JP4650373B2 - Continuous operation method of long fiber filter - Google Patents

Continuous operation method of long fiber filter Download PDF

Info

Publication number
JP4650373B2
JP4650373B2 JP2006224104A JP2006224104A JP4650373B2 JP 4650373 B2 JP4650373 B2 JP 4650373B2 JP 2006224104 A JP2006224104 A JP 2006224104A JP 2006224104 A JP2006224104 A JP 2006224104A JP 4650373 B2 JP4650373 B2 JP 4650373B2
Authority
JP
Japan
Prior art keywords
water
filter medium
cleaning
air
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006224104A
Other languages
Japanese (ja)
Other versions
JP2008043916A (en
Inventor
富士夫 小出
Original Assignee
日本錬水株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本錬水株式会社 filed Critical 日本錬水株式会社
Priority to JP2006224104A priority Critical patent/JP4650373B2/en
Publication of JP2008043916A publication Critical patent/JP2008043916A/en
Application granted granted Critical
Publication of JP4650373B2 publication Critical patent/JP4650373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

本発明は長繊維濾過装置の連続運転方法に関する。   The present invention relates to a continuous operation method of a long fiber filtration device.

長繊維濾過装置は、塔内に長繊維束の濾材を収容し、下向流形式で原水を供給し且つ上向流形式で洗浄水を供給し、原水供給時には濾材が圧密状態を形成し且つ洗浄水供給時には圧密状態を解除し得る構造を有し、原水中の濁質の除去に有効であり、濁質除去装置と呼ばれることもある(特許文献1)。   The long fiber filtration device accommodates a filter medium of a long fiber bundle in a tower, supplies raw water in a downward flow format and supplies wash water in an upward flow format, and when the raw water is supplied, the filter media forms a compacted state and It has a structure that can release the compacted state when supplying wash water, is effective in removing turbidity in raw water, and is sometimes called a turbidity removal device (Patent Document 1).

従来、長繊維濾過装置(濁質除去装)の運転方法として、洗浄操作に関し、1回の洗浄操作で長時間に亘って洗浄水を供給するのではなく、塔内の貯留水の抜き出し操作によって区分される複数回の洗浄操作を行い、しかも、洗浄水と共に空気を供給して洗浄効果を高め、通常は3回の洗浄操作を行う様に改良された連続運転方法が提案されている(特許文献1)。
特開平2003−53113号公報
Conventionally, as an operation method of the long fiber filtration device (turbidity removal device), with respect to the washing operation, the washing water is not supplied for a long time by one washing operation, but by the operation of extracting the stored water in the tower. An improved continuous operation method has been proposed in which multiple cleaning operations are performed and air is supplied together with cleaning water to enhance the cleaning effect, and usually three cleaning operations are performed (patent) Reference 1).
Japanese Patent Laid-Open No. 2003-53113

ところで、濁質の除去に供する原水(表流水、河川水、地下水、それらの混合水)は、不純物として、フミン酸、フルボ酸、それらの塩類などの有機物含有し、それらは、濾材に滑り成分として付着し、圧力損失の増大などの問題を惹起する。そして、上記の様な付着成分は、通常の物理的洗浄では除去することが困難である。 Meanwhile, raw water subjected to the removal of suspended solid (surface water, river water, ground water, a mixture thereof water), as an impurity, containing organic substances such as humic acids, fulvic acids, their salts, they slip in the filter medium It adheres as a component and causes problems such as an increase in pressure loss. And it is difficult to remove the adhering components as described above by ordinary physical cleaning.

本発明は、上記実情に鑑みなされたものであり、その目的は、洗浄操作を改良することにより、比較的少量の洗浄水で効率的な洗浄が行える様に改良された長繊維濾過装置の連続運転方法を提供することにある。   The present invention has been made in view of the above circumstances, and the purpose of the present invention is to provide a continuous continuous fiber filtration device improved so that efficient cleaning can be performed with a relatively small amount of cleaning water by improving the cleaning operation. It is to provide a driving method.

すなわち、本発明の要旨は、塔内に長繊維束の濾材を収容し、下向流形式で原水を供給し且つ上向流形式で洗浄水を供給し、原水供給時には濾材が圧密状態を形成し且つ洗浄水供給時には圧密状態を解除し得る構造の長繊維濾過装置の運転方法であって、原水処理運転と以下の操作(i)〜(v)を順次に行う洗浄運転とを繰り返し行なうことを特徴とする長繊維濾過装置の連続運転方法に存する。   That is, the gist of the present invention is that the filter medium of the long fiber bundle is accommodated in the tower, the raw water is supplied in the downward flow format and the washing water is supplied in the upward flow format, and the filter media forms a consolidated state when the raw water is supplied. In addition, the operation method of the long fiber filtration device having a structure capable of releasing the compacted state when supplying the cleaning water, and repeatedly performing the raw water treatment operation and the cleaning operation in which the following operations (i) to (v) are sequentially performed. In the continuous operation method of the long fiber filtration apparatus characterized by these.

(i)洗浄水を供給して濾材の圧密状態を解除する。
(ii)洗浄水および空気を供給して濾材に補足された濁質の90重量%以上を除去する。
(iii)貯留水の抜き出しを行う。
(iv)洗浄水およびアルカリ成分と空気を供給し、濃度0.01〜1重量%のアルカリ成分含有洗浄水で少なくとも塔内の濾材全体が浸漬された後に上記の供給を停止し、1分以上放置して濾材に付着した有機物を溶解する。
(v)洗浄水および空気を供給してアルカリ成分を除去する。
(I) Supply wash water to release the compacted state of the filter medium.
(Ii) Supply washing water and air to remove 90% by weight or more of the suspended matter trapped in the filter medium.
(Iii) Drain the stored water.
(Iv) Supplying wash water, an alkali component and air, and at least the entire filter medium in the tower is immersed in the alkali component-containing wash water having a concentration of 0.01 to 1% by weight. Leave it to dissolve the organic matter adhering to the filter medium.
(V) Supply washing water and air to remove alkali components.

本発明に係る長繊維濾過装置の連続運転方法によれば、圧力損失の増大を軽減して長期間に亘って安定した連続運転ができる。   According to the continuous operation method of the long fiber filtration device according to the present invention, an increase in pressure loss can be reduced and stable continuous operation can be performed over a long period of time.

以下、本発明を詳細に説明する。本発明で使用する長繊維濾過装置の構造は、塔内に長繊維束の濾材を収容し、下向流形式で原水を供給し且つ上向流形式で洗浄水を供給し、原水供給時には濾材が圧密状態を形成し且つ洗浄水供給時には圧密状態を解除し得る構造を有する限り、如何なる構造であってもよい。   Hereinafter, the present invention will be described in detail. The structure of the long fiber filtration device used in the present invention is that the filter medium of the long fiber bundle is accommodated in the tower, the raw water is supplied in the downward flow format, and the cleaning water is supplied in the upward flow format. Any structure may be used as long as it has a structure capable of forming a consolidated state and releasing the consolidated state when supplying cleaning water.

図1及び図2は本発明で好適に使用し得る長繊維濾過装置の一例の模式的説明図であり、分図(a)は原水処理運転状態の説明図、分図(b)〜(d)は洗浄運転状態の説明図である。この長繊維濾過装置は、基本的には、前述の先行技術(特開2003−53113号公報)に記載の濁質除去装置と同一である。   FIG.1 and FIG.2 is typical explanatory drawing of an example of the long-fiber filtration apparatus which can be used suitably by this invention, A fraction (a) is explanatory drawing of a raw-water-treatment operation state, Minute (b)-(d) ) Is an explanatory diagram of a cleaning operation state. This long fiber filtration device is basically the same as the turbidity removal device described in the above-mentioned prior art (Japanese Patent Laid-Open No. 2003-53113).

上記の長繊維濾過装置は次の様に構成されている。すなわち、塔(1)の頂部にはバルブ付の原水供給配管と洗浄廃水排出配管とが設けられ、塔(1)の底部には、バルブ付の処理水排出配管と洗浄水供給配管、バルブ付の空気供給配管、バルブ付のドレーン配管およびバルブ付のアルカリ水供給配管が設けられ、塔内部には上部支持体(2)と下部支持体(3)とが配置され、上部支持体(2)と下部支持体(3)との間には芯紐および当該芯紐の周側に突設された濁質捕捉材から成る複数の濾材(4)が当該濾材の端部の上部吊り紐(7)と下部吊り紐(8)とによって懸垂状態で固定され、濾材(4)の芯紐ならびに上部吊り紐(7)及び下部吊り紐(8)は流水方向に沿って屈曲変形可能に構成され、上部支持体(2)と下部支持体(3)との間の距離(LA)、濾材(4)の長さ(LB)、上部吊り紐(7)の長さ(Lb1)、下部吊り紐(8)の長さ(Lb2)の関係が以下に規定する式(1)〜(3)を満足する。   The above-mentioned long fiber filtration device is configured as follows. That is, a raw water supply pipe with a valve and a cleaning waste water discharge pipe are provided at the top of the tower (1), and a treated water discharge pipe with a valve, a cleaning water supply pipe and a valve are provided at the bottom of the tower (1). Air supply pipe, a drain pipe with a valve and an alkaline water supply pipe with a valve are provided, and an upper support (2) and a lower support (3) are arranged inside the tower, and an upper support (2) A plurality of filter media (4) made of a core string and a turbidity trapping material projecting from the periphery of the core string are provided between the upper support string (7) and the lower support (3). ) And the lower suspension string (8) are fixed in a suspended state, and the core string of the filter medium (4) and the upper suspension string (7) and the lower suspension string (8) are configured to be bent and deformable along the flowing water direction. The distance (LA) between the upper support (2) and the lower support (3), the length of the filter medium (4) ( B), the length of the upper hanging strap (7) (Lb1), the formula (1 relationship between the length of the lower hanging strap (8) (Lb2) are defined below) satisfies to (3).

上部支持体(2)及び下部支持体(3)の構造は、通水を妨げず且つ吊り紐(7)及び(8)によって濾材(4)を固定し得る構造である限り、特に制限されず、例えば、格子構造、目皿構造、編目構造などを適宜採用し得る。   The structure of the upper support (2) and the lower support (3) is not particularly limited as long as it is a structure that does not prevent water flow and can fix the filter medium (4) by the hanging strings (7) and (8). For example, a lattice structure, an eye plate structure, a stitch structure, or the like can be appropriately employed.

濾材(4)は、芯紐および当該芯紐の周側に突設された濁質捕捉材から成る。濾材(4)の芯紐ならびに上部吊り紐(7)及び下部吊り紐(8)は流水方向に沿って屈曲変形可能に構成される。斯かる構成は、素材の種類、形態、太さ等の選択によって達成される。   The filter medium (4) includes a core string and a turbidity trapping material protruding on the peripheral side of the core string. The core string of the filter medium (4), the upper suspension string (7), and the lower suspension string (8) are configured to be bent and deformed along the flowing water direction. Such a configuration is achieved by selecting the type, form, thickness, etc. of the material.

上記の各要素は、通常、ポリプロピレン、ポリエステル、ナイロン、ポリ塩化ビニリデン等の合成樹脂素材にて構成される。また、上記の各紐は、組み、撚り、編み、織り、束ね、くけ又は裁断の各加工で得られた各種の紐の他、十分な強度を有する限り、単糸(モノフィラメント)も使用することが出来る。また、通常、濾材(4)の濁質捕捉材の形状はフィルム小片または糸状とされる。濾材(4)の一例としては、撚り加工された芯紐の周側に無数の糸状濁質捕捉材を放射状に突設した濾材が挙げられる。斯かる濾材は、特開平8−299707号に記載されて公知である。なお、濾材(4)の芯紐が長く濁質捕捉材の突設範囲の両端から突出している場合は、両端突出部の芯紐を上部吊り紐(7)及び下部吊り紐(8)として使用することも出来る。   Each of the above elements is usually composed of a synthetic resin material such as polypropylene, polyester, nylon, or polyvinylidene chloride. In addition to the various cords obtained by each process of assembling, twisting, knitting, weaving, bundling, rake, or cutting, each of the above-mentioned cords should use a single yarn (monofilament) as long as it has sufficient strength. I can do it. Moreover, the shape of the turbidity trapping material of the filter medium (4) is usually a film piece or a thread. As an example of the filter medium (4), a filter medium in which an innumerable thread-like turbidity trapping material is radially projected on the peripheral side of the twisted core string. Such a filter medium is known as described in JP-A-8-299707. In addition, when the core string of the filter medium (4) is long and protrudes from both ends of the projecting range of the turbidity trapping material, the core strings of the protruding parts at both ends are used as the upper suspension string (7) and the lower suspension string (8). You can also

上記の長繊維濾過装置においては、式(1)に示す様に、濾材(4)と上部支持体(2)と下部支持体(3)の合計長さ(Lb1+LB+Lb2)は、上部支持体(2)と下部支持体(3)との間の距離(LA)より長い。従って、上記の各要素の何れかは塔(1)内に弛んだ状態で存在する。   In the long fiber filtration device, as shown in the formula (1), the total length (Lb1 + LB + Lb2) of the filter medium (4), the upper support (2), and the lower support (3) is the upper support (2 ) And the lower support (3) is longer than the distance (LA). Accordingly, any of the above elements exists in a relaxed state in the tower (1).

また、式(2)に示す様に、上部支持体(2)と下部支持体(3)との間の距離(LA)は、濾材(4)の長さ(LB)より長い。従って、上部支持体(2)と下部支持体(3)との間には流水方向に沿って濾材(4)が存在しない領域が形成されている。換言れば、流水方向に沿って濾材(4)の可動範囲が形成されている。なお、図1の模式的説明図では濾材(4)同士の間に隙間が存在しているが、実際は濾材(4)同士の間に隙間はなく、複数の濾材(4)は密状態となる様に懸垂される。従って、複数の濾材(4)の全体は、流水方向(上下方向)に沿ってのみ移動する。 Moreover, as shown in Formula (2), the distance (LA) between the upper support (2) and the lower support (3) is longer than the length (LB) of the filter medium (4). Therefore, a region where the filter medium (4) does not exist is formed along the flowing water direction between the upper support (2) and the lower support (3). Words to lever, the movable range of the filter medium (4) along the flowing water direction is formed. In addition, although the clearance gap exists between filter media (4) in the schematic explanatory drawing of FIG. 1, there is actually no clearance gap between filter media (4), and several filter media (4) will be in a dense state. Suspended. Therefore, the whole of the plurality of filter media (4) moves only along the flowing water direction (vertical direction).

更に、式(3)に示す様に、濾材(4)と上部吊り紐(7)との合計長さ(LB+Lb1)は、濾材(4)と下部吊り紐(8)との合計長さ(LB+Lb2)より長い。従って、下向流形式で原水が供給される原水処理運転時においては、図1(a)に示す様に、濾材(4)は下部支持体(3)に当接して下部吊り紐(8)と共に塔底部近傍で圧密状態となり、上向流形式で洗浄水が供給される洗浄運転時においては、図1(b)に示す様に、濾材(4)は上部支持体(2)に当接せずに下部吊り紐(8)と共に塔内の上方に伸長した状態となる。   Furthermore, as shown in Formula (3), the total length (LB + Lb1) of the filter medium (4) and the upper suspension string (7) is the total length (LB + Lb2) of the filter medium (4) and the lower suspension string (8). ) Longer. Accordingly, during raw water treatment operation in which raw water is supplied in a downward flow format, as shown in FIG. 1 (a), the filter medium (4) abuts on the lower support (3) and lower suspension string (8). At the same time, the filter medium (4) is brought into contact with the upper support (2) as shown in FIG. Without it, it will be in the state extended to the upper part in a tower with a lower suspension string (8).

以上の結果、上記の長繊維濾過装置においては、原水処理運転時における濾材の圧密状態と洗浄運転時における濾材の圧密状態の解除とにより、濾材による濁質の捕捉と排出とが効率的に行われる。なお、上記の式(1)〜(3)で規定された各要素の大小関係の数値は、装置の経済性を考慮して決定された値である。   As a result of the above, in the above-described long fiber filtration device, trapping and discharging of turbidity by the filter medium can be efficiently performed by releasing the compacted state of the filter medium during the raw water treatment operation and releasing the compacted state of the filter medium during the washing operation. Is called. In addition, the numerical value of the magnitude relationship of each element prescribed | regulated by said Formula (1)-(3) is a value determined in consideration of the economical efficiency of the apparatus.

上記の長繊維濾過装置の前記した各要素の寸法は次の通りである。すなわち、上部支持体(2)と下部支持体(3)との間の距離(LA)は100〜400cm、濾材(4)の長さ(LB)は70〜300cm、上部吊り紐(7)の長さ(Lb1)は10〜250cm、下部吊り紐(8)の長さ(Lb2)は5〜20cm、塔(1)の直径(内径)は20〜360cmである。   The dimensions of the above-mentioned elements of the long fiber filtration device are as follows. That is, the distance (LA) between the upper support (2) and the lower support (3) is 100 to 400 cm, the length (LB) of the filter medium (4) is 70 to 300 cm, and the upper suspension string (7) The length (Lb1) is 10 to 250 cm, the length (Lb2) of the lower suspension string (8) is 5 to 20 cm, and the diameter (inner diameter) of the tower (1) is 20 to 360 cm.

上記の長繊維濾過装置の連続運転方法は原水処理運転と洗浄運転とを繰り返し行なうことより成る。図1に示す装置において、塔(1)の頂部に設けられ且つバルブ(61)と(65)を備えたT字型の配管(51)は、原水処理運転時には原水供給配管として使用され、洗浄運転時には洗浄廃水排出配管として使用される共通配管であり、また、塔(1)の底部に設けられ且つバルブ(64)と(62)を備えたT字型の配管(52)は、原水処理運転時には処理水排出配管として使用され、洗浄運転時には洗浄水供給配管として使用される共通配管であり、バルブ操作によって通水方向が変更される。そして、配管(52)から、空気供給配管(53)とドレーン配管(54)とアルカリ水供給配管(55)が分岐して設けられている。なお、以下の説明においては上記の各配管は単に「配管」と表記している。   The continuous operation method of the above-mentioned long fiber filtration apparatus consists of repeatedly performing the raw water treatment operation and the washing operation. In the apparatus shown in FIG. 1, a T-shaped pipe (51) provided at the top of the tower (1) and provided with valves (61) and (65) is used as a raw water supply pipe during a raw water treatment operation, and is washed. A T-shaped pipe (52) provided at the bottom of the tower (1) and provided with valves (64) and (62) is a common pipe used as a washing waste water discharge pipe during operation. This is a common pipe used as a treated water discharge pipe during operation and as a wash water supply pipe during cleaning operation, and the direction of water flow is changed by valve operation. An air supply pipe (53), a drain pipe (54), and an alkaline water supply pipe (55) are branched from the pipe (52). In the following description, each of the above pipes is simply referred to as “pipe”.

<原水処理運転:図1(a)参照>
原水処理運転においては、バルブ(61)及び(62)のみを開状態とする。濁質を含む原水はバルブ(61)及び配管(51)を経由して塔(1)内に供給される。この際、濾材(4)は前述の様に圧密状態を呈し、原水に同伴された濁質は濾材(4)によって捕捉される。濁質を含まない処理水は配管(52)及びバルブ(62)を経由して塔(1)から排出される。そして、原水処理運転において、例えば、原水供給ポンプ(図示せず)の圧力測定、処理水の水質分析などの手段により、長繊維濾過装置の性能が低下した時点で原水処理運転を停止する。原水処理運転の停止は一定時間経過毎に自動的行なってもよい。
<Raw water treatment operation: See FIG. 1 (a)>
In the raw water treatment operation, only the valves (61) and (62) are opened. Raw water containing turbidity is supplied into the tower (1) via a valve (61) and a pipe (51). At this time, the filter medium (4) is in a compacted state as described above, and the suspended matter entrained in the raw water is captured by the filter medium (4). The treated water containing no turbidity is discharged from the tower (1) via the pipe (52) and the valve (62). In the raw water treatment operation, for example, the raw water treatment operation is stopped when the performance of the long fiber filtration device is lowered by means such as pressure measurement of a raw water supply pump (not shown) and water quality analysis of the treated water. The stop of the raw water treatment operation may be automatically performed every certain time.

<洗浄運転>
本発明における洗浄運転は以下の操作(i)〜(v)を順次に行うことより成る。そして、洗浄運転に使用する洗浄水としては原水または処理水の何れでもよい。また、各操作ごとに原水と処理水とを使い分け、例えば、最終の操作(v)のみ処理水を使用してもよい。
<Washing operation>
The washing operation according to the present invention comprises sequentially performing the following operations (i) to (v). The cleaning water used for the cleaning operation may be either raw water or treated water. In addition, the raw water and the treated water are properly used for each operation. For example, the treated water may be used only for the final operation (v).

[操作(i):図1(b)参照)]
この操作は、洗浄水を供給して濾材の圧密状態を解除する操作である。この操作においては、原水処理運転時に開状態であったバルブ(61)及び(62)を閉止状態とし、バルブ(64)及び(65)のみを開状態とする。洗浄水は、バルブ(64)及び配管(52)を経由して塔(1)内に供給される。濾材(4)は前述の様に圧密状態を解除し、濾材(4)に補足された濁質の一部が除去される。濁質を含む洗浄廃水は、配管(51)及びバルブ(65)を経由して塔(1)から排出される。操作(i)は、少なくとも、下部吊り紐(8)及び濾材(4)が塔内の上方に伸長するまで行なう必要がある。しかし、濾材(4)の上部に濃縮された濁質が除去される迄の長時間の操作は、多量の洗浄水を使用して不経済となるので行なう必要はない。洗浄水の供給速度(LV)は通常25〜80m/h、洗浄水の供給時間は通常0.5〜2分である。
[Operation (i): See FIG. 1 (b))]
This operation is an operation for releasing the compacted state of the filter medium by supplying cleaning water. In this operation, the valves (61) and (62) that were open during the raw water treatment operation are closed, and only the valves (64) and (65) are opened. The washing water is supplied into the tower (1) via the valve (64) and the pipe (52). The filter medium (4) is released from the compacted state as described above, and a part of the suspended matter captured by the filter medium (4) is removed. Washing wastewater containing turbidity is discharged from the tower (1) via the pipe (51) and the valve (65). The operation (i) needs to be performed at least until the lower suspension strap (8) and the filter medium (4) extend upward in the tower. However, the operation for a long time until the turbidity concentrated on the upper part of the filter medium (4) is removed is uneconomical because it uses a large amount of washing water, so it is not necessary to perform it. The washing water supply rate (LV) is usually 25 to 80 m / h, and the washing water supply time is usually 0.5 to 2 minutes.

[操作(ii):図1(b)参照]
この操作は、洗浄水および空気を供給して濾材に補足された濁質の90重量%以上を除去する操作である。すなわち、上記の操作(i)の状態に加え、バルブ(63)を開状態として空気の供給を開始する。空気は、バルブ(63)及び配管(53)を経由して塔(1)内に供給される。勿論、上記の操作(i)を一端終了した後、洗浄水および空気の供給を開始してもよい。この場合、空気の供給は、洗浄水の供給と同時に始めてもよく、また、洗浄水の供給よりも遅れて始めてもよい。空気のバブリング作用により、濾材(4)が振動させられ、濾材(4)に付着した濁質の剥離が促進される。洗浄廃水は、配管(51)及びバルブ(65)を経由して塔(1)から排出される。
[Operation (ii): See FIG. 1 (b)]
This operation is an operation for removing 90% by weight or more of the suspended matter trapped in the filter medium by supplying washing water and air. That is, in addition to the state of the above operation (i), the valve (63) is opened to start supplying air. Air is supplied into the tower (1) via a valve (63) and a pipe (53). Of course, after the operation (i) has been completed, the supply of cleaning water and air may be started. In this case, the supply of air may be started simultaneously with the supply of the cleaning water, or may be started later than the supply of the cleaning water. The bubbling action of the air causes the filter medium (4) to vibrate, and the separation of turbidity adhering to the filter medium (4) is promoted. The washing waste water is discharged from the tower (1) via the pipe (51) and the valve (65).

操作(ii)において、洗浄水の供給速度(LV)は通常25〜80m/h、洗浄水の供給時間は通常2〜10分、空気の供給速度(LV)は通常200〜500m/h、空気の供給時間は通常0.5〜2分である。   In operation (ii), the washing water supply speed (LV) is usually 25 to 80 m / h, the washing water supply time is usually 2 to 10 minutes, the air supply speed (LV) is usually 200 to 500 m / h, air The supply time is usually 0.5 to 2 minutes.

濾材に補足された濁質の除去は洗浄水および空気の供給量(供給時間)に依存するため、濾材に補足された濁質の90重量%以上の除去は、予備実験により求められた洗浄水および空気の必要な供給量の供給によって達成することが出来る。   Since the removal of turbidity trapped in the filter medium depends on the supply amount (supply time) of washing water and air, the removal of 90% by weight or more of the turbidity trapped in the filter medium is the washing water obtained by preliminary experiments. And can be achieved by supplying the required supply of air.

しかしながら、洗浄廃水の濁度が原水の濁度と同一レベルに到達するまで洗浄水および空気を供給する方法を採用するのが簡便である。濁度の測定は、例えば、バルブ(65)の下流に濁度計(図示せず)を設置することにより行うことが出来る。測定する濁度としては、JIS K 0101に規定される濁度を採用することが好ましい。この指標は、カオリン1mg/lの溶液の濁りを1度と定義するものであり、測定原理の違いから透過光濁度、散乱光濁度、積分光濁度があるが、測定方法は適宜選択すればよい。   However, it is convenient to employ a method of supplying cleaning water and air until the turbidity of the cleaning wastewater reaches the same level as that of the raw water. The turbidity can be measured, for example, by installing a turbidimeter (not shown) downstream of the valve (65). As the turbidity to be measured, it is preferable to adopt the turbidity specified in JIS K 0101. This index defines the turbidity of a solution of 1 mg / l kaolin as 1 degree. There are transmitted light turbidity, scattered light turbidity, and integrated light turbidity due to the difference in measurement principle. do it.

[操作(iii):図2(c)参照]
この操作は、塔(1)内の貯留水の抜き出しを行う操作である。すなわち、上記の操作(ii)の終了に伴って、バルブ(63)及び(64)を閉止状態とした後、バルブ(66)を開状態とする。貯留水は、配管(54)及びバルブ(66)を経由して塔(1)から排出される。この操作により、濾材(4)は自重により圧密状態を形成する。配管(51)及びバルブ(65)を経由して塔(1)内に空気が漏れ込み、塔(1)内は大気圧に保持される。
[Operation (iii): See FIG. 2 (c)]
This operation is an operation for extracting the stored water in the tower (1). That is, with the completion of the operation (ii), the valves (63) and (64) are closed, and then the valve (66) is opened. The stored water is discharged from the tower (1) via the pipe (54) and the valve (66). By this operation, the filter medium (4) forms a consolidated state by its own weight. Air leaks into the tower (1) via the pipe (51) and the valve (65), and the inside of the tower (1) is maintained at atmospheric pressure.

[操作(iv):図2(d)参照]
この操作は、洗浄水およびアルカリ成分と空気を供給し、濃度0.01〜1重量%のアルカリ成分含有洗浄水で少なくとも塔(1)内の濾材(4)全体が浸漬された後に上記の供給を停止し、1分以上放置して濾材(4)に付着した有機物を溶解する操作である。この操作においては、上記の操作(iii)時に開状態であったバルブ(66)を閉止状態とした後、バルブ(63)、(64)、(67)を開状態とする。洗浄水は、バルブ(64)及び配管(52)を経由して供給され、アルカリ成分(高濃度水溶液)は、バルブ(67)及び配管(55)を経由して供給され、空気は、バルブ(63)及び配管(53)を経由して供給される。上記のアルカリ成分としては、水酸化ナトリウム、水酸化カリウム、水酸化マグルシウム、水酸化カルシウム、水酸化アンモニウム等の水溶液が挙げられる。なお、以下の説明において上記の供給を停止した後の放置時間を「濾材浸漬時間」と記述する。
[Operation (iv): See FIG. 2 (d)]
This operation supplies washing water, an alkali component and air, and supplies the above after at least the entire filter medium (4) in the tower (1) is immersed in the alkali component-containing washing water having a concentration of 0.01 to 1% by weight. Is stopped and left for 1 minute or longer to dissolve the organic matter adhering to the filter medium (4). In this operation, the valve (66) that was open during the above operation (iii) is closed, and then the valves (63), (64), and (67) are opened. The washing water is supplied via the valve (64) and the pipe (52), the alkaline component (high concentration aqueous solution) is supplied via the valve (67) and the pipe (55), and the air is supplied to the valve ( 63) and the pipe (53). Examples of the alkali component include aqueous solutions of sodium hydroxide, potassium hydroxide, magnesium hydroxide, calcium hydroxide, ammonium hydroxide, and the like. In the following description, the standing time after the supply is stopped is described as “filter material immersion time”.

操作(iv)において、洗浄水の供給速度(LV)は通常20〜80m/h、洗浄水の供給時間は通常0.5〜2分、空気の供給速度(LV)は通常200〜500m/h、空気の供給時間は通常0.5〜2分である。アルカリ成分(高濃度水溶液)の供給量は、塔(1)内におけるアルカリ成分の濃度が0.01〜1重量%の範囲となる様に調節される。
アルカリ成分の濃度が余りに低い場合は、濾材(4)に付着した有機物の溶解に長時間を必要とし、アルカリ成分の濃度が余りに高い場合は、アルカリ成分が無駄に消費され、何れの場合も経済的ではない。
In operation (iv), the washing water supply speed (LV) is usually 20 to 80 m / h, the washing water supply time is usually 0.5 to 2 minutes, and the air supply speed (LV) is usually 200 to 500 m / h. The air supply time is usually 0.5 to 2 minutes. The supply amount of the alkali component (high concentration aqueous solution) is adjusted so that the concentration of the alkali component in the tower (1) is in the range of 0.01 to 1% by weight.
When the concentration of the alkali component is too low, it takes a long time to dissolve the organic matter adhering to the filter medium (4), and when the concentration of the alkali component is too high, the alkali component is wasted, and in either case, it is economical. Not right.

操作(iv)により、濾材(4)は圧密状態を解除し、濾材(4)に付着した有機物が溶解して除去される。空気の供給は、洗浄水の供給と同時に始めてもよく、また、洗浄水の供給よりも遅れて始めてもよい。空気のバブリング作用により、濾材(4)が振動させられ、濾材(4)に付着した有機物の溶解が促進される。操作(iv)において、洗浄水およびアルカリ成分と空気の供給は、塔(1)内がアルカリ成分含有洗浄水で満たされた後は停止するのが経済的であり好ましい。   By the operation (iv), the filter medium (4) is released from the compacted state, and organic substances attached to the filter medium (4) are dissolved and removed. The supply of air may be started simultaneously with the supply of cleaning water, or may be started later than the supply of cleaning water. By the bubbling action of air, the filter medium (4) is vibrated, and the dissolution of the organic matter attached to the filter medium (4) is promoted. In operation (iv), it is economical and preferable to stop the supply of washing water and alkali components and air after the inside of the tower (1) is filled with washing water containing alkali components.

操作(iv)における濾材浸漬時間の上限は、濾材(4)に付着した有機物(滑り成分)の量に依存するが、通常1日である。なお、浸漬時間が長い場合は、塔(1)内のアルカリ成分の濃度を不均一化を防止するため、空気の供給を再開して塔(1)内を混合処理するのが好ましい。   The upper limit of the filter medium soaking time in operation (iv) depends on the amount of organic matter (slip component) attached to the filter medium (4), but is usually one day. In addition, when immersion time is long, in order to prevent the non-uniform | heterogenous density | concentration of the alkali component in a tower (1), it is preferable to restart supply of air and to mix the inside of a tower (1).

[操作(v)]
この操作は、洗浄水および空気を供給してアルカリ成分を除去する操作である。すなわち、上記の操作(iv)で開状態としたバルブ(67)を閉止状態とする。勿論、上記の操作(iv)を一端終了した後、洗浄水および空気の供給を開始してもよい。この場合、空気の供給は、洗浄水の供給と同時に始めてもよく、また、洗浄水の供給よりも遅れて始めてもよい。空気のバブリング作用により、濾材(4)が振動させられ、濾材(4)に付着したアルカリ成分の除去が促進される。洗浄廃水は、配管(51)及びバルブ(65)を経由して塔(1)から排出される。操作(v)は、例えば、バルブ(65)の下流にアルカリ濃度計(図示せず)を設置して洗浄廃水中のアルカリ成分が検出されなくなるまで行うのが好ましい。
[Operation (v)]
This operation is an operation of supplying washing water and air to remove alkali components. That is, the valve (67) opened by the above operation (iv) is closed. Of course, the supply of cleaning water and air may be started after the operation (iv) has been completed. In this case, the supply of air may be started simultaneously with the supply of the cleaning water, or may be started later than the supply of the cleaning water. The filter medium (4) is vibrated by the bubbling action of air, and the removal of the alkali component adhering to the filter medium (4) is promoted. The washing waste water is discharged from the tower (1) via the pipe (51) and the valve (65). The operation (v) is preferably performed, for example, by installing an alkali concentration meter (not shown) downstream of the valve (65) until no alkali component is detected in the washing waste water.

操作(v)において、洗浄水の供給速度(LV)は通常20〜80m/h、洗浄水の供給時間は通常2〜10分、空気の供給速度(LV)は通常200〜500m/h、空気の供給時間は通常2〜10分である。   In operation (v), the washing water supply speed (LV) is usually 20 to 80 m / h, the washing water supply time is usually 2 to 10 minutes, the air supply speed (LV) is usually 200 to 500 m / h, air Is usually 2 to 10 minutes.

本発明においては、上記の操作(i)〜(v)を順次に行う洗浄運転を終了した後、前述の原水処理運転を繰り返し行う。本発明によれば、濾材に付着した滑り成分を効率的に除去することが出来、また、滑り成分の除去により、圧力損失の増大を軽減して長期間に亘って安定した運転ができる。   In the present invention, the raw water treatment operation described above is repeated after the cleaning operation in which the above operations (i) to (v) are sequentially performed is terminated. According to the present invention, the slip component adhering to the filter medium can be efficiently removed, and by removing the slip component, an increase in pressure loss can be reduced and stable operation can be performed over a long period of time.

以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.

実施例1:
図示した構造を備え、以下の表1に示す仕様を有する長繊維濾過装置の連続運転を行った。原水には河川水を使用し、洗浄水に処理水を使用した。
Example 1:
A continuous operation of a long fiber filtration apparatus having the illustrated structure and having the specifications shown in Table 1 below was performed. River water was used as raw water and treated water was used as washing water.

<原水処理運転>
バルブ(61)及び(62)のみを開状態とした。濁質を含む原水は、バルブ(61)及び配管(51)を経由して塔(1)内に供給され、濁質を含まない処理水は、配管(52)及びバルブ(62)を経由して塔(1)から排出された。通水量4.24m/hにて原水処理運転を行った。そして、原水供給ポンプ(図示せず)の圧力測定を行い、差圧が0.1MPaに達した時点を通水終点とし、通水を停止し、以下の(i)〜(v)から成る洗浄運転を行った後、上記と同一の原水処理運転を行った。
<Raw water treatment operation>
Only valves (61) and (62) were opened. The raw water containing turbidity is supplied into the tower (1) via the valve (61) and the pipe (51), and the treated water not containing turbidity is sent via the pipe (52) and the valve (62). Was discharged from the tower (1). Raw water treatment operation was performed at a water flow rate of 4.24 m 3 / h. Then, the pressure of the raw water supply pump (not shown) is measured, the time when the differential pressure reaches 0.1 MPa is set as the water end point, the water flow is stopped, and the cleaning comprising the following (i) to (v) After the operation, the same raw water treatment operation as described above was performed.

<洗浄運転>
[操作(i):図1(b)参照)]
原水処理運転時に開状態であったバルブ(61)及び(62)を閉止状態とし、バルブ(64)及び(65)のみを開状態とした。洗浄水は、バルブ(64)及び配管(52)を経由して塔(1)内に供給され、濁質を含む洗浄廃水は、配管(51)及びバルブ(65)を経由して塔(1)から排出された。洗浄水の供給速度(LV)は50m/h、洗浄水の供給時間は0.5分、洗浄水の供給量は3.5m/hとした。
<Washing operation>
[Operation (i): See FIG. 1 (b))]
The valves (61) and (62) that were open during the raw water treatment operation were closed, and only the valves (64) and (65) were opened. The wash water is supplied into the tower (1) via the valve (64) and the pipe (52), and the washing waste water containing turbidity is supplied to the tower (1) via the pipe (51) and the valve (65). ). The supply rate (LV) of the cleaning water was 50 m / h, the supply time of the cleaning water was 0.5 minutes, and the supply amount of the cleaning water was 3.5 m 3 / h.

[操作(ii):図1(b)参照]
上記の操作(i)の状態に加えてバルブ(63)を開状態として空気の供給を開始した。空気は、バルブ(63)及び配管(53)を経由して塔(1)内に供給され、洗浄廃水は、配管(51)及びバルブ(65)を経由して塔(1)から排出された。洗浄水の供給速度(LV)は50m/h、洗浄水の供給時間は7分、洗浄水の供給量は3.5m/hとした。また、空気の供給速度(LV)は500m/h、空気の供給時間は7分、空気の供給量は35m/hとした。そして、バルブ(65)の下流に濁度計により洗浄廃水の濁度が原水の濁度と同一レベルに到達したことを確認した。なお、濁度の測定は、JIS K 0101に準じ、積分光濁度によって行った。
[Operation (ii): See FIG. 1 (b)]
In addition to the state of the operation (i), the valve (63) was opened to start supplying air. Air was supplied into the tower (1) via the valve (63) and the pipe (53), and the washing wastewater was discharged from the tower (1) via the pipe (51) and the valve (65). . The cleaning water supply rate (LV) was 50 m / h, the cleaning water supply time was 7 minutes, and the cleaning water supply amount was 3.5 m 3 / h. The air supply rate (LV) was 500 m / h, the air supply time was 7 minutes, and the air supply amount was 35 m 3 / h. Then, it was confirmed by a turbidimeter downstream of the valve (65) that the turbidity of the washing wastewater reached the same level as the turbidity of the raw water. The turbidity was measured by integral light turbidity according to JIS K 0101.

[操作(iii):図2(c)参照]
上記の操作(ii)の終了に伴って、バルブ(63)及び(64)を閉止状態とした後、バルブ(66)を開状態とした。貯留水は、配管(54)及びバルブ(66)を経由して塔(1)から排出された。
[Operation (iii): See FIG. 2 (c)]
Upon completion of the operation (ii), the valves (63) and (64) were closed, and then the valve (66) was opened. The stored water was discharged from the tower (1) via the pipe (54) and the valve (66).

[操作(iv):図2(d)参照]
上記の操作(iii)時に開状態であったバルブ(66)を閉止状態とした後、バルブ(63)、(64)、(67)を開状態とした。洗浄水は、バルブ(64)及び配管(52)を経由して供給され、アルカリ成分(高濃度水溶液)は、バルブ(67)及び配管(55)を経由して供給され、空気は、バルブ(63)及び配管(53)を経由して供給された。上記のアルカリ成分(高濃度水溶液)としては、水酸化ナトリウム水溶液(48重量%)を使用した。洗浄水の供給速度(LV)は50m/h、洗浄水の供給時間は2分、洗浄水の供給量は3.5m/hとした。また、空気の供給速度(LV)は500m/h、空気の供給時間は2分とした。アルカリ成分(高濃度水溶液)の供給量は、塔(1)内におけるアルカリ成分の濃度が0.02重量%となる様に調節した。濾材浸漬時間は4分とした。なお、上記の濾材浸漬時間の中間においては空気の供給を1分間再開した。
[Operation (iv): See FIG. 2 (d)]
After the valve (66) that was open during the operation (iii) was closed, the valves (63), (64), and (67) were opened. The washing water is supplied via the valve (64) and the pipe (52), the alkaline component (high concentration aqueous solution) is supplied via the valve (67) and the pipe (55), and the air is supplied to the valve ( 63) and piping (53). As the alkali component (high concentration aqueous solution), a sodium hydroxide aqueous solution (48% by weight) was used. The cleaning water supply rate (LV) was 50 m / h, the cleaning water supply time was 2 minutes, and the cleaning water supply amount was 3.5 m 3 / h. The air supply speed (LV) was 500 m / h, and the air supply time was 2 minutes. The supply amount of the alkali component (high concentration aqueous solution) was adjusted so that the concentration of the alkali component in the tower (1) was 0.02% by weight. The filter medium immersion time was 4 minutes. In addition, the supply of air was resumed for 1 minute in the middle of the above-mentioned filter medium immersion time.

[操作(v)]
上記の操作(iv)で開状態としたバルブ(67)を閉止状態とした。洗浄水の供給速度(LV)は50m/h、洗浄水の供給時間は5分、洗浄水の供給量は3.5m/hとした。また、空気の供給速度(LV)は500m/h、空気の供給時間は5分、空気の供給量は35m/hとした。そして、バルブ(65)の下流に設置したアルカリ濃度計(図示せず)により洗浄廃水中のアルカリ成分が検出されなくなったことを確認した。
[Operation (v)]
The valve (67) opened in the above operation (iv) was closed. The cleaning water supply rate (LV) was 50 m / h, the cleaning water supply time was 5 minutes, and the cleaning water supply was 3.5 m 3 / h. The air supply rate (LV) was 500 m / h, the air supply time was 5 minutes, and the air supply amount was 35 m 3 / h. Then, it was confirmed that an alkali component in the cleaning wastewater was not detected by an alkali concentration meter (not shown) installed downstream of the valve (65).

前記の原水処理運転と洗浄運転とを繰り返し行い、処理水の濁度(NTU濁度)を連続的に測定し、その結果を図3に示した。   The raw water treatment operation and the washing operation were repeated, and the turbidity (NTU turbidity) of the treated water was continuously measured, and the results are shown in FIG.

比較例1:
実施例1において、洗浄運転の操作(iv)において、アルカリ成分(高濃度水溶液)の供給を停止した以外は、実施例1と同様にして原水処理運転と洗浄運転とを繰り返し行い、処理水の濁度(NTU濁度)を連続的に測定し、その結果を図4に示した。
Comparative Example 1:
In Example 1, the raw water treatment operation and the washing operation were repeated in the same manner as in Example 1 except that the supply of the alkaline component (high-concentration aqueous solution) was stopped in the operation (iv) of the washing operation. Turbidity (NTU turbidity) was measured continuously, and the results are shown in FIG.

本発明で好適に使用し得る長繊維濾過装置の一例の模式的説明図Schematic explanatory diagram of an example of a long fiber filtration device that can be suitably used in the present invention 本発明で好適に使用し得る長繊維濾過装置の一例の模式的説明図Schematic explanatory diagram of an example of a long fiber filtration device that can be suitably used in the present invention 実施例1で得られた処理水の濁度の測定結果を示すグラフThe graph which shows the measurement result of the turbidity of the treated water obtained in Example 1 比較例1で得られた処理水の濁度の測定結果を示すグラフ The graph which shows the measurement result of the turbidity of the treated water obtained in Comparative Example 1

符号の説明Explanation of symbols

1:塔
2:上部支持体
3:下部支持体
4:濾材
7:上部吊り紐
8:下部吊り紐
51〜55:配管
61〜67:バルブ
1: Tower 2: Upper support 3: Lower support 4: Filter medium 7: Upper suspension string 8: Lower suspension string 51-55: Piping 61-67: Valve

Claims (3)

塔内に長繊維束の濾材を収容し、下向流形式で原水を供給し且つ上向流形式で洗浄水を供給し、原水供給時には濾材が圧密状態を形成し且つ洗浄水供給時には圧密状態を解除し得る構造の長繊維濾過装置の運転方法であって、原水処理運転と以下の操作(i)〜(v)を順次に行う洗浄運転とを繰り返し行なうことを特徴とする長繊維濾過装置の連続運転方法。
(i)洗浄水を供給して濾材の圧密状態を解除する。
(ii)洗浄水および空気を供給して濾材に補足された濁質の90重量%以上を除去する。
(iii)貯留水の抜き出しを行う。
(iv)洗浄水およびアルカリ成分と空気を供給し、濃度0.01〜1重量%のアルカリ成分含有洗浄水で少なくとも塔内の濾材全体が浸漬された後に上記の供給を停止し、1分以上放置して濾材に付着した有機物を溶解する。
(v)洗浄水および空気を供給してアルカリ成分を除去する。
The filter medium of the long fiber bundle is accommodated in the tower, the raw water is supplied in the downward flow format, and the cleaning water is supplied in the upward flow format. When the raw water is supplied, the filter media forms a consolidated state and when the cleaning water is supplied, it is in the consolidated state. Is a method for operating a long-fiber filtration device having a structure capable of releasing the raw water, wherein the raw water treatment operation and a washing operation in which the following operations (i) to (v) are sequentially performed are repeated. Continuous operation method.
(I) Supply wash water to release the compacted state of the filter medium.
(Ii) Supply washing water and air to remove 90% by weight or more of the suspended matter trapped in the filter medium.
(Iii) Drain the stored water.
(Iv) Supplying wash water, an alkali component and air, and at least the entire filter medium in the tower is immersed in the alkali component-containing wash water having a concentration of 0.01 to 1% by weight. Leave it to dissolve the organic matter adhering to the filter medium.
(V) Supply washing water and air to remove alkali components.
洗浄運転の操作(ii)において、洗浄廃水の濁度が原水の濁度と同一レベルに到達するまで洗浄水および空気を供給する請求項1に記載の連続運転方法。   The continuous operation method according to claim 1, wherein in the operation (ii) of the cleaning operation, the cleaning water and the air are supplied until the turbidity of the cleaning wastewater reaches the same level as the turbidity of the raw water. 洗浄運転の操作(v)において、洗浄廃水中のアルカリ成分が検出されなくなるまで洗浄水および空気を供給する請求項1又は2に記載の連続運転方法。   The continuous operation method according to claim 1 or 2, wherein in the operation (v) of the cleaning operation, the cleaning water and air are supplied until no alkaline component is detected in the cleaning wastewater.
JP2006224104A 2006-08-21 2006-08-21 Continuous operation method of long fiber filter Active JP4650373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006224104A JP4650373B2 (en) 2006-08-21 2006-08-21 Continuous operation method of long fiber filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006224104A JP4650373B2 (en) 2006-08-21 2006-08-21 Continuous operation method of long fiber filter

Publications (2)

Publication Number Publication Date
JP2008043916A JP2008043916A (en) 2008-02-28
JP4650373B2 true JP4650373B2 (en) 2011-03-16

Family

ID=39178160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006224104A Active JP4650373B2 (en) 2006-08-21 2006-08-21 Continuous operation method of long fiber filter

Country Status (1)

Country Link
JP (1) JP4650373B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5402319B2 (en) * 2009-06-30 2014-01-29 ハイモ株式会社 Water treatment method
KR100985300B1 (en) * 2009-12-03 2010-10-04 김규태 Fixed bar type pore controllable fiber module filter and fiber filter instrument

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411906A (en) * 1990-04-27 1992-01-16 Noritz Corp Filter
JPH07299309A (en) * 1994-05-09 1995-11-14 Doboku Kenkyu Center Filter apparatus
JPH10323508A (en) * 1997-05-27 1998-12-08 Japan Organo Co Ltd Filter tower using long fiber bundle
JPH11137914A (en) * 1997-11-10 1999-05-25 Japan Organo Co Ltd Filter tower using filament bundles
JP2000005517A (en) * 1998-06-24 2000-01-11 Japan Organo Co Ltd Washing method of long filament filter
JP2004089782A (en) * 2002-08-29 2004-03-25 Sumitomo Heavy Ind Ltd Washing method for fibrous filter material
JP2006198590A (en) * 2005-01-24 2006-08-03 Japan Organo Co Ltd Filtering apparatus and method for filtering

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411906A (en) * 1990-04-27 1992-01-16 Noritz Corp Filter
JPH07299309A (en) * 1994-05-09 1995-11-14 Doboku Kenkyu Center Filter apparatus
JPH10323508A (en) * 1997-05-27 1998-12-08 Japan Organo Co Ltd Filter tower using long fiber bundle
JPH11137914A (en) * 1997-11-10 1999-05-25 Japan Organo Co Ltd Filter tower using filament bundles
JP2000005517A (en) * 1998-06-24 2000-01-11 Japan Organo Co Ltd Washing method of long filament filter
JP2004089782A (en) * 2002-08-29 2004-03-25 Sumitomo Heavy Ind Ltd Washing method for fibrous filter material
JP2006198590A (en) * 2005-01-24 2006-08-03 Japan Organo Co Ltd Filtering apparatus and method for filtering

Also Published As

Publication number Publication date
JP2008043916A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
CN1317056C (en) Method for rinsing membrane-filtering unit of hollow fiber
KR100679231B1 (en) Flexible-fiber filter module
JP2006297376A (en) Method for cleaning separation membrane
JP5245216B2 (en) Hollow fiber membrane water treatment method and water treatment apparatus
JP4650373B2 (en) Continuous operation method of long fiber filter
CN105056765A (en) Cleaning method of organic pollutants on ultrafiltration membrane surface and preparation method of cleaning solution for organic pollutants on ultrafiltration membrane surface
JP2009247936A (en) Method of inline-cleaning immersion type membrane-separation device
JP2004057883A (en) Water cleaning method using external pressure type hollow fiber membrane module and apparatus therefor
JP2007301453A (en) Method for purifying brine
JP4649791B2 (en) Filtration device
JP4649798B2 (en) Operation method of turbidity removal device
JPS61136404A (en) Liquid filtering apparatus
JP4649799B2 (en) Operation method of turbidity removal device
JPS595036B2 (en) Microbial oxidation treatment method for wastewater using vertical pipe bundles
JP2016043279A (en) Membrane separation device using internal pressure type hollow yarn membrane and operational method
CN104211136A (en) Full-automatic control nanofiltration membrane online strong flushing method
JP5345512B2 (en) Long fiber filtration device backwash method and long fiber filtration device
JP2002239308A (en) Filter apparatus using floating filter medium and water treatment method
JP2014079692A (en) Backwash method of long fiber filtration device
JP2006231264A (en) Cleaning method of membrane filter module
JP2000005517A (en) Washing method of long filament filter
CN210065394U (en) Desulfurization waste water treatment equipment of self-cleaning
WO2008030185A1 (en) Filter renewal system and a method thereof
JP2002028411A (en) Filter device
JP2008114154A (en) Method of cleaning separation membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Ref document number: 4650373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350