JP4646813B2 - Biosensor measurement system, viscosity measurement method, and trace mass measurement method - Google Patents

Biosensor measurement system, viscosity measurement method, and trace mass measurement method Download PDF

Info

Publication number
JP4646813B2
JP4646813B2 JP2006007706A JP2006007706A JP4646813B2 JP 4646813 B2 JP4646813 B2 JP 4646813B2 JP 2006007706 A JP2006007706 A JP 2006007706A JP 2006007706 A JP2006007706 A JP 2006007706A JP 4646813 B2 JP4646813 B2 JP 4646813B2
Authority
JP
Japan
Prior art keywords
value
self
viscosity
amplitude
excited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006007706A
Other languages
Japanese (ja)
Other versions
JP2007093573A (en
Inventor
文雄 木村
潤 恒吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006007706A priority Critical patent/JP4646813B2/en
Publication of JP2007093573A publication Critical patent/JP2007093573A/en
Application granted granted Critical
Publication of JP4646813B2 publication Critical patent/JP4646813B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、試料溶液中における滑り波型圧電共振子の自励振時の電気的特性の変化から、溶液の粘性率および、共振子の電極表面等に吸着する化学物質の微量な吸着質量を測定するバイオセンサ計測システム、粘性率測定方法、および微量質量測定方法に関する。   The present invention measures the viscosity of the solution and the minute adsorption mass of chemicals adsorbed on the electrode surface of the resonator from the change in the electrical characteristics of the sliding wave type piezoelectric resonator during self-excitation in the sample solution. The present invention relates to a biosensor measurement system, a viscosity measurement method, and a trace mass measurement method.

近年、Lab−on−a−Chipと呼ばれる、バイオ検査チップの開発が盛んに行なわれている。これは、流路や反応槽、バルブ、センサ等の要素構造を小さな基板に集積した構成であり、この内部に流れる液体に対して分析処理を行うものである。このようなバイオ検査チップは、コンパクトで安価なため、例えば家庭で健康状態を少量の検体で定期的に検査したり、屋外での環境測定に応用することが可能である。     In recent years, a bio-test chip called Lab-on-a-Chip has been actively developed. This is a configuration in which element structures such as a flow path, a reaction tank, a valve, and a sensor are integrated on a small substrate, and an analysis process is performed on the liquid flowing inside the structure. Since such a bio-test chip is compact and inexpensive, it can be regularly tested with a small amount of sample at home, for example, or applied to environmental measurements outdoors.

このバイオ検査チップの構成要素の一つであるセンサ部には、様々な原理を利用したセンサが提案されている。中でも、小型で板状の構成が可能であり、バイオ検査チップへの搭載が容易と想定される滑り波型圧電共振子を使用した滑り波型圧電共振子センサが注目されている。   Sensors using various principles have been proposed for the sensor unit which is one of the components of the biotest chip. Among them, a slip-wave type piezoelectric resonator sensor using a slip-wave type piezoelectric resonator, which is small and can be configured in a plate shape and is assumed to be easily mounted on a bio-test chip, has attracted attention.

固体振動における滑り波とは、固体のせん断応力に起因する波動である。この滑り波は、水等の液体に対して、他の振動モードに比較して振動エネルギーを放射しにくいという性質を持っている。それゆえ、滑り波型圧電共振子は液体中にても、電気的自励振動を発生させやすいという大きな特徴がある。この特徴を利用したのが滑り波型圧電共振子センサである。すなわち、この滑り波型圧電共振子センサは、溶液中において、圧電共振子表面に付着した試料の微小な質量や、溶液の粘性率を共振子の電気的特性変化として検出できるという大きな特徴を持っている。この滑り波型圧電共振子センサの代表例が水晶単結晶を用いたATカット水晶振動子センサであって、QCM(Quartz Crystal Microbalance)型バイオセンサとして認知されているセンサである(例えば、非特許文献1参照。)。ちなみに、このATカット水晶振動子は、その固有振動数として、振動子厚みに依存した厚み滑り振動を持っており、前述の滑り波型圧電共振子としては広く認知されている水晶振動子である。   The slip wave in the solid vibration is a wave caused by the shear stress of the solid. This slip wave has a property that it is difficult to radiate vibration energy to a liquid such as water as compared with other vibration modes. Therefore, the slip wave type piezoelectric resonator has a great feature that it easily generates electric self-excited vibration even in a liquid. This feature is utilized by a slip wave type piezoelectric resonator sensor. That is, this sliding wave type piezoelectric resonator sensor has a great feature that it can detect the minute mass of the sample adhering to the surface of the piezoelectric resonator and the viscosity of the solution as changes in the electrical characteristics of the resonator in the solution. ing. A representative example of this sliding wave type piezoelectric resonator sensor is an AT-cut quartz crystal resonator sensor using a single crystal crystal, which is a sensor recognized as a QCM (Quartz Crystal Microbalance) type biosensor (for example, non-patent) Reference 1). By the way, this AT-cut quartz resonator has a thickness-slip vibration depending on the thickness of the resonator as its natural frequency, and is a quartz resonator that is widely recognized as the above-described slip-wave type piezoelectric resonator. .

以下、ATカット水晶振動子をQCM型バイオセンサとして用いる場合について詳細に説明する。図12−(a)、(b)はATカット水晶振動子を用いたQCM型バイオセンサの概略図であって、ATカット水晶振動子片1201の表面上には対向する一対の励振電極1202が構成されている。また励振電極1202にはリード電極1203が一体形成されている。この励振電極1202の配置において、このATカット水晶振動子は固有周波数として厚み滑り振動1204を誘発する。さらに、一側面の表面に分析対象のみを捕獲する感応膜1205が固定化されている。この時、ATカット水晶基板の機械的固有周波数Frは、分析対象が感応膜により捕獲される微小質量によって変化する。この時、感応膜によって捕獲された微小質量をΔmとすると、ATカット水晶振動子の固有周波数の変化量ΔF1は、Δmに比例する事が知られている。この関係式は、Sauerbrey(G.Sauerbrey,Z. Phys.155,1959,206、非特許文献2)により導かれており、次式で与えられる。 Hereinafter, the case where the AT cut crystal resonator is used as a QCM type biosensor will be described in detail. FIGS. 12A and 12B are schematic views of a QCM type biosensor using an AT cut crystal resonator, and a pair of opposing excitation electrodes 1202 are provided on the surface of the AT cut crystal resonator piece 1201. It is configured. A lead electrode 1203 is integrally formed with the excitation electrode 1202. In the arrangement of the excitation electrode 1202, the AT-cut quartz crystal resonator induces a thickness shear vibration 1204 as a natural frequency. Furthermore, a sensitive film 1205 that captures only the analysis target is immobilized on the surface of one side surface. At this time, the mechanical natural frequency Fr of the AT-cut quartz substrate changes depending on the minute mass that is analyzed by the sensitive film. At this time, it is known that the amount of change ΔF 1 in the natural frequency of the AT-cut quartz crystal resonator is proportional to Δm, where Δm is the small mass captured by the sensitive film. This relational expression is derived by Sauerbrey (G. Sauerbrey, Z. Phys. 155, 1959, 206, Non-Patent Document 2), and is given by the following expression.

Figure 0004646813
Figure 0004646813

ここで、Frは水晶振動子の固有周波数、Aeは励振電極1202の面積、C66はATカット水晶振動子片1201のせん断弾性係数、ρqは水晶の密度である。したがって、固有周波数Frを高くするほど質量センサとしての感度が高くなることが判明している。 Here, Fr is the natural frequency of the quartz resonator, A e is the area of the excitation electrode 1202, C 66 is the shear elastic modulus of the AT-cut quartz resonator piece 1201, and ρ q is the density of the quartz. Therefore, it has been found that the sensitivity as a mass sensor increases as the natural frequency F r increases.

また、液体中でQCM型バイオセンサを動作させる場合、分析対象などを含む溶液中でATカット水晶振動子振動させると、溶液の粘性率の影響によって、その固有周波数は、減少する。この関係は次式で与えられる。   Further, when operating a QCM biosensor in a liquid, if the AT-cut quartz oscillator is vibrated in a solution containing an analysis target or the like, its natural frequency decreases due to the influence of the viscosity of the solution. This relationship is given by

Figure 0004646813
Figure 0004646813

ここで、ηsは水晶振動子が浸漬される溶液の粘性率、ρsは同じく試料溶液の密度である。この固有周波数の変動ΔF2についても、固有周波数Frが高いほど大きく影響されることが判明している。よって、溶液浸漬による固有周波数の変化量ΔFtは(1)式と(2)式より、 Here, η s is the viscosity of the solution in which the crystal unit is immersed, and ρ s is the density of the sample solution. It has been found that the fluctuation ΔF 2 of the natural frequency is greatly influenced as the natural frequency Fr is higher. Therefore, the change amount ΔF t of the natural frequency due to the immersion in the solution is obtained from the equations (1) and (2).

Figure 0004646813
Figure 0004646813

となる。
さらに、浸漬溶液の粘性率によって、ATカット水晶振動子の電気的等価定数のひとつである等価直列抵抗(詳細は後述する)が増加する事が判明している。このとき、電気的等価抵抗値の増加量をΔRmとすると、次式で与えられる。
It becomes.
Furthermore, it has been found that the equivalent series resistance (which will be described in detail later), which is one of the electrical equivalent constants of the AT-cut quartz resonator, increases with the viscosity of the immersion solution. At this time, when the increase amount of the electrical equivalent resistance value is ΔR m , the following equation is given.

Figure 0004646813
Figure 0004646813

ここで、Aqは、ATカット水晶振動子片1201の表面積、KはATカット水晶振動子の電気機械結合係数である。 Here, A q is the surface area of the AT-cut crystal resonator piece 1201, and K is the electromechanical coupling coefficient of the AT-cut crystal resonator.

以上の関係式から、QCM型バイオセンサを用いると、固有周波数及び、電気的等価直列抵抗の変化量から、微小質量、粘性率が検出できる事が判明する。すなわち、粘性率には(4)式を用いて、等価抵抗値の変化量から粘性率が検出できる。また微小質量は、観測された固有周波数の変化量、(4)式より決定された粘性率および(3)式を用いて決定される。   From the above relational expression, it is found that when a QCM biosensor is used, a minute mass and a viscosity can be detected from the natural frequency and the amount of change in electrical equivalent series resistance. That is, the viscosity can be detected from the amount of change in the equivalent resistance value by using equation (4). The minute mass is determined using the observed amount of change in natural frequency, the viscosity determined from equation (4), and equation (3).

実際に、このQCM型バイオセンサを使用したセンサシステムにおいては、試料溶液にATカット水晶振動子を浸漬した状態で、その固有周波数及び電気的等価抵抗値を測定する必要がある。そのためには、通常二種類の方法がある。   Actually, in the sensor system using this QCM type biosensor, it is necessary to measure the natural frequency and the electrical equivalent resistance value in a state in which the AT-cut quartz resonator is immersed in the sample solution. There are usually two methods for this purpose.

図13は第一の測定方法を示す概略図であって、試料溶液1302に浸漬されたQCM型バイオセンサ1301に対して、インピーダンスアナライザに代表される周波数掃引機能とインピーダンス測定機能をもった周波数応答特性測定装置1303が接続されており、この周波数応答特性測定装置1303からQCM型バイオセンサ1301に高周波信号が印加される。その結果、QCM型バイオセンサ1301の試料溶液1302中での周波数応答特性が検出される。この検出された周波数応答特性より、QCM型バイオセンサの固有周波数と電気的等価抵抗値がそれぞれ、固有周波数演算処理装置1304及び電気的等価定数演算処理装置1305にて検出される。   FIG. 13 is a schematic diagram showing a first measurement method, and a frequency response having a frequency sweep function represented by an impedance analyzer and an impedance measurement function for a QCM biosensor 1301 immersed in a sample solution 1302. A characteristic measuring device 1303 is connected, and a high frequency signal is applied from the frequency response characteristic measuring device 1303 to the QCM biosensor 1301. As a result, the frequency response characteristic in the sample solution 1302 of the QCM type biosensor 1301 is detected. From the detected frequency response characteristics, the natural frequency and the electrical equivalent resistance value of the QCM biosensor are detected by the natural frequency arithmetic processing unit 1304 and the electrical equivalent constant arithmetic processing unit 1305, respectively.

この電気的等価定数演算処理装置1305にて測定された電気的等価定数はさらに試料溶液粘性率演算処理装置1306に入力され、前述の(4)式を基にして、試料溶液の粘性率が検出される。さらに、この検出された試料溶液の粘性率と先に固有周波数演算処理装置1304にて検出された固有周波数は微小質量演算処理装置1307に入力され、前述の(1)〜(3)式を基にして微小質量が検出され、最終的にこの微小質量と試料溶液の粘性率は出力装置1308にて主力される。この測定方法は、圧電振動子の周波数応答特性を測定する方法を基にした測定方法であって、外部より入力された高周波信号で励振させるという意味で他励振法と呼ばれている測定方法である。   The electrical equivalent constant measured by the electrical equivalent constant arithmetic processing unit 1305 is further input to the sample solution viscosity arithmetic processing unit 1306, and the viscosity of the sample solution is detected based on the above equation (4). Is done. Further, the detected viscosity of the sample solution and the natural frequency previously detected by the natural frequency arithmetic processing unit 1304 are input to the minute mass arithmetic processing unit 1307 and are based on the above-described equations (1) to (3). Thus, the minute mass is detected, and finally, the minute mass and the viscosity of the sample solution are mainly used in the output device 1308. This measurement method is a measurement method based on the method of measuring the frequency response characteristics of a piezoelectric vibrator, and is a measurement method called a separate excitation method in the sense that it is excited by a high-frequency signal input from the outside. is there.

図14は第二の測定方法を示す概略図であって、図13と同様に試料溶液1302に浸漬されたQCM型バイオセンサ1301に対して、反転増幅回路1401が接続されている。通常圧電振動子にこの反転増幅回路1401が接続されると、自発的に圧電振動子は電気的固有周波数で励振信号を誘発し、発振周波数として観測できる事が知られている。すなわち、図13において、反転増幅回路1401とQCM型バイオセンサ1301にて自励振回路1402が構成されている。また、ATカット水晶振動子を用いた自励振回路より発生するその発振周波数は、ATカット水晶振動子の持つ機械的固有周波数とほぼ等しい事が知られている。   FIG. 14 is a schematic diagram showing a second measurement method, and an inverting amplifier circuit 1401 is connected to a QCM type biosensor 1301 immersed in the sample solution 1302 as in FIG. It is known that when the inverting amplification circuit 1401 is connected to a normal piezoelectric vibrator, the piezoelectric vibrator spontaneously induces an excitation signal at an electrical natural frequency and can be observed as an oscillation frequency. That is, in FIG. 13, the inverting amplifier circuit 1401 and the QCM biosensor 1301 constitute a self-excited circuit 1402. Further, it is known that the oscillation frequency generated from the self-excited circuit using the AT cut crystal resonator is substantially equal to the mechanical natural frequency of the AT cut crystal resonator.

この自励振回路1402から出力される発振信号から、自励振周波数演算処理装置1403に入力され電気的固有周波数が検出される。同様に発振信号の振幅成分が自励振信号振幅演算処理装置1404にて検出される。この自励振信号振幅演算処理装置1404にて検出された振幅成分が、電気的等価抵抗演算処理装置1405にて入力され、電気的等価抵抗値が検出される。この電気的等価抵抗値が試料溶液粘性率演算処理装置1406に入力され、前述の(4)式を基にして、試料溶液の粘性率が検出される。最終的に、この粘性率と先に検出された電気的固有周波数が、微小質量演算処理装置1407に入力され、(1)〜(3)式を基にして微小質量が検出され、最終的に出力装置1408にて出力される。この方法は圧電振動子の自励振現象を応用していることから、自励振法と呼ばれている。以上がATカット水晶振動子を用いたQCM型バイオセンサの従来のセンシングシステムの概要である。
H.Muramatsu,J.M.Dicks,E.Tamiya and I.Karube Anal.Chem.59(1987), 2760−2763 G.Sauerbrey,Z. Phys.155(1959),206
From the oscillation signal output from the self-excited circuit 1402, the self-excited frequency calculation processing device 1403 is input to detect the electrical natural frequency. Similarly, the amplitude component of the oscillation signal is detected by the self-excited signal amplitude calculation processing device 1404. The amplitude component detected by the self-excited signal amplitude calculation processing device 1404 is input by the electrical equivalent resistance calculation processing device 1405, and an electrical equivalent resistance value is detected. This electrical equivalent resistance value is input to the sample solution viscosity calculation processing device 1406, and the viscosity of the sample solution is detected based on the above-described equation (4). Finally, the viscosity and the electric natural frequency detected earlier are input to the minute mass arithmetic processing unit 1407, and the minute mass is detected based on the equations (1) to (3). It is output by the output device 1408. This method is called a self-excitation method because it applies the self-excitation phenomenon of a piezoelectric vibrator. The above is the outline of the conventional sensing system of the QCM type biosensor using the AT cut crystal resonator.
H. Muramatsu, J. et al. M.M. Dicks, E .; Tamiya and I. Karube Anal. Chem. 59 (1987), 2760-2863 G. Sauerbrey, Z .; Phys. 155 (1959), 206

ATカット水晶振動子を用いたQCM型バイオセンサシステムは、比較的容易に微小な質量や、溶液の粘性率が測定できる。さらにセンサ自体がコンパクトで安価なために、バイオ検査チップとして、家庭で健康状態を少量の検体で定期的に検査したり、屋外での環境測定等に応用することが可能である事から、近年、非常に注目されているセンサシステムである。   A QCM type biosensor system using an AT-cut quartz resonator can measure a minute mass and a viscosity of a solution relatively easily. In addition, since the sensor itself is compact and inexpensive, it can be used as a bio-test chip to regularly test the health condition of a small amount of sample at home or to measure the environment outdoors. It is a sensor system that has received much attention.

家庭や屋外の測定においては、先に説明した他励振法にては、装置が高価でしかも大規模、さらには消費電力が大きい等の問題点から、家庭用ならびに屋外用には不向きであるので、図14にて説明したセンサの自励振法が検討されている。ところが、この自励振法においは、自励振の振幅値から粘性率を検出する際の検出精度が悪く、その結果、微小質量の検出精度も悪いという問題があり、産業上大きな問題となっている。すなわち、本発明が解決しようとする課題とは、粘性率の検出精度の向上である。   For home and outdoor measurement, the other excitation method described above is not suitable for home and outdoor use due to problems such as expensive equipment, large scale, and high power consumption. The self-excited method of the sensor described in FIG. 14 has been studied. However, in this self-excited vibration method, the detection accuracy when detecting the viscosity from the amplitude value of the self-excited vibration is poor, and as a result, there is a problem that the detection accuracy of minute mass is also bad, which is a big problem in the industry. . That is, the problem to be solved by the present invention is to improve the viscosity detection accuracy.

本発明に係るバイオセンサ計測システム、粘性率測定方法、および微量質量測定方法は、溶液中に浸漬した滑り波型圧電共振子を用いて構成される自励振回路を間欠駆動させる事によって、その自励振動の振幅起動特性から起動時間を測定し、この起動時間より圧電振動子の電気的等価抵抗値を検出し、また飽和周波数値を測定する事により、浸漬溶液の粘性率と共振子の電極表面に吸着する微小質量を検出する事を特徴とするものである。   The biosensor measurement system, the viscosity measurement method, and the micro-mass measurement method according to the present invention are configured to intermittently drive a self-excited circuit configured using a sliding wave type piezoelectric resonator immersed in a solution. By measuring the startup time from the amplitude startup characteristics of the excitation vibration, detecting the electrical equivalent resistance value of the piezoelectric vibrator from this startup time, and measuring the saturation frequency value, the viscosity of the immersion solution and the electrode of the resonator It is characterized by detecting a minute mass adsorbed on the surface.

図11は、本発明の効果を示す特性図であって、滑り波型圧電共振子としてATカット水晶振動子を用いた本発明に基づく間欠駆動型自励振回路における起動時間と浸漬溶液の粘性率の相関を示した相関図である。図11において縦軸は、本発明の係る自励振の起動時間Tr、横軸は浸漬溶液の粘性率ηsである。 FIG. 11 is a characteristic diagram showing the effect of the present invention. In the intermittent drive self-excited circuit according to the present invention using an AT-cut quartz resonator as a slip-wave type piezoelectric resonator, the startup time and the viscosity of the immersion solution are shown. FIG. In FIG. 11, the vertical axis represents the self-excitation start time T r according to the present invention, and the horizontal axis represents the viscosity η s of the immersion solution.

この図11において縦軸の原点に近いほうがTr値は小さく、原点から離れるほどTr値は大きくなる。詳細については後述するが、Tr値が大きいということは自励振回路における振幅起動時間が長く、溶液中に浸漬された滑り波型圧電共振子の電気的等価抵抗値が大きいという事を意味している。一方、横軸の浸漬溶液の粘性率ηsが大きいということは粘性率が大きいという事を意味している。すなわち粘性率が大きいという事は、Tr値が大きいという事であり、これらの関係を考慮して図11を見た場合、Tr値と粘性率ηsは、高度な相関関係を有していると見なす事が可能である。従って、この図11からわかる通り、本発明は、精度よく浸漬溶液の粘性率を測定する事が可能となるので、簡便、高精度及び小型のバイオセンサ計測システムが供給でき、その結果、家庭で健康状態を定期的に検査したり、屋外での環境測定等に応用することが可能となる。 In FIG. 11, the Tr value is smaller near the origin on the vertical axis, and the Tr value increases as the distance from the origin increases. As will be described in detail later, a large Tr value means that the amplitude startup time in the self-excited circuit is long, and the electrical equivalent resistance value of the sliding wave type piezoelectric resonator immersed in the solution is large. ing. On the other hand, a large viscosity η s of the immersion solution on the horizontal axis means that the viscosity is large. That is, a large viscosity means that the Tr value is large. When FIG. 11 is viewed in consideration of these relationships, the Tr value and the viscosity η s have a high correlation. Can be considered. Therefore, as can be seen from FIG. 11, the present invention can accurately measure the viscosity of the dipping solution, so that a simple, high-precision and small-sized biosensor measurement system can be supplied. It becomes possible to check the health condition regularly and apply it to outdoor environmental measurements.

図1に、本発明に係るバイオセンサ計測システムの構成を示すブロック図を示す。滑り波型圧電共振子101は試料溶液102が満たされた溶液槽103に浸漬されている。この滑り波型圧電共振子101は、反転増幅回路104に接続されており、この反転増幅回路104と厚み滑り型共振子101によって自励振回路105が構成されている。電源106は、間欠駆動回路107を通して、反転増幅回路104に供給される。この間欠駆動回路107によって自励振回路105が間欠駆動される。この時、間欠駆動回路107は、所望の駆動間隔で電源電圧を間欠供給させる機能をもっている。また、負性抵抗可変装置108が反転増幅回路104に接続されている。この負性抵抗可変装置108によって、浸漬溶液102の粘性率に見合った負性抵抗値が選択される。   FIG. 1 is a block diagram showing the configuration of the biosensor measurement system according to the present invention. The sliding wave type piezoelectric resonator 101 is immersed in a solution tank 103 filled with a sample solution 102. The slip wave type piezoelectric resonator 101 is connected to an inverting amplifier circuit 104, and the inverting amplifier circuit 104 and the thickness slip type resonator 101 constitute a self-excited circuit 105. The power source 106 is supplied to the inverting amplifier circuit 104 through the intermittent drive circuit 107. The self-excited circuit 105 is intermittently driven by the intermittent drive circuit 107. At this time, the intermittent drive circuit 107 has a function of intermittently supplying the power supply voltage at a desired drive interval. Further, the negative resistance variable device 108 is connected to the inverting amplifier circuit 104. The negative resistance variable device 108 selects a negative resistance value corresponding to the viscosity of the immersion solution 102.

自励振回路105を間欠駆動させる事によって、自励振回路105にて誘発される自励振信号の起動特性が、起動特性測定装置109にて検出される。この起動特性測定装置109で検出された起動特性は、本発明に係る粘性率演算処理装置110に入力される。粘性率演算処理装置110は、飽和振幅値演算処理装置111、起動時間演算処理装置112、等価抵抗値演算処理装置113及び粘性率演算装置114より構成されている。この時、飽和振幅値演算処理装置111では、自励振動の飽和振幅値と共に該飽和振幅値に対応する振幅飽和時間が決定される。   By starting the self-excited circuit 105 intermittently, the starting characteristic of the self-excited signal induced by the self-excited circuit 105 is detected by the starting characteristic measuring device 109. The activation characteristic detected by the activation characteristic measuring device 109 is input to the viscosity calculation processing device 110 according to the present invention. The viscosity calculation processing device 110 includes a saturation amplitude value calculation processing device 111, a startup time calculation processing device 112, an equivalent resistance value calculation processing device 113, and a viscosity coefficient calculation device 114. At this time, the saturation amplitude value calculation processing device 111 determines the amplitude saturation time corresponding to the saturation amplitude value together with the saturation amplitude value of the self-excited vibration.

飽和周波数演算処理装置115には、先に起動特性測定装置109にて測定された自励振動の起動特性と、飽和振幅値演算処理装置111にて演算処理された振幅飽和時間が入力され、この両者から飽和周波数が検出される。粘性率演算処理装置110より検出された浸漬溶液の粘性率は粘性率出力装置116にて出力されると共に、吸着質量演算処理装置117に入力される。この吸着質量演算処理処置117には、飽和周波数演算処理装置115にて検出された飽和周波数も入力される。この吸着質量演算処理装置117は、飽和周波数と粘性率から厚み滑り方圧電共振子の電極部に形成された感応膜に吸着した付加質量が演算処理され、付加質量出力装置118にて出力される。以上が本発明に係る本発明に係るバイオセンサ計測システムの構成である。   The saturation frequency calculation processing device 115 receives the self-excited vibration start characteristics previously measured by the start characteristic measuring device 109 and the amplitude saturation time calculated by the saturation amplitude value calculation processing device 111. A saturation frequency is detected from both. The viscosity of the immersion solution detected by the viscosity calculation processing device 110 is output by the viscosity output device 116 and also input to the adsorption mass calculation processing device 117. A saturation frequency detected by the saturation frequency calculation processing device 115 is also input to the adsorption mass calculation processing procedure 117. The adsorption mass calculation processing device 117 calculates the additional mass adsorbed on the sensitive film formed on the electrode portion of the thickness-sliding piezoelectric resonator from the saturation frequency and the viscosity, and outputs the result by the additional mass output device 118. . The above is the configuration of the biosensor measurement system according to the present invention.

次に本発明に係る粘性率演算処理装置110で行われる演算処理の原理的説明を行う。
図2(a)及び図2(b)は、圧電共振子を用いた自励振回路に関する電気的等価回路を示す回路図である。図2(a)は、滑り波型圧電共振子101と反転増幅回路104にて構成された図1に記載の自励振回路105の等価回路図である。この図において、反転増幅回路104は、負性抵抗201、能動容量202及び固定容量203で構成されている。ここで、負性抵抗201は通常の抵抗値とは違い、等価的に負の値をもち、さらに誘発される自励振電流204の振幅値に大きく依存する事が知られている。それゆえ、図中の表記として−ρ(i0)の表記を用いている。ここで自励振電流204の振幅値がi0である。同様に、能動容量202の値も自励振電流の振幅値i0によって変化する。しかし、その影響は本発明に係る演算処理に対して、無視できるので固定値と見なして問題ない。
Next, the principle of arithmetic processing performed by the viscosity arithmetic processing unit 110 according to the present invention will be described.
FIG. 2A and FIG. 2B are circuit diagrams showing an electrical equivalent circuit relating to a self-excited circuit using a piezoelectric resonator. FIG. 2A is an equivalent circuit diagram of the self-excited circuit 105 shown in FIG. 1 constituted by the sliding wave type piezoelectric resonator 101 and the inverting amplifier circuit 104. In this figure, the inverting amplifier circuit 104 includes a negative resistance 201, an active capacitor 202, and a fixed capacitor 203. Here, it is known that the negative resistance 201 has an equivalent negative value unlike a normal resistance value, and is greatly dependent on the amplitude value of the induced self-excited current 204. Therefore, the notation −ρ (i 0 ) is used as the notation in the figure. Here, the amplitude value of the self-excited current 204 is i 0 . Similarly, the value of the active capacitor 202 also changes depending on the amplitude value i 0 of the self-excited current. However, since the influence can be ignored for the arithmetic processing according to the present invention, it can be regarded as a fixed value without any problem.

次に図2(b)は、厚み滑り型共振子101の電気的等価定数を説明する回路図である。滑り波型圧電共振子101は、電気的には4個の構成要素から成り立っている。すなわち、等価抵抗205、等価容量206、等価インダクタンス207及び電極間容量208であって、それぞれRm、Cm、Lm及びC0の記号を用いている。この電気的等価定数をもちいて、滑り波型圧電共振子の固有周波数Frは、次式で近似的に決定できる。 Next, FIG. 2B is a circuit diagram for explaining the electrical equivalent constant of the thickness-sliding resonator 101. The sliding wave type piezoelectric resonator 101 is electrically composed of four components. That is, the equivalent resistance 205, the equivalent capacitance 206, the equivalent inductance 207, and the interelectrode capacitance 208 are represented by the symbols R m , C m , L m, and C 0 , respectively. Using this electrical equivalent constant, the natural frequency F r of the sliding wave type piezoelectric resonator can be approximately determined by the following equation.

Figure 0004646813
Figure 0004646813

また、浸漬溶液中における等価抵抗Rmは、溶液浸漬前の等価抵抗値をR0とすると、(4)式を考慮して、次式で与えられる。 In addition, the equivalent resistance R m in the immersion solution is given by the following equation considering the equation (4), where R 0 is the equivalent resistance value before immersion in the solution.

Figure 0004646813
Figure 0004646813

図3は図2(a)で説明した反転増幅回路104の負性抵抗201と自励振電流204の振幅値i0の関係を示した特性図であって、縦軸は負性抵抗値ρ、横軸は自励振回路105にて誘発される自励振電流204の振幅値i0である。ちなみに縦軸の値は負性抵抗値の絶対値という意味でρとしてあり、実際は負の値を持っている。ρの値は、自励振電流の増加に従って、減少する傾向にあり、自励振電流が0の時に最大値を持っている。この最大値が図3に記載のρmである。 FIG. 3 is a characteristic diagram showing the relationship between the negative resistance 201 of the inverting amplifier circuit 104 described in FIG. 2A and the amplitude value i 0 of the self-excited current 204. The vertical axis represents the negative resistance value ρ, The horizontal axis represents the amplitude value i 0 of the self-excited current 204 induced by the self-excited circuit 105. By the way, the value on the vertical axis is ρ in the sense of the absolute value of the negative resistance value, and actually has a negative value. The value of ρ tends to decrease as the self-excited current increases, and has a maximum value when the self-excited current is zero. This maximum value is ρ m shown in FIG.

以下、図2及び図3を用いて、厚み滑り型圧電振動子の自励振動の起動特性について説明する。図2において、厚み滑り型圧電振動子101に生じる自励振電流204をi、その振幅値を前述の様にi0、さらに時間をtとすると、 Hereinafter, the starting characteristics of the self-excited vibration of the thickness-shear type piezoelectric vibrator will be described with reference to FIGS. In FIG. 2, if the self-excited current 204 generated in the thickness-shear type piezoelectric vibrator 101 is i, the amplitude value is i 0 as described above, and the time is t,

Figure 0004646813
Figure 0004646813

と書ける。ここでFは周波数である。この自励振電流の振幅i0、周波数F共に時間tの関数である。まず自励振電流204の電流振幅i0は、詳細な理論的説明は省略するが、以下の時間tに関する微分方程式に従って変化する事が判明している。 Can be written. Here, F is a frequency. Both the amplitude i 0 and the frequency F of this self-excited current are functions of time t. First, it has been found that the current amplitude i 0 of the self-excited current 204 changes according to the following differential equation with respect to time t, although a detailed theoretical explanation is omitted.

Figure 0004646813
Figure 0004646813

ここで、Lm、C0、Rmは図2(b)に記載の厚み滑り型圧電振動子101の電気的等価定数であって、それぞれ等価インダクタンス207、電極間容量208及び等価抵抗208である。また、ρ(i0)は図2(a)及び図3に記載の負性抵抗201である。さらにCLは自励振回路105の負荷容量であって、図2(a)に記載の能動容量202と固定容量203の合成容量であって、 Here, L m , C 0 , and R m are electrical equivalent constants of the thickness-slip type piezoelectric vibrator 101 shown in FIG. 2B, and are equivalent inductance 207, interelectrode capacitance 208, and equivalent resistance 208, respectively. is there. Moreover, ρ (i 0 ) is the negative resistance 201 shown in FIGS. Further, CL is a load capacity of the self-excited circuit 105, and is a combined capacity of the active capacity 202 and the fixed capacity 203 shown in FIG.

Figure 0004646813
Figure 0004646813

で決定される。この(8)式が厚み滑り型圧電振動子の自励振電流の振幅の起動特性を決定する微分方程式である。自励振電流が時間と共に増大する条件、すなわち、自励振動が誘発される条件は、図3の特性図と(8)式を考慮すれば、 Determined by This equation (8) is a differential equation that determines the starting characteristic of the amplitude of the self-excited current of the thickness-sliding piezoelectric vibrator. The condition that the self-excited current increases with time, that is, the condition that the self-excited vibration is induced is as follows:

Figure 0004646813
Figure 0004646813

である。また、自励振動が安定な状態に到達すると自励振電流204の振幅値i0は飽和し、一定値になる。この飽和振幅値をimとすると、imは次式で決定される。 It is. When the self-excited vibration reaches a stable state, the amplitude value i 0 of the self-excited current 204 is saturated and becomes a constant value. If this saturation amplitude value i m, i m is determined by the following equation.

Figure 0004646813
Figure 0004646813

図3及び(8)式を考慮すると、振幅値i0が小さい時は、(8)式で与えられる振幅値の時間変化率は大きいので、振幅は急激に立ち上がり、振幅が飽和値imに近くなると振幅値の時間変化率は小さくなるので、振幅の立ち上がりは小さくなり、十分な時間が経過すると飽和値imに収斂するという傾向がわかる。 Considering FIGS. 3 and (8), when the amplitude value i 0 is small, the (8) time rate of change of amplitude given by the equation is large, the amplitude rises rapidly, the amplitude saturation value i m since the time rate of change becomes close when the amplitude value becomes small, the rise of the amplitude is reduced, it is clear tendency to converge to the saturation value i m and sufficient time has passed.

次に、(5)式の周波数Fに関しては、振幅値と同様に詳細な理論的説明は省略するが、飽和する振幅に連動して、Fも一定値に飽和する。この飽和値をFmとすると Next, with respect to the frequency F in the equation (5), the detailed theoretical explanation is omitted as in the case of the amplitude value, but F is saturated to a constant value in conjunction with the saturated amplitude. If this saturation value is F m

Figure 0004646813
Figure 0004646813

となる。このFmが自励振回路における飽和周波数であり、一般に、自励振周波数または発振周波数として認知されている物理量である。(1)から(3)式で決定される微少質量や粘性による固有周波数Frの変化は、この自励振回路の飽和周波数Fmの変化として検出できる。 It becomes. This F m is a saturation frequency in the self-excited circuit, and is generally a physical quantity that is recognized as a self-excited frequency or an oscillation frequency. Changes in the natural frequency F r due to the minute mass and viscosity determined by the equations (1) to (3) can be detected as changes in the saturation frequency F m of this self-excited circuit.

試料溶液102に浸漬された滑り波型圧電共振子101の等価抵抗値Rmは、(4)式にて示した様に、その粘性の影響によって増加する。この等価抵抗の増加は、(8)式で決定される起動特性に変化を与える。それゆえ、この起動特性を検出する事で、粘性率を検出できる事になる。 The equivalent resistance value R m of the sliding wave type piezoelectric resonator 101 immersed in the sample solution 102 increases due to the influence of its viscosity as shown by the equation (4). This increase in equivalent resistance gives a change to the starting characteristic determined by equation (8). Therefore, the viscosity can be detected by detecting this starting characteristic.

図4は、(8)式で決定される本発明に係る起動特性の定性的な特性図であって、図4(a)
における縦軸は励振電流の振幅i0、横軸は時間Tである。時間が十分に長くなると振幅値は飽和し、その値が図記載のimである。また、図4(b)は、図4(a)記載の起動特性より演算処理された特性図であって、その縦軸は(8)式にて与えられる励振電流の振幅i0の時間微分値di0/dTである。これらの特性図において、起動特性を代表する起動時間Trは、図4(a)においては、前記im値の半分の値を示す時間τA、図4(b)においては、励振電流の振幅振幅i0の時間微分値di0/dTが最大値となる時間τB、である。本発明に係る粘性率を計測するための起動時間は、前記時間τA、τBは、本発明に係る粘性率と高度の相関を持つ事が判明している。
FIG. 4 is a qualitative characteristic diagram of the starting characteristic according to the present invention determined by the equation (8), and FIG.
The vertical axis in FIG. 4 represents the amplitude i 0 of the excitation current, and the horizontal axis represents time T. Time is saturated amplitude becomes sufficiently long, the value is i m of FIG forth. FIG. 4B is a characteristic diagram that is calculated from the start-up characteristic shown in FIG. 4A, and the vertical axis indicates the time derivative of the amplitude i 0 of the excitation current given by equation (8). The value di 0 / dT. In these characteristic diagrams, the start time Tr representing the start characteristic is a time τ A indicating a value half of the im value in FIG. 4A, and an amplitude amplitude of the excitation current in FIG. 4B. The time τ B when the time differential value di 0 / dT of i 0 becomes the maximum value. As for the starting time for measuring the viscosity according to the present invention, it has been found that the times τ A and τ B have a high correlation with the viscosity according to the present invention.

図6は、前記起動時間Trと等価抵抗値Rmの関係を示す特性図であって、(8)式より計算された計算値である。なお、計算にあたり、表1に記載した電気的等価定数値をもつ固有周波数19.2MHzのATカット水晶振動子を想定している。また、図6は、図4(b)記載の起動時間τBを基に作成してものであるが、図4(a)記載の起動時間τAを基に作成しても、まったく同様な傾向を持つ特性図が得られる事は言うまでもない。 Figure 6 is a characteristic diagram showing the relationship between the startup time T r the equivalent resistance value R m, is a calculated value calculated from the equation (8). In the calculation, an AT-cut quartz resonator having a natural frequency of 19.2 MHz having the electrical equivalent constant values described in Table 1 is assumed. FIG. 6 is created based on the startup time τ B shown in FIG. 4B. However, even if it is created based on the startup time τ A shown in FIG. It goes without saying that characteristic charts with trends can be obtained.

Figure 0004646813
Figure 0004646813

自励振回路の負性抵抗は、図5にて示すようにρmを代表値として1KΩと2KΩの二種類を用いた。さらにCL値は100pFの値である。さらに図7は、前記imと等価抵抗値Rmの関係を示す特性図であって、図6と同様の条件下で計算された計算値である。ちなみに、図7は、図14で説明した自励振の振幅値より、試料溶液の粘性率を検出する方法に対応している。 As the negative resistance of the self-excited circuit, two types of 1 KΩ and 2 KΩ were used with ρ m as a representative value as shown in FIG. Furthermore C L value is 100pF value. Further, FIG. 7 is a characteristic diagram showing the relationship of the i m and an equivalent resistance value R m, is a calculated value calculated under the same conditions as FIG. Incidentally, FIG. 7 corresponds to a method of detecting the viscosity of the sample solution from the amplitude value of the self-excited vibration described in FIG.

図6において、起動時間Trと等価抵抗Rmの関係は、特性曲線601及び特性曲線602にて示すように、ρmの値で大きく異なっている。ここでρm=1KΩに対応する曲線が特性曲線601、ρm=2KΩに対応する曲線が特性曲線602である。さらに、Rm値がρm値に接近した領域、すなわち、特性曲線601では領域I、特性曲線602では領域IIで、その勾配が非常に大きくなっている。ちなみに、その勾配は、領域Iでは40μS/Ω、領域IIでは15μS/Ω、であって、計測できる通常の時間分解能に比較して十分に大きな値と見なす事ができ、十分な等価抵抗値の検出精度を持っている事が判明した。さらに、想定される試料溶液の粘性率にたいして、適切な負性抵抗値を選択する事によって、検出感度が自由に選択できる事も判明した。 In FIG. 6, the relationship between the start time Tr and the equivalent resistance R m is greatly different depending on the value of ρ m , as shown by the characteristic curve 601 and the characteristic curve 602. Where [rho m = corresponding curve 1KΩ characteristic curve 601, the curve corresponding to [rho m = 2K ohms is a characteristic curve 602. Further, the gradient is very large in the region where the R m value approaches the ρ m value, that is, in the region I in the characteristic curve 601 and in the region II in the characteristic curve 602. Incidentally, the gradient is 40 μS / Ω in the region I and 15 μS / Ω in the region II, and can be regarded as a sufficiently large value compared to the normal time resolution that can be measured. It turns out that it has detection accuracy. Furthermore, it has also been found that the detection sensitivity can be freely selected by selecting an appropriate negative resistance value for the assumed viscosity of the sample solution.

それに対して、図7にて示す、飽和電流振幅値imと等価抵抗Rmの関係は、特性曲線701及び特性曲線702にて示すように、双方ともほぼ直線とみなせる。ここでρm=1KΩに対応する曲線が特性曲線701、ρm=2KΩに対応する曲線が特性曲線702である。さらに、両特性曲線の勾配は3μA/Ω〜8μA/Ωとなっている。通常の高周波信号に関する計測分解能から比較するとこの数値では、十分な検出精度が得られない事が判明している。すなわち、図6と図7を比較する事によって、本発明に係る自励振回路によって誘発される自励振電流の起動特性を検出する事によって、従来の方法に比較した高精度な粘性率計測ができる事が判明した。以上が、粘性率演算処理装置110で行われる演算処理の原理的説明とその原理的特徴である。 In contrast, shown in FIG. 7, the relationship between the saturation current amplitude value i m and equivalent resistance R m, as indicated by characteristic curve 701 and curve 702, it can be regarded as substantially straight both. Where [rho m = corresponding curve 1KΩ characteristic curve 701, the curve corresponding to [rho m = 2K ohms is a characteristic curve 702. Furthermore, the gradient of both characteristic curves is 3 μA / Ω to 8 μA / Ω. Compared with the measurement resolution for ordinary high-frequency signals, it has been found that this value does not provide sufficient detection accuracy. That is, by comparing the FIG. 6 and FIG. 7 to detect the starting characteristic of the self-excited current induced by the self-excited circuit according to the present invention, it is possible to measure the viscosity with higher accuracy compared to the conventional method. Things turned out. The above is the basic explanation of the arithmetic processing performed by the viscosity arithmetic processing unit 110 and the basic features thereof.

以下で、図1に記載の本発明に係るバイオセンサ計測システムの構成における主要部分の説明を行う。まず第一番目に、図1に記載の自励振回路105とその周辺装置について説明する。図8は反転増幅回路と滑り波型圧電共振子にて構成された自励振回路の実施例であって、この実施例を参考にして図1に記載の自励振回路105とその周辺装置について、より具体的に説明する。図8に記載の自励振回路801(図1に記載の自励振回路105に相当。)はトランジスタを用いた反転増幅回路と滑り波型圧電共振子101にて構成された自励振回路の実施例である。本発明に係る起動特性測定装置803(図1に記載の起動特性測定装置109に相当。)は滑り波型圧電共振子に誘発される自励振電流を測定するために、基準抵抗802の両端に接続されている。また、各トランジスタを駆動させるためのバイアス電圧は間欠駆動回路804(図1に記載の間欠駆動回路107に相当。)を介在して電源106と接続されており、この間欠駆動回路804によって、バイアス電圧が間欠駆動され、その結果、自励振回路801が間欠駆動される。負性抵抗可変装置805(図1に記載の負性抵抗可変装置108に相当。)は、本図記載の自励振回路を構成する抵抗及び容量値等を変化させる事で、自励振回路801の負性抵抗を可変させる事が可能である。   Below, the principal part in the structure of the biosensor measuring system which concerns on this invention shown in FIG. 1 is demonstrated. First, the self-excited circuit 105 and its peripheral devices shown in FIG. 1 will be described. FIG. 8 shows an embodiment of a self-excited circuit composed of an inverting amplifier circuit and a sliding wave type piezoelectric resonator. With reference to this example, the self-excited circuit 105 shown in FIG. This will be described more specifically. A self-excited circuit 801 shown in FIG. 8 (corresponding to the self-excited circuit 105 shown in FIG. 1) is an embodiment of a self-excited circuit constituted by an inverting amplifier circuit using a transistor and a sliding wave type piezoelectric resonator 101. It is. The start-up characteristic measuring device 803 according to the present invention (corresponding to the start-up characteristic measuring device 109 shown in FIG. 1) is provided at both ends of a reference resistor 802 to measure the self-excited current induced in the sliding wave type piezoelectric resonator. It is connected. A bias voltage for driving each transistor is connected to the power source 106 via an intermittent drive circuit 804 (corresponding to the intermittent drive circuit 107 shown in FIG. 1). The voltage is intermittently driven, and as a result, the self-excited circuit 801 is intermittently driven. The negative resistance variable device 805 (corresponding to the negative resistance variable device 108 shown in FIG. 1) changes the resistance, capacitance value, and the like constituting the self-excited circuit shown in FIG. It is possible to vary the negative resistance.

図9は反転増幅回路と滑り波型圧電共振子にて構成された他の自励振回路の実施例であって、図9に記載の自励振回路901(図1に記載の自励振回路105に相当。)はCMOSインバーターを用いた反転増幅回路と滑り波型圧電共振子101にて構成された自励振回路の実施例である。本発明に係る起動特性測定装置903(図1に記載の起動特性測定装置109に相当。)は滑り波型圧電共振子に誘発される自励振電流を測定するために、基準抵抗902の両端に接続されている。また、各CMOSを駆動させるための駆動電圧は間欠駆動回路904(図1に記載の間欠駆動回路107に相当。)を介在して電源106と接続されており、この間欠駆動回路904によって、バイアス電圧が間欠駆動され、その結果、自励振回路901が間欠駆動される。負性抵抗可変装置905(図1に記載の負性抵抗可変装置108に相当。)は、本図記載の自励振回路を構成する抵抗及び容量値等を変化させる事で、自励振回路901の負性抵抗を可変させる事が可能である。   FIG. 9 shows an embodiment of another self-excited circuit composed of an inverting amplifier circuit and a sliding wave type piezoelectric resonator. The self-excited circuit 901 shown in FIG. 9 (the self-excited circuit 105 shown in FIG. Is an example of a self-excited circuit composed of an inverting amplifier circuit using a CMOS inverter and a sliding wave type piezoelectric resonator 101. A starting characteristic measuring apparatus 903 (corresponding to the starting characteristic measuring apparatus 109 shown in FIG. 1) according to the present invention is provided at both ends of a reference resistor 902 in order to measure a self-excited current induced in a sliding wave type piezoelectric resonator. It is connected. A driving voltage for driving each CMOS is connected to the power source 106 via an intermittent driving circuit 904 (corresponding to the intermittent driving circuit 107 shown in FIG. 1), and the intermittent driving circuit 904 biases the bias voltage. The voltage is intermittently driven, and as a result, the self-excited circuit 901 is intermittently driven. The negative resistance variable device 905 (corresponding to the negative resistance variable device 108 shown in FIG. 1) changes the resistance, capacitance value, and the like constituting the self-excited circuit shown in FIG. It is possible to vary the negative resistance.

図8及び図9記載の自励振回路の構成は、使用する試料溶液の粘性率、圧電共振子の周波数等によって便宜変更可能である事はいうまでもなく、単なる設計事項にすぎない。第二番目として、図1に記載の起動特性測定装置109から出力される起動出力波形について説明する。図10は、本発明に係る起動特性測定装置109によって測定された自励振波形と間欠駆動回路107によって変化する駆動電圧波形について説明する図である。縦軸は出力強度、横軸は時間である。間欠動作は時刻T1とT2を開始時刻として、双方共に時間間隔ΔTで駆動電圧が自励振回路105に供給される。駆動電圧波形1001の内、第一回目の駆動状態が駆動状態1002であり、第二回目の駆動状態が駆動状態1003である。この時、駆動状態1002に対応して出力される自励振波形が自励振波形1004、駆動状態1003に対応して出力される自励振波形が自励振波形1008である。この時、駆動状態1002は、時刻T1における浸漬溶液102と滑り波型圧電共振子101との反応状態、駆動状態1003は時刻T2における両者の反応状態を反映している。 It is needless to say that the configuration of the self-excited circuit shown in FIGS. 8 and 9 can be conveniently changed depending on the viscosity of the sample solution to be used, the frequency of the piezoelectric resonator, and the like. Secondly, the startup output waveform output from the startup characteristic measuring apparatus 109 shown in FIG. 1 will be described. FIG. 10 is a diagram for explaining the self-excited waveform measured by the start-up characteristic measuring apparatus 109 according to the present invention and the drive voltage waveform changed by the intermittent drive circuit 107. The vertical axis is output intensity, and the horizontal axis is time. The intermittent operation starts at times T 1 and T 2 , and the drive voltage is supplied to the self-excited circuit 105 at both time intervals ΔT. Of the drive voltage waveforms 1001, the first drive state is the drive state 1002, and the second drive state is the drive state 1003. At this time, the self-excitation waveform output corresponding to the driving state 1002 is the self-excitation waveform 1004, and the self-excitation waveform output corresponding to the driving state 1003 is the self-excitation waveform 1008. At this time, the driving state 1002 reflects the reaction state between the immersion solution 102 and the sliding wave type piezoelectric resonator 101 at the time T 1 , and the driving state 1003 reflects both reaction states at the time T 2 .

本発明に係る図1に記載の起動特性測定装置109から出力される起動出力波形が、この図10記載の駆動電圧波形1001、自励振波形1004及び自励振波形1008に代表される駆動電圧波形と自励振波形である。この図10は、時刻T1と時刻T2において、浸漬溶液の粘性率及び吸着する微小質量の変化を測定するための模式図である。 The startup output waveform output from the startup characteristic measuring apparatus 109 shown in FIG. 1 according to the present invention is a drive voltage waveform represented by the drive voltage waveform 1001, the self-excited waveform 1004, and the self-excited waveform 1008 shown in FIG. It is a self-excited waveform. FIG. 10 is a schematic diagram for measuring changes in the viscosity of the immersion solution and the adsorbed minute mass at time T 1 and time T 2 .

第三番目として、本発明に係る粘性率演算処理装置110を構成する各構成装置について説明する。まず、第一の構成装置である飽和振幅値演算処理装置111では、図10に記載の自励振波形の包絡線が決定される。すなわち、図10に記載の包絡線1005と包絡線1009であって、前者は駆動状態1002に対応し、後者は駆動状態1003に対応している。さらに、この包絡線の情報に基づき、十分に励振振幅が飽和する領域を検出する。すなわち、図10に記載の飽和領域1006及び飽和領域1010である。この決定された飽和領域にて、飽和振幅値が決定される。この飽和振幅値が図10に記載の飽和振幅値1007及び飽和振幅値1011である。   Thirdly, each component device constituting the viscosity calculation processing device 110 according to the present invention will be described. First, in the saturation amplitude value calculation processing device 111 as the first component device, the envelope of the self-excited waveform shown in FIG. 10 is determined. That is, in the envelope 1005 and the envelope 1009 illustrated in FIG. 10, the former corresponds to the driving state 1002 and the latter corresponds to the driving state 1003. Furthermore, based on this envelope information, a region where the excitation amplitude is sufficiently saturated is detected. That is, the saturation region 1006 and the saturation region 1010 illustrated in FIG. A saturation amplitude value is determined in the determined saturation region. This saturation amplitude value is the saturation amplitude value 1007 and the saturation amplitude value 1011 shown in FIG.

第二の構成装置である起動時間演算処理装置112は、前記の包絡線1005、包絡線1010及び駆動電圧波形1001を用いて、起動時間を求めるための演算処理を行う装置である。起動時間Trは、励振電流の振幅i0の時間微分値di0/dTが最大値となる時間と定義される。すなわち、図10記載の包絡線1005と包絡線1010を時間に対して微分し、その値が最大値となる時刻である。この時刻が図記載の時刻Ta、時刻Tbである。この二つの時刻を用いて、駆動状態1002における起動時間Tr1は、 The start-up time calculation processing device 112, which is the second component device, is a device that performs calculation processing for obtaining the start-up time using the envelope 1005, the envelope 1010, and the drive voltage waveform 1001. The activation time Tr is defined as a time when the time differential value di 0 / dT of the amplitude i 0 of the excitation current becomes the maximum value. That is, it is the time when the envelope 1005 and the envelope 1010 shown in FIG. 10 are differentiated with respect to time and the value becomes the maximum value. This time is time T a and time T b shown in the figure. Using these two times, the activation time T r1 in the driving state 1002 is

Figure 0004646813
Figure 0004646813

となる。同様に、駆動状態1003における起動時間Tr2It becomes. Similarly, the activation time T r2 in the driving state 1003 is

Figure 0004646813
Figure 0004646813

となる。 It becomes.

以上は、図4(b)で説明した起動時間τBを基に構成された演算処理であるが、図4(a)記載の起動時間τAを基にする場合は、図10記載の飽和振幅値1007、飽和振幅値1011より、両者の半値幅に対応する時刻から、起動時間Tr1、Tr2を求めてもよい。この両者の優劣を決定する判断基準は、起動時間と本発明に係る粘性率の相関性であって、その相関性が高い方を採用すべきである。この相関性は、演算処理部を構成する装置、さらには、図8及び図9記載の回路構成に依存するので、単なる設計事項にすぎない。 The above is the arithmetic processing configured based on the activation time τ B described with reference to FIG. 4B. However, when the activation time τ A illustrated in FIG. Based on the amplitude value 1007 and the saturation amplitude value 1011, the activation times T r1 and T r2 may be obtained from the time corresponding to the half width of both. The criterion for determining the superiority or inferiority of both is the correlation between the startup time and the viscosity according to the present invention, and the higher correlation should be adopted. Since this correlation depends on the apparatus constituting the arithmetic processing unit and the circuit configuration shown in FIGS. 8 and 9, it is merely a design matter.

第三の構成装置である等価抵抗演算処理装置113は、前記起動時間Tr1及びTr2を用いて、駆動状態1002及び駆動状態1003における等価抵抗値を求めるための演算処理を行う装置である。等価抵抗値Rmを決定するために、(8)式を基にする。すなわち、負性抵抗可変装置108にて設定された自励振回路105の負性抵抗曲線及び負荷容量値CL、及びあらかじめ記録されている滑り波型圧電共振子101の等価インダクタンス207及び電極間容量208の値(すなわち、LmとC0の値)を基に、(8)式を数値的に解く事により等価抵抗Rmが決定される。この決定された等価抵抗値は、駆動状態1002においてはRm1、駆動状態1001においてはRm2である。 The equivalent resistance calculation processing device 113, which is a third component device, is a device that performs calculation processing for obtaining an equivalent resistance value in the driving state 1002 and the driving state 1003 using the start times T r1 and T r2 . In order to determine the equivalent resistance value R m , the equation (8) is used as a basis. That is, the negative resistance curve and load capacitance value C L of the self-excited circuit 105 set by the negative resistance variable device 108, and the equivalent inductance 207 and interelectrode capacitance of the slip wave type piezoelectric resonator 101 recorded in advance are recorded. Based on the value of 208 (that is, the values of L m and C 0 ), the equivalent resistance R m is determined by numerically solving equation (8). The determined equivalent resistance value is R m1 in the driving state 1002 and R m2 in the driving state 1001.

第四の構成装置である粘性率演算装置114は、前記等価抵抗値Rm1及びRm2を用いて、浸漬溶液の粘性率を求めるための演算処理を行う装置である。あらかじめ記録されている滑り波型圧電共振子101の溶液浸漬前の等価抵抗値R0、固有周波数Fr、共振子形状、電気機械結合係数及び浸漬溶液の密度と(6)式を用いて、浸漬溶液の粘性率が決定される。この決定された粘性率が、駆動状態1002においてはηS1、駆動状態1001においてはηS2である。この時、ηS1とηS2に差があれば、浸漬溶液の化学的成分と滑り波型圧電共振子101の感応膜が反応する事によって、浸漬溶液の粘性率が変化した事にほかならない。この決定された粘性率または粘性率の変化量が、粘性率出力装置116によって出力される。 A viscosity calculation device 114, which is a fourth component device, is a device that performs calculation processing for obtaining the viscosity of the immersion solution using the equivalent resistance values R m1 and R m2 . Using the equivalent resistance value R 0 , the natural frequency F r , the resonator shape, the electromechanical coupling coefficient, the density of the immersion solution, and the equation (6), which are recorded in advance, of the sliding wave type piezoelectric resonator 101 before the solution immersion, The viscosity of the dipping solution is determined. This determined viscosity is η S1 in the driving state 1002 and η S2 in the driving state 1001. At this time, if there is a difference between η S1 and η S2 , it means that the viscosity of the immersion solution has changed due to the reaction between the chemical components of the immersion solution and the sensitive film of the sliding wave type piezoelectric resonator 101. The determined viscosity or the amount of change in viscosity is output by the viscosity output device 116.

第四番目として、本発明に係る飽和周波数演算処理装置115について説明する。この飽和周波数演算処理装置115は、図10に記載の飽和領域における自励振周波数、すなわち飽和周波数を決定するための演算処理装置である。飽和領域における自励振周波数を決定するために、飽和振幅値演算処理装置111にて決定された飽和領域1006と飽和領域1010に基づいて、飽和周波数が計測される。この決定された飽和周波数が駆動状態1002においてはF1、駆動状態1003においてはF2である。 Fourth, the saturation frequency calculation processing device 115 according to the present invention will be described. This saturation frequency arithmetic processing unit 115 is an arithmetic processing unit for determining the self-excited frequency in the saturation region shown in FIG. 10, that is, the saturation frequency. In order to determine the self-excited frequency in the saturation region, the saturation frequency is measured based on the saturation region 1006 and the saturation region 1010 determined by the saturation amplitude value calculation processing device 111. The determined saturation frequency is F 1 in the driving state 1002 and F 2 in the driving state 1003.

第五番目として吸着質量演算処理装置117について説明する。この吸着質量演算処理装置117は、滑り波型圧電共振子101の感応膜に吸着する微少質量を決定するための装置である。吸着する微少質量を決定するために、粘性率演算装置114にて決定された駆動状態1002での粘性率ηS1、駆動状態1003での粘性率ηS2と、(1)式と(2)式をもちいて、吸着質量が決定される。この決定された吸着質量が駆動状態1002においてはΔm1、駆動状態1003においてはΔm2である。この時、粘性率と同様にΔm1とΔm2に差があれば、浸漬溶液と滑り波型圧電共振子101の感応膜が反応する事によって、吸着量が変化した事にほかならない。この決定された吸着量または粘性量の変化量が、吸着質量出力装置118によって出力される。 Fifth, the adsorption mass calculation processing device 117 will be described. The adsorption mass calculation processing device 117 is a device for determining a minute mass adsorbed on the sensitive film of the sliding wave type piezoelectric resonator 101. To determine the small mass of adsorbing, viscosity eta S1 of the driving state 1002 is determined by the viscosity ratio calculating unit 114, a viscosity eta S2 in the driving state 1003, (1) and (2) Is used to determine the adsorption mass. The determined adsorption mass is Δm 1 in the driving state 1002 and Δm 2 in the driving state 1003. At this time, if there is a difference between Δm 1 and Δm 2 in the same manner as the viscosity, it means that the adsorption amount has changed due to the reaction between the immersion solution and the sensitive film of the sliding wave type piezoelectric resonator 101. The determined amount of change in adsorption amount or viscosity is output by the adsorption mass output device 118.

以上の演算処理は時刻T1と時刻T2の二時点で間欠駆動を行う演算処理を中心に説明したが、二時点ではなく、さらに数多くの時点で間欠駆動を行う事によって、吸着質量及び粘性率の時系列的変化が測定できる事はいうまでもない。通常、図10における自励振波形の振幅及び周波数が飽和する時間は数10mS(ミリ秒)以下である。それゆえ間欠駆動の時間間隔は数百mS程度まで短縮する事は可能である。さらに、滑り波型圧電共振子の感応膜と浸漬溶液との反応時間(吸着時間)はこの間欠駆動の時間間隔に比較して非常におそい。それゆえ、間欠駆動の時間間隔をある程度狭める事によって、ほぼ連続的な変化が測定できる。また、負性抵抗曲線を負性抵抗可変装置108にて変化させる機能を付加させる事によって、自由に粘性率の検出感度を選択できるので、浸漬溶液の種類によらず高感度の粘性率の検出ができ、その結果、吸着する微小質量の高感度検出が実現できる。 The above calculation processing has been described mainly with respect to the calculation processing in which intermittent driving is performed at two time points of time T 1 and time T 2 , but by performing intermittent driving at more time points instead of two time points, the adsorption mass and viscosity are determined. Needless to say, time-series changes in rates can be measured. Normally, the time during which the amplitude and frequency of the self-excited waveform in FIG. 10 is saturated is several tens of milliseconds (milliseconds) or less. Therefore, the time interval of intermittent driving can be shortened to several hundred mS. Furthermore, the reaction time (adsorption time) between the sensitive film of the sliding wave type piezoelectric resonator and the immersion solution is very slow compared to the time interval of this intermittent drive. Therefore, a substantially continuous change can be measured by narrowing the intermittent drive time interval to some extent. In addition, by adding a function to change the negative resistance curve by the negative resistance variable device 108, the viscosity detection sensitivity can be freely selected, so that the highly sensitive viscosity detection is possible regardless of the type of immersion solution. As a result, highly sensitive detection of the adsorbed minute mass can be realized.

本発明の効果を示す図11は前述のとおり、ATカット水晶振動子を用いたQCM型バイオセンサを用いた結果であるが、より、自励振周波数が高い水晶単結晶を用いた滑り波型弾性表面波共振子(SH波水晶SAW共振子)を用いる事によって、さらに高感度なセンサシステムが実現できる事になる。このSH波水晶SAW共振子を用いる場合、その振動モードが水晶表面に局在する滑り波モードとなる事で、先に説明した(1)〜(4)式をそのまま用いる事はできないが、間欠駆動型自励振回路から得られる起動時間を用いる事によって、高精度、高感度の粘性率が測定できる事に変わりはない。   FIG. 11 showing the effect of the present invention is a result of using a QCM type biosensor using an AT-cut quartz resonator as described above, but is a slip wave type elasticity using a crystal single crystal having a higher self-excited frequency. By using a surface wave resonator (SH wave crystal SAW resonator), a more sensitive sensor system can be realized. When this SH wave quartz SAW resonator is used, the vibration mode becomes a slip wave mode localized on the quartz surface, so that the equations (1) to (4) described above cannot be used as they are. By using the start-up time obtained from the drive type self-excited circuit, it is still possible to measure highly accurate and highly sensitive viscosity.

本発明に係るバイオセンサ計測システムの構成を示すブロック図The block diagram which shows the structure of the biosensor measurement system which concerns on this invention 圧電共振子を用いた自励振回路に関する電気的等価回路を示す回路図Circuit diagram showing electrical equivalent circuit for self-excited circuit using piezoelectric resonator 本発明に係る負性抵抗と自励振電流の振幅値i0の関係を示した特性図Characteristic view showing the relationship of the amplitude value i 0 of the negative resistance and self-excited current according to the present invention 本発明に係る起動特性の定性的な特性図Qualitative characteristic diagram of starting characteristics according to the present invention 本発明に係る起動特性を計算するための負性抵抗曲線図Negative resistance curve diagram for calculating start-up characteristics according to the present invention 本発明に係る起動時間Trと等価抵抗値Rmの関係を示す特性図Characteristic diagram showing the relationship between activation time T r the equivalent resistance value R m according to the present invention 振幅飽和値imと等価抵抗値Rmの関係を示す特性図Characteristic diagram showing the relationship between the amplitude saturation value i m and equivalent resistance R m 本発明に係る自励振回路の実施例Embodiment of self-excited circuit according to the present invention 本発明に係る自励振回路の他の実施例Another embodiment of the self-excited circuit according to the present invention 本発明に係る起動特性測定装置にて測定された自励振波形と駆動電圧波形 の特性図Characteristics diagram of self-excited waveform and drive voltage waveform measured by the starting characteristic measuring apparatus according to the present invention 本発明の効果を示す特性図Characteristics chart showing effects of the present invention ATカット水晶振動子を用いたQCM型バイオセンサに概略図Schematic diagram of QCM biosensor using AT-cut quartz crystal 従来の他励振法によるセンシングシステムを説明するための概念図Conceptual diagram for explaining a conventional sensing system using another excitation method 従来の自励振によるセンシングシステムを説明するための概念図Conceptual diagram for explaining a conventional self-excited sensing system

符号の説明Explanation of symbols

101:滑り波型圧電共振子
102:試料溶液
103:溶液層
104:反転増幅回路
105:自励振回路
106:電源
107:間欠駆動回路
108:負性抵抗可変装置
109:起動特性測定装置
110:粘性率演算処理装置
111:飽和振幅値演算処理装置
112:起動時間演算処理装置
113:等価抵抗値演算処理装置
114:粘性率演算装置
115:飽和周波数演算処理装置
116:粘性率出力装置
117:吸着質量演算処理装置
118:吸着質量出力装置
DESCRIPTION OF SYMBOLS 101: Sliding wave type piezoelectric resonator 102: Sample solution 103: Solution layer 104: Inversion amplifier circuit 105: Self-excited circuit 106: Power supply 107: Intermittent drive circuit 108: Negative resistance variable device 109: Starting characteristic measuring device 110: Viscosity Rate calculation processing unit 111: Saturation amplitude value calculation processing unit 112: Start-up time calculation processing unit 113: Equivalent resistance value calculation processing unit 114: Viscosity calculation unit 115: Saturation frequency calculation processing unit 116: Viscosity output unit 117: Adsorption mass Arithmetic processor 118: adsorption mass output device

Claims (10)

試料溶液中の特定物質を吸着する感応膜が形成された励振電極を有する滑り波型圧電共振子と、該滑り波型圧電共振子に接続された反転増幅回路とからなる自励振回路を用いて、前記感応膜に吸着される微量質量を測定するバイオセンサ計測システムにおいて、
前記自励振回路を間欠駆動させて自励振動の振幅値と周波数値に係わる起動特性を測定する起動特性測定部と、
測定された前記起動特性のうちの振幅特性から前記自励振回路が起動してから所定の振幅値に達するまでの起動時間を算出し、算出した値を用いて前記試料溶液の粘性率を演算する粘性率演算処理部と、
測定された前記起動特性のうちの周波数特性から前記自励振回路の波形振幅が飽和する時点での周波数値を検出し、検出した前記周波数値と演算して得られた前記粘性率とを用いて前記感応膜に吸着される前記微量質量値を算出する吸着質量演算処理部と、
からなることを特徴とするバイオセンサ計測システム。
Using a self-excited circuit comprising a sliding wave type piezoelectric resonator having an excitation electrode on which a sensitive film that adsorbs a specific substance in a sample solution is formed, and an inverting amplifier circuit connected to the sliding wave type piezoelectric resonator In the biosensor measurement system for measuring a minute mass adsorbed on the sensitive film,
A starting characteristic measuring unit that intermittently drives the self-excited circuit to measure a starting characteristic related to an amplitude value and a frequency value of the self-excited vibration;
The startup time from when the self-excited circuit is started up to a predetermined amplitude value is calculated from the measured amplitude characteristic, and the viscosity of the sample solution is calculated using the calculated value. A viscosity calculation processing unit;
The frequency value at the time when the waveform amplitude of the self-excited circuit is saturated from the measured frequency characteristic of the starting characteristic, and using the detected frequency value and the viscosity obtained by calculation An adsorption mass calculation processing unit for calculating the trace mass value adsorbed on the sensitive film;
A biosensor measurement system comprising:
前記粘性率演算処理部は、測定された前記起動特性のうちの振幅特性から前記振幅が飽和した時点での飽和振幅値を算出する飽和振幅値演算処理部と、前記自励振回路が起動してから該飽和振幅値よりも小さい所定の振幅値に達するまでの起動時間を算出する起動時間演算処理部と、算出された前記起動時間の値を用いて前記滑り波型圧電共振子の等価抵抗値を算出する等価抵抗値演算処理部と、算出された前記等価抵抗値を用いて前記試料溶液の粘性率を演算する粘性率演算部と、からなることを特徴とする請求項1に記載のバイオセンサ計測システム。   The viscosity calculation processing unit includes a saturation amplitude value calculation processing unit that calculates a saturation amplitude value at a time when the amplitude is saturated from an amplitude characteristic among the measured starting characteristics, and the self-excited circuit is started. An activation time calculation processing unit for calculating an activation time until the amplitude reaches a predetermined amplitude value smaller than the saturation amplitude value, and an equivalent resistance value of the sliding wave type piezoelectric resonator using the calculated activation time value The bio-resistor according to claim 1, further comprising: an equivalent resistance value calculation processing unit that calculates the viscosity, and a viscosity rate calculation unit that calculates the viscosity of the sample solution using the calculated equivalent resistance value. Sensor measurement system. 前記所定の振幅値は、振幅値の時間微分値が最大値となる振幅値である事を特徴とする請求項2に記載のバイオセンサ計測システム。   The biosensor measurement system according to claim 2, wherein the predetermined amplitude value is an amplitude value at which a time differential value of the amplitude value becomes a maximum value. 前記所定の振幅値は、前記飽和振幅値の半分の値となる振幅値である事を特徴とする請求項2に記載のバイオセンサ計測システム。   The biosensor measurement system according to claim 2, wherein the predetermined amplitude value is an amplitude value that is a half value of the saturation amplitude value. 前記自励振回路に接続され、前記試料溶液の前記粘性率に対応するように負性抵抗値が変化する負性抵抗可変装置を更に有することを特徴とする請求項1から4のいずれかに記載のバイオセンサ計測システム。   5. The device according to claim 1, further comprising a negative resistance variable device that is connected to the self-excited circuit and changes a negative resistance value so as to correspond to the viscosity of the sample solution. Biosensor measurement system. 前記滑り波型圧電共振子は、水晶単結晶を用いたATカット型共振子であることを特徴とする請求項1から5のいずれかに記載のバイオセンサ計測システム。   The biosensor measurement system according to any one of claims 1 to 5, wherein the sliding wave type piezoelectric resonator is an AT cut type resonator using a crystal single crystal. 前記滑り波型圧電共振子は、水晶単結晶を用いた滑り波型弾性表面波共振子であることを特徴とする請求項1から5のいずれかに記載のバイオセンサ計測システム。   6. The biosensor measurement system according to claim 1, wherein the sliding wave type piezoelectric resonator is a sliding wave type surface acoustic wave resonator using a crystal single crystal. 試料溶液の粘性率を測定する粘性率測定方法であって、
滑り波型圧電共振子を試料溶液中で自励振動させ、間欠駆動させて得られる前記自励振動の振幅値と周波数値に係わる起動特性を測定する第1のステップと、
測定された前記起動特性のうちの振幅特性から前記自励振動が起動してから所定の振幅値に達するまでの起動時間を測定する第2のステップと、
測定された前記起動時間の値と、事前に求めた前記滑り波型圧電共振子の等価抵抗値とを用いて演算することにより前記試料溶液の粘性率を算出して測定する第3のステップと、
からなることを特徴とする粘性率測定方法。
A viscosity measurement method for measuring the viscosity of a sample solution,
A first step of measuring a starting characteristic related to an amplitude value and a frequency value of the self-excited vibration obtained by self-excited vibration of a sliding wave type piezoelectric resonator in a sample solution and intermittent driving;
A second step of measuring an activation time from when the self-excited vibration is activated until reaching a predetermined amplitude value from an amplitude characteristic of the measured activation characteristics;
A third step of calculating and measuring the viscosity of the sample solution by calculating using the measured value of the starting time and the equivalent resistance value of the sliding wave type piezoelectric resonator obtained in advance; ,
A method for measuring viscosity, comprising:
試料溶液中の特定物質を吸着する感応膜が形成された励振電極を有する滑り波型圧電共振子の前記感応膜に吸着される微量質量を測定する微量質量測定方法であって、
滑り波型圧電共振子を前記試料溶液中で自励振動させ、間欠駆動させて得られる前記自励振動の振幅値と周波数値に係わる起動特性を測定するステップと、
測定された前記起動特性のうちの振幅特性から前記自励振動が起動してから所定の振幅値に達するまでの起動時間を測定し、測定した前記起動時間の値を用いて前記試料溶液の粘性率を演算するステップと、
測定された前記起動特性のうちの周波数特性から前記自励振動の波形振幅が飽和する時点での周波数値を検出し、検出した前記周波数値と演算して得られた前記粘性率とを用いて前記感応膜に吸着される前記微量質量値を算出して測定するステップと、
からなることを特徴とする微量質量測定方法。
A trace mass measurement method for measuring a trace mass adsorbed on the sensitive film of a sliding wave type piezoelectric resonator having an excitation electrode formed with a sensitive film that adsorbs a specific substance in a sample solution,
Measuring a starting characteristic related to an amplitude value and a frequency value of the self-excited vibration obtained by self-excited vibration of the sliding wave type piezoelectric resonator in the sample solution and intermittent driving;
The starting time from when the self-excited vibration starts up to a predetermined amplitude value is measured from the measured amplitude characteristics of the starting characteristics, and the viscosity of the sample solution is measured using the measured starting time value. Calculating a rate;
The frequency value at the time when the waveform amplitude of the self-excited vibration is saturated from the measured frequency characteristic of the starting characteristic is used, and the detected frequency value and the viscosity obtained by calculation are used. Calculating and measuring the trace mass value adsorbed on the sensitive membrane;
A method for measuring a minute mass, comprising:
試料溶液の粘性率を演算する前記ステップは、測定された前記起動特性のうちの振幅特性から前記自励振動が起動してから所定の振幅値に達するまでの起動時間を測定する第1のステップと、測定された前記起動時間の値と、事前に求めた前記滑り波型圧電共振子の等価抵抗値とを用いて演算することにより前記試料溶液の粘性率を算出して測定する第2のステップと、からなることを特徴とする請求項9に記載の微量質量測定方法。   The step of calculating the viscosity of the sample solution is a first step of measuring a start-up time from when the self-excited vibration starts up to a predetermined amplitude value based on the amplitude characteristic among the measured start-up characteristics. And calculating the viscosity coefficient of the sample solution by calculating using the measured value of the starting time and the equivalent resistance value of the sliding wave type piezoelectric resonator obtained in advance. The method according to claim 9, further comprising: a step.
JP2006007706A 2005-08-30 2006-01-16 Biosensor measurement system, viscosity measurement method, and trace mass measurement method Expired - Fee Related JP4646813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007706A JP4646813B2 (en) 2005-08-30 2006-01-16 Biosensor measurement system, viscosity measurement method, and trace mass measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005249251 2005-08-30
JP2006007706A JP4646813B2 (en) 2005-08-30 2006-01-16 Biosensor measurement system, viscosity measurement method, and trace mass measurement method

Publications (2)

Publication Number Publication Date
JP2007093573A JP2007093573A (en) 2007-04-12
JP4646813B2 true JP4646813B2 (en) 2011-03-09

Family

ID=37979456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007706A Expired - Fee Related JP4646813B2 (en) 2005-08-30 2006-01-16 Biosensor measurement system, viscosity measurement method, and trace mass measurement method

Country Status (1)

Country Link
JP (1) JP4646813B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5066404B2 (en) * 2007-08-02 2012-11-07 株式会社アルバック Physical property measurement method using biosensor
JP4471001B2 (en) 2008-01-23 2010-06-02 セイコーエプソン株式会社 Semiconductor sensor and manufacturing method of semiconductor sensor
WO2011062032A1 (en) * 2009-11-19 2011-05-26 株式会社村田製作所 Oscillator circuit and sensor
WO2011086879A1 (en) * 2010-01-18 2011-07-21 独立行政法人産業技術総合研究所 Method of measuring viscosity and viscosity measuring device
US9479134B2 (en) * 2013-03-04 2016-10-25 Texas Instruments Incorporated Position detecting system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310842A (en) * 1991-04-09 1992-11-02 Seiko Instr Inc Electrochemical measuring system
JPH0712695A (en) * 1993-06-29 1995-01-17 Idec Izumi Corp Manufacture of quartz oscillator system biosensor and this biosensor
JPH07151664A (en) * 1993-11-30 1995-06-16 Norio Isahaya Method for measuring mass/concentration of dust particle in gas
JPH0989746A (en) * 1995-09-28 1997-04-04 Olympus Optical Co Ltd Sensor and monolithic piezoelectric vibrator
JPH0996600A (en) * 1995-09-29 1997-04-08 Olympus Optical Co Ltd Tactile sensor signal processor
JPH1151841A (en) * 1997-06-09 1999-02-26 Dickey John Corp Portable viscometer with resonator-type sensor
JP2000283907A (en) * 1999-03-30 2000-10-13 A & D Co Ltd Vibrator viscometer
JP2003032043A (en) * 2001-07-11 2003-01-31 Yuasa Corp Oscillation circuit for crystal vibrator and crystal vibrator sensor employing the circuit
JP2003512622A (en) * 1999-10-15 2003-04-02 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mass sensitive sensor
JP2003240697A (en) * 2002-02-14 2003-08-27 Semiconductor Leading Edge Technologies Inc Analytical method and device for membrane properties
JP2004317493A (en) * 2003-03-28 2004-11-11 Citizen Watch Co Ltd Qcm sensor and qcm sensor device
JP2005515432A (en) * 2002-01-18 2005-05-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring viscosity and / or density

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310842A (en) * 1991-04-09 1992-11-02 Seiko Instr Inc Electrochemical measuring system
JPH0712695A (en) * 1993-06-29 1995-01-17 Idec Izumi Corp Manufacture of quartz oscillator system biosensor and this biosensor
JPH07151664A (en) * 1993-11-30 1995-06-16 Norio Isahaya Method for measuring mass/concentration of dust particle in gas
JPH0989746A (en) * 1995-09-28 1997-04-04 Olympus Optical Co Ltd Sensor and monolithic piezoelectric vibrator
JPH0996600A (en) * 1995-09-29 1997-04-08 Olympus Optical Co Ltd Tactile sensor signal processor
JPH1151841A (en) * 1997-06-09 1999-02-26 Dickey John Corp Portable viscometer with resonator-type sensor
JP2000283907A (en) * 1999-03-30 2000-10-13 A & D Co Ltd Vibrator viscometer
JP2003512622A (en) * 1999-10-15 2003-04-02 フォルシュングスツェントルム カールスルーエ ゲゼルシャフト ミット ベシュレンクテル ハフツング Mass sensitive sensor
JP2003032043A (en) * 2001-07-11 2003-01-31 Yuasa Corp Oscillation circuit for crystal vibrator and crystal vibrator sensor employing the circuit
JP2005515432A (en) * 2002-01-18 2005-05-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Apparatus for measuring viscosity and / or density
JP2003240697A (en) * 2002-02-14 2003-08-27 Semiconductor Leading Edge Technologies Inc Analytical method and device for membrane properties
JP2004317493A (en) * 2003-03-28 2004-11-11 Citizen Watch Co Ltd Qcm sensor and qcm sensor device

Also Published As

Publication number Publication date
JP2007093573A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US7912661B2 (en) Impedance analysis technique for frequency domain characterization of magnetoelastic sensor element by measuring steady-state vibration of element while undergoing constant sine-wave excitation
JP5066551B2 (en) Piezoelectric sensor and sensing device
JP4222513B2 (en) Mass measuring apparatus and method
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
TWI443338B (en) And a sensing means for sensing the sensing object in the liquid
US7165452B2 (en) Measuring method, measurement-signal output circuit, and measuring apparatus
JP4387896B2 (en) QCM sensor and measurement method using QCM sensor
US7493798B2 (en) Sensor for detecting the adulteration and quality of fluids
US9140668B2 (en) Device and method for detecting at least one substance
CN108896654B (en) Energy dissipation factor measuring method based on piezoelectric acoustic wave resonant sensor
JP2004294356A (en) Qcm sensor unit
KR101842350B1 (en) The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof
JP2018112469A (en) Sensor, information processor, sensing method, and software
JP5708027B2 (en) Sensing device
JP2011227033A (en) Sensing device
KR102258668B1 (en) How to verify the resonator
JP4936921B2 (en) Quartz crystal sensor device
JP4216692B2 (en) Mass sensor
JP2003315235A (en) Analytical method
JP2005098866A (en) Measurement method using vibrator, and biosensor device
RU2373516C2 (en) Viscosity measuring element
Datta Modelling Of The Response Of Bulk Acoustic Wave Based Devices In Bio Sensor Applications
Aziz et al. Quartz Crystal Microbalance a Powerful Technique for Nanogram Mass Sensing
Jayasvasti et al. Comparative study of QCM analyzers based on pierce oscillator and electromechanical impedance techniques
JPH03148040A (en) Viscosity measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080813

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees