 4 simultaneously with the formation of secondary particles. In particular, when performed in a fluidized bed, the surfaces of the primary particles 2 can be uniformly coated with a small amount of vapor-deposited carbon 4. Therefore, it is considered that the secondary particles obtained have a reduced surface area, resulting in a decrease in the non-conductive film formed on the surface and a decrease in electrode resistance. Moreover, the safety | security of the carbon-type negative electrode with respect to reaction with a solvent can be improved further according to the fall of a surface area.

なお、流動床化学蒸着反応中の流動床の嵩密度は0.1〜0.5g/cm3とすることが望ましい。また、得られる二次粒子は、一次粒子2間に十分な空隙6を維持した構造である。 Note that the bulk density of the fluidized bed during the fluidized bed chemical vapor deposition reaction is preferably 0.1 to 0.5 g / cm 3 . The obtained secondary particles have a structure in which sufficient voids 6 are maintained between the primary particles 2.

化学蒸着温度は650〜1200℃とすることが好ましいが、好適な温度は化学蒸着に用いる化学種によって異なる。例えば化学種にアセチレンを用いると650℃での化学蒸着が可能である。   The chemical vapor deposition temperature is preferably 650 to 1200 ° C., but the suitable temperature varies depending on the chemical species used for chemical vapor deposition. For example, when acetylene is used as the chemical species, chemical vapor deposition at 650 ° C. is possible.

化学蒸着温度が高いほど熱分解炭素の析出速度が大きくなり、有機物ガスの炭素への変換率は高くなるが、同時に炭素は膜状に成長するよりもむしろ繊維状或はスス状に成長し、表面被覆を目的とした処理には好ましくない。また、結晶性も低下する傾向が認められる。従って、化学蒸着処理温度は1200℃以下とすることが好ましく、1150℃以下とすることが更に好ましい。   The higher the chemical vapor deposition temperature, the higher the rate of deposition of pyrolytic carbon and the higher the conversion rate of organic gas to carbon. At the same time, carbon grows in a fibrous or soot form rather than in a film form, It is not preferable for the treatment for surface coating. Moreover, the tendency for crystallinity to fall is recognized. Therefore, the chemical vapor deposition temperature is preferably 1200 ° C. or lower, more preferably 1150 ° C. or lower.

炭素蒸着源として用いられる化学種としては、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ジフェニル、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環ないし3環の芳香族炭化水素、又はその誘導体あるいはこれらの混合物が挙げられる。   Chemical species used as a carbon deposition source include benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, diphenyl, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene, etc. A tricyclic aromatic hydrocarbon, a derivative thereof, or a mixture thereof can be given.

また、石炭系のタール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、あるいは石油系の分留油やナフサ分解タール油のほか、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン等の脂肪族炭化水素やその誘電体であるアルコールも単独あるいは混合物として用いることができる。   In addition to gas diesel oil, creosote oil, anthracene oil obtained from coal-based tar distillation process, petroleum-based fractionated oil and naphtha cracked tar oil, fats such as methane, ethane, propane, butane, pentane, and hexane An aromatic hydrocarbon or a dielectric alcohol thereof can be used alone or as a mixture.

さらにはアセチレン、エチレン、プロピレン、イソプロピレン、ブタジエン等の二重結合を有する有機化合物も用いることが出来る。中でも、化学蒸着処理時にタールを発生しない芳香環数が1のベンゼン、若しくは、トルエン、キシレン、スチレン等の誘導体、あるいはそれらの混合物が好ましい。   Furthermore, organic compounds having a double bond such as acetylene, ethylene, propylene, isopropylene, and butadiene can also be used. Among them, benzene having an aromatic ring number of 1 that does not generate tar during chemical vapor deposition, or a derivative such as toluene, xylene, styrene, or a mixture thereof is preferable.

流動床化学蒸着処理において、形成する被覆炭素は、負極材全体に対して0.2〜30質量%とすることが好ましく、3〜20質量%がより好ましく、10〜18質量%が特に好ましい。負極材全体に対する被覆炭素量0.2質量%以上で、表面積低減効果が発現するからである。また、負極材全体に対する被覆量が30質量%を超える炭素を蒸着させた場合は、電池特性の改良効果はほぼ飽和すると共に、粒子間の接着が顕著となり粒子の粗大化を招きやすいので好ましくない。   In the fluidized bed chemical vapor deposition treatment, the coating carbon to be formed is preferably 0.2 to 30% by mass, more preferably 3 to 20% by mass, and particularly preferably 10 to 18% by mass with respect to the entire negative electrode material. This is because the effect of reducing the surface area is manifested when the coated carbon amount is 0.2% by mass or more with respect to the entire negative electrode material. Further, when carbon having a coating amount of more than 30% by mass with respect to the whole negative electrode material is vapor-deposited, the effect of improving battery characteristics is almost saturated and adhesion between particles becomes remarkable, which tends to cause particle coarsening, which is not preferable. .

化学蒸着処理は窒素等の不活性ガス雰囲気下で実施される。不活性ガスは、反応系より酸素や未反応有機ガスを排出するのに用いられるが、同時に流動床を形成する流動化媒体として重要である。従って、化学蒸着炭素源となる有機物は、窒素等の不活性ガスで稀釈されて流動床に導入される。   The chemical vapor deposition process is performed in an inert gas atmosphere such as nitrogen. The inert gas is used to discharge oxygen and unreacted organic gas from the reaction system, but at the same time is important as a fluidizing medium for forming a fluidized bed. Therefore, the organic substance that becomes the chemical vapor deposition carbon source is diluted with an inert gas such as nitrogen and introduced into the fluidized bed.

有機物の濃度は、生成する蒸着炭素の結晶性に大きな影響を与える。モル濃度が低い場合、炭素蒸着速度は下がるが、蒸着炭素の結晶性は向上する。一方、モル濃度が高い場合、炭素蒸着速度は増大するが、同時にスス状炭素が発生し、蒸着炭素の結晶性は低下する。そのため本発明においては、有機物の不活性ガスに対するモル濃度は、2〜50%が好ましく、5〜33%がより好ましい。   The concentration of the organic substance has a great influence on the crystallinity of the deposited carbon produced. When the molar concentration is low, the carbon deposition rate is lowered, but the crystallinity of the deposited carbon is improved. On the other hand, when the molar concentration is high, the carbon deposition rate increases, but at the same time, soot-like carbon is generated, and the crystallinity of the deposited carbon decreases. Therefore, in this invention, 2-50% is preferable and, as for the molar concentration with respect to the inert gas of organic substance, 5 to 33% is more preferable.

二次粒子化は、CVD法のみならず、樹脂、タール、ピッチ等の炭素前駆体をバインダーとして一次粒子と混練後炭化することでも実施する事が出来る。図2は、コールタール等のバインダーを用いた混練造粒による一次粒子の二次粒子化で得られる本発明の負極材の一例を示す概略断面図である。図2に示されるように、得られる二次粒子は、CVD法の場合と同様に一次粒子22間に十分な空隙26を維持した構造である。   Secondary particle formation can be performed not only by CVD, but also by carbonization after kneading with primary particles using a carbon precursor such as resin, tar, and pitch as a binder. FIG. 2 is a schematic cross-sectional view showing an example of the negative electrode material of the present invention obtained by making secondary particles into primary particles by kneading granulation using a binder such as coal tar. As shown in FIG. 2, the obtained secondary particles have a structure in which sufficient voids 26 are maintained between the primary particles 22 as in the case of the CVD method.

このバインダーを用いた混練造粒による二次粒子化の場合、炭化後に結合炭素24になる炭素前駆体による表面コーティングが二次粒子化と同時に進行する。炭化温度は850〜1200℃とすることが好ましい。なお、一次粒子との混練時、二次粒子化が進み過ぎないように、炭素前駆体の添加量は負極材全体に対して炭素分で30質量%以下が好ましく、1〜15質量%が更に好ましく、3〜8質量%が特に好ましい。   In the case of secondary particle formation by kneading granulation using this binder, surface coating with a carbon precursor that becomes bonded carbon 24 after carbonization proceeds simultaneously with secondary particle formation. The carbonization temperature is preferably 850 to 1200 ° C. In addition, the amount of carbon precursor added is preferably 30% by mass or less, and more preferably 1 to 15% by mass with respect to the whole of the negative electrode material so that secondary particle formation does not proceed excessively when kneading with primary particles. Preferably, 3-8 mass% is especially preferable.

他方、流動床CVD法は、本来二次粒子化を抑制する事を目的として運転する事が多いが、流動を間欠的に停止する事によって二次粒子化を促進することが出来る。この流動化の間欠操作は、1〜10分の流動化操作と、1〜5分の静置操作とを、好ましくは3回以上、更に好ましくは9〜20回繰返す。   On the other hand, the fluidized bed CVD method is often operated primarily for the purpose of suppressing secondary particle formation, but secondary particle formation can be promoted by intermittently stopping the flow. In this fluidization intermittent operation, a fluidization operation of 1 to 10 minutes and a stationary operation of 1 to 5 minutes are preferably repeated 3 times or more, more preferably 9 to 20 times.

また、二次粒子粒径調節は、上記二次粒子化された炭素粒子を、分級機を用いて細粒分と粗粒分とに分級して細粒分を除去し、粗粒分のみを負極材としても良い。この粗粒分の平均粒子径は、分級前の1.1倍以上にすることが好ましい。   In addition, the secondary particle size adjustment is performed by classifying the carbon particles that have been converted into secondary particles into fine and coarse particles using a classifier to remove the fine particles, and only the coarse particles. It is good also as a negative electrode material. The average particle size of the coarse particles is preferably 1.1 times or more that before classification.

本発明の二次粒子からなる負極と金属リチウムとで電池を構成し、負極にリチウムイオンをインターカレーションした状態で7Li−NMRスペクトルを測定すると、塩化リチウム基準(0ppm)でケミカルシフトのほぼ0〜20ppmの位置に、1本のスペクトルが現れる。 When a battery is composed of a negative electrode comprising the secondary particles of the present invention and metallic lithium, and a 7 Li-NMR spectrum is measured in a state where lithium ions are intercalated in the negative electrode, the chemical shift is almost equal to that of lithium chloride (0 ppm). One spectrum appears at a position of 0 to 20 ppm.

このスペクトルは、結晶性炭素にインターカレーションしたリチウムイオンの状態を示すものである。即ち、炭素一次粒子と、この一次粒子を被覆すると共に一次粒子同士を結合する炭素が何れも結晶性炭素であることを示し、これらに挿入されたリチウムイオンが互いに分離して検出されることはない。   This spectrum shows the state of lithium ions intercalated into crystalline carbon. That is, the carbon primary particles and the carbon that covers the primary particles and bonds the primary particles are both crystalline carbon, and the lithium ions inserted into these are detected separately from each other. Absent.

一方、非晶質炭素の一次粒子を結晶性炭素で結合した二次粒子構造を有する負極と金属リチウムとで電池を構成し、負極にリチウムイオンをインターカレーションした状態で7Li−NMRスペクトルを測定すると、塩化リチウム基準(0ppm)でケミカルシフトのほぼ70〜100ppmの位置に1本のスペクトルと、0〜20ppmの位置に1本のスペクトルが現れる。この二つのスペクトルは、非晶質炭素と結晶性炭素に別々にインターカレーションしたリチウムイオンの状態を示すものである。 On the other hand, a battery is composed of a negative electrode having a secondary particle structure in which primary particles of amorphous carbon are bonded with crystalline carbon and metallic lithium, and a 7 Li-NMR spectrum is obtained with lithium ions intercalated in the negative electrode. When measured, one spectrum appears at a position of approximately 70 to 100 ppm of chemical shift and one spectrum at a position of 0 to 20 ppm on the basis of lithium chloride (0 ppm). These two spectra show the state of lithium ions intercalated separately into amorphous carbon and crystalline carbon.

本発明の二次粒子からなる負極と金属リチウムとで電池を構成し、負極にリチウムイオンをインターカレーションした場合、充電量が少ない状態では、0ppmに近いところにスペクトルが現れる。充電量が増えるに伴い、スペクトル位置はシフトする。また、満充電の状態(Liイオンによるインターカレーションが飽和した状態)では、10〜20ppmにスペクトルが現れる。この場合においても、一次粒子炭素と被覆炭素にそれぞれインターカレーションしたLiスペクトルがそれぞれ分離することはない。   When a battery is composed of a negative electrode comprising the secondary particles of the present invention and metallic lithium, and lithium ions are intercalated into the negative electrode, a spectrum appears near 0 ppm when the amount of charge is small. As the amount of charge increases, the spectral position shifts. Further, in a fully charged state (a state where intercalation by Li ions is saturated), a spectrum appears at 10 to 20 ppm. Even in this case, the Li spectra intercalated in the primary particle carbon and the coated carbon are not separated.

本発明の二次粒子構造を有する負極材を用いてリチウムイオン二次電池の負極を調製する方法は特に限定されないが、例えば、この負極材にバインダー(例えばPVDF)を溶解した溶剤(例えば1−メチル−2−ピロリドン)を加えて、十分に混練することにより固形物濃度40質量%以上の高濃度スラリーを調製することができる。   The method for preparing the negative electrode of the lithium ion secondary battery using the negative electrode material having the secondary particle structure of the present invention is not particularly limited. For example, a solvent in which a binder (for example, PVDF) is dissolved in this negative electrode material (for example, 1- (Methyl-2-pyrrolidone) is added and sufficiently kneaded to prepare a high-concentration slurry having a solid concentration of 40% by mass or more.

この負極材スラリーを、金属箔(例えば銅箔)の集電体にドクターブレード等を用いて20〜100μmの厚みにコーティングする。金属箔上の炭素微粒子スラリーは、乾燥することにより金属箔集電体に密着される。必要があれば、加圧して金属箔集電体への密着性を高め、かつ電極密度を高める。   The negative electrode material slurry is coated on a current collector of metal foil (for example, copper foil) to a thickness of 20 to 100 μm using a doctor blade or the like. The carbon fine particle slurry on the metal foil is in close contact with the metal foil current collector by drying. If necessary, pressurize to increase the adhesion to the metal foil current collector and increase the electrode density.

バインダーには公知の材料、例えば各種ピッチやラバーや合成樹脂等が用いられるが、なかでもポリビニリデンフルオライド(PVDF)やカルボキシメチルセルロース(CMC)が最適である。また、メチルセルロース、ポリビニルアルコール、ポリエチレンオキサイド、澱粉、カゼイン等も用いることができる。炭素微粒子とバインダーとの混合比(質量比)は、100:2〜100:20とすることが望ましい。   Known materials such as various pitches, rubbers, and synthetic resins are used for the binder, and among them, polyvinylidene fluoride (PVDF) and carboxymethyl cellulose (CMC) are most suitable. Moreover, methylcellulose, polyvinyl alcohol, polyethylene oxide, starch, casein, etc. can also be used. The mixing ratio (mass ratio) between the carbon fine particles and the binder is preferably 100: 2 to 100: 20.

正極材料は特に限定されないが、LiCoO2、LiNiO2、LiMn24等、又はこれらの混合物或は金属置換物が好適である。またLiFePO4等も用いることができる。粉末状の正極材料は必要があれば導電材を加え、バインダーを溶解した溶剤と十分に混練後、集電体とともに成型して調製することができる。これらは公知の技術である。また、セパレーターについても特に限定はなく、ポリプロピレンやポリエチレン等の公知の材料を用いることができる。 The positive electrode material is not particularly limited, but LiCoO 2 , LiNiO 2 , LiMn 2 O 4 or the like, or a mixture or metal substitution thereof is preferable. LiFePO 4 or the like can also be used. If necessary, the powdered positive electrode material can be prepared by adding a conductive material, sufficiently kneading with a solvent in which a binder is dissolved, and then molding with a current collector. These are known techniques. The separator is not particularly limited, and a known material such as polypropylene or polyethylene can be used.

リチウムイオン二次電池の電解液用非水系溶媒としては、リチウム塩を溶解できる非プロトン性低誘電率の公知の溶媒が用いられる。例えば、エチレンカーボネイト、ジメチルカーボネイト、プロピレンカーボネイト、ジエチレンカーボネイト、アセトニトリル、プロピオニトリル、テトラヒドロフラン、γ−ブチロラクトン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジエチルエーテル、スルホラン、メチルスルホラン、ニトロメタン、N,N−ジメチルホルムアミド、ジメチルスルホキシド等の溶媒が単独又は二種類以上が混合して用いられる。   As the non-aqueous solvent for the electrolyte of the lithium ion secondary battery, a known aprotic low dielectric constant solvent capable of dissolving a lithium salt is used. For example, ethylene carbonate, dimethyl carbonate, propylene carbonate, diethylene carbonate, acetonitrile, propionitrile, tetrahydrofuran, γ-butyrolactone, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,2 -Solvents such as dimethoxyethane, 1,2-diethoxyethane, diethyl ether, sulfolane, methyl sulfolane, nitromethane, N, N-dimethylformamide, dimethyl sulfoxide and the like may be used alone or in combination of two or more.

電解質として用いられるリチウム塩にはLiClO4、LiAsF5、LiPF6、LiBF4、LiB(C65)、LiCl、LiBr、CH3SO3Li、CF3SO3Li等があり、これらの塩が単独に、あるいは二種類以上の塩が混合して用いられる。 Lithium salts used as the electrolyte include LiClO 4 , LiAsF 5 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ), LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, etc., and these salts May be used alone or in admixture of two or more salts.

また、上記電解液と電解質をゲル化したゲル電解質や、ポリエチレンオキサイド、ポリアクリロニトリル等の高分子電解質等を用いてリチウムポリマー二次電池とすることもできる。さらには固体電解質を用いてリチウム全固体二次電池とすることもできる。   Moreover, it can also be set as a lithium polymer secondary battery using the gel electrolyte which gelatinized the said electrolyte solution and electrolyte, polymer electrolytes, such as polyethylene oxide and a polyacrylonitrile. Furthermore, it can also be set as a lithium all-solid-state secondary battery using a solid electrolyte.

以下、本発明を実施例及び比較例により更に具体的に説明する。また、これら実施例及び比較例における負極材料の各物性値は以下の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. Moreover, each physical property value of the negative electrode material in these Examples and Comparative Examples was measured by the following methods.

平均粒子径:(株)島津製作所製、レーザー式回折粒度分布測定装置(SALD−200V)を用い,水を分散剤として用いて測定した。   Average particle size: Measured using a laser diffraction particle size distribution analyzer (SALD-200V) manufactured by Shimadzu Corporation and using water as a dispersant.

結晶格子定数Co(002):フィリップス社製X線回折装置(Xpert−MPD PW3040)を用い、Cu−Kα線をNiとモノクロメーターで単色化し、高純度シリコンを標準物質として学振法で測定した。   Crystal lattice constant Co (002): Using a Philips X-ray diffractometer (Xpert-MPD PW3040), Cu-Kα rays were monochromated with Ni and a monochromator, and measured by the Gakushin method using high-purity silicon as a standard substance .

7Li固体NMR:ブルカー社製固体核磁気共鳴装置(DSX300wb)に多核種広巾プローブヘッドを装着し、塩化リチウム水溶液を標準として測定を行った。 7 Li solid NMR: Measurement was performed using a solid nuclear magnetic resonance apparatus (DSX300wb) manufactured by Bruker, with a multi-nuclide broad probe head and an aqueous lithium chloride solution as a standard.

比表面積:日本ベル社製高精度自動ガス吸着装置(BELSORB28)を用い、液体窒素温度で窒素吸着量を多点法で測定しBET法にて比表面積を算出した。   Specific surface area: Using a high precision automatic gas adsorption device (BELSORB28) manufactured by Nippon Bell Co., Ltd., the nitrogen adsorption amount was measured by the multipoint method at the liquid nitrogen temperature, and the specific surface area was calculated by the BET method.

電気的特性:試料濃度53.3質量%、バインダーとしてCMC1質量%、SBRラテックス2質量%の水スラリーを調製し、アプリケーターを用いて銅箔にコートした。乾燥後1tonf/cm2(98MPa)で一軸プレスした後、2cm2の電極を打ち抜き、対極に金属リチウムを用いて2032コイン電池をアルゴン雰囲気中で組み立てた。このコイン電池を充放電評価装置として用い、電池特性を評価した。 Electrical characteristics: A water slurry having a sample concentration of 53.3% by weight, CMC of 1% by weight as a binder and SBR latex of 2% by weight was prepared and coated on a copper foil using an applicator. After drying, uniaxial pressing was performed at 1 tonf / cm 2 (98 MPa), a 2 cm 2 electrode was punched out, and a 2032 coin battery was assembled in an argon atmosphere using metallic lithium as a counter electrode. Using this coin battery as a charge / discharge evaluation apparatus, battery characteristics were evaluated.

実施例1〜7
新日本石油(株)製ディレードコークスをロッドミルで粉砕後、950℃で30分焼成して表1に示す一次粒子平均粒径0.8〜20.5μmの結晶性炭素を調製した。これを流動床反応装置中で、CVD化学種にトルエンを用いて化学蒸着処理を行い、被覆量15質量%の炭素二次粒子を得た。
Examples 1-7
After pulverizing a delayed coke made by Nippon Oil Co., Ltd. with a rod mill, it was calcined at 950 ° C. for 30 minutes to prepare crystalline carbon having an average primary particle size of 0.8-20.5 μm shown in Table 1. This was subjected to chemical vapor deposition using toluene as a CVD chemical species in a fluidized bed reactor to obtain carbon secondary particles having a coating amount of 15% by mass.

この化学蒸着処理中、流動化を間欠的に行い、二次粒子化を促進した。この流動化の間欠操作は、5分の流動化操作と、1分の静置操作とを、10回繰返すことによって実施した。この二次粒子化された炭素粒子を、分級機[日本ニューマテック工業(株)製:商品名MDSセパレータ]を用いて細粒分と粗粒分とに分級した。粗粒分の平均粒子径は、実施例1〜7について、それぞれ分級前の1.1倍、1.1倍、1.2倍、1.2倍、1.2倍、1.2倍、1.3倍と何れも1.1倍以上であった。   During this chemical vapor deposition process, fluidization was intermittently performed to promote secondary particle formation. This intermittent operation of fluidization was carried out by repeating the fluidization operation for 5 minutes and the stationary operation for 1 minute 10 times. The secondary carbon particles were classified into fine particles and coarse particles using a classifier [manufactured by Nippon Pneumatics Co., Ltd .: trade name MDS separator]. The average particle size of the coarse particles is 1.1 times, 1.1 times, 1.2 times, 1.2 times, 1.2 times, 1.2 times, 1.2 times before classification for Examples 1 to 7, respectively. Both 1.3 times and 1.1 times or more.

この粗粒分の炭素二次粒子を試料として用いて上記の方法でコイン電池を作製し、充放電流量を0.2Cから20Cまで変化させて充放電レート特性を測定した。また、満充電したコイン電池において試料の7Li固体NMRを測定した。これら諸物性測定の結果を表1に示す。 Coin batteries were prepared by the above method using the coarse carbon secondary particles as samples, and the charge / discharge rate characteristics were measured by changing the charge / discharge flow rate from 0.2C to 20C. Further, 7 Li solid NMR of the sample was measured in a fully charged coin battery. Table 1 shows the results of these physical property measurements.

比較例1
諸物性測定の試料として、実施例1で分級された細粒分を用いた以外は、実施例1と同様にして試料の諸物性を測定した。その結果を表1に示す。この炭素粒子試料は、二次粒子化はされているが、二次粒子平均粒径が2.1μmと2.5μm未満であり、充放電初期効率が低い。
Comparative Example 1
Various physical properties of the sample were measured in the same manner as in Example 1 except that the fine particles classified in Example 1 were used as samples for measuring various physical properties. The results are shown in Table 1. Although this carbon particle sample is made into secondary particles, the secondary particle average particle diameter is 2.1 μm and less than 2.5 μm, and the initial charge / discharge efficiency is low.

比較例2
一次粒子として、実施例1の一次粒子を用い、この一次粒子に化学蒸着処理を施さず、この一次粒子をそのまま試料として用いた以外は、実施例1と同様にして試料の諸物性を測定した。その結果を表1に示す。この炭素粒子試料は、二次粒子化されておらず、平均粒径は0.5μmと2.5μm未満であり、充放電初期効率が低い。
Comparative Example 2
Various physical properties of the sample were measured in the same manner as in Example 1 except that the primary particles of Example 1 were used as the primary particles, the primary particles were not subjected to chemical vapor deposition, and the primary particles were used as they were as samples. . The results are shown in Table 1. This carbon particle sample is not made into secondary particles, the average particle diameter is 0.5 μm and less than 2.5 μm, and the initial charge / discharge efficiency is low.

比較例3
一次粒子として、平均粒径25.4μmの一次粒子を用い、この一次粒子に化学蒸着処理を施さず、この一次粒子をそのまま試料として用いた以外は、実施例1と同様にして試料の諸物性を測定した。その結果を表1に示す。この炭素粒子試料は、二次粒子化されておらず、また、一次粒子平均粒径が25.4μmと20μmを超えており、充電容量が低く、充放電初期効率も低い。
Comparative Example 3
Various physical properties of the sample were the same as in Example 1 except that primary particles having an average particle diameter of 25.4 μm were used as primary particles, the primary particles were not subjected to chemical vapor deposition, and the primary particles were used as they were as samples. Was measured. The results are shown in Table 1. This carbon particle sample is not made into secondary particles, and the average primary particle diameter exceeds 25.4 μm and 20 μm, the charge capacity is low, and the initial charge / discharge efficiency is also low.

比較例4
一次粒子として、平均粒径25.4μmの一次粒子を用い、この一次粒子に実施例1と同様にして化学蒸着処理を施し、分級機[日本ニューマテック工業(株)製:商品名MDSセパレータ]を用いて細粒分と粗粒分とに分級した。この分級された細粒分を諸物性測定の試料として用いた以外は、実施例1と同様にして試料の諸物性を測定した。その結果を表1に示す。この炭素粒子試料は、二次粒子化されて充放電初期効率は上がっているが、充電容量が低い。
Comparative Example 4
As primary particles, primary particles having an average particle diameter of 25.4 μm were used, and the primary particles were subjected to chemical vapor deposition in the same manner as in Example 1. A classifier [manufactured by Nippon Pneumatics Co., Ltd .: trade name MDS separator] Was used to classify into fine and coarse particles. Various physical properties of the sample were measured in the same manner as in Example 1 except that the classified fine particles were used as samples for measuring various physical properties. The results are shown in Table 1. This carbon particle sample is made into secondary particles and the initial charge / discharge efficiency is increased, but the charge capacity is low.

Figure 0004684581
実施例8
新日本石油(株)製ディレードコークスをロッドミルで粉砕後、マツボー製エルボージェット分級機で分級して平均粒径3.3μmのコークス粒子(炭素一次粒子)を調製した。該コークス粒子95質量部と三井鉱山(株)製コールタール5質量部(炭素分)とを三井鉱山(株)製ヘンシェルミキサーを用いて混合し、コークス粒子上にコールタールを塗布した。
Figure 0004684581
Example 8
New Japan Oil Co., Ltd. delayed coke was pulverized with a rod mill and then classified with a Matsubo elbow jet classifier to prepare coke particles (carbon primary particles) having an average particle size of 3.3 μm. 95 parts by mass of the coke particles and 5 parts by mass (carbon content) of coal tar manufactured by Mitsui Mining Co., Ltd. were mixed using a Henschel mixer manufactured by Mitsui Mining Co., Ltd., and coal tar was applied onto the coke particles.

この混合物を高さ50cm、直径25cmの縦型反応機に挿入し窒素ガスを流しながら1100℃まで昇温後、1時間保持して平均粒径5.5μmの炭素二次粒子を得た。この炭素二次粒子を、再びマツボー製エルボージェット分級機を用いて細粒分と粗粒分とに分級した。粗粒分の平均粒径は6.2μmであり、これは分級前の1.1倍であった。この粗粒分は、一次粒子が凝集した二次粒子を形成しており、一次粒子粒径は3.2μmであった。   This mixture was inserted into a vertical reactor having a height of 50 cm and a diameter of 25 cm, heated to 1100 ° C. while flowing nitrogen gas, and held for 1 hour to obtain carbon secondary particles having an average particle size of 5.5 μm. The carbon secondary particles were again classified into fine and coarse fractions using a Matsubo elbow jet classifier. The average particle size of the coarse particles was 6.2 μm, which was 1.1 times that before classification. The coarse particles formed secondary particles in which primary particles were aggregated, and the primary particle size was 3.2 μm.

この粗粒分の炭素二次粒子を試料として用い、実施例1と同様にして試料の諸物性を測定した。その結果を表2に示す。   Using the coarse carbon secondary particles as a sample, various physical properties of the sample were measured in the same manner as in Example 1. The results are shown in Table 2.

この炭素粒子試料は、一次粒子粒径、二次粒子粒径等は本発明の構成範囲内にあり、試料の充電容量、充放電初期効率等の諸物性は良好なものであった。   The carbon particle sample had a primary particle size, a secondary particle size, and the like within the constitutional range of the present invention, and various physical properties such as a charge capacity and charge / discharge initial efficiency of the sample were good.

Figure 0004684581
Figure 0004684581

CVD法による一次粒子の二次粒子化で得られる本発明の負極材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the negative electrode material of this invention obtained by making secondary particles into the primary particle by CVD method. コールタール等のバインダーを用いた混練造粒による一次粒子の二次粒子化で得られる本発明の負極材の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the negative electrode material of this invention obtained by making secondary particles into primary particles by kneading granulation using binders, such as coal tar.

符号の説明Explanation of symbols

2 一次粒子
4 蒸着炭素
6 空隙
22 一次粒子
24 結合炭素
26 空隙
2 Primary particles 4 Vapor deposited carbon 6 Voids 22 Primary particles 24 Bonded carbon 26 Voids

Claims (8)

平均粒子径が0.1〜20μmでXRD法による002格子定数が0.68〜0.70nmである結晶性炭素粒子と、前記結晶性炭素粒子間を結合する結合炭素とからなる平均粒子径が2.5〜40μmのリチウムイオン二次電池用負極材。 The average particle diameter is composed of crystalline carbon particles having an average particle diameter of 0.1 to 20 μm and a 002 lattice constant of 0.68 to 0.70 nm according to the XRD method, and bonded carbon bonding between the crystalline carbon particles. A negative electrode material for lithium ion secondary batteries of 2.5 to 40 μm. 負極材全体に対する結合炭素の割合が0.2〜30質量%である請求項1に記載のリチウムイオン二次電池用負極材。 2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the ratio of bonded carbon to the whole negative electrode material is 0.2 to 30 mass%. 満充電した負極材のLi−NMRスペクトルが、LiCl水溶液基準で10〜20ppmに一つのシグナルを有する請求項1に記載のリチウムイオン二次電池用負極材。 2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the 7 Li-NMR spectrum of the fully charged negative electrode material has one signal at 10 to 20 ppm based on the LiCl aqueous solution. 結晶性炭素粒子の炭素が光学的に異方性である請求項1に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the carbon of the crystalline carbon particles is optically anisotropic. 平均粒子径が0.1〜20μmでXRD法による002格子定数が0.68〜0.70nmである結晶性炭素粒子の表面に化学蒸着処理を施すリチウムイオン二次電池用負極材の製造方法であって、化学蒸着処理中、結晶性炭素粒子の流動化を間欠的に行って粒子を結合炭素で結合する事を特徴とする平均粒子径が2.5〜40μmのリチウムイオン二次電池用負極材の製造方法。 A method for producing a negative electrode material for a lithium ion secondary battery, in which the surface of crystalline carbon particles having an average particle diameter of 0.1 to 20 μm and a 002 lattice constant of 0.68 to 0.70 nm by XRD is subjected to chemical vapor deposition. A negative electrode for a lithium ion secondary battery having an average particle size of 2.5 to 40 μm , wherein the crystalline carbon particles are fluidized intermittently during chemical vapor deposition to bond the particles with bonded carbon. A method of manufacturing the material. 結晶性炭素粒子の流動化の間欠操作が、1〜10分の流動化操作と、1〜5分の静置操作とを、3回以上繰返す操作である請求項に記載のリチウムイオン二次電池用負極材の製造方法。 6. The lithium ion secondary according to claim 5 , wherein the intermittent operation of fluidizing the crystalline carbon particles is an operation of repeating the fluidization operation for 1 to 10 minutes and the stationary operation for 1 to 5 minutes three times or more. A method for producing a negative electrode material for a battery. 請求項に記載の製造方法で製造された負極材を分級して細粒分を除去し、平均粒子径を分級前の1.1倍以上にする請求項に記載のリチウムイオン二次電池用負極材の製造方法。 6. The lithium ion secondary battery according to claim 5 , wherein the negative electrode material produced by the production method according to claim 5 is classified to remove fine particles, and the average particle size is 1.1 times or more of that before classification. Manufacturing method for negative electrode material. 請求項1に記載の負極材を用いて形成したリチウムイオン二次電池。 A lithium ion secondary battery formed using the negative electrode material according to claim 1.
JP2004198816A 2004-07-06 2004-07-06 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery Expired - Fee Related JP4684581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198816A JP4684581B2 (en) 2004-07-06 2004-07-06 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004198816A JP4684581B2 (en) 2004-07-06 2004-07-06 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2006024374A JP2006024374A (en) 2006-01-26
JP4684581B2 true JP4684581B2 (en) 2011-05-18

Family

ID=35797499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198816A Expired - Fee Related JP4684581B2 (en) 2004-07-06 2004-07-06 Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP4684581B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2055679A4 (en) * 2006-07-10 2012-01-25 Sumitomo Chemical Co Lithium composite metal oxide
JP2008041653A (en) * 2006-07-10 2008-02-21 Sumitomo Chemical Co Ltd Lithium compound metal oxide
JP5277487B2 (en) * 2008-03-31 2013-08-28 イビデン株式会社 Graphite elastic body and method for producing the same
JP6343276B2 (en) * 2013-03-12 2018-06-13 日本カーボン株式会社 Negative electrode material and negative electrode for lithium ion secondary battery
JP6065713B2 (en) * 2013-03-28 2017-01-25 住友ベークライト株式会社 Negative electrode material for alkali metal ion secondary battery, negative electrode active material for alkali metal ion secondary battery, negative electrode for alkali metal ion secondary battery, and alkali metal ion secondary battery
CN105489893A (en) * 2015-10-28 2016-04-13 江西正拓新能源科技股份有限公司 Graphite anode material for lithium-ion battery and preparation method of graphite anode material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JPH1173963A (en) * 1997-08-28 1999-03-16 Mitsui Mining Co Ltd Composite material for lithium ion secondary battery negative electrode and its manufacture
JP2003173778A (en) * 2001-09-26 2003-06-20 Kawasaki Steel Corp Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012241A (en) * 1996-06-21 1998-01-16 Mitsui Mining Co Ltd Negative electrode material for lithium ion secondary battery
JPH1173963A (en) * 1997-08-28 1999-03-16 Mitsui Mining Co Ltd Composite material for lithium ion secondary battery negative electrode and its manufacture
JP2003173778A (en) * 2001-09-26 2003-06-20 Kawasaki Steel Corp Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2006024374A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
US6884545B2 (en) Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
JP6586105B2 (en) Negative electrode active material and method for producing the same
US9312532B2 (en) Negative electrode material for lithium ion secondary batteries, and method for producing same
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
CN107528053B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6301142B2 (en) Anode material for nonaqueous electrolyte secondary battery, method for producing anode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
WO2005098999A1 (en) Negative electrode material for nonacqueous electrolyte secondary battery of high input/output current, method for producing the same and battery employing negative electrode material
US6432583B1 (en) Anode material for lithium secondary battery, process for production thereof, and lithium secondary battery
JP5671110B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2009117240A (en) Anode carbon material, and lithium secondary cell equipped with same
JP2011076788A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery, and lithium ion secondary battery and electrochemical capacitor
KR20150073995A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
EP2768050A1 (en) Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
KR102128796B1 (en) Silicon Oxide, Making Method, Negative Electrode, Lithium Ion Secondary Battery, and Electrochemical Capacitor
JPH10189044A (en) Nonaqueous electrolytic secondary battery
JP2010251126A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode using the same, and nonaqueous electrolyte secondary battery
JPWO2016121711A1 (en) Method for producing graphite powder for negative electrode material of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014067680A (en) Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2000106182A (en) Negative electrode material for lithium secondary battery and manufacture thereof, and the lithium secondary battery
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP3406583B2 (en) Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
JP4684581B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2000090930A (en) Non-aqueous electrolyte secondary battery and manufacture of negative electrode thereof
JP6413007B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110209

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4684581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees