JP4645603B2 - Antenna structure and wireless communication apparatus including the same - Google Patents

Antenna structure and wireless communication apparatus including the same Download PDF

Info

Publication number
JP4645603B2
JP4645603B2 JP2007041727A JP2007041727A JP4645603B2 JP 4645603 B2 JP4645603 B2 JP 4645603B2 JP 2007041727 A JP2007041727 A JP 2007041727A JP 2007041727 A JP2007041727 A JP 2007041727A JP 4645603 B2 JP4645603 B2 JP 4645603B2
Authority
JP
Japan
Prior art keywords
radiation electrode
low
electrode
power supply
wireless communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007041727A
Other languages
Japanese (ja)
Other versions
JP2008205991A (en
Inventor
一也 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2007041727A priority Critical patent/JP4645603B2/en
Publication of JP2008205991A publication Critical patent/JP2008205991A/en
Application granted granted Critical
Publication of JP4645603B2 publication Critical patent/JP4645603B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)

Description

本発明は、携帯型電話機等の無線通信装置に設けられるアンテナ構造およびそれを備えた無線通信装置に関するものである。   The present invention relates to an antenna structure provided in a wireless communication apparatus such as a mobile phone and a wireless communication apparatus including the antenna structure.

アンテナとして機能する放射電極は、予め定められた設定の周波数帯の周波数で共振動作して無線通信を行うものである。この放射電極一つで複数の周波数帯の無線通信に対応させる場合がある。一つの放射電極に複数の周波数帯の無線通信を行わせる手法の一つとしては、例えば、放射電極における電界の強い部分のリアクタンスを切り換え変化させる手段を放射電極に接続する。この手段による放射電極の電界の強い部分のリアクタンスの切り換え変化によって、放射電極の共振周波数を決定する放射電極の電気的な長さ(電気長)が切り換わり、これにより、放射電極の共振周波数が切り換わる。この共振周波数の切り換えによって、一つの放射電極で複数の周波数帯での無線通信を可能にしている。   The radiation electrode functioning as an antenna performs wireless communication by resonating at a predetermined frequency band. In some cases, this single radiation electrode can support wireless communication in a plurality of frequency bands. As one method for causing a single radiation electrode to perform wireless communication in a plurality of frequency bands, for example, a means for switching and changing the reactance of a portion of the radiation electrode where the electric field is strong is connected to the radiation electrode. By changing the reactance of the strong part of the electric field of the radiation electrode by this means, the electrical length (electric length) of the radiation electrode that determines the resonance frequency of the radiation electrode is switched, and thereby the resonance frequency of the radiation electrode is changed. Switch. By switching the resonance frequency, wireless communication in a plurality of frequency bands is possible with one radiation electrode.

また、一つの放射電極に複数の周波数帯での無線通信を行わせる別の手法としては、例えば、放射電極における磁界の強い部分のリアクタンスを切り換え変化させる手段を放射電極に接続する。この場合には、その手段による放射電極の磁界の強い部分のリアクタンスの切り換え変化によって、前記同様に放射電極の電気長が切り換わって放射電極の共振周波数が切り換わる。この共振周波数の切り換えによって、一つの放射電極で複数の周波数帯での無線通信を可能にしている。   Further, as another method for causing one radiating electrode to perform wireless communication in a plurality of frequency bands, for example, a means for switching and changing the reactance of a strong magnetic field portion of the radiating electrode is connected to the radiating electrode. In this case, the electrical length of the radiating electrode is switched and the resonance frequency of the radiating electrode is switched in the same manner as described above due to the change in the reactance of the portion where the magnetic field of the radiating electrode is strong. By switching the resonance frequency, wireless communication in a plurality of frequency bands is possible with one radiation electrode.

また、別の手法としては、共振周波数切り換え回路を放射電極自体に設け、その回路によって放射電極の電気長を切り換え変化させて放射電極の共振周波数を切り換えることにより、一つの放射電極で複数の周波数帯での無線通信を可能にしているものがある。   As another method, a resonance frequency switching circuit is provided in the radiation electrode itself, and the electrical length of the radiation electrode is switched and changed by the circuit to switch the resonance frequency of the radiation electrode. Some wireless communication is possible.

さらに別の手法としては、次に示すようなものがある。つまり、放射電極は、基本共振周波数と、当該基本共振周波数をほぼ整数倍した周波数である高次周波数というように、複数の共振周波数を持つ。その放射電極の基本共振周波数と高次共振周波数を用いて、一つの放射電極で複数の周波数帯での無線通信を行う手法がある。   Still another method is as follows. That is, the radiation electrode has a plurality of resonance frequencies such as a basic resonance frequency and a higher-order frequency that is a frequency obtained by multiplying the basic resonance frequency by an integer. There is a method of performing wireless communication in a plurality of frequency bands with one radiation electrode using the fundamental resonance frequency and the higher-order resonance frequency of the radiation electrode.

特開平11−136025号公報JP-A-11-136025 特開2001−53543号公報JP 2001-53543 A 特開平11−68456号公報JP 11-68456 A 特開2003−179426号公報JP 2003-179426 A

前記のように、一つの放射電極で複数の周波数帯での無線通信を行わせるための手法には様々な手法が提案されている。しかしながら、放射電極と、当該放射電極に電気的に接続している無線通信装置の無線通信用回路(高周波回路)とのインピーダンス整合に問題が生じたり、放射電極の共振動作による周波数帯の帯域幅が十分でなかったり、放射電極の共振周波数の切り換え幅が小さかったり、放射電極の切り換え変化させる全ての共振周波数を設定通りの周波数に調整することが難しい等の様々な問題があり、満足できるものではなかった。   As described above, various methods have been proposed for causing wireless communication in a plurality of frequency bands with one radiation electrode. However, there is a problem in impedance matching between the radiation electrode and the wireless communication circuit (high frequency circuit) of the wireless communication device electrically connected to the radiation electrode, or the bandwidth of the frequency band due to the resonance operation of the radiation electrode. There are various problems, such as not enough, switching width of the resonance frequency of the radiation electrode is small, and it is difficult to adjust all resonance frequencies that change the radiation electrode to the set frequency. It wasn't.

本発明は前記課題を解決するために成されたものであり、その目的は、複数の周波数帯での無線通信に容易に対応することができ、しかも、満足なアンテナの整合条件を得ることができるアンテナ構造およびそれを備えた無線通信装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its object is to easily cope with wireless communication in a plurality of frequency bands and to obtain satisfactory antenna matching conditions. It is an object to provide an antenna structure that can be used and a wireless communication apparatus including the antenna structure.

前記目的を達成するために、この発明は次に示す構成をもって前記課題を解決するための手段としている。すなわち、この発明のアンテナ構造は、
グランド電極および無線通信用回路が形成されている実装基板と、
この実装基板の端縁部に配設されている誘電体基体と、
この誘電体基体に設けられ予め定められた無線通信用の少なくとも2つの周波数帯のうちの高い方の周波数帯で共振動作してアンテナとして機能する高側の給電放射電極と、
高側の給電放射電極の端縁部における予め定められた給電部に連接されている高側の給電電極と、
一端側が高側の給電電極を介し高側の給電放射電極の給電部に接続され他端側は無線通信用回路側との高側用接続部に接続されて高側の給電放射電極の給電部を直接的に、又は、キャパシタンス部を介して無線通信用回路に接続させ前記高い方の周波数帯の信号を導通させる高側の給電用導通路と、
高側の給電放射電極の給電部の両側の少なくとも一方側の給電放射電極端縁部分を直接的にグランド電極に接続させるショート回路と、
高側の給電放射電極と間隔を介し隣接した状態で前記誘電体基体に高側の給電放射電極と共に設けられ前記予め定められた無線通信用の少なくとも2つの周波数帯のうちの低い方の周波数帯で共振動作してアンテナとして機能する低側の給電放射電極と、
低側の給電放射電極の端縁部における予め定められた給電部に連接されている低側の給電電極と、
一端側が低側の給電電極を介し低側の給電放射電極の給電部に接続され他端側は無線通信用回路側との低側用接続部に接続されて低側の給電放射電極の給電部をインダクタンス部を介して無線通信用回路に接続させ前記低い方の周波数帯の信号を導通させる低側の給電用導通路と、
低側の給電放射電極の給電部の両側の少なくとも一方側の給電放射電極端縁部分をインダクタンス部を介してグランド電極に接続させるリアクタンス回路と、
を有していることを特徴としている。
In order to achieve the above object, the present invention has the following configuration as means for solving the above problems. That is, the antenna structure of the present invention is
A mounting substrate on which a ground electrode and a circuit for wireless communication are formed;
A dielectric substrate disposed on an edge of the mounting substrate;
A high-side feed radiation electrode that functions as an antenna by resonating in a higher frequency band of at least two predetermined frequency bands for wireless communication provided on the dielectric substrate;
A high-side feed electrode connected to a predetermined feed section at the edge of the high-side feed radiation electrode;
One end side is connected to the feeding portion of the high-side feeding radiation electrode via the high-side feeding electrode, and the other end side is connected to the high-side connecting portion with the radio communication circuit side, and the feeding portion of the high-side feeding radiation electrode Directly or via a capacitance unit, a high-side power supply conduction path that conducts the signal of the higher frequency band by connecting to a wireless communication circuit, and
A short circuit for directly connecting at least one of the feeding radiation electrode edge portions on both sides of the feeding portion of the feeding radiation electrode on the high side directly to the ground electrode;
A lower frequency band of the predetermined at least two frequency bands for wireless communication provided on the dielectric substrate together with the high-side power-feeding radiation electrode in a state adjacent to the high-side power-feeding radiation electrode with a space therebetween A low-side feed radiation electrode that resonates and functions as an antenna,
A low-side power supply electrode connected to a predetermined power supply portion at an edge of the low-side power supply radiation electrode; and
One end side is connected to the power supply portion of the low-side power supply radiation electrode via the low-side power supply electrode, and the other end side is connected to the low-side connection portion with the circuit for wireless communication, and the power supply portion of the low-side power supply radiation electrode Is connected to a wireless communication circuit through an inductance section, and a low-side power supply conduction path for conducting a signal in the lower frequency band, and
A reactance circuit for connecting at least one feeding radiation electrode edge portion on both sides of the feeding portion of the low-side feeding radiation electrode to the ground electrode via the inductance portion;
It is characterized by having.

また、この発明の無線通信装置は、この発明において特徴的な構成を持つアンテナ構造が設けられていることを特徴としている。   The radio communication apparatus of the present invention is characterized in that an antenna structure having a characteristic configuration in the present invention is provided.

この発明のアンテナ構造によれば、予め定められた無線通信用の少なくとも2つの周波数帯のうちの高い方の周波数帯での無線通信を行う高側の給電放射電極と、低い方の周波数帯での無線通信を行う低側の給電放射電極とを別々に設けた。このため、無線通信用の高い方の周波数帯の無線通信に関する構成と、低い方の周波数帯の無線通信に関する構成とをほぼ独立的に設計できるので、アンテナ構造の設計が簡単となる。また、この発明のアンテナ構造では、無線通信用の低い方の周波数帯と高い方の周波数帯との周波数間隔を1オクターブ以上に大きく広げることも、反対に小さくすることも容易である。   According to the antenna structure of the present invention, the high-side feeding radiation electrode that performs wireless communication in the higher frequency band of at least two frequency bands for predetermined wireless communication, and the lower frequency band A low-side feeding radiation electrode for performing wireless communication is provided separately. For this reason, since the configuration relating to radio communication in the higher frequency band for radio communication and the configuration relating to radio communication in the lower frequency band can be designed almost independently, the design of the antenna structure is simplified. In the antenna structure of the present invention, it is easy to widen the frequency interval between the lower frequency band and the higher frequency band for wireless communication to one octave or more, or conversely to make it smaller.

さらに、この発明のアンテナ構造では、高側の給電放射電極が給電部の両側の少なくとも一方側の給電放射電極端縁部からショート回路を介して実装基板(例えば携帯型電話機等の無線通信装置の筐体内に設けられる回路基板)のグランド電極に高周波的に接続される構成を備えている。このため、アンテナ構造の無線通信用の周波数帯が、例えば携帯型電話機等で使用される約800MHz帯〜約2GHz帯の範囲にある場合に、高側の給電放射電極は、約1.7GHz〜2GHzの広い周波数範囲で共振動作する。つまり、高側の給電放射電極の周波数帯の広帯域化を図ることができる。   Furthermore, in the antenna structure of the present invention, the high-side feeding radiation electrode is connected to a mounting substrate (for example, a wireless communication device such as a portable telephone) from the edge of the feeding radiation electrode on at least one side on both sides of the feeding unit via a short circuit. The circuit board is provided with a configuration that is connected at high frequency to a ground electrode of a circuit board provided in the housing. For this reason, when the frequency band for radio communication of the antenna structure is in the range of about 800 MHz band to about 2 GHz band used in, for example, a portable phone, the high-side feeding radiation electrode is about 1.7 GHz to Resonant operation over a wide frequency range of 2 GHz. That is, it is possible to widen the frequency band of the high-side feeding radiation electrode.

さらに、この発明では、高側の給電放射電極および低側の給電放射電極は誘電体基体に設けられている。このため、誘電体の波長短縮効果によって、それら高側と低側の各給電放射電極の小型化を図ることができる。この発明のアンテナ構造では、無線通信用の高い方の周波数帯と低い方の周波数帯とのそれぞれに別々に対応した別個の給電放射電極が設けられているが、前記のように給電放射電極が小型化できることから、アンテナ構造の大型化を抑えることができる。   Furthermore, in the present invention, the high-side feed radiation electrode and the low-side feed radiation electrode are provided on the dielectric substrate. For this reason, the high-side and low-side feed radiation electrodes can be downsized by the wavelength shortening effect of the dielectric. In the antenna structure of the present invention, separate feed radiation electrodes corresponding respectively to the higher frequency band and the lower frequency band for wireless communication are provided. Since the size can be reduced, an increase in the size of the antenna structure can be suppressed.

また、この発明では、低側の給電用導通路にはインダクタンス部が介設されており、当該インダクタンス部のリアクタンスは低側の給電放射電極に付与されて当該低側の給電放射電極の電気的な長さ(電気長)を長くする。これにより、その付与されたリアクタンス値に応じた分、低側の給電放射電極の共振周波数が下がるため、低側の給電放射電極の小型化を図りながら、設定された低い方の周波数帯での無線通信を行うことが可能となる。このことも、アンテナ構造の大型化を抑えることができる要素である。   Further, in the present invention, an inductance part is interposed in the low-side power supply conducting path, and the reactance of the inductance part is given to the low-side power supply radiation electrode, and the electric power of the low-side power supply radiation electrode is Increase the length (electric length). As a result, the resonance frequency of the low-side feeding radiation electrode is lowered by an amount corresponding to the given reactance value, so that the low-side feeding radiation electrode can be reduced in size while being set in the lower frequency band. Wireless communication can be performed. This is also an element that can suppress the increase in size of the antenna structure.

さらに、この発明では、低側の給電放射電極における給電部の両側の少なくとも一方側(給電部から離れた部位)が、インダクタンス部を有するリアクタンス回路を介してグランド電極に接続されている構成を備えている。この構成によって、低側の給電用導通路に介設されているインダクタンス部だけでなく、リアクタンス回路のインダクタンス部をも、低側の給電放射電極と、無線通信用回路側とのインピーダンス整合に関与することとなる。それら低側の給電用導通路のインダクタンス部およびリアクタンス回路のインダクタンス部は高側の給電放射電極にとっては高インピーダンスであるため、高側の給電放射電極の共振動作への影響は少ない。また、インピーダンス整合に関与するインダクタンス部の数が増加することにより、低側の給電放射電極と、無線通信用回路側とのインピーダンス整合の調整が容易となり、これにより、低側の給電放射電極と、無線通信用回路側との良好なインピーダンス整合を得易くなる。   Furthermore, the present invention has a configuration in which at least one side (part distant from the power supply unit) of both sides of the power supply unit in the low-side power supply radiation electrode is connected to the ground electrode via a reactance circuit having an inductance unit. ing. With this configuration, not only the inductance portion provided in the low-side power supply conduction path but also the inductance portion of the reactance circuit is involved in impedance matching between the low-side power supply radiation electrode and the wireless communication circuit side. Will be. Since the inductance part of the low-side power supply conduction path and the inductance part of the reactance circuit have high impedance for the high-side power supply radiation electrode, there is little influence on the resonance operation of the high-side power supply radiation electrode. In addition, the increase in the number of inductance parts involved in impedance matching makes it easy to adjust impedance matching between the low-side power supply radiation electrode and the wireless communication circuit side, and thereby the low-side power supply radiation electrode and This makes it easy to obtain good impedance matching with the wireless communication circuit side.

さらに、この発明では、低側の給電放射電極における給電部の両側の少なくとも一方側はインダクタンス部を有するリアクタンス回路を介してグランド電極に接続されているので、次に示すように低い方の周波数帯の広帯域化を図ることができる。つまり、アンテナ構造の無線通信用の周波数帯が、例えば携帯型電話機等で使用される約800MHz帯〜約2GHz帯の範囲にある場合には、低側や高側の給電放射電極だけでなく、それら給電放射電極の共振動作に誘起されてグランド電極をも共振動作の一部として動作する。この発明では、低側の給電放射電極における給電部(つまり、給電放射電極において磁界が最も強い部分)の両側の少なくとも一方側はインダクタンス部を有するリアクタンス回路を介してグランド電極に接続されている構成を有し、この構成は、給電放射電極に誘起されたグランド電極の共振動作時に、例えば携帯型電話機の長方形状の回路基板(実装基板)の長辺に沿う方向にグランド電極に流れる電流の分布を分散させる効果がある。これにより、低側の給電放射電極の周波数帯を広帯域化できる。   Furthermore, in the present invention, at least one side of both sides of the power feeding section in the lower power feeding radiation electrode is connected to the ground electrode via a reactance circuit having an inductance section. Can be widened. That is, when the frequency band for wireless communication of the antenna structure is in the range of about 800 MHz band to about 2 GHz band used in, for example, a portable phone, not only the low-side and high-side feeding radiation electrodes, The ground electrode is also operated as a part of the resonance operation by being induced by the resonance operation of the feeding radiation electrode. In the present invention, at least one side of both sides of the power feeding portion (that is, the portion where the magnetic field is strongest in the power feeding radiation electrode) in the low-side power feeding radiation electrode is connected to the ground electrode via a reactance circuit having an inductance portion. This configuration has a distribution of current flowing in the ground electrode in the direction along the long side of the rectangular circuit board (mounting board) of the portable telephone, for example, during the resonance operation of the ground electrode induced in the feeding radiation electrode Has the effect of dispersing. Thereby, the frequency band of the low-side feeding radiation electrode can be widened.

また、前記した、低側の給電放射電極における給電部の両側の少なくとも一方側はリアクタンス回路を介してグランド電極に接続されている構成は、低側の給電放射電極に流れている電流の分布をも拡散する。このことも、低側の給電放射電極の周波数帯が広帯域化できる理由の一つである。   In addition, the configuration in which at least one side of both sides of the power supply unit in the low-side power supply radiation electrode is connected to the ground electrode via the reactance circuit, the distribution of the current flowing in the low-side power supply radiation electrode is Also spread. This is also one of the reasons that the frequency band of the low-side feeding radiation electrode can be widened.

さらに、この発明の構成では、上述したように、実装基板のグランド電極も共振動作するのでグランド電極からも電波の輻射があり、当該輻射は、アンテナ構造の誘電体基体が配置されている側の実装基板面側が強くなる。このため、この発明のアンテナ構造が携帯型電話機に設けられる場合には、通話中に外側(人体側の反対側)となる回路基板(実装基板)の基板面にアンテナ構造の誘電体基体を配設することによって、アンテナ構造の電波の指向性を人体の反対側とすることができる。これにより、人体に起因したアンテナ特性の劣化を抑制することができる。   Furthermore, in the configuration of the present invention, as described above, since the ground electrode of the mounting substrate also resonates, there is radio wave radiation from the ground electrode, and this radiation is on the side where the dielectric substrate of the antenna structure is disposed. The mounting board surface side becomes stronger. For this reason, when the antenna structure of the present invention is provided in a mobile phone, a dielectric substrate of the antenna structure is arranged on the substrate surface of the circuit board (mounting board) that becomes the outside (opposite side of the human body side) during a call. By providing, the directivity of the radio wave of the antenna structure can be set on the opposite side of the human body. Thereby, it is possible to suppress the deterioration of the antenna characteristics due to the human body.

さらに、この発明では、共振動作時の給電放射電極およびグランド電極の電流分布はアンテナ特性に大きな影響を与えることと、良好なアンテナ特性を得るための電流分布は周波数によって異なることとを考慮して、良好なアンテナ特性を得るべく、上述したように、低側の給電放射電極と高側の給電放射電極とのそれぞれにおけるグランド電極との接続形態を異ならせて給電放射電極およびグランド電極の電流分布を周波数帯に応じた適切な状態としている。このため、無線通信用の低い方の周波数帯でも高い方の周波数帯でも良好なアンテナ特性を得ることができる。   Furthermore, in the present invention, considering that the current distribution of the feeding radiation electrode and the ground electrode during the resonance operation greatly affects the antenna characteristics, and that the current distribution for obtaining good antenna characteristics varies depending on the frequency. In order to obtain good antenna characteristics, as described above, the current distribution of the feed radiation electrode and the ground electrode is made by changing the connection form of the ground electrode in each of the low-side feed radiation electrode and the high-side feed radiation electrode. Is in an appropriate state according to the frequency band. Therefore, good antenna characteristics can be obtained in both the lower frequency band and the higher frequency band for wireless communication.

ところで、例えば無線通信装置である携帯型電話機の小型化に応じて低側の給電放射電極の小型化を促進させていくと、低側の給電放射電極が例えば900MHz帯というような低い方の周波数帯での無線通信を行う場合に周波数に対する給電放射電極の電極面積の狭小を補うべく低側の給電放射電極よりも広い面積を持つグランド電極を有効に利用して無線通信を行う必要性が生じてくる。これに対して、高側の給電放射電極を低側の給電放射電極と同様に小型化しても、高側の給電放射電極が例えば2GHz帯というような高い方の周波数帯で無線通信を行う場合には高側の給電放射電極が主となって無線通信を行ってグランド電極の無線通信に関与する度合いは小さい。このため、高側の給電放射電極が無線通信を行う場合には、高側の給電放射電極の共振動作と、例えば無線通信装置である携帯型電話機の使用者(人体)とが互いに影響し合い易くなってアンテナ特性を劣化させる虞がある。このことから、その高側の給電放射電極と、例えば人体との互いに影響し合う度合いを小さく抑制するために、高側の給電放射電極と、例えば人体との間にシールド部材として機能するグランド電極を配置することが好ましい。つまり、高側の給電放射電極は実装基板のグランド電極の上方側に配置させることが好ましい。これに対して、低側の給電放射電極をグランド電極の上方側に配置しなくとも上記アンテナ特性劣化問題は抑制できるし、低側の給電放射電極と、グランド電極とを、この発明において特徴的な接続形態でもって電気的に接続させれば、低側の給電放射電極はグランド電極を有効利用できるので、低側の給電放射電極をグランド電極の上方側に配置する必要性は小さい。このことから、低側の給電放射電極の配設領域に対応する実装基板領域にはグランド電極が形成されていない構成を採用することによって、低側の給電放射電極の電界が放射され易くなって低側の給電放射電極による無線通信の周波数帯の広帯域化を図ることができる。   By the way, when the miniaturization of the low-side feeding radiation electrode is promoted in accordance with the miniaturization of the mobile phone which is a wireless communication device, for example, the low-side feeding radiation electrode has a lower frequency such as 900 MHz band. When wireless communication is performed in a band, there is a need to perform wireless communication by effectively using a ground electrode having a larger area than the low-side feed radiation electrode in order to compensate for the narrowness of the electrode area of the feed radiation electrode with respect to the frequency. Come. On the other hand, even if the high-side feed radiation electrode is downsized in the same manner as the low-side feed radiation electrode, the high-side feed radiation electrode performs wireless communication in a higher frequency band such as the 2 GHz band. In this case, the high-side feeding radiation electrode mainly performs wireless communication, and the degree of participation in the wireless communication of the ground electrode is small. For this reason, when the high-side feeding radiation electrode performs wireless communication, the resonance operation of the high-side feeding radiation electrode and the user (human body) of a mobile phone that is a wireless communication device, for example, influence each other. There is a risk that the antenna characteristics may be deteriorated. From this, in order to suppress the degree of mutual influence between the high-side feeding radiation electrode and the human body, for example, a ground electrode functioning as a shield member between the high-side feeding radiation electrode and the human body, for example, Is preferably arranged. That is, it is preferable that the high-side feeding radiation electrode is disposed above the ground electrode of the mounting substrate. On the other hand, the antenna characteristic deterioration problem can be suppressed without arranging the low-side feeding radiation electrode above the ground electrode, and the low-side feeding radiation electrode and the ground electrode are characteristic in the present invention. Since the ground electrode can be effectively used for the low-side feeding radiation electrode if the electrical connection is made with a simple connection form, the necessity of arranging the low-side feeding radiation electrode above the ground electrode is small. Therefore, by adopting a configuration in which the ground electrode is not formed in the mounting substrate region corresponding to the region where the low-side feeding radiation electrode is disposed, the electric field of the low-side feeding radiation electrode is easily radiated. It is possible to widen the frequency band of wireless communication with the low-side feeding radiation electrode.

さらに、低側の給電放射電極は高側の給電放射電極よりも実装基板の端部寄りに配設されている構成や、低側の給電放射電極は、給電部が長方形状の実装基板の短辺に向き合う状態で配置され、当該低側の給電放射電極に接続されているリアクタンス回路は実装基板の角部近傍部分に接地されている構成を備えることによって、低側の給電放射電極は、より良く実装基板のグランド電極を有効利用して無線通信を行うことができることとなる。これにより、より一層のアンテナ特性の向上を図ることができる。   In addition, the low-side feed radiation electrode is arranged closer to the end of the mounting board than the high-side feed radiation electrode, and the low-side feed radiation electrode has a shorter feed section than the rectangular mounting board. The reactance circuit arranged in a state facing the side and connected to the low-side feeding radiation electrode has a configuration in which the reactance circuit is grounded in the vicinity of the corner portion of the mounting substrate. It is possible to perform wireless communication by effectively using the ground electrode of the mounting board. Thereby, it is possible to further improve the antenna characteristics.

さらに、低側の給電放射電極の形成領域と高側の給電放射電極の形成領域との間の誘電体基体領域には孔部が形成されている構成を備えることによって、低側の給電放射電極と、高側の給電放射電極とのアイソレーションをとることが容易となる。また、低側の給電放射電極と、高側の給電放射電極とが、例えば、長方形状の実装基板の長辺に沿う方向に、低側の給電放射電極を実装基板の短辺側にして隣接配置されており、低側の給電放射電極も高側の給電放射電極も実装基板の短辺に向き合っている側に給電部が設定されている構成とすることによって、低側の給電放射電極における電界が最も強い部分と、高側の給電放射電極における磁界の最も強い部分とが間隔を介して隣接した状態となるので、低側の給電放射電極と、高側の給電放射電極とが互いに電磁気的に影響し合うことを抑制できる。   Furthermore, the dielectric substrate region between the low-side feed radiation electrode formation region and the high-side feed radiation electrode formation region has a configuration in which a hole is formed, thereby providing a low-side feed radiation electrode. And it becomes easy to take isolation from the high-side feeding radiation electrode. Also, the low-side feed radiation electrode and the high-side feed radiation electrode are adjacent to each other with the low-side feed radiation electrode on the short side of the mounting board in the direction along the long side of the rectangular mounting board, for example. In the low-side feeding radiation electrode, the feeding section is set on the side facing the short side of the mounting substrate for both the low-side feeding radiation electrode and the high-side feeding radiation electrode. Since the portion with the strongest electric field and the portion with the strongest magnetic field in the high-side feeding radiation electrode are adjacent to each other with a gap, the low-side feeding radiation electrode and the high-side feeding radiation electrode are electromagnetically connected to each other. Can be prevented from affecting each other.

さらに、高側の給電用導通路と、低側の給電用導通路とが、無線通信用回路側との共通の接続部に接続されている構成を備えることによって、無線通信用の低い方の周波数帯の信号と、高い方の周波数帯の信号との合成が容易となる。なお、低側の給電用導通経路に直列的に介設されているインダクタンス部は、例えば、無線通信用の低い方の周波数帯が800MHz帯であるときには例えば10nH〜20nHのリアクタンス値を有し、当該インダクタンス部のリアクタンス値は、無線通信用の高い方の周波数帯(例えば2GHz帯)の信号にとっては50Ωよりも高いインピーダンスとなる。このため、無線通信用の高い方の周波数帯の信号にとっては、低側の給電用導通経路に直列に介設されているインダクタンス部は電気的に見えない状態となる。これにより、高側の給電用導通路と、低側の給電用導通路とが、無線通信用回路側との共通の接続部に接続されていても、高側の給電放射電極の共振動作に低側の給電用導通路のインダクタンス部が悪影響を及ぼすことは殆ど無い。   Furthermore, by providing a configuration in which the high-side power supply conduction path and the low-side power supply conduction path are connected to a common connection with the wireless communication circuit side, the lower one for wireless communication is provided. The synthesis of the signal in the frequency band and the signal in the higher frequency band becomes easy. In addition, the inductance portion interposed in series with the low-side power supply conduction path has a reactance value of 10 nH to 20 nH, for example, when the lower frequency band for wireless communication is an 800 MHz band, The reactance value of the inductance section has an impedance higher than 50Ω for a signal in a higher frequency band (for example, 2 GHz band) for wireless communication. For this reason, for a signal in the higher frequency band for wireless communication, the inductance portion interposed in series with the low-side power supply conduction path is in an invisible state. As a result, even if the high-side power supply conduction path and the low-side power supply conduction path are connected to the common connection portion with the radio communication circuit side, the resonance operation of the high-side power supply radiation electrode is achieved. The inductance portion of the low-side power supply conduction path hardly has an adverse effect.

さらに、インダクタンス値が互いに異なる複数のインダクタンス部のうちの何れか一つを択一的に切り換えて低側の給電用導通路に電気的に介設させる構成を備えることによって、低側の給電放射電極の共振周波数を切り換えることができるので、低側の給電放射電極を複数の周波数帯での無線通信に対応させることが可能となる。また、低側の給電放射電極の共振周波数を切り換えても、低側の給電用導通路に切り換え接続される全てのインダクタンス部のリアクタンス値は、高い方の周波数帯の信号にとってはそのインダクタンス部が電気的に見えない状態となる値であることから、高側の給電放射電極の共振動作に悪影響を及ぼすことは殆ど無い。つまり、この発明の構成では、高側の給電放射電極のアンテナ特性の悪化を招くことなく、低側の給電放射電極の共振周波数を切り換えることができる。   Furthermore, by providing a configuration in which any one of a plurality of inductance portions having different inductance values is selectively switched and electrically connected to the low-side power supply conduction path, Since the resonance frequency of the electrode can be switched, the low-side feeding radiation electrode can be adapted for wireless communication in a plurality of frequency bands. In addition, even if the resonance frequency of the low-side power supply radiation electrode is switched, the reactance values of all the inductance parts that are switched and connected to the low-side power supply conduction path are the same for the higher frequency band signals. Since the values are such that they cannot be seen electrically, there is almost no adverse effect on the resonance operation of the high-side feeding radiation electrode. That is, in the configuration of the present invention, the resonance frequency of the low-side feed radiation electrode can be switched without deteriorating the antenna characteristics of the high-side feed radiation electrode.

さらに、高側の給電放射電極と、低側の給電放射電極とのうちの少なくとも一方側には無給電放射電極が対応して設けられている構成を備えることによって、その無給電放射電極との複共振状態によって周波数帯域の広帯域化を図ることができる。   Furthermore, by providing a configuration in which a parasitic radiation electrode is provided corresponding to at least one of the high-side feeding radiation electrode and the low-side feeding radiation electrode, The frequency band can be widened by the double resonance state.

さらに、誘電体基体には、低側の給電放射電極と、高側の給電放射電極とに加えて、さらに別の給電放射電極が設けられている構成を備えることによって、この発明のアンテナ構造が対応できる無線通信システムの数を増加させることができる。   Furthermore, the dielectric substrate has a configuration in which, in addition to the low-side feeding radiation electrode and the high-side feeding radiation electrode, another feeding radiation electrode is provided, the antenna structure of the present invention is provided. The number of radio communication systems that can be handled can be increased.

この発明において特有な構成を持つアンテナ構造を備えた無線通信装置にあっては、この発明のアンテナ構造は小型でありながら、アンテナ特性に優れているので、小型化を図ることが容易で、しかも、無線通信に対する高い信頼性を得ることができる。   In a wireless communication apparatus having an antenna structure having a specific configuration in the present invention, the antenna structure of the present invention is small but excellent in antenna characteristics, and thus can be easily downsized. High reliability for wireless communication can be obtained.

以下に、この発明に係る実施形態例を図面に基づいて説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

図1(a)には第1実施形態例のアンテナ構造が模式的な斜視図により表され、図1(b)には図1(a)のA−A部分の模式的な断面図が示されている。この第1実施形態例のアンテナ構造1は、無線通信装置である携帯型電話機に設けられるものであり、当該アンテナ構造1は、実装基板2と、この実装基板2に実装される誘電体基体3と、誘電体基体3に設けられる低側の給電放射電極4と低側の給電電極5と高側の給電放射電極6と高側の給電電極7と、実装基板2に設けられる基板側給電路8,9と、低側の給電放射電極4に接続されるリアクタンス回路10(10a,10b)と、高側の給電放射電極6に接続されるショート電極11とを有して構成されている。アンテナ構造1のそれら各構成部分の詳細を次に説明する。   FIG. 1A shows a schematic perspective view of the antenna structure of the first embodiment, and FIG. 1B shows a schematic cross-sectional view of the AA portion of FIG. Has been. The antenna structure 1 of the first embodiment is provided in a mobile phone that is a wireless communication device. The antenna structure 1 includes a mounting substrate 2 and a dielectric substrate 3 mounted on the mounting substrate 2. A low-side feed radiation electrode 4 provided on the dielectric substrate 3, a low-side feed electrode 5, a high-side feed radiation electrode 6, a high-side feed electrode 7, and a substrate-side feed path provided on the mounting substrate 2. 8, 9, a reactance circuit 10 (10 a, 10 b) connected to the low-side feeding radiation electrode 4, and a short electrode 11 connected to the high-side feeding radiation electrode 6. Details of these components of the antenna structure 1 will be described next.

すなわち、この第1実施形態例のアンテナ構造1を構成する実装基板2は、携帯型電話機の筐体内に内蔵される回路基板であり、短辺2sと長辺2tを有する長方形状と成している。当該実装基板2には、グランド電極Gがほぼ全面に設けられ、また、無線通信用回路13が形成されている。この第1実施形態例のアンテナ構造1が設けられる携帯型電話機は、例えば900MHz帯と2GHz帯というような2つの異なる周波数帯での無線通信が可能な機能を備えている。このため、図2(a)〜(c)に示されるように、この第1実施形態例における携帯型電話機の無線通信用回路13は、低側の無線通信用回路部13Lと、高側の無線通信用回路部13Hとを有している。低側の無線通信用回路部13Lは、予め定められた無線通信用の低い方の周波数帯(例えば900MHz帯)と高い方の周波数帯(例えば2GHz帯)とのうちの低い方の周波数帯の信号の変調や復調等の信号処理を行う回路構成を備えている。高側の無線通信用回路部13Hは、高い方の周波数帯の信号の処理を行う回路構成を備えている。   That is, the mounting board 2 constituting the antenna structure 1 of the first embodiment is a circuit board built in the casing of the mobile phone, and has a rectangular shape having a short side 2s and a long side 2t. Yes. On the mounting substrate 2, the ground electrode G is provided on almost the entire surface, and a wireless communication circuit 13 is formed. The mobile phone provided with the antenna structure 1 of the first embodiment has a function capable of wireless communication in two different frequency bands such as 900 MHz band and 2 GHz band. For this reason, as shown in FIGS. 2A to 2C, the wireless communication circuit 13 of the mobile phone according to the first embodiment includes a low-side wireless communication circuit portion 13L and a high-side wireless communication circuit portion 13L. And a wireless communication circuit unit 13H. The low-side wireless communication circuit unit 13L has a lower frequency band of a predetermined lower frequency band for wireless communication (for example, 900 MHz band) and a higher frequency band (for example, 2 GHz band). A circuit configuration for performing signal processing such as signal modulation and demodulation is provided. The high-side wireless communication circuit unit 13H has a circuit configuration for processing a signal in the higher frequency band.

誘電体基体3は、この第1実施形態例では直方体状と成し、当該誘電体基体3は、実装基板2の角部に、その側面が実装基板2の短辺2sと長辺2tにそれぞれ沿うようにして搭載されている。この誘電体基体3には、低側の給電放射電極4の形成領域と、高側の給電放射電極6の形成領域とが、低側の給電放射電極4の形成領域を実装基板2の短辺2s側(端部側)にして実装基板2の長辺2tに沿う方向に順に間隙を介して配置されている。誘電体基体3には、低側の給電放射電極4の形成領域と、高側の給電放射電極6の形成領域との間の間隙に、上面3aから底面3dに達する孔部である貫通孔14が形成されている。この誘電体基体3を構成している誘電体材料の誘電率は、低側の給電放射電極4や高側の給電放射電極6の小型化等を考慮して適宜設定されている。   In this first embodiment, the dielectric substrate 3 has a rectangular parallelepiped shape. The dielectric substrate 3 is formed at the corners of the mounting substrate 2 and the side surfaces thereof are the short side 2s and the long side 2t of the mounting substrate 2, respectively. It is mounted along. The dielectric substrate 3 includes a low-side feed radiation electrode 4 formation region and a high-side feed radiation electrode 6 formation region. The low-side feed radiation electrode 4 formation region is defined as a short side of the mounting substrate 2. They are arranged on the 2s side (end side) in order along the long side 2t of the mounting substrate 2 with a gap in between. The dielectric substrate 3 has a through-hole 14 that is a hole extending from the top surface 3a to the bottom surface 3d in the gap between the formation region of the low-side feeding radiation electrode 4 and the formation region of the high-side feeding radiation electrode 6. Is formed. The dielectric constant of the dielectric material constituting the dielectric substrate 3 is appropriately set in consideration of the miniaturization of the low-side feeding radiation electrode 4 and the high-side feeding radiation electrode 6.

低側の給電放射電極4は、前記無線通信用の低い方の周波数帯で共振動作してアンテナとして機能するものであり、この第1実施形態例では、導体板により構成され、誘電体基体3の上面3aに形成されると共に当該上面3aから図1(a)に示す前面3fに伸長形成されている形状を有している。この低側の給電放射電極4には、実装基板2の短辺2sに向き合っている端縁部に、給電部4Qの位置が予め設定されている。当該給電部4Qには低側の給電電極5の一端側が連接されている。低側の給電電極5の他端側は次に述べる基板側給電路8の一端側に接続されている。低側の給電電極5は、低側の給電放射電極4を構成する導体板と同一の導体板により構成されている。   The low-side feed radiation electrode 4 functions as an antenna by resonating in the lower frequency band for wireless communication. In the first embodiment, the low-side feed radiation electrode 4 is constituted by a conductor plate, and the dielectric base 3 And has a shape extending from the upper surface 3a to the front surface 3f shown in FIG. 1 (a). In the low-side power supply radiation electrode 4, the position of the power supply unit 4 </ b> Q is set in advance at an edge portion facing the short side 2 s of the mounting substrate 2. One end side of the lower power supply electrode 5 is connected to the power supply section 4Q. The other end of the low-side power supply electrode 5 is connected to one end of a substrate-side power supply path 8 described below. The low-side power supply electrode 5 is formed of the same conductive plate as that of the low-side power supply radiation electrode 4.

基板側給電路8は実装基板2に設けられており、その一端側が前記のように低側の給電電極5に接続され、他端側が低側用接続部PLに接続され、また、それら両端間にはインダクタンス部15が介設されている。この基板側給電路8は、低側の給電電極5と共に、無線通信用の低い方の周波数帯の信号を導通させる低側の給電用導通路16を構成している。低側の給電用導通路16は、低側用接続部PLを介して、例えば、図2(a)〜(c)に示すような接続形態でもって低側の無線通信用回路部13Lに接続される。つまり、図2(a)の例では、低側の給電用導通路16は、低側用接続部PLを介して直接的に低側の無線通信用回路部13Lに接続される。また、図2(b)の例では、低側の給電用導通路16は、低側用接続部PLを介しさらに高低切り換えスイッチ手段17を介して低側の無線通信用回路部13Lに接続される。さらに、図2(c)の例では、低側の給電用導通路16は、低側用接続部PLを介しさらにダイプレクサ18を介して低側の無線通信用回路部13Lに接続される。なお、高低切り換えスイッチ手段17は、高側の無線通信用回路部13Hと、低側の無線通信用回路部13Lとのうちの何れか一方側を択一的にアンテナ構造1に電気的に切り換え接続させる構成を備えている。また、ダイプレクサ18は、信号の周波数の差異を利用して、無線通信用の高い方の周波数帯の信号と、無線通信用の低い方の周波数帯の信号との合分波を行う構成を備えている。   The board-side power supply path 8 is provided on the mounting board 2, and one end side thereof is connected to the low-side power supply electrode 5 as described above, and the other end side is connected to the low-side connection portion PL. Inductive portion 15 is interposed in this. The substrate-side power supply path 8 and the low-side power supply electrode 5 constitute a low-side power supply conduction path 16 that conducts a signal in the lower frequency band for wireless communication. The low-side power supply conduction path 16 is connected to the low-side radio communication circuit unit 13L through the low-side connection unit PL, for example, in a connection form as shown in FIGS. Is done. That is, in the example of FIG. 2A, the low-side power supply conduction path 16 is directly connected to the low-side wireless communication circuit unit 13L via the low-side connection unit PL. In the example of FIG. 2B, the low-side power supply conducting path 16 is connected to the low-side radio communication circuit unit 13L through the low-side connection unit PL and further through the high-low switching unit 17. The Further, in the example of FIG. 2C, the low-side power supply conduction path 16 is connected to the low-side radio communication circuit unit 13L through the low-side connection unit PL and further through the diplexer 18. The high / low changeover switch means 17 is configured to electrically switch the antenna structure 1 to either one of the high-side wireless communication circuit unit 13H and the low-side wireless communication circuit unit 13L. It has a configuration for connection. In addition, the diplexer 18 has a configuration for performing multiplexing / demultiplexing between a signal in a higher frequency band for wireless communication and a signal in a lower frequency band for wireless communication by using a difference in frequency of the signal. ing.

低側の給電放射電極4の給電部4Qの両側の電極端縁部には、それぞれ、間隔を介してリアクタンス回路10(10a,10b)が接続されている。リアクタンス回路10(10a,10b)は、それぞれ、低側の給電放射電極4の端縁部における予め定められたリアクタンス回路10との接続部分から伸長形成されたスタブ電極20と、このスタブ電極20をグランド電極Gに接地させるために実装基板2に形成された基板側接地路21と、基板側接地路21に介設されているインダクタンス部22とを有して構成されている。このリアクタンス回路10のインダクタンス部22と、低側の給電用導通路16のインダクタンス部15との各リアクタンス値は、低側の給電放射電極4に無線通信用の低い方の周波数帯で共振動作させて無線通信を行わせることと、低側の給電放射電極4と低側の無線通信用回路部13Lとをインピーダンス整合させることとを考慮して設定されている。   Reactance circuits 10 (10a, 10b) are connected to the electrode edge portions on both sides of the power supply portion 4Q of the low-side power supply radiation electrode 4 via a gap, respectively. The reactance circuit 10 (10a, 10b) includes a stub electrode 20 extended from a predetermined connection portion with the reactance circuit 10 at the edge of the low-side feeding radiation electrode 4, and the stub electrode 20 A substrate-side ground path 21 formed on the mounting substrate 2 for grounding to the ground electrode G and an inductance portion 22 interposed in the substrate-side ground path 21 are configured. The reactance values of the inductance part 22 of the reactance circuit 10 and the inductance part 15 of the low-side power supply conduction path 16 are caused to cause the low-side power supply radiation electrode 4 to resonate in the lower frequency band for wireless communication. Thus, it is set in consideration of performing wireless communication and impedance matching between the low-side feeding radiation electrode 4 and the low-side wireless communication circuit unit 13L.

高側の給電放射電極6は、無線通信用の高い方の周波数帯で共振動作してアンテナとして機能するものであり、この第1実施形態例では、導体板により構成され、誘電体基体3の上面3aに低側の給電放射電極4と間隔を介して配設されている。この高側の給電放射電極6における実装基板2の短辺2s側の端縁部には、給電部6Qの位置が予め設定されている。その給電部6Qには高側の給電電極7の一端側が連接されている。高側の給電電極7は、高側の給電放射電極6を構成する導体板と同一の導体板により構成されており、この第1実施形態例では、誘電体基体3の貫通孔14の内壁面に配設されている。この高側の給電電極7における給電放射電極6との接続端部の反対側の端部は、基板側給電路9の一端側に接続されている。基板側給電路9の他端側は高側用接続部PHに接続されている。基板側給電路9は、高側の給電電極7と共に、無線通信用の高い方の周波数帯の信号を導通させる高側の給電用導通路24を構成している。この高側の給電用導通路24は、前述した図2(a)〜(c)に示すような接続形態でもって、高側用接続部PHを介して高側の無線通信用回路部13Hに接続される。   The high-side feeding radiation electrode 6 functions as an antenna by resonating in the higher frequency band for wireless communication. In the first embodiment, the high-side feeding radiation electrode 6 is composed of a conductor plate, It is disposed on the upper surface 3a with a low-side feeding radiation electrode 4 therebetween. The position of the power feeding portion 6Q is set in advance at the edge of the high-side power feeding radiation electrode 6 on the short side 2s side of the mounting substrate 2. One end side of the high-side power supply electrode 7 is connected to the power supply portion 6Q. The high-side power supply electrode 7 is composed of the same conductive plate as the conductive plate constituting the high-side power supply radiation electrode 6. In this first embodiment, the inner wall surface of the through hole 14 of the dielectric substrate 3. It is arranged. An end portion of the high-side power supply electrode 7 opposite to the connection end portion with the power supply radiation electrode 6 is connected to one end side of the substrate-side power supply path 9. The other end side of the board-side power supply path 9 is connected to the high-side connection portion PH. The substrate-side power supply path 9 and the high-side power supply electrode 7 constitute a high-side power supply conduction path 24 that conducts a signal in the higher frequency band for wireless communication. The high-side power supply conduction path 24 is connected to the high-side wireless communication circuit unit 13H via the high-side connection unit PH in the connection form shown in FIGS. 2 (a) to 2 (c). Connected.

ショート電極11は、高側の給電放射電極6における給電部6Qの近傍の電極端縁部分を実装基板2のグランド電極Gに電気的に接続させるものであり、当該ショート電極11は、高側の給電放射電極6の端縁部から貫通孔14の内壁面に沿って実装基板2に向けて伸長形成されているスタブ電極26の形態と成している。このショート電極11(26)は、実装基板2に形成されショート電極11の伸長先端側とグランド電極Gとの間を接続させる導通路(図示せず)と共に、高側の給電放射電極6の給電部6Qの両側の少なくとも一方側の給電放射電極端縁部分を直接的にグランド電極Gに接地させるショート回路を構成する。   The short electrode 11 is for electrically connecting the electrode edge portion of the high-side power supply radiation electrode 6 in the vicinity of the power supply portion 6Q to the ground electrode G of the mounting substrate 2. The stub electrode 26 is formed to extend from the edge of the feed radiation electrode 6 toward the mounting substrate 2 along the inner wall surface of the through hole 14. This short electrode 11 (26) is formed on the mounting substrate 2 and has a conduction path (not shown) connecting the extended tip side of the short electrode 11 and the ground electrode G, as well as feeding the high-side feeding radiation electrode 6. A short circuit is formed in which at least one of the feeding radiation electrode edge portions on both sides of the portion 6Q is directly grounded to the ground electrode G.

第1実施形態例のアンテナ構造1は上記のように構成されている。なお、この第1実施形態例では、高側の給電用導通路24は、高側の給電放射電極6の給電部6Qを直接的に高側の無線通信用回路部13Hに電気的に接続させていたが、図3に示されるように、基板側給電路9にキャパシタンス部27を介設することで、高側の給電用導通路24は、高側の給電放射電極6の給電部6Qをキャパシタンス部27を介して高側の無線通信用回路部13Hに接続させる構成としてもよい。この場合には、キャパシタンス部27の容量の大きさを調整することで、高側の給電放射電極6と、高側の無線通信用回路部13H側との整合状態を調整できるので、高側の給電放射電極6と、高側の無線通信用回路部13H側とのインピーダンス整合が容易となる。   The antenna structure 1 of the first embodiment is configured as described above. In the first embodiment, the high-side power supply conduction path 24 electrically connects the power supply unit 6Q of the high-side power supply radiation electrode 6 directly to the high-side wireless communication circuit unit 13H. However, as shown in FIG. 3, by providing a capacitance portion 27 in the substrate-side power supply path 9, the high-side power supply conduction path 24 connects the power supply section 6 </ b> Q of the high-side power supply radiation electrode 6. It is good also as a structure connected to the circuit part 13H for high side radio | wireless communication via the capacitance part 27. FIG. In this case, the matching state between the high-side feeding radiation electrode 6 and the high-side radio communication circuit unit 13H can be adjusted by adjusting the capacitance of the capacitance unit 27. Impedance matching between the feeding radiation electrode 6 and the high-side radio communication circuit unit 13H is facilitated.

また、この第1実施形態例では、低側の給電用導通路16と、高側の給電用導通路24とにそれぞれ個別に対応させて別個の接続部PL,PHが設けられていたが、例えば、図4(a)に示されるように、低側の給電用導通路16と、高側の給電用導通路24とに共通の接続部Pが設けられていてもよい。この場合には、アンテナ構造1と、無線通信用回路13とは、例えば図2(b)や図2(c)に示されるような高低切り換えスイッチ手段17やダイプレクサ18を介して接続される。また、低側の無線通信用回路部13Lから低側の給電放射電極4への無線通信用の低い方の周波数帯の信号の給電と、高側の無線通信用回路部13Hから高側の給電放射電極6への無線通信用の高い方の周波数帯の信号の給電とをより独立的にするために、例えば、図4(b)に示されるように、低側の給電用導通路16の基板側給電路8にスイッチ手段28を介設してもよい。そのスイッチ手段28は、例えば無線通信装置の制御回路によって、無線通信用の低い方の周波数帯の信号の無線通信を行うときにはスイッチオン状態に制御され、無線通信用の高い方の周波数帯の信号の無線通信を行うときにはスイッチオフ状態に制御される。また、低側の給電用導通路16と、高側の給電用導通路24とのうちの何れか一方側を択一的に共通の接続部Pに切り換え接続させるスイッチ手段を設けてもよい。そのスイッチ手段は、無線通信装置の制御回路によって、無線通信用の低い方の周波数帯の信号の無線通信を行うときには共通の接続部Pが低側の給電用導通路16に切り換え接続するように制御され、無線通信用の高い方の周波数帯の信号の無線通信を行うときには共通の接続部Pが高側の給電用導通路24に切り換え接続するように制御される。   In the first embodiment, separate connection portions PL and PH are provided corresponding to the low-side power supply conduction path 16 and the high-side power supply conduction path 24, respectively. For example, as illustrated in FIG. 4A, a common connection portion P may be provided in the low-side power supply conduction path 16 and the high-side power supply conduction path 24. In this case, the antenna structure 1 and the wireless communication circuit 13 are connected to each other via a high / low changeover switch means 17 and a diplexer 18 as shown in FIGS. 2B and 2C, for example. In addition, a low frequency band signal for wireless communication is supplied from the low-side wireless communication circuit unit 13L to the low-side power supply radiation electrode 4, and a high-side power supply is supplied from the high-side wireless communication circuit unit 13H. In order to make the feeding of the signal in the higher frequency band for wireless communication to the radiation electrode 6 more independent, for example, as shown in FIG. The switch means 28 may be interposed in the substrate side power supply path 8. The switch means 28 is controlled to be in a switch-on state when performing radio communication of a lower frequency band signal for radio communication, for example, by a control circuit of the radio communication device, and the higher frequency band signal for radio communication is controlled. When the wireless communication is performed, the switch is controlled to be off. Further, a switch unit may be provided that selectively switches one of the low-side power supply conduction path 16 and the high-side power supply conduction path 24 to the common connection portion P. The switch means is configured so that the common connection portion P is switched and connected to the low-side power supply conduction path 16 when wireless communication of a signal in the lower frequency band for wireless communication is performed by the control circuit of the wireless communication device. When the wireless communication of the signal in the higher frequency band for wireless communication is performed, the common connection portion P is controlled to be switched and connected to the high-side power supply conduction path 24.

以下に、第2実施形態例を説明する。なお、第2実施形態例の説明において、第1実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。   The second embodiment will be described below. In the description of the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the duplicate description of the common portions is omitted.

第2実施形態例のアンテナ構造1では、図5におけるアンテナ構造の模式的な分解図に示されるように、低側の給電放射電極4の配設領域に対応する実装基板領域にはグランド電極Gが形成されていない。第2実施形態例のアンテナ構造1の上記以外の構成は第1実施形態例のアンテナ構造1の構成と同様である。なお、図5では、実装基板2に形成されている基板側給電路8,9や基板側接地路21やインダクタンス部15,22等の図示が省略されている。   In the antenna structure 1 of the second embodiment, as shown in the schematic exploded view of the antenna structure in FIG. 5, the ground electrode G is provided in the mounting substrate region corresponding to the region where the low-side feeding radiation electrode 4 is disposed. Is not formed. Other configurations of the antenna structure 1 of the second embodiment are the same as those of the antenna structure 1 of the first embodiment. In FIG. 5, illustration of the substrate-side power supply paths 8 and 9, the substrate-side ground path 21, the inductance portions 15 and 22, and the like formed on the mounting substrate 2 is omitted.

以下に、第3実施形態例を説明する。なお、この第3実施形態例の説明において、第1や第2の各実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。   The third embodiment will be described below. In the description of the third embodiment, the same components as those in the first and second embodiments are denoted by the same reference numerals, and a duplicate description of the common portions is omitted.

図6には第3実施形態例のアンテナ構造1が模式的に示されている。この第3実施形態例のアンテナ構造1では、第1や第2の実施形態例の構成に加えて、誘電体基体3には無給電放射電極30および接地用電極31が設けられている。無給電放射電極30は、誘電体基体3の上面3aに高側の給電放射電極6と間隔を介し隣り合って配置されており、当該無給電放射電極30は高側の給電放射電極6と電磁結合して複共振状態を作り出す構成を備えている。接地用電極31は、誘電体基体3の貫通孔14の内壁面上に高側の給電電極7と間隔を介して隣接配置されており、当該接地用電極31の一端側は無給電放射電極30に連接され、接地用電極31の他端側はグランド電極Gに電気的に接続されている。   FIG. 6 schematically shows the antenna structure 1 of the third embodiment. In the antenna structure 1 of the third embodiment, a parasitic radiation electrode 30 and a ground electrode 31 are provided on the dielectric substrate 3 in addition to the configurations of the first and second embodiments. The parasitic radiation electrode 30 is disposed on the upper surface 3a of the dielectric substrate 3 so as to be adjacent to the high-side feeding radiation electrode 6 with a space therebetween. The parasitic radiation electrode 30 is electromagnetically coupled to the high-side feeding radiation electrode 6. It is configured to combine to create a double resonance state. The grounding electrode 31 is disposed adjacent to the high-side power supply electrode 7 on the inner wall surface of the through hole 14 of the dielectric substrate 3 with a space therebetween, and one end side of the grounding electrode 31 is the non-feeding radiation electrode 30. And the other end of the grounding electrode 31 is electrically connected to the ground electrode G.

なお、図6の例では、高側の給電放射電極6と複共振状態を作り出す無給電放射電極30が設けられていたが、例えば、必要に応じて、低側の給電放射電極4と複共振状態を作り出す無給電放射電極をも設けてもよい。また、高側の給電放射電極6による無線通信の周波数帯が要望の帯域幅を有し、低側の給電放射電極4による無線通信の周波数帯の広帯域化を図る場合には、例えば、高側の給電放射電極6に対応する無給電放射電極30を省略し、低側の給電放射電極4と複共振状態を作り出す無給電放射電極だけを設けてもよい。   In the example of FIG. 6, the non-feeding radiation electrode 30 that creates a double resonance state with the high-side feeding radiation electrode 6 is provided. A parasitic radiation electrode that creates a state may also be provided. In addition, when the frequency band of wireless communication by the high-side feeding radiation electrode 6 has a desired bandwidth and the frequency band of wireless communication by the low-side feeding radiation electrode 4 is widened, for example, The non-feeding radiation electrode 30 corresponding to the feeding radiation electrode 6 may be omitted, and only the non-feeding radiation electrode that creates a double resonance state with the low-side feeding radiation electrode 4 may be provided.

以下に、第4実施形態例を説明する。なお、この第4実施形態例の説明において、第1〜第3の各実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。   The fourth embodiment will be described below. In the description of the fourth embodiment, the same components as those in the first to third embodiments are denoted by the same reference numerals, and duplicate descriptions of the common portions are omitted.

図7には第4実施形態例のアンテナ構造が模式的に示されている。この第4実施形態例では、低側の給電用導通路16の基板側給電路8には、互いに異なるインダクタンス値を持つ複数のインダクタンス部15(15a,15b)が並列的に介設されている。また、基板側給電路8には、それらインダクタンス部15(15a,15b)のうちの何れか一方側を択一的に接続部Pに接続させるためのインダクタンス切り換え手段33が設けられている。インダクタンス切り換え手段33は、例えば、無線通信装置の制御回路によって切り換え制御が成される。この第4実施形態例では、インダクタンス部15a,15bが切り換わることによって、低側の給電放射電極4の共振周波数が切り換わる。これにより、低側の給電放射電極4による無線通信の周波数帯を切り換えることができる。第4実施形態例のアンテナ構造1の上記以外の構成は、図1や図3〜図6等にも示されているような前述した実施の形態例の構成と同様である。   FIG. 7 schematically shows the antenna structure of the fourth embodiment. In the fourth embodiment, a plurality of inductance portions 15 (15a, 15b) having different inductance values are interposed in parallel on the substrate-side power supply path 8 of the low-side power supply conduction path 16. . The board-side power supply path 8 is provided with inductance switching means 33 for selectively connecting one of the inductance portions 15 (15a, 15b) to the connection portion P. The inductance switching unit 33 is controlled to be switched by, for example, a control circuit of the wireless communication device. In the fourth embodiment, the resonance frequency of the low-side feeding radiation electrode 4 is switched by switching the inductance portions 15a and 15b. Thereby, the frequency band of the wireless communication by the low-side feeding radiation electrode 4 can be switched. Other configurations of the antenna structure 1 of the fourth embodiment are the same as those of the above-described embodiment as shown in FIGS. 1 and 3 to 6.

なお、図7の例では、低側の給電用導通路16の基板側給電路8には、2つのインダクタンス部15(15a,15b)が並列的に介設されていたが、基板側給電路8には、3つ以上のインダクタンス部15が並列的に介設されていてもよい。この場合には、その並列接続の全てのインダクタンス部のうちの何れか一つを択一的に切り換えて信号を導通させる切り換え手段が設けられる。   In the example of FIG. 7, the two inductance portions 15 (15 a, 15 b) are provided in parallel in the substrate-side power supply path 8 of the low-side power supply conduction path 16. In FIG. 8, three or more inductance portions 15 may be interposed in parallel. In this case, there is provided switching means for selectively switching any one of all the inductance parts of the parallel connection to conduct the signal.

以下に、第5実施形態例を説明する。なお、この第5実施形態例の説明では、第1〜第4の各実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。   The fifth embodiment will be described below. In the description of the fifth embodiment, the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and duplicate descriptions of common portions are omitted.

第5実施形態例のアンテナ構造1では、図8に示されるように、誘電体基体3には、低側の給電放射電極4と、高側の給電放射電極6とに加えて、給電放射電極35と給電電極36とスタブ電極37が設けられている。給電放射電極35は、給電放射電極4,6とは異なる周波数帯で無線通信を行うものである。給電電極36は、その一端側が給電放射電極35に連接され、他端側が無線通信装置の無線通信用回路13における給電放射電極35用の無線通信用回路部に電気的に接続される。スタブ電極37は、給電電極36と間隔を介して隣接配置されており、当該スタブ電極37は、その一端側が給電放射電極35に連接され、他端側はグランド電極Gに電気的に接続される。   In the antenna structure 1 of the fifth embodiment, as shown in FIG. 8, the dielectric substrate 3 includes a feed radiation electrode in addition to the low-side feed radiation electrode 4 and the high-side feed radiation electrode 6. 35, a power supply electrode 36, and a stub electrode 37 are provided. The feed radiation electrode 35 performs wireless communication in a frequency band different from that of the feed radiation electrodes 4 and 6. One end side of the feeding electrode 36 is connected to the feeding radiation electrode 35, and the other end side is electrically connected to a wireless communication circuit unit for the feeding radiation electrode 35 in the wireless communication circuit 13 of the wireless communication device. The stub electrode 37 is disposed adjacent to the power supply electrode 36 with a space therebetween. The stub electrode 37 has one end connected to the power supply radiation electrode 35 and the other end electrically connected to the ground electrode G. .

第5実施形態例のアンテナ構造1の上記以外の構成は、図1や図3〜図7等にも示されているような前述した実施の形態例の構成と同様である。   Other configurations of the antenna structure 1 of the fifth embodiment are the same as those of the above-described embodiment as shown in FIG. 1 and FIGS.

以下に、第6実施形態例を説明する。なお、この第6実施形態例の説明では、第1〜第5の各実施形態例と同一構成部分には同一符号を付し、その共通部分の重複説明は省略する。   The sixth embodiment will be described below. In the description of the sixth embodiment, the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and the duplicate description of the common portions is omitted.

この第6実施形態例のアンテナ構造1では、基板側給電路8にインダクタンス部15を介設するのに代えて、図9(a)に示されるように、導体板から成る低側の給電電極5がインダクタンス値を持つ形状に形成されて低側の給電電極5がインダクタンス部15としても機能できる構成となっている。また、リアクタンス回路10(10a,10b)において、基板側接地路21にインダクタンス部22を介設するのに代えて、導体板から成るスタブ電極20がインダクタンス値を持つ形状に形成されてスタブ電極20がインダクタンス部22としても機能できる構成となっている。   In the antenna structure 1 according to the sixth embodiment, instead of providing the inductance portion 15 in the substrate-side feeding path 8, as shown in FIG. 9A, the low-side feeding electrode made of a conductor plate is used. 5 is formed in a shape having an inductance value, and the low-side feeding electrode 5 can function as the inductance portion 15. Further, in the reactance circuit 10 (10a, 10b), the stub electrode 20 made of a conductor plate is formed in a shape having an inductance value instead of providing the inductance portion 22 in the substrate-side ground path 21, and the stub electrode 20 is formed. Is configured to function also as the inductance portion 22.

第6実施形態例のアンテナ構造1の上記以外の構成は、図1や図3〜図8等にも示されているような前述した実施の形態例の構成と同様である。なお、高側の給電用導通路24にキャパシタンス部27が介設されている場合には、例えば、キャパシタンス部27を基板側給電路9に介設するのに代えて、図9(b)に示されるように、導体板から成る高側の給電電極7が容量を持つ形状に形成されて高側の給電電極7にキャパシタンス部27が介設されている構成としてもよい。   Other configurations of the antenna structure 1 of the sixth embodiment are the same as those of the above-described embodiment as shown in FIG. 1 and FIGS. 3 to 8. When the capacitance part 27 is interposed in the high-side power supply conduction path 24, for example, instead of interposing the capacitance part 27 in the board-side power supply path 9, FIG. As shown, the high-side power supply electrode 7 made of a conductor plate may be formed in a shape having a capacity, and a capacitance portion 27 may be interposed in the high-side power supply electrode 7.

この第6実施形態例のように、低側の給電放射電極4を構成している導体板と同一の導体板によってインダクタンス部15,22を形成したり、高側の給電放射電極6を構成している導体板と同一の導体板によってキャパシタンス部27を形成することによって、良好なアンテナ特性を持つアンテナ構造1を安定的に提供することができるという効果を得ることができる。すなわち、インダクタンス部15,22やキャパシタンス部27はアンテナ特性に大きく関与するものであり、それらインダクタンス部15,22やキャパシタンス部27は、予め設定されたリアクタンス値を有することが好ましい。しかし、それらインダクタンス部15,22やキャパシタンス部27が例えば回路素子等により給電放射電極4,6と別個に構成されていると、例えば部品の性能ばらつき等によって、インダクタンス部15,22やキャパシタンス部27のリアクタンス値が設定値からずれることがあり、これにより、アンテナ特性が悪化してしまう虞がある。これに対して、インダクタンス部15,22やキャパシタンス部27を給電放射電極4,6と一体的に導体板により構成することによって、上述したようなアンテナ特性の悪化問題を抑制できて、良好なアンテナ特性を持つアンテナ構造1を安定的に提供することができる。   As in the sixth embodiment, the inductance portions 15 and 22 are formed by the same conductor plate as the conductor plate constituting the low-side feed radiation electrode 4, or the high-side feed radiation electrode 6 is constructed. By forming the capacitance portion 27 with the same conductive plate as the conductive plate, the effect that the antenna structure 1 having good antenna characteristics can be provided stably can be obtained. That is, the inductance units 15 and 22 and the capacitance unit 27 are greatly involved in the antenna characteristics, and the inductance units 15 and 22 and the capacitance unit 27 preferably have a preset reactance value. However, if the inductance portions 15 and 22 and the capacitance portion 27 are configured separately from the power supply radiation electrodes 4 and 6 by, for example, circuit elements, the inductance portions 15 and 22 and the capacitance portion 27 are caused by, for example, performance variations of components. The reactance value may deviate from the set value, which may deteriorate the antenna characteristics. In contrast, by configuring the inductance portions 15 and 22 and the capacitance portion 27 integrally with the feeding radiation electrodes 4 and 6 by a conductor plate, the above-described problem of deterioration of the antenna characteristics can be suppressed, and a good antenna can be obtained. The antenna structure 1 having characteristics can be provided stably.

なお、この発明は第1〜第6の各実施形態例の形態に限定されるものではなく、様々な実施の形態を採り得るものである。例えば、第1〜第6の各実施形態例では、高側の給電放射電極6には、給電部6Qの両側のうちの一方側のみの電極端縁部分にショート電極11(ショート回路)が接続されていたが、例えば、図10に示されるように、給電部6Qの両側の電極端縁部分にそれぞれショート電極11(ショート回路)が接続されている構成としてもよい。   In addition, this invention is not limited to the form of each 1st-6th embodiment, It can take various embodiment. For example, in each of the first to sixth embodiments, the short-side electrode 11 (short circuit) is connected to the high-side feed radiation electrode 6 at the electrode edge portion on only one side of both sides of the feed portion 6Q. However, for example, as illustrated in FIG. 10, the short electrode 11 (short circuit) may be connected to the electrode edge portions on both sides of the power feeding unit 6 </ b> Q.

また、第1〜第6の各実施形態例では、低側の給電放射電極4において、給電部4Qの両側の電極端縁部分には、それぞれ、リアクタンス回路10が接続されていたが、図11に示されるように、給電部4Qの両側のうちの一方側の電極端縁部分だけにリアクタンス回路10が接続されている構成としてもよい。   In each of the first to sixth embodiments, the reactance circuit 10 is connected to the electrode edge portions on both sides of the power supply section 4Q in the low-side power supply radiation electrode 4, but FIG. As shown in FIG. 4, the reactance circuit 10 may be connected to only one electrode edge portion of the both sides of the power feeding section 4Q.

さらに、第1〜第6の各実施形態例に示した低側の給電放射電極4の構成に加えて、例えば図12(a)に示されるような、低側の給電放射電極4の電気長を長くするスリット40を低側の給電放射電極4に設けてもよい。そのスリット40を設けることによって、低側の給電放射電極4の小型化を図ることができる。換言すれば、低側の給電放射電極4を大型化することなく、低側の給電放射電極4の電気長不足(換言すれば、大きさ不足)を解消でき、これにより、設定の無線通信用の低い方の周波数帯での共振動作を低側の給電放射電極4に行わせることができる。なお、スリット40の形成数や形成位置やスリット形状やスリットサイズ等の設計事項は、低側の給電放射電極4の大きさや、予め設定されている無線通信用の低い方の周波数帯の周波数や、低側の給電放射電極4の電流分布等の様々な電気長に関わる点を考慮して適宜に設計されるものであり、図12(a)の例に限定されるものではない。   Further, in addition to the configuration of the low-side feeding radiation electrode 4 shown in each of the first to sixth embodiments, the electrical length of the low-side feeding radiation electrode 4 as shown in FIG. A slit 40 that lengthens the length may be provided in the low-side feeding radiation electrode 4. By providing the slit 40, it is possible to reduce the size of the power feeding radiation electrode 4 on the lower side. In other words, the shortage of the electrical length of the low-side feed radiation electrode 4 (in other words, the lack of size) can be resolved without increasing the size of the low-side feed radiation electrode 4. The resonance operation in the lower frequency band can be performed by the low-side feeding radiation electrode 4. The design items such as the number of slits 40 formed, the positions of the slits 40, the slit shape, and the slit size are the size of the low-side feeding radiation electrode 4, the frequency of the lower frequency band for wireless communication set in advance, It is appropriately designed in consideration of various electrical lengths such as the current distribution of the low-side feeding radiation electrode 4, and is not limited to the example of FIG.

さらに、第1〜第6の各実施形態例に示した低側の給電放射電極4の構成に加えて、例えば図12(b)に示されるようなマルチバンド化用のスロット41が低側の給電放射電極4に形成されていてもよい。そのスロット41が低側の給電放射電極4に形成されていることによって、低側の給電放射電極4が無線通信を行うことができる周波数帯を増加することができて、マルチバンド化に対応することが容易となる。なお、スロット41の形成位置や形状や大きさ等は、図12(b)の例に限定されるものではなく、低側の給電放射電極4の電流分布や、低側の給電放射電極4に要求される複数の無線通信用の周波数帯の周波数や、電極面積等の低側の給電放射電極4の共振動作に関与する様々な点を考慮して適宜に設定されるものである。   Further, in addition to the configuration of the low-side feeding radiation electrode 4 shown in each of the first to sixth embodiments, for example, a multiband slot 41 as shown in FIG. The feeding radiation electrode 4 may be formed. Since the slot 41 is formed in the low-side feed radiation electrode 4, the frequency band in which the low-side feed radiation electrode 4 can perform wireless communication can be increased, and this is compatible with multibanding. It becomes easy. The formation position, shape, size, and the like of the slot 41 are not limited to the example of FIG. 12B, and the current distribution of the low-side feeding radiation electrode 4 and the low-side feeding radiation electrode 4 The frequency is set appropriately in consideration of various points related to the resonance operation of the power feeding radiation electrode 4 on the lower side such as the required frequency band for a plurality of wireless communication and the electrode area.

さらに、低側の給電放射電極4を図12(c)に示されるような形態としてもよい。つまり、図12(c)の例では、低側の給電放射電極4は、給電部4Qから電流の通電経路の終端側となる放射電極端部に向かう途中の位置で複数に分岐して、互いに異なる共振周波数を持つ複数の分岐放射電極部4a,4b,4cを有する形状と成している。低側の給電放射電極4がそのような分岐形状を有することによって、複数の異なる周波数帯での無線通信を行うことができる。これにより、低側の給電放射電極4はマルチバンド化に対応したものとなる。なお、低側の給電放射電極4における分岐位置や、分岐放射電極部4a,4b,4cの形状や、分岐放射電極部の形成数等は、予め定められた無線通信用の周波数帯の数や周波数帯の周波数や、周波数帯域の帯域幅やアンテナ利得等のアンテナ特性等を考慮して適宜設定されるものであり、図12(c)の例に限定されるものではない。   Further, the low-side feeding radiation electrode 4 may be configured as shown in FIG. That is, in the example of FIG. 12C, the low-side feeding radiation electrode 4 branches into a plurality of positions at a position on the way from the feeding section 4Q toward the radiation electrode end that is the terminal side of the current conduction path. The shape has a plurality of branch radiation electrode portions 4a, 4b, 4c having different resonance frequencies. Since the low-side feeding radiation electrode 4 has such a branched shape, wireless communication in a plurality of different frequency bands can be performed. Thereby, the low-side feeding radiation electrode 4 corresponds to the multiband. Note that the branch position in the low-side feeding radiation electrode 4, the shape of the branch radiation electrode portions 4a, 4b, and 4c, the number of branch radiation electrode portions formed, and the like are the number of wireless communication frequency bands determined in advance. The frequency band is appropriately set in consideration of the frequency characteristics, the antenna characteristics such as the frequency band width and the antenna gain, and is not limited to the example of FIG.

さらに、図13(a)に示されるように誘電体基体3の上面3aの一部に、又は、上面3aの全体に、上向きの傾斜を付けてもよい。また、図13(b)に示されるように誘電体基体3はその一部が実装基板2の端縁からはみだした状態で実装基板2に配設され、そのはみだしている誘電体基体3の部位の底部には下方側に向けて突出した突出部3Tが形成されていてもよい。誘電体基体3の上面3aに上向きの傾斜が付けられている場合や、誘電体基体3に突出部3Tが設けられている場合には、傾斜が付けられた分、あるいは、突出部3Tが形成されている分、誘電体基体3の体積が増加する。アンテナ特性には誘電体基体3の体積が関与するので、誘電体基体3の体積増加によって、アンテナ特性を向上させることができる。   Furthermore, as shown in FIG. 13A, an upward inclination may be given to a part of the upper surface 3a of the dielectric substrate 3 or the entire upper surface 3a. Further, as shown in FIG. 13B, the dielectric substrate 3 is disposed on the mounting substrate 2 with a part thereof protruding from the end edge of the mounting substrate 2, and the protruding portion of the dielectric substrate 3 A protruding portion 3T that protrudes downward may be formed at the bottom of the. When the upper surface 3a of the dielectric substrate 3 is inclined upward or when the dielectric substrate 3 is provided with the protruding portion 3T, the inclined portion or the protruding portion 3T is formed. As a result, the volume of the dielectric substrate 3 increases. Since the antenna characteristics involve the volume of the dielectric substrate 3, the antenna characteristics can be improved by increasing the volume of the dielectric substrate 3.

さらに、第1〜第6の各実施形態例では、低側の給電放射電極4と、高側の給電放射電極5とは、実装基板2の長辺2tに沿って順に配されていたが、例えば、図14に示されるように、低側の給電放射電極4と、高側の給電放射電極5とは、低側の給電放射電極4を実装基板2の角部側にして実装基板2の短辺2sに沿って配されていてもよい。   Furthermore, in each of the first to sixth embodiments, the low-side feeding radiation electrode 4 and the high-side feeding radiation electrode 5 are arranged in order along the long side 2t of the mounting substrate 2, For example, as shown in FIG. 14, the low-side feeding radiation electrode 4 and the high-side feeding radiation electrode 5 are formed with the low-side feeding radiation electrode 4 on the corner side of the mounting board 2. It may be arranged along the short side 2s.

さらに、第1〜第6の各実施形態例では、誘電体基体3には、低側の給電放射電極4の形成領域と、高側の給電放射電極6の形成領域との間の領域に貫通孔14が設けられていたが、貫通孔14に代えて凹部(溝)を設けてもよい。また、貫通孔14や凹部等を設けなくとも低側の給電放射電極4と高側の給電放射電極6とのアイソレーションを十分にとることができる場合には、貫通孔14や凹部等を省略してもよい。   Further, in each of the first to sixth embodiments, the dielectric substrate 3 penetrates through a region between the formation region of the low-side feeding radiation electrode 4 and the formation region of the high-side feeding radiation electrode 6. Although the hole 14 is provided, a recess (groove) may be provided instead of the through hole 14. Further, if the low-side feeding radiation electrode 4 and the high-side feeding radiation electrode 6 can be sufficiently isolated without providing the through-holes 14 and the recesses, the through-holes 14 and the recesses are omitted. May be.

さらに、第1〜第6の各実施形態例では、グランド電極Gは実装基板2の底面に形成されていたが、グランド電極Gは、多層基板である実装基板2の内層に設けられていてもよい。さらに、第1〜第6の各実施形態例では、アンテナ構造1は携帯型電話機に設けられる例を示したが、この発明のアンテナ構造は、携帯型電話機以外の無線通信装置にも設けることができるものであり、この発明の無線通信装置は携帯型電話機に限定されるものではない。   Furthermore, in each of the first to sixth embodiments, the ground electrode G is formed on the bottom surface of the mounting substrate 2, but the ground electrode G may be provided on the inner layer of the mounting substrate 2 that is a multilayer substrate. Good. Furthermore, in each of the first to sixth embodiments, the antenna structure 1 is provided in a mobile phone. However, the antenna structure of the present invention may be provided in a wireless communication device other than the mobile phone. The wireless communication apparatus of the present invention is not limited to a portable phone.

第1実施形態例のアンテナ構造を説明するための図である。It is a figure for demonstrating the antenna structure of the example of 1st Embodiment. アンテナ構造と、無線通信用回路との接続形態例を説明するための図である。It is a figure for demonstrating the example of a connection form of an antenna structure and the circuit for radio | wireless communication. 第1実施形態例のアンテナ構造の変形例を表した図である。It is a figure showing the modification of the antenna structure of the example of 1st Embodiment. さらに第1実施形態例のアンテナ構造の変形例を表した図である。Furthermore, it is a figure showing the modification of the antenna structure of the example of 1st Embodiment. 第2実施形態例のアンテナ構造を説明するための模式的な分解図である。It is a typical exploded view for explaining the antenna structure of the second embodiment. 第3実施形態例のアンテナ構造を説明するための図である。It is a figure for demonstrating the antenna structure of the example of 3rd Embodiment. 第4実施形態例のアンテナ構造を説明するための図である。It is a figure for demonstrating the antenna structure of the example of 4th Embodiment. 第5実施形態例のアンテナ構造を説明するための図である。It is a figure for demonstrating the antenna structure of the example of 5th Embodiment. 第6実施形態例のアンテナ構造を説明するための図である。It is a figure for demonstrating the antenna structure of the example of 6th Embodiment. その他の実施形態例を説明するための図である。It is a figure for demonstrating other example embodiments. さらに別のその他の実施形態例を説明するための図である。It is a figure for demonstrating another example of another embodiment. さらにその他の別の実施形態例を説明するための図である。It is a figure for demonstrating another example of another embodiment. さらに、その他の別の実施形態例を説明するための図である。Furthermore, it is a figure for demonstrating another example of another embodiment. さらにまた、その他の実施形態例を説明するための図である。Furthermore, it is a figure for demonstrating other embodiment examples.

符号の説明Explanation of symbols

1 アンテナ構造
2 実装基板
3 誘電体基体
4 低側の給電放射電極
5 低側の給電電極
6 高側の給電放射電極
7 高側の給電電極
10 リアクタンス回路
11 ショート電極
13 無線通信用回路
15,22 インダクタンス部
16 低側の給電用導通路
24 高側の給電用導通路
27 キャパシタンス部
DESCRIPTION OF SYMBOLS 1 Antenna structure 2 Mounting board 3 Dielectric base | substrate 4 Low side feed radiation electrode 5 Low side feed electrode 6 High side feed radiation electrode 7 High side feed electrode 10 Reactance circuit 11 Short electrode 13 Circuits for wireless communication 15, 22 Inductance section 16 Low-side power supply conduction path 24 High-side power supply conduction path 27 Capacitance section

Claims (10)

グランド電極および無線通信用回路が形成されている実装基板と、
この実装基板の端縁部に配設されている誘電体基体と、
この誘電体基体に設けられ予め定められた無線通信用の少なくとも2つの周波数帯のうちの高い方の周波数帯で共振動作してアンテナとして機能する高側の給電放射電極と、
高側の給電放射電極の端縁部における予め定められた給電部に連接されている高側の給電電極と、
一端側が高側の給電電極を介し高側の給電放射電極の給電部に接続され他端側は無線通信用回路側との高側用接続部に接続されて高側の給電放射電極の給電部を直接的に、又は、キャパシタンス部を介して無線通信用回路に接続させ前記高い方の周波数帯の信号を導通させる高側の給電用導通路と、
高側の給電放射電極の給電部の両側の少なくとも一方側の給電放射電極端縁部分を直接的にグランド電極に接地させるショート回路と、
高側の給電放射電極と間隔を介し隣接した状態で前記誘電体基体に設けられ前記予め定められた無線通信用の少なくとも2つの周波数帯のうちの低い方の周波数帯で共振動作してアンテナとして機能する低側の給電放射電極と、
低側の給電放射電極の端縁部における予め定められた給電部に連接されている低側の給電電極と、
一端側が低側の給電電極を介し低側の給電放射電極の給電部に接続され他端側は無線通信用回路側との低側用接続部に接続されて低側の給電放射電極の給電部をインダクタンス部を介して無線通信用回路に接続させ前記低い方の周波数帯の信号を導通させる低側の給電用導通路と、
低側の給電放射電極の給電部の両側の少なくとも一方側の給電放射電極端縁部分をインダクタンス部を介してグランド電極に接地させるリアクタンス回路と、
を有していることを特徴とするアンテナ構造。
A mounting substrate on which a ground electrode and a circuit for wireless communication are formed;
A dielectric substrate disposed on an edge of the mounting substrate;
A high-side feed radiation electrode that functions as an antenna by resonating in a higher frequency band of at least two predetermined frequency bands for wireless communication provided on the dielectric substrate;
A high-side feed electrode connected to a predetermined feed section at the edge of the high-side feed radiation electrode;
One end side is connected to the feeding portion of the high-side feeding radiation electrode via the high-side feeding electrode, and the other end side is connected to the high-side connecting portion with the radio communication circuit side, and the feeding portion of the high-side feeding radiation electrode Directly or via a capacitance unit, a high-side power supply conduction path that conducts the signal of the higher frequency band by connecting to a wireless communication circuit, and
A short circuit for directly grounding at least one of the feeding radiation electrode edge portions on both sides of the feeding portion of the feeding radiation electrode on the high side directly to the ground electrode;
An antenna which is provided on the dielectric substrate in a state adjacent to a high-side feeding radiation electrode with a space therebetween and resonates in a lower one of the predetermined two frequency bands for wireless communication. A functioning low-side feed radiation electrode;
A low-side power supply electrode connected to a predetermined power supply portion at an edge of the low-side power supply radiation electrode; and
One end side is connected to the power supply portion of the low-side power supply radiation electrode via the low-side power supply electrode, and the other end side is connected to the low-side connection portion with the circuit for wireless communication, and the power supply portion of the low-side power supply radiation electrode Is connected to a wireless communication circuit through an inductance section, and a low-side power supply conduction path for conducting a signal in the lower frequency band, and
A reactance circuit that grounds at least one feeding radiation electrode edge portion on both sides of the feeding portion of the low-side feeding radiation electrode to the ground electrode via the inductance portion;
An antenna structure characterized by comprising:
実装基板は矩形状と成し、低側の給電放射電極は、高側の給電放射電極よりも実装基板の端部寄りに配置されていることを特徴とする請求項1記載のアンテナ構造。   2. The antenna structure according to claim 1, wherein the mounting substrate has a rectangular shape, and the low-side feeding radiation electrode is disposed closer to the end of the mounting substrate than the high-side feeding radiation electrode. 誘電体基体には、低側の給電放射電極と高側の給電放射電極との間の領域に、孔部が形成されていることを特徴とする請求項1又は請求項2記載のアンテナ構造。   3. The antenna structure according to claim 1, wherein a hole is formed in a region between the low-side feeding radiation electrode and the high-side feeding radiation electrode in the dielectric substrate. 実装基板は短辺と長辺を有する長方形状であり、低側の給電放射電極の給電部は実装基板の短辺に向き合っている構成と成し、
リアクタンス回路は、低側の給電放射電極の給電部の両側の少なくとも一方側の給電放射電極端縁部分をインダクタンス部を介して、実装基板の角部又はその近傍に形成されているグランド電極部分に接地させることを特徴とする請求項1又は請求項2又は請求項3記載のアンテナ構造。
The mounting board is a rectangular shape having a short side and a long side, and the power feeding portion of the low-side feeding radiation electrode is configured to face the short side of the mounting board,
The reactance circuit is configured such that at least one of the feeding radiation electrode edge portions on both sides of the feeding portion of the feeding radiation electrode on the low side is connected to the ground electrode portion formed at or near the corner of the mounting substrate via the inductance portion. The antenna structure according to claim 1, wherein the antenna structure is grounded.
低側の給電放射電極の配設領域に対応する実装基板領域にはグランド電極が形成されていないことを特徴とする請求項1乃至請求項4の何れか一つに記載のアンテナ構造。   The antenna structure according to any one of claims 1 to 4, wherein a ground electrode is not formed in a mounting substrate region corresponding to a region where the low-side feeding radiation electrode is disposed. 高側の給電用導通路の無線通信用回路側の端部は高側用接続部に、また、低側の給電用導通路の無線通信用回路側の端部は高側用接続部とは別個の低側用接続部に、それぞれ、接続されるのに代えて、高側の給電用導通路と低側の給電用導通路の各無線通信用回路側の端部は、無線通信用回路側との共通の接続部に接続されていることを特徴とする請求項1乃至請求項5の何れか一つに記載のアンテナ構造。   The end on the radio communication circuit side of the high-side power supply conduction path is the high-side connection section, and the end on the radio communication circuit side of the low-side power supply conduction path is the high-side connection section. Instead of being connected to separate low-side connection portions, the end portions on the wireless communication circuit side of the high-side power supply conduction path and the low-side power supply conduction path are each a wireless communication circuit. The antenna structure according to any one of claims 1 to 5, wherein the antenna structure is connected to a common connection portion with the side. 低側の給電用導通路には、インダクタンス値が互いに異なる複数のインダクタンス部が並列的に介設されていると共に、それらインダクタンス部のうちの何れか一つに択一的に無線通信用の低い方の周波数帯の信号を切り換え導通させる切り換え手段とを有していることを特徴とする請求項1乃至請求項6の何れか一つに記載のアンテナ構造。   A plurality of inductance portions having different inductance values are provided in parallel in the low-side power supply conduction path, and alternatively, one of the inductance portions is low for wireless communication. The antenna structure according to any one of claims 1 to 6, further comprising switching means for switching and conducting a signal in one frequency band. 誘電体基体には、高側の給電放射電極と間隔を介して配設され高側の給電放射電極と電磁結合して複共振状態を作り出す高側の無給電放射電極と、低側の給電放射電極と間隔を介して配設され低側の給電放射電極と電磁結合して複共振状態を作り出す低側の無給電放射電極とのうちの少なくとも一方が設けられていることを特徴とする請求項1乃至請求項7の何れか一つに記載のアンテナ構造。   The dielectric substrate has a high-side non-feeding radiation electrode that is disposed with a gap between the high-side feeding radiation electrode and electromagnetically coupled to the high-side feeding radiation electrode to create a double resonance state, and a low-side feeding radiation. The at least one of a low-side non-feeding radiation electrode that is disposed through an interval with an electrode and electromagnetically couples with a low-side feeding radiation electrode to create a double resonance state is provided. The antenna structure according to any one of claims 1 to 7. 誘電体基体には、高側の給電放射電極の無線通信の周波数帯および低側の給電放射電極の無線通信の周波数帯とは異なる別の無線通信用の周波数帯で共振動作してアンテナとして機能する給電放射電極が高側の給電放射電極および低側の給電放射電極とは別に設けられていることを特徴とする請求項1乃至請求項8の何れか一つに記載のアンテナ構造。   The dielectric substrate functions as an antenna by resonating in a radio communication frequency band different from the radio communication frequency band of the high-side feed radiation electrode and the radio communication frequency band of the low-side feed radiation electrode. The antenna structure according to any one of claims 1 to 8, wherein the feeding radiation electrode is provided separately from the high-side feeding radiation electrode and the low-side feeding radiation electrode. 請求項1乃至請求項9の何れか一つに記載のアンテナ構造が設けられていることを特徴とする無線通信装置。   A wireless communication apparatus comprising the antenna structure according to claim 1.
JP2007041727A 2007-02-22 2007-02-22 Antenna structure and wireless communication apparatus including the same Expired - Fee Related JP4645603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041727A JP4645603B2 (en) 2007-02-22 2007-02-22 Antenna structure and wireless communication apparatus including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007041727A JP4645603B2 (en) 2007-02-22 2007-02-22 Antenna structure and wireless communication apparatus including the same

Publications (2)

Publication Number Publication Date
JP2008205991A JP2008205991A (en) 2008-09-04
JP4645603B2 true JP4645603B2 (en) 2011-03-09

Family

ID=39782958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041727A Expired - Fee Related JP4645603B2 (en) 2007-02-22 2007-02-22 Antenna structure and wireless communication apparatus including the same

Country Status (1)

Country Link
JP (1) JP4645603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763280A (en) * 2010-02-24 2012-10-31 夏普株式会社 Antenna and portable wireless terminal

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766137B2 (en) * 2009-03-24 2011-09-07 Tdk株式会社 Antenna device
JP2011130239A (en) * 2009-12-18 2011-06-30 Tdk Corp Double resonant antenna, method for manufacturing the same, and communication device
WO2011105381A1 (en) * 2010-02-24 2011-09-01 シャープ株式会社 Antenna assembly and portable wireless terminal
TWI450441B (en) * 2011-02-25 2014-08-21 Acer Inc Mobile communication device and antenna structure thereof
WO2012153654A1 (en) * 2011-05-09 2012-11-15 株式会社村田製作所 Front-end circuit and communication-terminal device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993030A (en) * 1995-09-28 1997-04-04 N T T Ido Tsushinmo Kk Antenna system
JPH09219619A (en) * 1996-02-13 1997-08-19 Murata Mfg Co Ltd Surface mount antenna and communication equipment using the same
JPH10190345A (en) * 1996-12-25 1998-07-21 Sharp Corp Freqeuncy switch-type inverted f antenna
JP2002314330A (en) * 2001-04-10 2002-10-25 Murata Mfg Co Ltd Antenna device
JP2003133825A (en) * 2001-10-29 2003-05-09 Alps Electric Co Ltd Antenna element mounting structure
JP2005020289A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Double loop antenna for sharing multiple frequency
JP2006340368A (en) * 2005-06-03 2006-12-14 Partron Co Ltd Surface mount antenna apparatus with trio land structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006059406A1 (en) * 2004-12-03 2008-06-05 株式会社村田製作所 Antenna structure and wireless communication device including the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0993030A (en) * 1995-09-28 1997-04-04 N T T Ido Tsushinmo Kk Antenna system
JPH09219619A (en) * 1996-02-13 1997-08-19 Murata Mfg Co Ltd Surface mount antenna and communication equipment using the same
JPH10190345A (en) * 1996-12-25 1998-07-21 Sharp Corp Freqeuncy switch-type inverted f antenna
JP2002314330A (en) * 2001-04-10 2002-10-25 Murata Mfg Co Ltd Antenna device
JP2003133825A (en) * 2001-10-29 2003-05-09 Alps Electric Co Ltd Antenna element mounting structure
JP2005020289A (en) * 2003-06-25 2005-01-20 Toyota Motor Corp Double loop antenna for sharing multiple frequency
JP2006340368A (en) * 2005-06-03 2006-12-14 Partron Co Ltd Surface mount antenna apparatus with trio land structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102763280A (en) * 2010-02-24 2012-10-31 夏普株式会社 Antenna and portable wireless terminal
CN102763280B (en) * 2010-02-24 2015-04-22 夏普株式会社 Antenna and portable wireless terminal

Also Published As

Publication number Publication date
JP2008205991A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US7119749B2 (en) Antenna and radio communication apparatus
US8279121B2 (en) Antenna device and wireless communication apparatus
JP3562512B2 (en) Surface mounted antenna and communication device provided with the antenna
JP3678167B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE HAVING THE ANTENNA DEVICE
KR100533624B1 (en) Multi band chip antenna with dual feeding port, and mobile communication apparatus using the same
TWI628846B (en) Antenna structure and wireless communication device having the same
KR100477440B1 (en) Antenna and wireless device incorporating the same
KR100882157B1 (en) Multi-band antenna and communication device
JP5321290B2 (en) Antenna structure
US8094080B2 (en) Antenna and radio communication apparatus
KR101919840B1 (en) Broad band tunable antenna device for portable terminal
JP5131481B2 (en) ANTENNA DEVICE AND RADIO COMMUNICATION DEVICE
JP2002158529A (en) Surface-mounted antenna structure and communications equipment provided with the same
JP2001284954A (en) Surface mount antenna, frequency control and setting method for dual resonance therefor and communication equipment provided with surface mount antenna
JP2004166242A (en) Surface mount antenna, antenna device and communication device using the same
KR20110122849A (en) Antenna arrangement, printed circuit board, portable electronic device &amp; conversion kit
CN112421211B (en) Antenna and electronic equipment
JPWO2008078437A1 (en) Antenna structure and wireless communication apparatus including the same
JPWO2005069439A1 (en) Multiband antenna and portable communication device
KR100483044B1 (en) Surface mount type chip antenna for improving signal exclusion
JP4645603B2 (en) Antenna structure and wireless communication apparatus including the same
JPWO2011086723A1 (en) Antenna and wireless communication device
JP4720720B2 (en) Antenna structure and wireless communication apparatus including the same
JP2013017112A (en) Antenna and radio communication device using the same
JP3467164B2 (en) Inverted F antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645603

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees