JP4650971B2 - Thin film solar cell backside sealing method - Google Patents

Thin film solar cell backside sealing method Download PDF

Info

Publication number
JP4650971B2
JP4650971B2 JP2000347919A JP2000347919A JP4650971B2 JP 4650971 B2 JP4650971 B2 JP 4650971B2 JP 2000347919 A JP2000347919 A JP 2000347919A JP 2000347919 A JP2000347919 A JP 2000347919A JP 4650971 B2 JP4650971 B2 JP 4650971B2
Authority
JP
Japan
Prior art keywords
back surface
thin film
sealing
bonding resin
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000347919A
Other languages
Japanese (ja)
Other versions
JP2002151712A (en
Inventor
将史 平石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2000347919A priority Critical patent/JP4650971B2/en
Publication of JP2002151712A publication Critical patent/JP2002151712A/en
Application granted granted Critical
Publication of JP4650971B2 publication Critical patent/JP4650971B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体薄膜太陽電池に関し、特に、薄膜太陽電池の裏面封止方法に関するものである。
【0002】
【従来の技術】
図4と図5は、薄膜太陽電池における従来の裏面封止方法を図解する模式的な断面部分図である。なお、本願の各図において、厚さ、長さ、および幅などは図面の明瞭化と簡略化のために適宜に変更されており、実際の寸法関係を表わしてはいない。また、各図において同一の参照符号は同一部分または相当する部分を表わしている。
【0003】
図4に示されているように、従来の薄膜太陽電池の製造においては、一般に厚さ4mm程度の透明なガラス基板1上に光電変換ユニット層2が形成される。光電変換ユニット層2は一般に数μm程度の非常に薄い厚さを有し、基板1上に順に積層された透明導電性酸化物の前面電極層、半導体光電変換層、および裏面金属電極層を含んでいる。さらに、1つの基板上に複数のサブモジュールを含む薄膜太陽電池では(特開2000−49369参照)、たとえば厚さ約0.2mm程度の銅箔などからなる電気的な内部配線5が配置される。この内部配線5と光電変換ユニット層2との間には、局所的な絶縁樹脂シート4が挿入される。このような絶縁シート4としては、たとえば厚さ約0.04mmのPVF(ポリフッ化ビニル)膜が用いられ得る。光電変換ユニット層2、絶縁樹脂シート4、および内部配線5のそれぞれの間には、第1と第2の局所的接合樹脂シート3aと3bが配置される。これらの接合樹脂シートとしては、たとえば厚さ約0.6mmで硬化剤を含むEVA(エチレン酢酸ビニル共重合体)シートが用いられ得る。さらに、内部配線5と光電変換ユニット層2の全領域を覆うように全域接合樹脂シート3cと複合保護フィルム6aが封止保護手段として重ねられる。全域接合樹脂シート3cも、局所的接合樹脂シート3a,3bと同様の材料が用いられ得る。
【0004】
こうして準備された図4の積層体は、真空ラミネータの熱板上に載せられ、そのラミネータは真空排気される。そして、接合樹脂シート3a,3b,3cの溶融後において、ラミネータ内のダイヤフラムによって複合保護フィルム6aが押圧される。そのとき、封止樹脂フィルム6aは柔軟性を有しているので、図5に示されているように、絶縁樹脂シート4と内部配線5が配置された近傍のわずかな凸部で少し湾曲してその凸部に馴染むことができる。
【0005】
この状態で、溶融した接合樹脂層3の硬化は、真空ラミネータ内で完全に行なわしめることも可能である。しかし、真空ラミネータは高価でありかつ同時に多数枚の薄膜太陽電池を処理できないので、接合樹脂層3が部分的に硬化した段階で薄膜太陽電池が真空ラミネータから取出され、接合樹脂層3の完全な硬化は複数枚の薄膜太陽電池を別途の硬化炉で同時に処理することによって行なわれるのが一般的である。
【0006】
なお、封止保護手段の形成のために真空ラミネータが利用される理由は、溶融させられた後に硬化させられる封止樹脂層3の境界や内部に気泡が混入することを防止するためである。
【0007】
【発明が解決しようとする課題】
図4と図5に示されているような従来の封止方法による薄膜太陽電池において、保護フィルム6aとしては、一般にアルミ箔をPVF膜でサンドイッチした複合フィルムが用いられる。ここで、アルミ箔がサンドイッチされているのは、水分の透過を効果的に阻止するためである。ところが、このアルミ箔をサンドイッチしているPVF膜は薄いので、場合によってピンホールや傷が発生し、太陽電池の裏面においてアルミ箔を介するリーク電流を生じることがある。また、水分の存在下においてこのようなリーク電流が流れれば、アルミ箔の腐食が進行することがある。
【0008】
このような従来技術における課題に鑑み、本発明は、より信頼性の高い薄膜太陽電池の裏面封止方法を提供することを目的としている。
【0009】
【課題を解決するための手段】
本発明の1つの態様による薄膜太陽電池の裏面封止方法においては、ガラス基板上に形成された薄膜光電変換ユニット層の裏面上に、局所的な接合樹脂シート、その上の不織布からなる絶縁シート、その上の内部電気配線用金属箔、および薄膜光電変換ユニット層の裏面全域を覆う全域接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、この積層体を真空ラミネータの熱板の上に載せて真空排気し、接合樹脂シートの溶融後においてラミネータ内のダイヤフラムによって封止ガラス板を押圧し、最終的に接合樹脂を硬化させることを特徴としている。不織布としては、ガラス繊維または合成繊維が好ましく用いられ得る。
【0010】
本発明のもう一つの態様による薄膜太陽電池の裏面封止方法においては、ガラス基板上に形成された薄膜光電変換ユニット層の裏面上に、両面が接合樹脂でコーティングされた局所的な絶縁樹脂シート、その上の内部電気配線用金属箔、および薄膜光電変換ユニット層の裏面全域を覆う全域接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、この積層体を真空ラミネータの熱板上に載せて真空排気し、接合樹脂の溶融後においてラミネータ内のダイヤフラムによって封止ガラス板を押圧し、最終的に接合樹脂を硬化させることを特徴としている。
【0011】
【発明の実施の形態】
アルミ箔をPVF膜でサンドイッチした複合保護フィルム6aを利用して薄膜太陽電池の裏面を封止する従来の方法における前述の課題に鑑み、本発明者は、その複合保護フィルム6aの代わりに厚さ3〜4mm程度の保護ガラス板を利用する封止方法を検討した。なぜならば、ガラス板は複合保護フィルム6aに比べてはるかに丈夫であり、水分の透過に対しても優れた阻止能力を有しているからである。
【0012】
そこで本発明者は、まず、模式的な断面部分図である図1に図解されているような薄膜太陽電池の裏面封止方法を試みた。この図1の封止方法においては、複合保護フィルム6aの代わりに厚さ3mmの封止ガラス板6bが用いられたことのみにおいて、図4の方法と異なっていた。
【0013】
すなわち、図1の場合において、厚さ4mmのガラス基板1上に形成された厚さ数μmの薄膜光電変換ユニット層2上に、厚さ0.6mmの第1の局所的接合EVAシート3a、厚さ0.04mmの絶縁PVFシート4、厚さ0.6mmの第2の局所的接合EVAシート3b、厚さ0.2mmの内部配線用銅箔5、厚さ0.6mmの全域接合EVAシート3c、そして保護フィルム6aに代わる保護ガラス板6bが順次に積層された。
【0014】
ところが、薄膜太陽電池の裏面封止のために保護フィルム6aの代わりに保護ガラス板6bを利用した場合には、別の付随的な問題が生じることが判明した。これは、保護ガラス板6bが保護フィルム6aに比べて剛性が高いことから生じる問題である。
【0015】
すなわち、図4の場合と同様に真空ラミネータを利用して図1の積層体を封止した場合、封止ガラス板6bは、複合保護フィルム6aに比べて剛性が高いので、第1と第2の局所的接合樹脂シート3aと3bとともに絶縁シート4と内部配線5が配置されたわずかな凸部に馴染んで湾曲することが困難である。その結果として、図2に示されているように、わずかな凸部を形成する絶縁シート4と内部配線5との近傍において、硬化された接合樹脂層3中に気泡7が残留しやすくなることがわかった。
【0016】
そこで本発明者は、図1において各々が比較的大きな厚さを有する第1と第2の局所的接合EVAシート3aと3bを用いることなく、絶縁PVFシートの代わりに厚さ0.08mmの絶縁PET(ポリエチレンテレフタレート)シート4を用いて薄膜太陽電池の裏面封止を試みた。その結果、図3に示されているように、絶縁シート4と内部配線5との配置に伴うわずかな凸状態が低減され、その凸部近傍であっても接合樹脂層3中に残留気泡は観察されなかった。しかし、この場合には、薄膜光電変換ユニット層2、絶縁シート4、および内部配線用金属箔のそれぞれの間に接合樹脂3が含浸せず、それぞれの間の接合が達成されなくて不安定になるという問題が生じた。
【0017】
上述のように従来の封止複合保護フィルム6aの代わりに封止保護ガラス板6bを用いることに伴って生ずる付随的な問題に鑑みて、本発明者がさらに検討した結果、以下のような工夫を施すことによってそれらの付随的問題をも解消し得ることを見出した。
【0018】
まず本発明者は、第1の工夫として、図1において第1の局所的接合樹脂シート3aとして厚さ0.4mmのEVAシートを用いるとともに、絶縁シート4として厚さ0.2mmのガラス繊維不織布が用いられた。そして、第2の局所的接合樹脂シート3bが省略された。
【0019】
このような工夫を施した積層体から真空ラミネータを利用して裏面封止された薄膜太陽電池を作製したところ、図3に示されているように、絶縁シート4と内部配線5との配置に伴うわずかな凸状態が低減され、その凸部近傍であっても接合樹脂層3中に残留気泡は観察されなかった。しかも、この場合には、第1の局所的接合EVAシート3aが溶融したときにガラス繊維不織布4内に含浸し、その局所的EVAシート3aの厚さの影響が低減するとともに、薄膜光電変換ユニット層2と不織布絶縁シート4との間のみならず不織布絶縁シート4と金属箔5との間の安定な接合をも実現することができた。
【0020】
第2の工夫としては、図1において絶縁シート4として両面がEVAコーティングされたPET絶縁シートが用いられ、それは0.2mmの厚さを有していた。そして、第1と第2の局所的接合樹脂シート3aと3bが省略された。
【0021】
このような第2の工夫を施した積層体から真空ラミネータを利用して裏面封止された薄膜太陽電池においても、図3に示されているように、絶縁シート4と内部配線5との配置に伴うわずかな凸状態が低減され、その凸部近傍であっても接合樹脂層3中に残留気泡は観察されなかった。しかも、この場合には、PET絶縁シート4の両面がEVAによってコーティングされていたので、薄膜光電変換ユニット層2と絶縁シート4との間のみならずその絶縁シート4と金属箔5との間の安定な接合をも実現することができた。
【0022】
なお、上述の第1の工夫においては不織布4としてガラス不織布を用いた例が説明されたが、その他の合成繊維の不織布を用いても同様な効果を得ることができることは言うまでもない。
【0023】
また、以上において接合樹脂シートとして硬化剤を含むEVAシートを用いた例が説明されたが、たとえば硬化剤を含むPVB(ポリビニルブチラール)シートのように他の適当な接合樹脂シートをも用いることができる。
【0024】
さらに、上述の局所的接合シートの大きさは、望まれる場合には、光電変換ユニット層の裏面全域を覆う大きさであってもよいことは言うまでもない。
【0025】
【発明の効果】
以上のように、本発明によれば、従来に比べて信頼性の高い薄膜太陽電池の裏面封止方法を提供することができる。
【図面の簡単な説明】
【図1】 保護ガラス板を用いて薄膜太陽電池の裏面を封止する方法を図解する模式的な断面部分図である。
【図2】 図1に示された積層体を真空ラミネータを用いて封止した結果の一例を示す模式的な断面部分図である。
【図3】 図1中の局所的接合樹脂シート3aと3bの少なくとも一方を省略して薄膜太陽電池の裏面を封止した結果を示す模式的な断面部分図である。
【図4】 従来の薄膜太陽電池の裏面封止方法を図解する模式的な断面部分図である。
【図5】 図4に示された積層体を真空ラミネータで封止した結果を示す模式的な断面部分図である。
【符号の説明】
1 ガラス基板、2 光電変換ユニット層、3 接合樹脂層、3a,3b 局所的接合樹脂シート、3c 全域接合樹脂シート、4 局所的絶縁シート、5 電気配線用金属箔、6a 複合保護フィルム、6b 保護ガラス板。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor thin film solar cell, and more particularly to a back surface sealing method for a thin film solar cell.
[0002]
[Prior art]
4 and 5 are schematic sectional partial views illustrating a conventional back surface sealing method in a thin film solar cell. In each drawing of the present application, the thickness, length, width, and the like are appropriately changed for clarity and simplification of the drawings, and do not represent actual dimensional relationships. Moreover, in each figure, the same referential mark represents the same part or the corresponding part.
[0003]
As shown in FIG. 4, in the manufacture of a conventional thin film solar cell, a photoelectric conversion unit layer 2 is generally formed on a transparent glass substrate 1 having a thickness of about 4 mm. The photoelectric conversion unit layer 2 generally has a very thin thickness of about several μm, and includes a front electrode layer of a transparent conductive oxide, a semiconductor photoelectric conversion layer, and a back metal electrode layer that are sequentially stacked on the substrate 1. It is out. Furthermore, in a thin film solar cell including a plurality of submodules on one substrate (see Japanese Patent Laid-Open No. 2000-49369), an electrical internal wiring 5 made of, for example, a copper foil having a thickness of about 0.2 mm is disposed. . A local insulating resin sheet 4 is inserted between the internal wiring 5 and the photoelectric conversion unit layer 2. As such an insulating sheet 4, for example, a PVF (polyvinyl fluoride) film having a thickness of about 0.04 mm can be used. Between each of the photoelectric conversion unit layer 2, the insulating resin sheet 4, and the internal wiring 5, the first and second local bonding resin sheets 3 a and 3 b are disposed. As these bonding resin sheets, for example, EVA (ethylene vinyl acetate copolymer) sheets having a thickness of about 0.6 mm and containing a curing agent can be used. Furthermore, the whole area bonding resin sheet 3c and the composite protective film 6a are overlapped as sealing protection means so as to cover the entire area of the internal wiring 5 and the photoelectric conversion unit layer 2. The same material as the locally bonded resin sheets 3a and 3b can be used for the entire bonded resin sheet 3c.
[0004]
The laminated body of FIG. 4 prepared in this way is placed on a hot plate of a vacuum laminator, and the laminator is evacuated. Then, after the bonding resin sheets 3a, 3b, 3c are melted, the composite protective film 6a is pressed by the diaphragm in the laminator. At that time, since the sealing resin film 6a has flexibility, as shown in FIG. 5, the sealing resin film 6a is slightly curved at a slight convex portion in the vicinity where the insulating resin sheet 4 and the internal wiring 5 are arranged. Can adapt to the convex part of the lever.
[0005]
In this state, the molten bonding resin layer 3 can be completely cured in a vacuum laminator. However, since the vacuum laminator is expensive and cannot process a large number of thin film solar cells at the same time, the thin film solar cell is taken out of the vacuum laminator when the bonding resin layer 3 is partially cured, so that the bonding resin layer 3 is completely formed. Curing is generally performed by simultaneously processing a plurality of thin film solar cells in a separate curing furnace.
[0006]
The reason why the vacuum laminator is used for forming the sealing protection means is to prevent air bubbles from being mixed into the boundary or inside of the sealing resin layer 3 that is cured after being melted.
[0007]
[Problems to be solved by the invention]
In the thin film solar cell by the conventional sealing method as shown in FIGS. 4 and 5, a composite film in which an aluminum foil is sandwiched between PVF films is generally used as the protective film 6a. Here, the reason why the aluminum foil is sandwiched is to effectively prevent the permeation of moisture. However, since the PVF film sandwiching the aluminum foil is thin, pinholes and scratches may occur in some cases, and a leakage current through the aluminum foil may occur on the back surface of the solar cell. Moreover, if such a leakage current flows in the presence of moisture, corrosion of the aluminum foil may proceed.
[0008]
In view of such problems in the conventional technology, an object of the present invention is to provide a more reliable back surface sealing method for a thin film solar cell.
[0009]
[Means for Solving the Problems]
In the back surface sealing method of a thin film solar cell according to one aspect of the present invention, an insulating sheet comprising a local bonding resin sheet and a non-woven fabric thereon on a back surface of a thin film photoelectric conversion unit layer formed on a glass substrate A laminated body in which a metal foil for internal electrical wiring thereon and a whole area bonding resin sheet covering the entire back surface of the thin film photoelectric conversion unit layer and a sealing glass plate are sequentially laminated, and this laminated body is a hot plate of a vacuum laminator It is characterized in that the sealing glass plate is pressed by a diaphragm in a laminator after the bonding resin sheet is melted, and finally the bonding resin is cured. As the nonwoven fabric, glass fibers or synthetic fibers can be preferably used.
[0010]
In the back surface sealing method of a thin film solar cell according to another aspect of the present invention, a local insulating resin sheet having both surfaces coated with a bonding resin on the back surface of a thin film photoelectric conversion unit layer formed on a glass substrate. A laminated body in which a metal foil for internal electrical wiring thereon and a whole area bonding resin sheet covering the entire back surface of the thin film photoelectric conversion unit layer and a sealing glass plate are sequentially laminated, and this laminated body is a hot plate of a vacuum laminator It is characterized in that it is placed on top and evacuated, and after the bonding resin is melted, the sealing glass plate is pressed by a diaphragm in a laminator to finally cure the bonding resin.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
In view of the above-mentioned problem in the conventional method of sealing the back surface of a thin-film solar cell using a composite protective film 6a in which an aluminum foil is sandwiched with a PVF film, the present inventor has a thickness instead of the composite protective film 6a. A sealing method using a protective glass plate of about 3 to 4 mm was examined. This is because the glass plate is much stronger than the composite protective film 6a and has an excellent ability to block moisture permeation.
[0012]
Therefore, the present inventor first tried a back surface sealing method of a thin film solar cell as illustrated in FIG. 1 which is a schematic partial sectional view. The sealing method of FIG. 1 differs from the method of FIG. 4 only in that a sealing glass plate 6b having a thickness of 3 mm is used instead of the composite protective film 6a.
[0013]
That is, in the case of FIG. 1, on the thin film photoelectric conversion unit layer 2 having a thickness of several μm formed on the glass substrate 1 having a thickness of 4 mm, the first locally bonded EVA sheet 3a having a thickness of 0.6 mm, Insulating PVF sheet 4 having a thickness of 0.04 mm, second locally bonded EVA sheet 3 b having a thickness of 0.6 mm, copper foil 5 for internal wiring having a thickness of 0.2 mm, and EVA sheet having a total thickness of 0.6 mm. 3c and a protective glass plate 6b instead of the protective film 6a were sequentially laminated.
[0014]
However, it has been found that when the protective glass plate 6b is used instead of the protective film 6a for sealing the back surface of the thin film solar cell, another incidental problem occurs. This is a problem caused by the fact that the protective glass plate 6b has higher rigidity than the protective film 6a.
[0015]
That is, when the laminated body of FIG. 1 is sealed using a vacuum laminator as in the case of FIG. 4, the sealing glass plate 6b has higher rigidity than the composite protective film 6a. It is difficult to bend and be familiar with the slight convex portions where the insulating sheet 4 and the internal wiring 5 are disposed together with the locally bonded resin sheets 3a and 3b. As a result, as shown in FIG. 2, bubbles 7 are likely to remain in the cured bonding resin layer 3 in the vicinity of the insulating sheet 4 and the internal wiring 5 forming a slight convex portion. I understood.
[0016]
Therefore, the present inventor does not use the first and second locally bonded EVA sheets 3a and 3b each having a relatively large thickness in FIG. 1, but instead of the insulating PVF sheet, the insulating film has a thickness of 0.08 mm. Using PET (polyethylene terephthalate) sheet 4, an attempt was made to seal the back surface of the thin film solar cell. As a result, as shown in FIG. 3, a slight convex state associated with the arrangement of the insulating sheet 4 and the internal wiring 5 is reduced, and residual bubbles are present in the bonding resin layer 3 even in the vicinity of the convex portion. Not observed. However, in this case, the bonding resin 3 is not impregnated between each of the thin film photoelectric conversion unit layer 2, the insulating sheet 4, and the metal foil for internal wiring, and bonding between the respective layers is not achieved and is unstable. The problem of becoming.
[0017]
As described above, as a result of further examination by the inventor in view of incidental problems caused by using the sealing protective glass plate 6b instead of the conventional sealing composite protective film 6a, the following contrivances are obtained. It was found that these incidental problems can also be solved by applying.
[0018]
First, as a first device, the inventor uses an EVA sheet having a thickness of 0.4 mm as the first local bonding resin sheet 3 a in FIG. 1 and a glass fiber nonwoven fabric having a thickness of 0.2 mm as the insulating sheet 4. Was used. And the 2nd local joining resin sheet 3b was abbreviate | omitted.
[0019]
When a thin-film solar cell whose back surface was sealed using a vacuum laminator was produced from the laminated body thus devised, as shown in FIG. 3, the insulating sheet 4 and the internal wiring 5 were arranged. The slight convex state involved was reduced, and no residual bubbles were observed in the bonding resin layer 3 even in the vicinity of the convex portion. In addition, in this case, when the first locally bonded EVA sheet 3a is melted, the glass fiber nonwoven fabric 4 is impregnated, and the influence of the thickness of the locally EVA sheet 3a is reduced. Stable bonding not only between the layer 2 and the nonwoven fabric insulating sheet 4 but also between the nonwoven fabric insulating sheet 4 and the metal foil 5 could be realized.
[0020]
As a second contrivance, a PET insulating sheet coated on both sides with EVA as the insulating sheet 4 in FIG. 1 was used, and it had a thickness of 0.2 mm. And the 1st and 2nd local joining resin sheets 3a and 3b were abbreviate | omitted.
[0021]
Even in a thin film solar cell whose back surface is sealed by using a vacuum laminator from the laminate having such a second device, the arrangement of the insulating sheet 4 and the internal wiring 5 is arranged as shown in FIG. The slight convex state accompanying the reduction was reduced, and no residual bubbles were observed in the bonding resin layer 3 even in the vicinity of the convex portion. Moreover, in this case, since both surfaces of the PET insulating sheet 4 are coated with EVA, not only between the thin film photoelectric conversion unit layer 2 and the insulating sheet 4 but also between the insulating sheet 4 and the metal foil 5. Stable bonding was also realized.
[0022]
In addition, although the example which used the glass nonwoven fabric as the nonwoven fabric 4 was demonstrated in the above-mentioned 1st device, it cannot be overemphasized that the same effect can be acquired even if it uses the nonwoven fabric of another synthetic fiber.
[0023]
Moreover, although the example which used the EVA sheet | seat containing a hardening | curing agent as the joining resin sheet was demonstrated above, using other suitable joining resin sheets like a PVB (polyvinyl butyral) sheet | seat containing a hardening | curing agent is used, for example. it can.
[0024]
Furthermore, it goes without saying that the size of the above-described local bonding sheet may be a size that covers the entire back surface of the photoelectric conversion unit layer, if desired.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a back surface sealing method for a thin film solar cell that is more reliable than the conventional one.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional partial view illustrating a method of sealing a back surface of a thin film solar cell using a protective glass plate.
2 is a schematic partial sectional view showing an example of a result of sealing the laminated body shown in FIG. 1 using a vacuum laminator.
3 is a schematic partial cross-sectional view showing a result of sealing a back surface of a thin film solar cell by omitting at least one of the locally bonded resin sheets 3a and 3b in FIG. 1. FIG.
FIG. 4 is a schematic partial sectional view illustrating a method for sealing the back surface of a conventional thin film solar cell.
FIG. 5 is a schematic partial sectional view showing a result of sealing the laminated body shown in FIG. 4 with a vacuum laminator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Glass substrate, 2 Photoelectric conversion unit layer, 3 Bonding resin layer, 3a, 3b Local bonding resin sheet, 3c Whole area bonding resin sheet, 4 Local insulation sheet, 5 Metal foil for electrical wiring, 6a Composite protective film, 6b Protection Glass plate.

Claims (3)

ガラス基板上に形成された薄膜光電変換ユニット層の裏面上に、局所的な接合樹脂シート、その上の不織布からなる絶縁シート、その上の内部電気配線用金属箔、および前記薄膜光電変換ユニット層の裏面全域を覆う全域接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、
前記積層体を真空ラミネータの熱板の上に載せて真空排気し、
前記接合樹脂シートの溶融後において前記ラミネータ内のダイヤフラムによって前記封止ガラス板を押圧し、
最終的に前記接合樹脂を硬化させることを特徴とする薄膜太陽電池の裏面封止方法。
On the back surface of the thin film photoelectric conversion unit layer formed on the glass substrate, a local bonding resin sheet, an insulating sheet made of non-woven fabric thereon, a metal foil for internal electrical wiring thereon, and the thin film photoelectric conversion unit layer Prepare a laminate in which the whole area bonded resin sheet and the sealing glass plate that cover the entire back surface of
The laminate is placed on a hot plate of a vacuum laminator and evacuated,
After melting the bonding resin sheet, press the sealing glass plate with a diaphragm in the laminator,
A method for sealing the back surface of a thin-film solar cell, wherein the bonding resin is finally cured.
前記不織布はガラス繊維または合成繊維からなる請求項1に記載の薄膜太陽電池の裏面封止方法。The method for sealing a back surface of a thin-film solar cell according to claim 1, wherein the nonwoven fabric is made of glass fiber or synthetic fiber. ガラス基板上に形成された薄膜光電変換ユニット層の裏面上に、両面が接合樹脂でコーティングされた局所的な絶縁樹脂シート、その上の内部電気配線用金属箔、および前記薄膜光電変換ユニット層の裏面全域を覆う全域接合樹脂シートと封止ガラス板を順に重ねた積層体を用意し、
前記積層体を真空ラミネータの熱板上に載せて真空排気し、
前記接合樹脂の溶融後において前記ラミネータ内のダイヤフラムによって前記封止ガラス板を押圧し、
最終的に前記接合樹脂を硬化させることを特徴とする薄膜太陽電池の裏面封止方法。
On the back surface of the thin film photoelectric conversion unit layer formed on the glass substrate, a local insulating resin sheet coated on both sides with a bonding resin, a metal foil for internal electric wiring thereon, and the thin film photoelectric conversion unit layer Prepare a laminate in which the whole area bonding resin sheet covering the entire back surface and the sealing glass plate are stacked in order,
The laminate is placed on a hot plate of a vacuum laminator and evacuated,
After melting the bonding resin, press the sealing glass plate with a diaphragm in the laminator,
A method for sealing the back surface of a thin-film solar cell, wherein the bonding resin is finally cured.
JP2000347919A 2000-11-15 2000-11-15 Thin film solar cell backside sealing method Expired - Lifetime JP4650971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000347919A JP4650971B2 (en) 2000-11-15 2000-11-15 Thin film solar cell backside sealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000347919A JP4650971B2 (en) 2000-11-15 2000-11-15 Thin film solar cell backside sealing method

Publications (2)

Publication Number Publication Date
JP2002151712A JP2002151712A (en) 2002-05-24
JP4650971B2 true JP4650971B2 (en) 2011-03-16

Family

ID=18821577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000347919A Expired - Lifetime JP4650971B2 (en) 2000-11-15 2000-11-15 Thin film solar cell backside sealing method

Country Status (1)

Country Link
JP (1) JP4650971B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI487124B (en) * 2006-08-25 2015-06-01 Sanyo Electric Co Solar battery module and solar battery module manufacturing method
TW201349529A (en) * 2012-03-30 2013-12-01 Toppan Printing Co Ltd Back contact solar cell module
JP2014090160A (en) * 2012-10-04 2014-05-15 Toppan Printing Co Ltd Solar cell module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883923A (en) * 1994-09-13 1996-03-26 Kanegafuchi Chem Ind Co Ltd Solar cell module
JPH09135035A (en) * 1995-11-08 1997-05-20 Kanegafuchi Chem Ind Co Ltd Manufacturing method for semiconductor device
JPH11238897A (en) * 1998-02-23 1999-08-31 Canon Inc Solar cell module and manufacture thereof
JPH11307795A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883923A (en) * 1994-09-13 1996-03-26 Kanegafuchi Chem Ind Co Ltd Solar cell module
JPH09135035A (en) * 1995-11-08 1997-05-20 Kanegafuchi Chem Ind Co Ltd Manufacturing method for semiconductor device
JPH11238897A (en) * 1998-02-23 1999-08-31 Canon Inc Solar cell module and manufacture thereof
JPH11307795A (en) * 1998-04-22 1999-11-05 Sanyo Electric Co Ltd Solar cell module

Also Published As

Publication number Publication date
JP2002151712A (en) 2002-05-24

Similar Documents

Publication Publication Date Title
US4067764A (en) Method of manufacture of solar cell panel
US6207271B1 (en) Packaging material for hermetically sealed batteries
JPH0992867A (en) Solar cell module manufacturing method
TWI605606B (en) Solar battery module
KR20120029396A (en) Hermetic electrical package
JP4101611B2 (en) Thin film solar cell
JP2002083978A (en) Method of manufacturing solar battery module
JP4459424B2 (en) Method for manufacturing thin film solar cell
JP2002134768A (en) Solar cell module and its producing method
JP4650971B2 (en) Thin film solar cell backside sealing method
EP1059675A2 (en) Method of encapsulating a photovoltaic module by an encapsulating material and the photovoltaic module
JP2001077387A (en) Solar battery module
WO2013046389A1 (en) Solar cell, solar cell module, and method for manufacturing solar cell module
JP2003051291A (en) Packaging material for cell, and the cell using the same
JP3649912B2 (en) Method for manufacturing solar cell module
JP2004311571A (en) Method of manufacturing solar cell module
JP2001060706A (en) Method for manufacture of solar cell module
JPH0883923A (en) Solar cell module
JP2004179397A (en) Method for manufacturing solar cell module
EP3203532A1 (en) Solar cell module and method for manufacturing solar cell module
JPH09172192A (en) Manufacture of solar battery module
JP4534243B2 (en) Manufacturing method of solar cell module
JP2007311651A (en) Apparatus and method for vacuum laminate
CN109417203B (en) Packaging seal structure, preparation method thereof and flexible packaging battery
JP2013211286A (en) Wiring board, solar cell module, and manufacturing method of wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080917

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101210

R150 Certificate of patent or registration of utility model

Ref document number: 4650971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term