JP4650003B2 - Transparent composite sheet and display element substrate using the same - Google Patents

Transparent composite sheet and display element substrate using the same Download PDF

Info

Publication number
JP4650003B2
JP4650003B2 JP2005017814A JP2005017814A JP4650003B2 JP 4650003 B2 JP4650003 B2 JP 4650003B2 JP 2005017814 A JP2005017814 A JP 2005017814A JP 2005017814 A JP2005017814 A JP 2005017814A JP 4650003 B2 JP4650003 B2 JP 4650003B2
Authority
JP
Japan
Prior art keywords
composite sheet
display element
resin
transparent composite
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005017814A
Other languages
Japanese (ja)
Other versions
JP2005240028A (en
Inventor
真伸 坂本
渉 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2005017814A priority Critical patent/JP4650003B2/en
Publication of JP2005240028A publication Critical patent/JP2005240028A/en
Application granted granted Critical
Publication of JP4650003B2 publication Critical patent/JP4650003B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、線膨張係数が小さく、光学特性に優れ、ガラスに代替可能な光学シートに関するものであり、またそれを用いた表示素子基板に関するものである。   The present invention relates to an optical sheet having a small linear expansion coefficient, excellent optical characteristics, and capable of replacing glass, and to a display element substrate using the same.

一般に、液晶表示素子や有機EL表示素子用の表示素子基板(特にアクティブマトリックスタイプ)、カラーフィルター基板、太陽電池用基板等としては、ガラス板が広く用いられている。しかしながらガラス板は、割れ易い、曲げられない、比重が大きく軽量化に不向きなどの理由から、近年、その代替としてプラスチック素材が検討されている。   In general, glass plates are widely used as display element substrates (particularly active matrix type) for liquid crystal display elements and organic EL display elements, color filter substrates, solar cell substrates and the like. However, in recent years, plastic materials have been studied as an alternative to glass plates because they are easily broken, cannot be bent, have a large specific gravity, and are not suitable for weight reduction.

例えば、特許文献1及び2には、エポキシ樹脂、酸無水物系硬化剤及び硬化触媒を含むエポキシ樹脂組成物を硬化して得られる硬化体からなる液晶表示素子用透明樹脂基板が記載されている。しかしながら、これら従来のガラス代替用プラスチック材料は、ガラス板に比べ線膨張係数が大きく、特に、アクティブマトリックス表示素子基板に用いるとその製造工程において反りやアルミ配線の断線などの問題が生じ、これら用途への使用は困難である。したがって、表示素子基板、特にアクティブマトリックス表示素子用基板に要求される、透明性、耐溶剤性、耐液晶性、耐熱性等を満足しつつ線膨張係数の小さなプラスチック素材が求められている。   For example, Patent Documents 1 and 2 describe a transparent resin substrate for a liquid crystal display element comprising a cured product obtained by curing an epoxy resin composition containing an epoxy resin, an acid anhydride curing agent and a curing catalyst. . However, these conventional plastic materials for glass substitutes have a larger coefficient of linear expansion than glass plates, and particularly when used for active matrix display element substrates, problems such as warping and disconnection of aluminum wiring occur in the manufacturing process. It is difficult to use. Accordingly, there is a need for a plastic material having a low linear expansion coefficient while satisfying the transparency, solvent resistance, liquid crystal resistance, heat resistance, etc. required for display element substrates, particularly active matrix display element substrates.

線膨張係数を低減するためには、従来、樹脂にガラスパウダーやガラス繊維等の無機フィラーを配合する材料の複合化も種々行われている。しかしながら、これら樹脂と無機フィラーでは屈折率がそれぞれ異なるため、樹脂中を透過する光が乱屈折することにより、複合材料における基材の透明性が損なわれることが多い。そこで樹脂と無機フィラーとの屈折率を合わせて透明化することが種々検討されている。例えば、特許文献3には、酸無水物で硬化したエポキシ樹脂と実質的に同じ屈折率の充填材からなる光透過性エポキシ樹脂組成物が開示されているなど、光半導体装置用には屈折率を合わせて透明化したエポキシ樹脂組成物が種々報告されている。   In order to reduce the linear expansion coefficient, various composites of materials in which an inorganic filler such as glass powder or glass fiber is mixed with a resin have been conventionally performed. However, since these resins and inorganic fillers have different refractive indexes, the light transmitted through the resin is irregularly refracted, and the transparency of the base material in the composite material is often impaired. Accordingly, various studies have been made to make the refractive index of the resin and the inorganic filler transparent. For example, Patent Document 3 discloses a light-transmitting epoxy resin composition comprising a filler having substantially the same refractive index as that of an epoxy resin cured with an acid anhydride. Various epoxy resin compositions that have been made transparent by combining them have been reported.

また、上記したような透明樹脂と無機充填剤の複合によりなる透明複合組成物における最大の問題は、複合体内部のミクロレベルの光学異方性である。複合材料においては樹脂とフィラーで熱膨張係数が異なるため、その界面でミクロレベルの内部応力が生じ、その応力ゆえに樹脂内部で分子の配向が起こる結果、ミクロレベルの光学異方性が生じる。液晶表示素子、特に非常に細かい画素が要求されている液晶表示素子に光学異方性のある基板を適用することは困難である。   Moreover, the biggest problem in the transparent composite composition comprising the composite of the transparent resin and the inorganic filler as described above is the micro-level optical anisotropy inside the composite. In the composite material, since the thermal expansion coefficient differs between the resin and the filler, micro level internal stress is generated at the interface, and as a result, molecular orientation occurs inside the resin due to the stress, resulting in micro level optical anisotropy. It is difficult to apply a substrate having optical anisotropy to a liquid crystal display element, particularly a liquid crystal display element that requires very fine pixels.

特開平6−337408号公報JP-A-6-337408 特開平7−120740号公報JP-A-7-120740 特開平4−236217号公報JP-A-4-236217

本発明の目的は、線膨張係数が小さく、透明性、耐熱性に優れ、さらに複合材料に生じる内部応力に起因する光学異方性を低減させた、ガラスに代替可能な透明複合シートを提供することにある。   An object of the present invention is to provide a transparent composite sheet having a small linear expansion coefficient, excellent in transparency and heat resistance, and having reduced optical anisotropy due to internal stress generated in the composite material, which can be substituted for glass. There is.

本発明者らは、上記課題を達成すべく鋭意検討した結果、透明樹脂(a)及び無機フィラー(b)からなり、透明樹脂(a)の体積硬化収縮率が5%以下である透明複合シートが、硬化収縮起因で材料内に生じる内部応力が小さい故に光学異方性が小さく、さらに低線膨張係数で高い剛性を有し、透明性、耐熱性、耐溶剤性に優れ、アクティブマトリックスタイプを含む液晶表示素子用基板、有機EL表示素子基板、カラーフィルター用基板、タッチパネル用基板、太陽電池基板などの光学シート、透明板、光学レンズ、光学素子、光導波路等に好適に用いられることを見出し、本発明に至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have made a transparent composite sheet comprising a transparent resin (a) and an inorganic filler (b), and the volume hardening shrinkage of the transparent resin (a) is 5% or less. However, since the internal stress generated in the material due to shrinkage due to curing is small, the optical anisotropy is small, the rigidity is low with a low linear expansion coefficient, and it is excellent in transparency, heat resistance and solvent resistance. It is found to be suitably used for optical sheets such as liquid crystal display element substrates, organic EL display element substrates, color filter substrates, touch panel substrates, solar cell substrates, transparent plates, optical lenses, optical elements, and optical waveguides. The present invention has been reached.

すなわち本発明は
(1)透明樹脂(a)及び無機フィラー(b)からなり、透明樹脂(a)の体積硬化収縮率が5%以下である透明複合シート、
(2)前記透明樹脂(a)がエポキシ樹脂を含むものである(1)の透明複合シート、
(3)前記エポキシ樹脂が下記化学式(1)で示される脂環式エポキシ樹脂を含むものである(2)の透明複合シート、
(式中、Xは−CH2−、−CH(CH3)−、又は−(CH3)2−を表す。)
(4)前記エポキシ樹脂が下記化学式(2)で示される脂環式エポキシ樹脂を含むものである(2)の透明複合シート、
(5)前記エポキシ樹脂の硬化剤としてカチオン系硬化触媒(d)を含むものである(2)〜(4)の透明複合シート、
(6)前記透明樹脂(a)の硬化後の屈折率と無機フィラー(b)の屈折率との差が0.01以下である(1)〜(5)の透明複合シート、
(7)前記透明樹脂(a)の硬化後のアッベ数が45以上である(1)〜(6)の透明複合シート、
(8)前記無機フィラー(b)がガラス繊維布を含むものである(1)〜(7)の透明複合シート、
(9)波長550nmにおける光線透過率が80%以上である(1)〜(8)の透明複合シート、
(10)30〜150℃における平均線膨張係数が40ppm以下である(1)〜(9)の透明複合シート、
(11)(1)〜(10)の透明複合シートから構成される表示素子基板、
である。
That is, the present invention comprises (1) a transparent composite sheet comprising a transparent resin (a) and an inorganic filler (b), and the volume hardening shrinkage of the transparent resin (a) is 5% or less,
(2) The transparent composite sheet according to (1), wherein the transparent resin (a) contains an epoxy resin,
(3) The transparent composite sheet according to (2), wherein the epoxy resin contains an alicyclic epoxy resin represented by the following chemical formula (1):
(In the formula, X represents —CH 2 —, —CH (CH 3 ) —, or — (CH 3 ) 2 —).
(4) The transparent composite sheet according to (2), wherein the epoxy resin contains an alicyclic epoxy resin represented by the following chemical formula (2):
(5) The transparent composite sheet according to (2) to (4), which contains a cationic curing catalyst (d) as a curing agent for the epoxy resin,
(6) The transparent composite sheet of (1) to (5), wherein the difference between the refractive index after curing of the transparent resin (a) and the refractive index of the inorganic filler (b) is 0.01 or less,
(7) The transparent composite sheet according to (1) to (6), wherein the Abbe number after curing of the transparent resin (a) is 45 or more,
(8) The transparent composite sheet according to (1) to (7), wherein the inorganic filler (b) includes a glass fiber cloth,
(9) The transparent composite sheet according to (1) to (8), wherein the light transmittance at a wavelength of 550 nm is 80% or more,
(10) The transparent composite sheet according to (1) to (9), wherein an average linear expansion coefficient at 30 to 150 ° C. is 40 ppm or less,
(11) A display element substrate comprising the transparent composite sheet of (1) to (10),
It is.

以下、本発明を詳細に説明する。
本発明の透明複合シートにおける、透明樹脂(a)の体積硬化収縮率は5%以下である必要がある。好ましくは4%以下、より好ましくは3%以下、最も好ましくは2%以下である。ここで言う体積硬化収縮率とは、未硬化の樹脂の常温における比重と、硬化後の樹脂の常温における比重より算出した体積収縮率である。樹脂とフィラーを複合化して硬化した後常温に戻す場合、一般に樹脂には引っ張り応力、フィラーには圧縮応力がかかる。この内部応力によって樹脂内部で分子の配向が起こり、その結果材料内にミクロな光学異方性が生じる。本発明者らは、材料内に生じる内部応力が小さい程、それに起因する光学異方性が小さくなることを突き止め、光学異方性を低減させるには樹脂の体積硬化収縮率を低減することが重要であり、この値が上限値以下であれば、光学シート、透明板、光学レンズ、光学素子、光導波路等に好適に用いられる透明複合シートを提供することができることを見出した。
Hereinafter, the present invention will be described in detail.
The volume hardening shrinkage of the transparent resin (a) in the transparent composite sheet of the present invention needs to be 5% or less. Preferably it is 4% or less, more preferably 3% or less, and most preferably 2% or less. The volume cure shrinkage referred to here is a volume shrinkage calculated from the specific gravity of the uncured resin at normal temperature and the specific gravity of the cured resin at normal temperature. When a resin and a filler are combined and cured and then returned to room temperature, generally a tensile stress is applied to the resin and a compressive stress is applied to the filler. This internal stress causes molecular orientation inside the resin, resulting in micro optical anisotropy in the material. The present inventors have found that the smaller the internal stress generated in the material, the smaller the optical anisotropy resulting therefrom, and in order to reduce the optical anisotropy, the volume hardening shrinkage of the resin can be reduced. It is important, and when this value is not more than the upper limit value, it has been found that a transparent composite sheet suitably used for an optical sheet, a transparent plate, an optical lens, an optical element, an optical waveguide and the like can be provided.

本発明に用いる透明樹脂(a)は、体積硬化収縮が5%以下のものであれば特に限定されない。体積硬化収縮が5%以下の透明樹脂の例としては、エポキシ樹脂やオキセタン樹脂などの熱硬化性樹脂や光硬化性樹脂が上げられる。好ましくは脂環式エポキシ樹脂であり、なかでも一般式(1)で示される脂環式エポキシ樹脂または一般式(2)で示される脂環式エポキシ樹脂(ビシクロヘキシル3,3’ジオキシド)は、体積硬化収縮率が小さいので特に好ましい。   The transparent resin (a) used in the present invention is not particularly limited as long as the volume hardening shrinkage is 5% or less. Examples of transparent resins having a volume hardening shrinkage of 5% or less include thermosetting resins such as epoxy resins and oxetane resins and photocurable resins. An alicyclic epoxy resin is preferred, and among them, an alicyclic epoxy resin represented by the general formula (1) or an alicyclic epoxy resin represented by the general formula (2) (bicyclohexyl 3,3 ′ dioxide) This is particularly preferable because the volume hardening shrinkage is small.

(式中、Xは−CH2−、−CH(CH3)−、又は−(CH3)2−を表す。) (In the formula, X represents —CH 2 —, —CH (CH 3 ) —, or — (CH 3 ) 2 —).

本発明で用いられるエポキシ樹脂の硬化剤は、体積硬化収縮が5%以下になるものであれば特に限定されないが、耐熱性が高い硬化物が得られることからカチオン系硬化触媒(d)が好ましい。カチオン系硬化触媒(d)としては、加熱によりカチオン重合を開始させる物質を放出する開始剤や活性エネルギー線によってカチオン重合を開始させる物質を放出させる開始剤などがあげられるが、耐熱性が高い硬化物が得られることから加熱によりカチオン重合を開始する物質を放出する開始剤、すなわち熱カチオン系硬化触媒が特に好ましい。   The curing agent for the epoxy resin used in the present invention is not particularly limited as long as the volume curing shrinkage is 5% or less, but a cationic curing catalyst (d) is preferable because a cured product having high heat resistance is obtained. . Examples of the cationic curing catalyst (d) include an initiator that releases a substance that initiates cationic polymerization by heating and an initiator that releases a substance that initiates cationic polymerization by active energy rays. In particular, an initiator that releases a substance that initiates cationic polymerization upon heating, that is, a thermal cationic curing catalyst, is preferable because a product is obtained.

好ましい熱カチオン硬化触媒としては、芳香族スルホニウム塩、芳香族ヨードニウム塩、アルミニウムキレートなどがある。具体的な例としては、芳香族スルホニウム塩としては三新化学工業製のSI−60L、SI−80L、SI−100L、旭電化工業製のCP−66、CP−77などがあり、アルミニウムキレートとしては、ダイセル化学工業製DAICAT EX−1などがあげられる。   Preferred thermal cation curing catalysts include aromatic sulfonium salts, aromatic iodonium salts, aluminum chelates and the like. Specific examples include aromatic sulfonium salts such as SI-60L, SI-80L, SI-100L manufactured by Sanshin Chemical Industry, CP-66, CP-77 manufactured by Asahi Denka Kogyo Co., Ltd. Is Daicel Chemical Industries' DAICAT EX-1.

本発明の透明樹脂(a)の透明性は、シートにした際の550nmでの光線透過率が80%以上のものが好ましく、より好ましくは85%以上、最も好ましくは90%以上である。表示素子用基板として用いる場合には、85%以上が好ましい。   The transparency of the transparent resin (a) of the present invention is preferably such that the light transmittance at 550 nm when formed into a sheet is 80% or more, more preferably 85% or more, and most preferably 90% or more. When used as a display element substrate, 85% or more is preferable.

本発明に用いる透明樹脂(a)は、硬化後のアッベ数が45以上であることが優れた透明性を維持するために望ましい。アッベ数とは屈折率の波長依存性を示すパラメータであり、この数値が大きければ大きいほど屈折率の波長依存性が小さい。ガラスのような無機材料に関してはアッベ数が比較的大きく、プラスチックのような有機材料に関しては比較的小さい。透明複合体基板においてどの波長域でも透明性を維持するには、透明樹脂とガラスフィラーの屈折率の波長依存性をできるだけ合致させる必要がある。ガラスのアッベ数を低くすることは技術的にかなり困難であるため、透明樹脂のアッベ数を高めることによりお互いのアッベ数を近づける必要があることがあると判明した。アッベ数が45未満である透明樹脂を用いた場合、透明複合体樹脂の透明性が劣る可能性がある。   The transparent resin (a) used in the present invention is desirable for maintaining excellent transparency that the Abbe number after curing is 45 or more. The Abbe number is a parameter indicating the wavelength dependence of the refractive index. The larger this value, the smaller the wavelength dependence of the refractive index. For inorganic materials such as glass, the Abbe number is relatively large, and for organic materials such as plastic, it is relatively small. In order to maintain transparency in any wavelength region in the transparent composite substrate, it is necessary to match the wavelength dependence of the refractive indexes of the transparent resin and the glass filler as much as possible. Since it is technically difficult to reduce the Abbe number of glass, it has been found that it is sometimes necessary to bring the Abbe numbers closer to each other by increasing the Abbe number of the transparent resin. When a transparent resin having an Abbe number of less than 45 is used, the transparency of the transparent composite resin may be inferior.

本発明で用いる無機フィラー(b)としては、ガラス繊維、ガラスクロスやガラス不織布などのガラス繊維布があげられ、中でも線膨張係数の低減効果が高いことから、ガラスクロスが最も好ましい。繊維の厚みは特に限定されるものではないが、30〜300μmであることが好ましい。ガラスの種類としては、Eガラス、Cガラス、Aガラス、Sガラス、Dガラス、NEガラス、Tガラスなどがあげられ、中でもアルカリ金属が少ないEガラス、Sガラス、Tガラス、NEガラスが好ましい。繊維状無機フィラー(b)の屈折率は特に制限されないが、透明複合シートが優れた透明性を示すには、透明樹脂(a)の硬化後の屈折率との差が0.01以下であることが望ましく、0.005以下がより好ましい。   Examples of the inorganic filler (b) used in the present invention include glass fiber cloth such as glass fiber, glass cloth, and glass nonwoven fabric. Among them, glass cloth is most preferable because it has a high effect of reducing the linear expansion coefficient. Although the thickness of a fiber is not specifically limited, It is preferable that it is 30-300 micrometers. Examples of the glass include E glass, C glass, A glass, S glass, D glass, NE glass, and T glass. Among them, E glass, S glass, T glass, and NE glass with few alkali metals are preferable. The refractive index of the fibrous inorganic filler (b) is not particularly limited, but in order for the transparent composite sheet to exhibit excellent transparency, the difference from the refractive index after curing of the transparent resin (a) is 0.01 or less. Desirably, 0.005 or less is more preferable.

本発明の複合透明シートを、透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路等として用いる場合は、波長550nmの光線透過率が80%以上であることが好ましく、さらに好ましくは、85%以上である。波長550nmの光線透過率が下限値未満の場合は、光を利用する効率が低下するので、光効率が重要な用途には好ましくない。   When the composite transparent sheet of the present invention is used as a transparent plate, an optical lens, a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, a solar cell substrate, a touch panel, an optical element, an optical waveguide, etc. The light transmittance at a wavelength of 550 nm is preferably 80% or more, and more preferably 85% or more. When the light transmittance at a wavelength of 550 nm is less than the lower limit value, the efficiency of using light is lowered, which is not preferable for applications where light efficiency is important.

本発明の透明複合シートを、透明板、光学レンズ、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路等として用いる場合は、30〜150℃の平均線膨張係数が40ppm以下であることが好ましく、より好ましくは30ppm以下、最も好ましくは20ppm以下である。例えば、この複合体組成物をアクティブマトリックス表示素子基板に用いた場合、この上限値を越えると、その製造工程において反りやアルミ配線の断線などの問題が生じる恐れがある。   When the transparent composite sheet of the present invention is used as a transparent plate, an optical lens, a liquid crystal display element plastic substrate, a color filter substrate, an organic EL display element plastic substrate, a solar cell substrate, a touch panel, an optical element, an optical waveguide, etc. The average linear expansion coefficient at 30 to 150 ° C. is preferably 40 ppm or less, more preferably 30 ppm or less, and most preferably 20 ppm or less. For example, when this composite composition is used for an active matrix display element substrate, if this upper limit is exceeded, problems such as warpage and disconnection of aluminum wiring may occur in the manufacturing process.

本発明における透明複合シートの成形方法に制限はなく、例えば、透明樹脂とガラスフィラーとを直接混合し、必要な型に注型したのち架橋させてシートとする方法、樹脂を溶剤に溶解しガラスフィラーを分散させキャストした後架橋させてシートとする方法、エポキシ樹脂をガラスクロスやガラス不織布に含浸させたのち架橋させてシートとする方法等々が挙げられる。   There is no limitation on the molding method of the transparent composite sheet in the present invention, for example, a method in which a transparent resin and a glass filler are directly mixed, cast into a required mold and then cross-linked to form a sheet, and the resin is dissolved in a solvent and glass Examples include a method in which a filler is dispersed and cast and then cross-linked to form a sheet, a method in which an epoxy resin is impregnated into glass cloth or a glass nonwoven fabric, and then cross-linked to form a sheet.

本発明においては、無機充填剤と樹脂とが密着しているほど、本発明の複合シートの透明性が良くなるため、無機充填剤表面をシランカップリング剤などの公知の表面処理剤で処理することが好ましい。シランカップリング剤としては、エポキシシランカップリング剤、チタネート系カップリング剤、アミノシランカップリング剤及びシリコーンオイル型カップリング剤等が挙げられ、これらを単独で用いても数種複合して用いてもよい。   In the present invention, as the inorganic filler and the resin are in close contact with each other, the transparency of the composite sheet of the present invention is improved. Therefore, the surface of the inorganic filler is treated with a known surface treatment agent such as a silane coupling agent. It is preferable. Examples of the silane coupling agent include an epoxy silane coupling agent, a titanate coupling agent, an aminosilane coupling agent, and a silicone oil type coupling agent. These may be used alone or in combination. Good.

本発明の透明複合シートは、平滑性を向上させるために両面に樹脂のコート層を設けても良い。コートする樹脂としては、優れた透明性、耐熱性、耐薬品性を有していることが好ましく、具体的には多官能アクリレートやエポキシ樹脂などをあげることができる。コートする樹脂の厚みとしては、0.1〜50μmが好ましく、0.5〜30μmがより好ましい。   The transparent composite sheet of the present invention may be provided with a resin coating layer on both sides in order to improve smoothness. The resin to be coated preferably has excellent transparency, heat resistance and chemical resistance, and specific examples include polyfunctional acrylates and epoxy resins. As thickness of resin to coat, 0.1-50 micrometers is preferred and 0.5-30 micrometers is more preferred.

本発明の透明複合シートは、必要に応じて水蒸気や酸素に対するガスバリア層や透明電極層を設けても良い。
また、本発明の透明複合シート中には、必要に応じて、透明性、耐溶剤性、耐熱性等の特性を損なわない範囲で、少量の酸化防止剤、紫外線吸収剤、染顔料、他の無機フィラー等の充填剤等を含んでいても良い。
The transparent composite sheet of the present invention may be provided with a gas barrier layer or a transparent electrode layer against water vapor or oxygen as necessary.
In the transparent composite sheet of the present invention, if necessary, a small amount of antioxidant, ultraviolet absorber, dye / pigment, and the like, as long as the properties such as transparency, solvent resistance and heat resistance are not impaired. It may contain a filler such as an inorganic filler.

以下、本発明の内容を実施例により詳細に説明するが、本発明は、その要旨を越えない限り以下の例に限定されるものではない。   Hereinafter, the contents of the present invention will be described in detail by way of examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

(実施例1)
厚さ80μmで屈折率1.51のNEガラス系ガラスクロス(日東紡績製NEA2319E)を焼きだしして有機物を除去した後、グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。このガラスクロスに水添ビフェニル型脂環式エポキシ樹脂(ダイセル化学工業製E−BP)75重量部、オキセタニル基を有するシルキセスキオキサン(東亞合成製OX−SQ)25重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製SI−100L)1重量部を溶融混合した樹脂(硬化後の樹脂の屈折率1.51、アッベ数56)を含浸し、脱泡した。樹脂を含浸したこのガラスクロスを離型処理したガラス板に挟み込んで、真空プレス機を用いて30kg/cm2の圧力でプレスしながら80℃で2時間加熱し、さらに200℃で2時間加熱して硬化させ、厚さ0.1mmの透明複合シートを得た。
Example 1
A NE glass-based glass cloth (NEA2319E manufactured by Nittobo Co., Ltd.) having a thickness of 80 μm and a refractive index of 1.51 was baked to remove organic substances, and then treated with glycidoxypropyltrimethoxysilane (epoxysilane). On this glass cloth, 75 parts by weight of hydrogenated biphenyl type alicyclic epoxy resin (E-BP manufactured by Daicel Chemical Industries), 25 parts by weight of silxesquioxane having oxetanyl group (OX-SQ manufactured by Toagosei Co., Ltd.), aromatic sulfonium-based It impregnated and degassed with a resin (refractive index of cured resin 1.51, Abbe number 56) obtained by melting and mixing 1 part by weight of a thermal cation catalyst (SI-100L, manufactured by Sanshin Chemical Co., Ltd.). This glass cloth impregnated with resin is sandwiched between release-treated glass plates and heated at 80 ° C. for 2 hours while pressing at a pressure of 30 kg / cm 2 using a vacuum press, and further heated at 200 ° C. for 2 hours. And cured to obtain a transparent composite sheet having a thickness of 0.1 mm.

(実施例2)
脂環式エポキシ樹脂(ダイセル化学工業製EHPE3150)80重量部、ビスフェノールS型エポキシ樹脂(大日本インキ化学工業製エピクロンEXA1514)20重量部、メチルヘキサヒドロ無水フタル酸(新日本理化製リカシッドMH−700)75重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)0.5重量部、1,3ジオキソラン60重量部を混合してワニス(硬化後の樹脂の屈折率1.51、アッベ数55)とした。これを実施例1記載のガラスクロスに含侵し、125℃で5分間乾燥した後、離型処理したガラス板に挟み込み、真空プレス機を用いて30kg/cm2の圧力でプレスしながら200℃で2時間加熱して硬化させ、厚さ0.1mmの透明複合シートを得た。
(Example 2)
80 parts by weight of an alicyclic epoxy resin (EHPE3150 manufactured by Daicel Chemical Industries), 20 parts by weight of a bisphenol S type epoxy resin (Epiclon EXA1514 manufactured by Dainippon Ink and Chemicals), methylhexahydrophthalic anhydride (Rikacid MH-700 manufactured by Shin Nippon Chemical Co., Ltd.) ) 75 parts by weight, tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical Co., Ltd.) 0.5 parts by weight, 1,3 dioxolane 60 parts by weight, and varnish (refractive index of cured resin 1.51, Abbe number) 55). This was impregnated into the glass cloth described in Example 1, dried at 125 ° C. for 5 minutes, and then sandwiched between the release-treated glass plates, and at 200 ° C. while being pressed at a pressure of 30 kg / cm 2 using a vacuum press. It was cured by heating for 2 hours to obtain a transparent composite sheet having a thickness of 0.1 mm.

(実施例3)
厚さ80μmで屈折率1.51のNEガラス系ガラスクロス(日東紡績製NEA2319E)を焼きだしして有機物を除去した後、グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。このガラスクロスに2,2’−ビス(3,4’−エポキシシクロヘキシル)プロパン(ダイセル化学工業製E−DOA)100重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製SI−100L)1重量部を溶融混合した樹脂(硬化後の樹脂の屈折率1.512、アッベ数57)を含浸し、脱泡した。樹脂を含浸したこのガラスクロスを離型処理したガラス板に挟み込んで、真空プレス機を用いて30kg/cm2の圧力でプレスしながら80℃で2時間加熱し、さらに200℃で2時間加熱して硬化させ、厚さ0.1mmの透明複合シートを得た。
(Example 3)
A NE glass-based glass cloth (NEA2319E manufactured by Nittobo Co., Ltd.) having a thickness of 80 μm and a refractive index of 1.51 was baked to remove organic substances, and then treated with glycidoxypropyltrimethoxysilane (epoxysilane). 2,2'-bis (3,4'-epoxycyclohexyl) propane (E-DOA manufactured by Daicel Chemical Industries), aromatic sulfonium-based thermal cation catalyst (SI-100L manufactured by Sanshin Chemical) 1 Impregnation was performed by impregnating a resin (refractive index of cured resin 1.512, Abbe number 57) obtained by melting and mixing parts by weight. This glass cloth impregnated with resin is sandwiched between release-treated glass plates and heated at 80 ° C. for 2 hours while pressing at a pressure of 30 kg / cm 2 using a vacuum press, and further heated at 200 ° C. for 2 hours. And cured to obtain a transparent composite sheet having a thickness of 0.1 mm.

(実施例4)
平均粒子径3.2μmのNEガラスパウダー(屈折率1.510、日東紡製)を焼きだしして有機物を除去した後、グリシドキシプロピルトリメトキシシラン(エポキシシラン)で処理した。このガラスパウダー100重量部を、2,2−ビス(3’,4’−エポキシシクロヘキシル)プロパン(ダイセル化学工業製E−DOA)100重量部、芳香族スルホニウム系熱カチオン触媒(三新化学製、SI−100L)1重量部を溶融混合した樹脂(硬化後の樹脂の屈折率1.512、アッベ数57)に分散し、脱泡した。これを厚さ80μmのアルミ箔をスペーサーとしてガラス板に挟み込んで、オーブン中、80℃にて2時間加熱後、さらに200℃にて2時間加熱して、厚さ0.1mmの透明シートを得た。
Example 4
NE glass powder having an average particle diameter of 3.2 μm (refractive index: 1.510, manufactured by Nittobo) was baked to remove organic substances, and then treated with glycidoxypropyltrimethoxysilane (epoxysilane). 100 parts by weight of this glass powder, 100 parts by weight of 2,2-bis (3 ′, 4′-epoxycyclohexyl) propane (E-DOA manufactured by Daicel Chemical Industries), an aromatic sulfonium-based thermal cation catalyst (manufactured by Sanshin Chemical Co., Ltd.) (SI-100L) 1 part by weight was dispersed in a melt-mixed resin (refractive index of cured resin 1.512, Abbe number 57) and defoamed. This is sandwiched between glass plates with an aluminum foil having a thickness of 80 μm as a spacer, heated in an oven at 80 ° C. for 2 hours, and further heated at 200 ° C. for 2 hours to obtain a transparent sheet having a thickness of 0.1 mm. It was.

(比較例1)
トリグリシジルイソシアヌレート(日産化学工業製TEPIC)100重量部、メチルヘキサヒドロ無水フタル酸(新日本理化製リカシッドMH−700)147重量部、テトラフェニルホスホニウムブロマイド(北興化学工業製TPP−PB)2重量部を110℃で溶融混合した樹脂(硬化後の樹脂の屈折率1.51、アッベ数54)を、実施例1記載のガラスクロスに含浸した後離型処理したガラス板に挟み込み、真空プレス機を用いて30kg/cm2の圧力でプレスしながら200℃で2時間加熱して硬化させ、厚さ0.1mmの透明複合シートを得た。
(Comparative Example 1)
100 parts by weight of triglycidyl isocyanurate (TEPIC manufactured by Nissan Chemical Industries), 147 parts by weight of methylhexahydrophthalic anhydride (Rikacid MH-700 manufactured by Shin Nippon Chemical Co., Ltd.), 2 parts by weight of tetraphenylphosphonium bromide (TPP-PB manufactured by Hokuko Chemical) A resin obtained by melt-mixing a part at 110 ° C. (refractive index of cured resin 1.51, Abbe number 54) is impregnated into a glass cloth described in Example 1, and then sandwiched between release-treated glass plates, and a vacuum press machine Was cured by heating at 200 ° C. for 2 hours while pressing at a pressure of 30 kg / cm 2 to obtain a transparent composite sheet having a thickness of 0.1 mm.

以上のようにして作製した透明複合シートについて、下記に示す評価方法により、各種特性を評価した。
(a)光線透過率
分光光度計U3200(日立製作所製)で550nmの光線透過率を測定した。
About the transparent composite sheet produced as mentioned above, various characteristics were evaluated by the evaluation method shown below.
(A) Light transmittance The light transmittance at 550 nm was measured with a spectrophotometer U3200 (manufactured by Hitachi, Ltd.).

(b)平均線膨張係数
セイコー電子(株)製TMA/SS120C型熱応力歪測定装置を用いて、窒素雰囲気下、1分間に5℃の割合で温度を30℃から400℃まで上昇させて20分間保持し、30℃〜150℃の時の値を測定して求めた。荷重を5gにし、引張モードで測定を行った。測定は、独自に設計した石英引張チャック(材質:石英,線膨張係数0.5ppm)を用いた。一般に使われているインコネル製のチャックは、それ自体の線膨張が高いことやサンプルの支持形態に不具合があり、100μmを超える厚いシートに適用すると線膨張係数が圧縮モードで測定した結果よりも大きくなったり、測定ばらつきが大きくなったりする問題があった。したがって、石英引張チャックを独自に設計し、それを用いて線膨張係数を測定することにした。この引張チャックを用いることにより、圧縮モードで測定した場合とほぼ同様の値で測定できることを確認している。
(B) Average linear expansion coefficient Using a TMA / SS120C type thermal stress strain measuring device manufactured by Seiko Electronics Co., Ltd., the temperature was increased from 30 ° C. to 400 ° C. at a rate of 5 ° C. per minute in a nitrogen atmosphere. It was hold | maintained for minutes and measured and calculated | required the value at the time of 30 to 150 degreeC. The load was 5 g and the measurement was performed in the tensile mode. For the measurement, an independently designed quartz tension chuck (material: quartz, coefficient of linear expansion 0.5 ppm) was used. Commonly used Inconel chucks have high linear expansion per se and defects in the sample support form. When applied to thick sheets exceeding 100 μm, the linear expansion coefficient is larger than the result measured in the compression mode. And there was a problem that measurement variation became large. Therefore, we decided to design a quartz tensile chuck and use it to measure the linear expansion coefficient. By using this tension chuck, it has been confirmed that it can be measured with a value almost the same as that measured in the compression mode.

(c)樹脂の体積硬化収縮率
未硬化の樹脂、硬化後の樹脂の比重を、常温にて比重瓶を用いて測定し、測定値から、単位重量当たりの体積減少率を%単位で算出した。
(C) Volume cure shrinkage of resin Specific gravity of uncured resin and cured resin was measured at room temperature using a density bottle, and the volume reduction rate per unit weight was calculated in% from the measured value. .

(d)光学異方性
作成した透明複合シートをクロスニコルにした偏光顕微鏡で観察した。偏光顕微鏡の光軸を固定し、光源の強さを一定にした状態でサンプルを回転させ、シートの一部分あるいは全体がもっとも明るくなる角度にセットした。2.4mm×1.8mmの観察部分を画像(画素数640x480)化してPCに取り込み、これを各画素が0〜255の階調を持つ白黒画像に変換した。この白黒画像中の各画素の階調を総和し、これを光学異方性の評価値とした。この評価値が1000万未満の場合に、透明複合シートの光学異方性が小さく良好な品質であると判断した。
(D) Optical anisotropy The prepared transparent composite sheet was observed with a polarizing microscope in crossed Nicols. The sample was rotated while the optical axis of the polarizing microscope was fixed and the intensity of the light source was constant, and the sample was set at an angle at which part or all of the sheet became brightest. An observation portion of 2.4 mm × 1.8 mm was converted into an image (number of pixels: 640 × 480) and captured on a PC, which was converted into a black and white image with each pixel having a gradation of 0 to 255. The gradation of each pixel in this black-and-white image was summed up, and this was used as the optical anisotropy evaluation value. When this evaluation value was less than 10 million, it was judged that the transparent composite sheet had small optical anisotropy and good quality.

実施例1は、光線透過率が91%、平均線膨張係数が14ppm、樹脂の体積硬化収縮率が0.5%で、光学異方性の評価値が400万と小さく、表示素子用基板として使用できるものであった。
実施例2は、光線透過率が89%、平均線膨張係数が16ppm、樹脂の体積硬化収縮率が4%で、光学異方性の評価値が810万と小さく、表示素子用基板として使用できるものであった。
実施例3は、光線透過率が91%、平均線膨張係数が13ppm、樹脂の体積硬化収縮率が−1%で、光学異方性の評価値が500万と小さく、表示素子用基板として使用できるものであった。
実施例4は、光線透過率が89%、平均線膨張係数が31ppm、樹脂の体積硬化収縮率が−1%で、光学異方性の評価値が300万と小さく、表示素子用基板として使用できるものであった。
比較例1は、光線透過率が90%、平均線膨張係数が15ppmであったが、樹脂の体積硬化収縮率が6.5%と大きいため光学異方性の評価値が1200万と大きく、表示素子用基板として使用するには不十分であった。
Example 1 has a light transmittance of 91%, an average linear expansion coefficient of 14 ppm, a volume hardening shrinkage of the resin of 0.5%, and an optical anisotropy evaluation value as small as 4 million. It was usable.
Example 2 has a light transmittance of 89%, an average linear expansion coefficient of 16 ppm, a volume cure shrinkage of the resin of 4%, and an optical anisotropy evaluation value as small as 8.1 million, which can be used as a display element substrate. It was a thing.
Example 3 has a light transmittance of 91%, an average linear expansion coefficient of 13 ppm, a volume hardening shrinkage of the resin of -1%, and an optical anisotropy evaluation value as small as 5 million, which is used as a display element substrate. It was possible.
Example 4 has a light transmittance of 89%, an average linear expansion coefficient of 31 ppm, a volume cure shrinkage of the resin of -1%, and an optical anisotropy evaluation value as small as 3 million, which is used as a display element substrate. It was possible.
In Comparative Example 1, the light transmittance was 90% and the average linear expansion coefficient was 15 ppm, but the evaluation value of the optical anisotropy was as large as 12 million because the volume hardening shrinkage of the resin was as large as 6.5%. It was insufficient for use as a display element substrate.

本発明の透明複合シートは、低線膨張係数で透明性、耐熱性等に優れるため、例えば、液晶表示素子基板や有機EL素子基板(特にアクティブマトリックスタイプ)等表示素子に好ましい他、透明板、光学レンズ、カラーフィルター用基板、太陽電池基板、タッチパネル、光学素子、光導波路、等に好適に利用することができる。

The transparent composite sheet of the present invention has a low coefficient of linear expansion and is excellent in transparency, heat resistance, and the like. For example, it is preferable for a display element such as a liquid crystal display element substrate or an organic EL element substrate (particularly an active matrix type), a transparent plate, It can be suitably used for optical lenses, color filter substrates, solar cell substrates, touch panels, optical elements, optical waveguides, and the like.

Claims (6)

下記測定方法1により測定した体積硬化収縮率が5%以下であり下記化学式(1)で示される脂環式エポキシ樹脂または化学式(2)で示される水添ビフェニル型脂環式エポキシ樹脂を含む透明樹脂(a)及び無機フィラー(b)からなる表示素子基板用透明性複合シート
〔測定方法1:未硬化の樹脂、硬化後の樹脂の比重を、常温にて比重瓶を用いて測定し、測定値から、単位重量当たりの体積減少率を単位%で算出する。〕


(式中、Xは−CH−、―CH(CH)−、又は−C(CH−を表す。)


Transparent containing a cycloaliphatic epoxy resin represented by the following chemical formula (1) or a hydrogenated biphenyl type alicyclic epoxy resin represented by the following chemical formula (1) having a volume hardening shrinkage measured by the following measurement method 1 of 5% or less Transparent composite sheet for display element substrate comprising resin (a) and inorganic filler (b) [Measuring method 1: Specific gravity of uncured resin and cured resin is measured at room temperature using a specific gravity bottle and measured. From the value, the volume reduction rate per unit weight is calculated in unit%. ]


(In the formula, X represents —CH 2 —, —CH (CH 3 ) —, or —C (CH 3 ) 2 —).


前記脂環式エポキシ樹脂(a)の硬化剤としてカチオン系硬化触媒(d)を含むものである請求項1記載の表示素子基板用透明性複合シート。 The transparent composite sheet for a display element substrate according to claim 1, comprising a cationic curing catalyst (d) as a curing agent for the alicyclic epoxy resin (a). 前記無機フィラー(b)がガラス繊維布である請求項1または2記載の表示素子基板用透明性複合シート。 Wherein the inorganic filler (b) is according to claim 1 or 2 display device a transparent composite sheet according a fiberglass cloth. 光線透過率(測定波長550nm、分光光度計にて測定した)が80%以上である請求項1乃至3のいずれか1項に記載の表示素子基板用透明性複合シート。 The transparent composite sheet for display element substrates according to any one of claims 1 to 3, wherein the light transmittance ( measured wavelength: 550 nm, measured with a spectrophotometer) is 80% or more. 平均線膨張係数(測定温度30℃〜400℃、昇温速度5℃/1min、引張モードにて熱応力歪測定装置にて測定した)が40ppm以下である請求項1乃至4のいずれか1項記載の表示素子基板用透明性複合シート。 The average linear expansion coefficient (measured temperature 30 ° C. to 400 ° C., heating rate 5 ° C. / 1min, tensile was measured by thermal stress strain measuring apparatus in mode) any one of claims 1 to 4 is 40ppm or less The transparent composite sheet for display element substrates as described . 請求項1乃至5のいずれか1項記載の表示素子基板用透明性複合シートを用いて作製された表示素子基板。A display element substrate produced using the transparent composite sheet for a display element substrate according to any one of claims 1 to 5.
JP2005017814A 2004-01-28 2005-01-26 Transparent composite sheet and display element substrate using the same Expired - Fee Related JP4650003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005017814A JP4650003B2 (en) 2004-01-28 2005-01-26 Transparent composite sheet and display element substrate using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004019212 2004-01-28
JP2005017814A JP4650003B2 (en) 2004-01-28 2005-01-26 Transparent composite sheet and display element substrate using the same

Publications (2)

Publication Number Publication Date
JP2005240028A JP2005240028A (en) 2005-09-08
JP4650003B2 true JP4650003B2 (en) 2011-03-16

Family

ID=35022081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005017814A Expired - Fee Related JP4650003B2 (en) 2004-01-28 2005-01-26 Transparent composite sheet and display element substrate using the same

Country Status (1)

Country Link
JP (1) JP4650003B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176586A (en) * 2004-12-21 2006-07-06 Sumitomo Bakelite Co Ltd Transparent composite composition and optical sheet and plastic substrate for display device
JP4821252B2 (en) * 2005-10-13 2011-11-24 住友ベークライト株式会社 Transparent composite
JP4901198B2 (en) * 2005-11-28 2012-03-21 大日本印刷株式会社 Substrate for display device with spacer
JP4774954B2 (en) * 2005-11-28 2011-09-21 大日本印刷株式会社 Substrate for display device with spacer
JP5170506B2 (en) * 2006-03-09 2013-03-27 Dic化工株式会社 Sheet molding compound molding material for heat compression molding, molded product using the same, and manufacturing method thereof
JP4930140B2 (en) * 2006-07-26 2012-05-16 住友ベークライト株式会社 Transparent laminate
JP5360470B2 (en) * 2006-10-11 2013-12-04 住友ベークライト株式会社 Transparent composite sheet
JP2008225020A (en) * 2007-03-13 2008-09-25 Sumitomo Bakelite Co Ltd Optical resin sheet
JP5119846B2 (en) * 2007-04-18 2013-01-16 住友ベークライト株式会社 Epoxy resin composition and transparent composite sheet
JP4910871B2 (en) * 2007-05-10 2012-04-04 住友ベークライト株式会社 Epoxy resin composition and transparent composite sheet
KR101031272B1 (en) * 2007-05-24 2011-04-29 스미토모 베이클라이트 가부시키가이샤 Transparent composite sheet
CN101980868B (en) 2008-04-14 2013-08-28 昭和电工株式会社 Cured film and method for production thereof
JP5423013B2 (en) * 2009-01-29 2014-02-19 住友ベークライト株式会社 Plastic sheet
WO2011037083A1 (en) * 2009-09-25 2011-03-31 積水化学工業株式会社 Transparent composite sheet
WO2011135852A1 (en) * 2010-04-27 2011-11-03 住友ベークライト株式会社 Apparatus for producing fiber composite resin sheet, method for producing fiber composite resin sheet, and resin substrate for display element
JP2013032448A (en) * 2011-08-02 2013-02-14 Sumitomo Bakelite Co Ltd Transparent composite substrate, and display device substrate
WO2013047382A1 (en) * 2011-09-28 2013-04-04 住友ベークライト株式会社 Transparent composite substrate and display element substrate
JP2013163323A (en) * 2012-02-10 2013-08-22 Sumitomo Bakelite Co Ltd Transparent composite substrate and display element substrate
CN103958576A (en) * 2011-11-21 2014-07-30 住友电木株式会社 Transparent composite substrate and display element substrate
JP2012051379A (en) * 2011-11-25 2012-03-15 Sumitomo Bakelite Co Ltd Transparent composite sheet
JP2013167868A (en) * 2011-12-01 2013-08-29 Sumitomo Bakelite Co Ltd Image display device
KR102276288B1 (en) 2013-11-25 2021-07-12 삼성전자주식회사 Composition of preparing polyimide, polyimide, article includong same, and display device
US9975997B2 (en) 2015-03-27 2018-05-22 Samsung Electronics Co., Ltd. Compositions, composites prepared therefrom, and films and electronic devices including the same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236217A (en) * 1991-01-14 1992-08-25 Shin Etsu Chem Co Ltd Light transmitting epoxy resin composition and optical semiconductor device
JP2000026744A (en) * 1998-05-04 2000-01-25 Motorola Inc Transparent compound and its use
JP2000356720A (en) * 1999-06-16 2000-12-26 Sony Corp Material for optical waveguide, optical waveguide and its manufacture
JP2001261367A (en) * 2000-03-15 2001-09-26 Ngk Insulators Ltd Glass filler for transparent resin
JP2001323135A (en) * 2000-03-06 2001-11-20 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2001342326A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Method of manufacturing epoxy resin composition for photosemiconductor sealing
JP2001342325A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Epoxy resin composition for photosemiconductor sealing and optical semiconductor device
JP2002012743A (en) * 2000-06-28 2002-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing optical semiconductor, and optical semiconductor device sealed with its cured material
JP2002275169A (en) * 2001-03-23 2002-09-25 Daicel Chem Ind Ltd Method for epoxy compound production
JP2002338659A (en) * 2001-05-14 2002-11-27 Daicel Chem Ind Ltd Liquid epoxy resin composition and use thereof
JP2003109447A (en) * 2001-09-28 2003-04-11 Toshiba Corp Polymer insulating tube and transformation device using the same
WO2003064530A1 (en) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Transparent composite composition
WO2003064535A1 (en) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Transparent composite composition

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04236217A (en) * 1991-01-14 1992-08-25 Shin Etsu Chem Co Ltd Light transmitting epoxy resin composition and optical semiconductor device
JP2000026744A (en) * 1998-05-04 2000-01-25 Motorola Inc Transparent compound and its use
JP2000356720A (en) * 1999-06-16 2000-12-26 Sony Corp Material for optical waveguide, optical waveguide and its manufacture
JP2001323135A (en) * 2000-03-06 2001-11-20 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing optical semiconductor and optical semiconductor device
JP2001261367A (en) * 2000-03-15 2001-09-26 Ngk Insulators Ltd Glass filler for transparent resin
JP2001342325A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Epoxy resin composition for photosemiconductor sealing and optical semiconductor device
JP2001342326A (en) * 2000-05-31 2001-12-14 Sumitomo Bakelite Co Ltd Method of manufacturing epoxy resin composition for photosemiconductor sealing
JP2002012743A (en) * 2000-06-28 2002-01-15 Sumitomo Bakelite Co Ltd Epoxy resin composition for sealing optical semiconductor, and optical semiconductor device sealed with its cured material
JP2002275169A (en) * 2001-03-23 2002-09-25 Daicel Chem Ind Ltd Method for epoxy compound production
JP2002338659A (en) * 2001-05-14 2002-11-27 Daicel Chem Ind Ltd Liquid epoxy resin composition and use thereof
JP2003109447A (en) * 2001-09-28 2003-04-11 Toshiba Corp Polymer insulating tube and transformation device using the same
WO2003064530A1 (en) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Transparent composite composition
WO2003064535A1 (en) * 2002-01-25 2003-08-07 Sumitomo Bakelite Co., Ltd. Transparent composite composition

Also Published As

Publication number Publication date
JP2005240028A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4650003B2 (en) Transparent composite sheet and display element substrate using the same
JP4569336B2 (en) Transparent barrier sheet
EP1471112B1 (en) Transparent composite composition
JP4622348B2 (en) Transparent composite composition
JP5360470B2 (en) Transparent composite sheet
US20070219309A1 (en) Transparent composite composition
JP4784390B2 (en) Transparent composite sheet
JP2004269727A (en) Transparent compounded composition
JP2004231934A (en) Transparent composite material composition
JP2006176586A (en) Transparent composite composition and optical sheet and plastic substrate for display device
JP2004307845A (en) Transparent composite composition
JP4180450B2 (en) Transparent composite sheet
JP4424044B2 (en) Transparent composite sheet and display element using the same
JP4128474B2 (en) Transparent composite sheet
JP2004168945A (en) Transparent composite composition
JP4356395B2 (en) Plastic composite transparent sheet and display element using the same
JP2007168150A (en) Transparent composite sheet
JP4613492B2 (en) Optical sheet
JP4539113B2 (en) Plastic composite transparent sheet and display element using the same
JP4701613B2 (en) Optical sheet
JP4821252B2 (en) Transparent composite
JP2005029668A (en) Transparent composite composition and display device using the same
JP4356378B2 (en) Plastic composite sheet and display element using the same
JP2006264196A (en) Method for producing transparent composite sheet
JP2012051379A (en) Transparent composite sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101116

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees