JP4645309B2 - Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal - Google Patents

Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal Download PDF

Info

Publication number
JP4645309B2
JP4645309B2 JP2005162863A JP2005162863A JP4645309B2 JP 4645309 B2 JP4645309 B2 JP 4645309B2 JP 2005162863 A JP2005162863 A JP 2005162863A JP 2005162863 A JP2005162863 A JP 2005162863A JP 4645309 B2 JP4645309 B2 JP 4645309B2
Authority
JP
Japan
Prior art keywords
substrate
cross
photonic crystal
dimensional photonic
sectional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005162863A
Other languages
Japanese (ja)
Other versions
JP2006337758A (en
Inventor
太介 長尾
芳文 山崎
和章 田畑
睦也 高橋
高幸 山田
貞一 鈴木
隆 小澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Fujifilm Business Innovation Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd, Fujifilm Business Innovation Corp filed Critical Fuji Xerox Co Ltd
Priority to JP2005162863A priority Critical patent/JP4645309B2/en
Publication of JP2006337758A publication Critical patent/JP2006337758A/en
Application granted granted Critical
Publication of JP4645309B2 publication Critical patent/JP4645309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は光通信、光インターコネクション、オプトエレクトロニクスや光計測の分野において、光導波路、光共振器、近接場光学プローブ、複屈折素子、フィルター、分岐素子、波面変換素子や偏向素子として使用される、回折型の光学素子、周期構造をもつ多層膜やフォトニック結晶等を含む3次元構造体の製造方法及び3次元構造体製造用基板に関するものである。   The present invention is used as an optical waveguide, an optical resonator, a near-field optical probe, a birefringence element, a filter, a branch element, a wavefront conversion element, and a deflection element in the fields of optical communication, optical interconnection, optoelectronics, and optical measurement. The present invention relates to a method for manufacturing a three-dimensional structure including a diffraction optical element, a multilayer film having a periodic structure, a photonic crystal, and the like, and a substrate for manufacturing the three-dimensional structure.

屈折率の分布が光の波長と同程度のピッチの周期構造を持つ媒質は、独特の光の伝播特性を有することが従来から知られている。周期構造が1次元のものとしては、誘電体多層膜が古くから知られており、その設計理論や作製技術は既に成熟した分野である。一方、光の波長と同程度のピッチの3次元的な周期構造を持つ媒質を利用して、半導体素子中の自然放出の制御を行なう方法が、1987年にYablonovitchによって提唱されて以来、2次元あるいは3次元的な周期構造媒質中での光の振る舞いが注目を集めている。そのような媒質中では、ある特定の範囲の波数ベクトルを持つ光は伝播が禁じられ、半導体中の電子のエネルギーバンドと同様の、フォトニックバンドが形成される。フォトニックバンドを形成する周期的屈折率構造を、フォトニック結晶という。   It is conventionally known that a medium having a periodic structure with a refractive index distribution having a pitch comparable to the wavelength of light has unique light propagation characteristics. As a one-dimensional periodic structure, a dielectric multilayer film has been known for a long time, and its design theory and fabrication technology are already mature fields. On the other hand, a method of controlling spontaneous emission in a semiconductor device using a medium having a three-dimensional periodic structure with a pitch similar to the wavelength of light has been proposed by Yablonovitch in 1987. Or, the behavior of light in a three-dimensional periodic structure medium has attracted attention. In such a medium, light having a wave vector in a specific range is prohibited from propagating, and a photonic band similar to the energy band of electrons in a semiconductor is formed. A periodic refractive index structure that forms a photonic band is called a photonic crystal.

このようなフォトニックバンドを利用すると、これまでにないフォトンの制御が可能になるため、様々な応用が期待されている。既に、自然放出光の制御による低閾値あるいは閾値のないレーザ、フォトニック結晶中の格子欠陥の周りに光が局在する性質を利用した光導波路、同じく光の局在を利用した高効率でμmオーダーの超小型な光共振器、ならびに波長や入射角の微小な変化によって大きく偏向角を変える新しいプリズム機能を持つ素子などへの応用が提案されている。   When such a photonic band is used, unprecedented control of photons becomes possible, and various applications are expected. Already a low threshold or no threshold laser by controlling spontaneous emission light, an optical waveguide using the property that light is localized around lattice defects in a photonic crystal, and also highly efficient μm using the localization of light Applications to ultra-small optical resonators of the order and elements with a new prism function that change the deflection angle greatly by minute changes in wavelength and incident angle have been proposed.

これらの光学素子は、素子単体で光の放出制御、伝播制御、プリズム作用、フィルター作用、光導波路などの各種光学的機能を有しているが、さらに発光素子や受光素子と組み合わせることにより、多種多様な電子機能、光機能を発現するようになる。   These optical elements have various optical functions such as light emission control, propagation control, prism action, filter action, optical waveguide, etc. by themselves. Various electronic and optical functions will be developed.

フォトニック結晶において、フォトニックバンド効果をもっとも得られる構造としては、3次元フォトニック結晶が最も望ましい。また、3次元フォトニック結晶においても、完全なフォトニックバンドギャップを得ることが可能で、3次元フォトニック結晶中に比較的容易かつ自由に欠陥を挿入できる構造が望ましい。このような3次元フォトニック結晶を効率的に製造するための3次元構造体の製造方法が、例えば特許文献1に提案されている。この方法は、第1の基板(ドナー基板)上に保持部材を介して空中保持された3次元(周期)構造体のスライスパターンに応じた複数の断面形状部材を、第2の基板(ターゲット基板)上に順次接合転写して積層する工程を備えるものである。   In the photonic crystal, the three-dimensional photonic crystal is most desirable as a structure that can obtain the most photonic band effect. Also in a three-dimensional photonic crystal, it is desirable that a complete photonic band gap can be obtained and a defect can be inserted into the three-dimensional photonic crystal relatively easily and freely. A method for manufacturing a three-dimensional structure for efficiently manufacturing such a three-dimensional photonic crystal has been proposed in Patent Document 1, for example. In this method, a plurality of cross-sectional shape members corresponding to a slice pattern of a three-dimensional (periodic) structure body held in the air via a holding member on a first substrate (donor substrate) are converted into a second substrate (target substrate). ) And sequentially laminating them by bonding and transferring them.

この方法では、各断面形状部材の接合時に、(1)ターゲット基板を前記断面形状部材を含むドナー基板に押し当て、(2)前記断面形状部材をターゲット基板に接合させ、(3)ターゲット基板に接合された前記断面形状部材を引き上げ、それにより前記保持部材を構成する連結部材を破断させて前記断面形状部材をドナー基板より切り離し、ターゲット基板に転写する。これらの工程を繰り返すことにより、複数の断面形状部材をターゲット基板へ順次積層する。その利点は、断面形状部材をターゲット基板上に面(2次元)で保持し、複数の断面形状部材をターゲット基板へ順次積層するため、各断面形状部材が生ずる位置ずれの程度が極めて小さく、微小な位置修正で連続的に積層工程を行うことができ、極めて効率的であるというものである。
特開2004−347788号公報
In this method, at the time of joining each cross-sectional member, (1) the target substrate is pressed against the donor substrate including the cross-sectional member, (2) the cross-sectional member is joined to the target substrate, and (3) the target substrate The joined cross-sectional member is pulled up, whereby the connecting member constituting the holding member is broken, so that the cross-sectional member is separated from the donor substrate and transferred to the target substrate. By repeating these steps, a plurality of cross-sectional members are sequentially stacked on the target substrate. The advantage is that the cross-sectional shape member is held on the target substrate in a plane (two-dimensional), and a plurality of cross-sectional shape members are sequentially stacked on the target substrate. The laminating process can be performed continuously with simple position correction, which is extremely efficient.
JP 2004-347788 A

しかしながら、前記特許文献1の方法では、前記保持部材を構成する連結部材は必ずしも前記(3)の工程で破断されるとは限らず、断面形状部材の大きさや連結部材の形状などにより、前記(1)の工程中で破断するおそれがある。このように、連結部材が前記(3)の工程以外で破断することは、断面形状部材の接合時に位置ずれや不完全な接合(転写)等を招き、歩留まりが悪化するという問題が生ずる。
また、常温接合を利用する場合、ドナー基板とターゲット基板とを接合する前の工程として、表面清浄化を目的として、接合面にFAB(Fast Atom Beam)処理(照射)等を行うが、断面形状部材が格子形状など孔を含む形状の場合、その孔からFABが通りぬけ、断面形状部材下部の基板も同時に清浄化してしまう。このため、断面形状部材の接合時に、断面形状部材がターゲット基板に接合されずに、断面形状部材下部の基板に接合されてしまうおそれがある。
またドナー基板自体の作製においても、ドナー基板の作製プロセス中や、またドナー基板をターゲット基板に接合するまでの取り扱いの際(チャンバー内へ基板を導入する作業や持ち運び、基板の洗浄等)、断面形状部材が下部基板に接してしまい、前記断面形状部材と下部基板間の空隙が維持できなくなったり、連結部材が破断してしまうなど、ドナー基板自体の歩留まりが悪化するといった問題点があった。
However, in the method of Patent Document 1, the connecting member that constitutes the holding member is not necessarily broken in the step (3). Depending on the size of the cross-sectional shape member, the shape of the connecting member, and the like ( There is a risk of breakage in the process of 1). As described above, the rupture of the connecting member other than the step (3) causes a problem in that the yield is deteriorated due to misalignment or incomplete joining (transfer) at the time of joining the cross-sectional members.
In addition, when room temperature bonding is used, the bonding surface is subjected to FAB (Fast Atom Beam) treatment (irradiation) for the purpose of surface cleaning as a step before bonding the donor substrate and the target substrate. When the member has a shape including holes such as a lattice shape, the FAB passes through the holes, and the substrate under the cross-sectional shape member is simultaneously cleaned. For this reason, at the time of joining of the cross-sectional member, the cross-sectional member may not be joined to the target substrate but may be joined to the substrate below the cross-sectional member.
Also in the production of the donor substrate itself, during the process of producing the donor substrate, and during handling until the donor substrate is bonded to the target substrate (operation for introducing the substrate into the chamber, carrying it, cleaning the substrate, etc.) There is a problem that the yield of the donor substrate itself is deteriorated such that the shape member comes into contact with the lower substrate, the gap between the cross-sectional shape member and the lower substrate cannot be maintained, and the connecting member is broken.

従って本発明の目的は、3次元フォトニック結晶製造上の歩留まりを改善することができる3次元フォトニック結晶の製造方法及び3次元フォトニック結晶製造用基板を提供することにある。 Accordingly, an object of the present invention is to provide a three-dimensional photonic crystal manufacturing method and three-dimensional photonic crystal fabrication substrate that can improve the yield of the three-dimensional photonic crystal fabrication.

上記目的は、第1の基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材を、第2の基板上に順次接合転写して積層する工程を備える3次元フォトニック結晶の製造方法において、前記断面形状部材の接合時における前記保持部材の破断を防止するための介在物を前記第1の基板と前記断面形状部材との間に設けた3次元フォトニック結晶の製造方法により、達成される。 Above object, a plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure via the holding member on the first substrate, laminating sequentially joined transferred onto the second substrate In the method of manufacturing a three-dimensional photonic crystal comprising 3, an inclusion for preventing breakage of the holding member at the time of joining the cross-sectional members is provided between the first substrate and the cross-sectional member 3 This is achieved by a method for manufacturing a two-dimensional photonic crystal .

ここで、前記介在物は、後処理で除去可能な材料からなることが好ましく、前記後処理で除去可能な材料は、例えばフォトレジストである。また、前記断面形状部材の接合は、常温接合で行われることが好ましい。常温接合とは、真空中で接合する部材の表面の酸化膜や不純物などを、FAB処理等によって除去して清浄化したのち、これらの清浄面同士を当接させることで部材間を接合する方式である。   Here, the inclusion is preferably made of a material that can be removed by post-processing, and the material that can be removed by post-processing is, for example, a photoresist. Moreover, it is preferable that joining of the said cross-sectional shape member is performed by normal temperature joining. Room temperature bonding is a method in which the oxide films and impurities on the surfaces of the members to be joined in vacuum are removed and cleaned by FAB treatment, etc., and then these clean surfaces are brought into contact with each other to join the members. It is.

また、本発明に係る3次元フォトニック結晶の製造方法は、第1の基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材を形成する工程と、後工程の断面形状部材の接合時における前記保持部材の破断を防止するための介在物を前記第1の基板と前記断面形状部材との間に配置する工程と、前記断面形状部材を第2の基板上に順次接合転写して積層する工程とを備える。 A method of manufacturing three-dimensional photonic crystal according to the present invention, the step of forming a plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure via the holding member on the first substrate And a step of arranging an inclusion for preventing breakage of the holding member at the time of joining the cross-sectional shape member in a subsequent step between the first substrate and the cross-sectional shape member, And sequentially laminating and transferring on the two substrates.

ここで、前記介在物を配置する工程は、前記介在物の材料を前記第1の基板上に塗布する工程と、前記塗布された材料を硬化させる工程とを含むことができる。さらに、前記塗布された材料が前記保持部材および断面形状部材の少なくとも一方の一部または全部を覆っている場合に、前記覆っている材料を除去する工程を含むことができる。前記塗布された材料は、例えばフォトレジストとすることができ、この場合、前記除去する工程は、アッシングを含むことができる。アッシングとは、不要なフォトレジストを除去するため酸素プラズマなどで灰化し、除去することをいう。   Here, the step of disposing the inclusions may include a step of applying a material of the inclusions on the first substrate and a step of curing the applied material. Furthermore, when the applied material covers a part or all of at least one of the holding member and the cross-sectional shape member, a step of removing the covering material can be included. The applied material can be, for example, a photoresist, and in this case, the removing step can include ashing. Ashing means ashing with oxygen plasma or the like to remove unnecessary photoresist.

さらに、本発明は、複数の断面形状部材を順次接合転写して積層する工程を備える3次元フォトニック結晶の製造方法に用いる3次元フォトニック結晶製造用基板であって、基板と、前記基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材と、前記基板と前記断面形状部材との間に設けられた前記断面形状部材の接合時における前記保持部材の破断を防止するための介在物とを備えたものである。ここで、前記介在物は、後処理で除去可能な材料からなることができる。前記後処理で除去可能な材料は、例えばフォトレジストである。 Further, the present invention is a substrate for manufacturing a three-dimensional photonic crystal used in a method for manufacturing a three-dimensional photonic crystal comprising a step of sequentially joining and transferring a plurality of cross-sectional members and laminating the substrate, and the substrate and the substrate a plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure via the holding member, the at the time of bonding of the cross-sectional shape member provided between the substrate and the cross section member And an inclusion for preventing breakage of the holding member. Here, the inclusion may be made of a material that can be removed by post-processing. The material that can be removed by the post-treatment is, for example, a photoresist.

本発明によれば、3次元フォトニック結晶製造上の歩留まりを改善することができる3次元フォトニック結晶の製造方法及び3次元フォトニック結晶製造用基板を得ることができる。これにより、自由な設計に基づいて3次元フォトニック結晶を効率的にかつ構成材料の制約を低減させて製造可能とすることができる。
According to the present invention, it is possible to obtain a three-dimensional photonic crystal manufacturing method and three-dimensional photonic crystal fabrication substrate that can improve the yield of the three-dimensional photonic crystal fabrication. As a result, it is possible to manufacture a three-dimensional photonic crystal efficiently based on a free design while reducing the constraints on the constituent materials.

以下、本発明の実施例を説明する。本実施例は、3次元構造体として、いわゆるウッドパイル型3次元フォトニック結晶を作製するものである。この3次元フォトニック結晶は、1種類の薄膜材料と空気若しくは真空からなるエアーブリッジ構造のパターンを、ラテラル方向に位置をずらしながら複数積層して構成される。   Examples of the present invention will be described below. In this embodiment, a so-called woodpile type three-dimensional photonic crystal is produced as a three-dimensional structure. This three-dimensional photonic crystal is formed by laminating a plurality of air bridge structure patterns made of one kind of thin film material and air or vacuum while shifting the position in the lateral direction.

図1は本発明に係る3次元構造体の製造方法に用いるパターン部材を示す図で、(a)はパターン部材加工前、(b)はパターン部材加工後を示す図である。図1(a)のように、この多層膜はInP/InGaAs/InPから構成されており、第1の基板10としてのInP基板上にInGaAsスペーサー層11(犠牲層)とInP層12とをMOCVD法により順次成長して得られる。このInP/InGaAs/InPの多層膜から半導体微細加工プロセスを用いて、断面形状部材を有するパターン部材(ドナー基板)15が次のようにして作製される。図1(b)に示すように、まず、MOCVD成長したInP層12に、2次元微細構造をもつ複数の断面形状部材1を電子ビーム露光とドライエッチングにより作製する。この際、断面形状部材1に接続された連結部材2、および連結部材2を介して断面形状部材1を保持するための枠状部材3を同時に作製する。この連結部材2と枠状部材3が断面形状部材1の保持部材7を構成する。断面形状部材のストライプパターンの方向は、互いに直交するように形成され、これによりフォトニック結晶の各レイヤーを展開するようにそれぞれ配置された2種類のパターンが第1の基板上に作製される。次に、アンダーカットエッチングにより断面形状部材1及び連結部材2の下層にあるInGaAsスペーサー層11を取り除く。これにより、断面形状部材1は連結部材2を介して枠状部材3により空中に保持される。   1A and 1B are diagrams showing a pattern member used in the method for manufacturing a three-dimensional structure according to the present invention. FIG. 1A shows a pattern member before processing, and FIG. 1B shows a pattern member after processing. As shown in FIG. 1A, this multilayer film is made of InP / InGaAs / InP, and an InGaAs spacer layer 11 (sacrificial layer) and an InP layer 12 are formed on an InP substrate as the first substrate 10 by MOCVD. It is obtained by growing sequentially by the method. A pattern member (donor substrate) 15 having a cross-sectional shape member is manufactured from the InP / InGaAs / InP multilayer film using a semiconductor microfabrication process as follows. As shown in FIG. 1B, first, a plurality of cross-sectional members 1 having a two-dimensional microstructure are formed on the MOCVD-grown InP layer 12 by electron beam exposure and dry etching. At this time, the connecting member 2 connected to the cross-sectional member 1 and the frame-like member 3 for holding the cross-sectional member 1 via the connecting member 2 are simultaneously produced. The connecting member 2 and the frame-like member 3 constitute a holding member 7 for the cross-sectional member 1. The direction of the stripe pattern of the cross-sectional shape member is formed so as to be orthogonal to each other, whereby two types of patterns respectively arranged so as to develop each layer of the photonic crystal are produced on the first substrate. Next, the InGaAs spacer layer 11 under the cross-sectional shape member 1 and the connecting member 2 is removed by undercut etching. Thereby, the cross-sectional shape member 1 is held in the air by the frame-shaped member 3 via the connecting member 2.

図2は断面形状部材の保持状態の一例を示す図で、(a)は平面図、(b)は(a)におけるA−B断面図、(c)は(a)の一部拡大図である。図2(a)のように、本例の断面形状部材1のストライプパターンは隣接同士で直交するように形成されている。枠状部材3は柱状部4と枠部5とを備え、図2(b)のように、アンダーエッチングの工程で下層のInGaAs層11がすべて無くならない程度(柱状部4が残る程度)に十分広い幅を有している。また、連結部材2は、図2(c)に示すように、断面形状部材1との接続部6が先細りに形成されている。これは断面形状部材1を連結部2より切り離しやすくするためである。   2A and 2B are diagrams illustrating an example of a holding state of the cross-sectional shape member, where FIG. 2A is a plan view, FIG. 2B is a cross-sectional view taken along line AB in FIG. 2A, and FIG. is there. As shown in FIG. 2A, the stripe pattern of the cross-sectional shape member 1 of this example is formed so as to be orthogonal to each other. The frame-shaped member 3 includes a columnar portion 4 and a frame portion 5, and is sufficient to the extent that the underlying InGaAs layer 11 is not completely lost in the under-etching process (the columnar portion 4 remains) as shown in FIG. It has a wide width. Moreover, as shown in FIG.2 (c), the connection member 2 has the connection part 6 with the cross-sectional shape member 1 tapered. This is because the cross-sectional shape member 1 is easily separated from the connecting portion 2.

図3(a)〜(d)は、断面形状部材の接合時における保持部材の破断を防止するための介在物を第1の基板と断面形状部材との間に設ける方法の一例を説明するための図である。本例の介在物としては、後処理で除去可能な材料、例えばフォトレジスト等の樹脂が用いられる。このフォトレジスト等の樹脂は、例えばアッシングにより除去される。以下、この方法を詳述する。   FIGS. 3A to 3D illustrate an example of a method of providing an inclusion for preventing breakage of the holding member at the time of joining the cross-sectional members between the first substrate and the cross-sectional member. FIG. As the inclusion in this example, a material that can be removed by post-processing, for example, a resin such as a photoresist is used. The resin such as photoresist is removed by ashing, for example. Hereinafter, this method will be described in detail.

まず、図3(a)に示すように、ドナー基板15は、第1の基板10、スペーサー層11、2次元微細構造をもつ断面形状部材1、および連結部材2と枠状部材3を有する保持部材7を備える。図示のように、第1の基板10と断面形状部材1の間は空隙90となっている。このようなドナー基板15上に、図3(b)に示すように、フォトレジスト等の樹脂91を、断面形状部材1の下部の空隙90を埋めるように塗布する。これにより、図3(c)に示すように、断面形状部材1の下部の空隙が樹脂91によって満たされる。次に、このドナー基板をベークすることで、樹脂91を硬化させる。その後、図3(d)に示すように、例えば酸素プラズマ等によるアッシング92を行うことにより、断面形状部材1および連結部材2を覆っている硬化した樹脂を取り除く。これにより、第1の基板10と断面形状部材1との間に介在物93が形成される。ここで、樹脂91の塗布量が予め調整され、樹脂91が断面形状部材1および連結部材2を覆っていない場合は、図3(d)のアッシング工程は不要である。   First, as shown in FIG. 3A, the donor substrate 15 includes a first substrate 10, a spacer layer 11, a cross-sectional member 1 having a two-dimensional microstructure, a holding member 2, and a frame-shaped member 3. A member 7 is provided. As shown in the figure, a gap 90 is formed between the first substrate 10 and the cross-sectional shape member 1. On the donor substrate 15, as shown in FIG. 3B, a resin 91 such as a photoresist is applied so as to fill the gap 90 below the cross-sectional shape member 1. Thereby, as shown in FIG. 3C, the lower space of the cross-sectional member 1 is filled with the resin 91. Next, the resin 91 is cured by baking the donor substrate. Thereafter, as shown in FIG. 3D, the cured resin covering the cross-sectional shape member 1 and the connecting member 2 is removed by performing ashing 92 using, for example, oxygen plasma. Thereby, inclusions 93 are formed between the first substrate 10 and the cross-sectional shape member 1. Here, when the application amount of the resin 91 is adjusted in advance and the resin 91 does not cover the cross-sectional shape member 1 and the connecting member 2, the ashing step of FIG.

上記のように、図3に示す各工程を用いて介在物93を形成することにより、断面形状部材1の下部の空隙90がなくなるか、もしくは小さくなる。これにより、断面形状部材1の接合時における連結部材2のたわみをなくすることができ、または、たわみを小さくすることができる。このようにして、第1の基板10と、この基板上に保持部材を介して空中保持された3次元構造体のスライスパターンに応じた複数の断面形状部材1と、第1の基板10と断面形状部材1との間に設けられた断面形状部材の接合時における保持部材の破断を防止するための介在物93とを備えた3次元構造体製造用基板としてのドナー基板15を作製することができる。   As described above, by forming the inclusions 93 using the steps shown in FIG. 3, the gap 90 below the cross-sectional shape member 1 is eliminated or reduced. Thereby, the bending of the connection member 2 at the time of joining of the cross-sectional shape member 1 can be eliminated, or a bending can be made small. In this way, the first substrate 10, the plurality of cross-sectional members 1 corresponding to the slice pattern of the three-dimensional structure held in the air via the holding member on the substrate, the first substrate 10 and the cross section Producing a donor substrate 15 as a three-dimensional structure manufacturing substrate provided with an inclusion 93 for preventing breakage of a holding member at the time of joining a cross-sectional shape member provided between the shape member 1 and it can.

図4(a)は本発明に係る3次元構造体の製造方法に用いられる製造装置の一例を示す図、(b)はこれにより作製されるウッドパイル型3次元フォトニック結晶の一例を示す図である。   FIG. 4A is a diagram showing an example of a manufacturing apparatus used in the method for manufacturing a three-dimensional structure according to the present invention, and FIG. 4B is a diagram showing an example of a woodpile type three-dimensional photonic crystal produced thereby. It is.

この製造装置30は、図4(a)に示すように、積層工程が行われる真空槽300を有し、真空槽300の内部に、図1(b)に示すようなパターン部材(ドナー基板)15が載置される基板ホルダ301と、パターン部材15に形成された断面形状部材1が転写される第2の基板(ターゲット基板)60を保持するステージ302と、このステージ302に取り付けられ、ステージ302側をFAB処理する第1のFAB源303A、およびパターン部材15側をFAB処理する第2のFAB源303Bと、ステージ302をX軸モータ(図示せず)によってX軸方向(図の左右方向)に移動させるX軸テーブル310と、ステージ302をY軸モータ(図示せず)によってY軸方向(図の紙面垂直方向)に移動させるY軸テーブル320とが配設されている。なお、第1および第2のFAB源303A,303Bは、FAB処理終了後、退避モータによりアームを図中の矢印方向に約90°回動させて退避させる。ここで、「FAB処理」とは、粒子ビームとして例えばアルゴンガスを1kV程度の電圧で加速して材料の表面に照射し、材料表面の酸化膜,不純物等を除去して清浄な表面を形成する処理をいう。本実施例では、FABの照射条件を処理対象の材料に応じて、例えば加速電圧1〜1.5kV、照射時間1〜10分の範囲で変更することができる。   As shown in FIG. 4A, the manufacturing apparatus 30 has a vacuum chamber 300 in which a lamination process is performed, and a pattern member (donor substrate) as shown in FIG. 15, a substrate holder 301 on which the substrate 15 is placed, a stage 302 that holds a second substrate (target substrate) 60 onto which the cross-sectional member 1 formed on the pattern member 15 is transferred, and a stage 302 that is attached to the stage 302. The first FAB source 303A that performs FAB processing on the 302 side, the second FAB source 303B that performs FAB processing on the pattern member 15 side, and the stage 302 are moved in the X-axis direction (left-right direction in the figure) by an X-axis motor (not shown). ) To move the stage 302 and the Y-axis table 320 to move the stage 302 in the Y-axis direction (perpendicular to the drawing in the drawing) by a Y-axis motor (not shown). There has been arranged. Note that the first and second FAB sources 303A and 303B, after the FAB processing is completed, retreat the arm by rotating about 90 ° in the direction of the arrow in the drawing by a retraction motor. Here, “FAB treatment” refers to accelerating, for example, argon gas as a particle beam at a voltage of about 1 kV and irradiating the surface of the material to remove an oxide film, impurities, etc. on the surface of the material to form a clean surface. Refers to processing. In the present embodiment, the irradiation conditions of FAB can be changed, for example, in the range of an acceleration voltage of 1 to 1.5 kV and an irradiation time of 1 to 10 minutes depending on the material to be processed.

また、本製造装置30は、真空槽300の外部に、基板ホルダ301をZ軸モータ(図示せず)によってZ軸方向(図の上下方向)に移動させるZ軸テーブル330と、アライメント調整の際にθモータによって基板ホルダ301をZ軸回りに回転させるθテーブル340と、アルゴンガスを第1および第2のFAB源303A,303Bに供給するためのアルゴンガスボンベ351とを具備している。   Further, the manufacturing apparatus 30 includes a Z-axis table 330 that moves the substrate holder 301 in the Z-axis direction (vertical direction in the drawing) by a Z-axis motor (not shown) outside the vacuum chamber 300, and the alignment adjustment. And a θ table 340 for rotating the substrate holder 301 around the Z axis by a θ motor, and an argon gas cylinder 351 for supplying argon gas to the first and second FAB sources 303A and 303B.

図4(b)は、ウッドパイル型3次元フォトニック結晶の一例を示す図である。本例の3次元フォトニック結晶40は、複数の断面形状部材1a、1b、1c、1d・・・を、図示しない基板の上にそのストライプパターンの方向が互いに直交するように、ウッドパイル(積み木)状に順次積み重ねたものである。以下、本発明による製造方法について詳述する。   FIG. 4B is a diagram illustrating an example of a woodpile type three-dimensional photonic crystal. The three-dimensional photonic crystal 40 of this example includes a plurality of cross-sectional members 1 a, 1 b, 1 c, 1 d... On a substrate (not shown) so that the stripe pattern directions are orthogonal to each other. ). Hereinafter, the production method according to the present invention will be described in detail.

図5(a)〜(g)は本発明に係る3次元構造体の製造方法の一実施例を示す図である。まず、図5(a)に示すように、断面形状部材1が複数形成されたパターン部材15を常温接合におけるドナー基板として用い、このドナー基板15を第2の基板(ターゲット基板)60と対向させるように製造装置30内に設置する。断面形状部材1は複数形成されているが、本図ではその1つを示している。一方、ターゲット基板60はドナー基板15側にメサ部61を有する。この場合、ターゲット基板60はメサ部ともInPで構成される。また、断面形状部材の積層終了後に形成される3次元構造体をターゲット基板から取り外したいときは、InPで構成されたメサ形状を有するターゲット基板上に犠牲層としてInGaAsをMOCVD法で成膜してもよい。このようにすれば前記積層終了後、InGaAsのみをエッチングによってターゲット基板から3次元構造体を取り外すこともできる。ターゲット基板60の平坦部分からのメサ部61の高さは例えば15μ程度とした。メサ部61の頂部は平坦であり、断面形状部材1の1つと同程度または若干大きい面積をもつ。   FIGS. 5A to 5G are views showing an embodiment of a method for manufacturing a three-dimensional structure according to the present invention. First, as shown in FIG. 5A, a pattern member 15 in which a plurality of cross-sectional members 1 are formed is used as a donor substrate in room temperature bonding, and this donor substrate 15 is opposed to a second substrate (target substrate) 60. It installs in the manufacturing apparatus 30 like this. A plurality of cross-sectional members 1 are formed, but one of them is shown in the figure. On the other hand, the target substrate 60 has a mesa portion 61 on the donor substrate 15 side. In this case, the target substrate 60 is made of InP for both mesa portions. In addition, when the three-dimensional structure formed after the lamination of the cross-sectional members is desired to be removed from the target substrate, InGaAs is deposited as a sacrificial layer on the target substrate having a mesa shape made of InP by MOCVD. Also good. By doing so, it is possible to remove the three-dimensional structure from the target substrate by etching only InGaAs after the completion of the lamination. The height of the mesa portion 61 from the flat portion of the target substrate 60 is, for example, about 15 μm. The top of the mesa portion 61 is flat and has an area that is the same as or slightly larger than that of one of the cross-sectional members 1.

この対向するドナー基板15とターゲット基板60の両者表面をFAB処理(イオンビームなどの照射)16A、16Bにより清浄化する。次に両者の位置合わせを行い、ターゲット基板60を移動させドナー基板15(パターン部材)の断面形状部材1に接触させる。このとき、図5(b)に示すように、ターゲット基板60を断面形状部材1に押しつづける。これにより、断面形状部材1がターゲット基板60を押す抗力、および上述した介在物93に押し当たる時に生じる抗力を利用してターゲット基板60に圧接を行い常温接合させる。   Both surfaces of the opposing donor substrate 15 and target substrate 60 are cleaned by FAB treatment (irradiation with ion beam or the like) 16A, 16B. Next, both are aligned, and the target substrate 60 is moved and brought into contact with the cross-sectional shape member 1 of the donor substrate 15 (pattern member). At this time, as shown in FIG. 5B, the target substrate 60 is kept pressed against the cross-sectional shape member 1. Accordingly, the cross-sectional shape member 1 is pressed against the target substrate 60 by using the drag generated when the cross-section member 1 presses against the target substrate 60 and the above-described inclusions 93 and is bonded at room temperature.

ここで、介在物93の存在により、断面形状部材1の下部の空隙がなくなるか、もしくは小さくなっている。このため、断面形状部材1の接合時に連結部材2がたわむことで起こる位置ずれや、予期しない連結部材の破断を防ぐことができ、3次元構造体の製造時の歩留まりが改善される。また、第1の基板10へのFAB照射を防ぐことが可能なため、断面形状部材1の接合工程において、第1の基板10へ接合してしまうことを防ぐことができる。ここで、FABは介在物93としての例えば硬化した樹脂にも、照射されるが、断面形状部材と硬化した樹脂の常温接合における接合は、下部基板への常温接合に比べて起こりにくい。これによっても歩留まりの改善が期待できる。   Here, the presence of the inclusions 93 eliminates or reduces the gap at the bottom of the cross-sectional member 1. For this reason, it is possible to prevent a positional shift caused by the bending of the connecting member 2 when the cross-sectional shape member 1 is joined, and an unexpected breakage of the connecting member, and to improve the yield in manufacturing the three-dimensional structure. Moreover, since it is possible to prevent FAB irradiation to the 1st board | substrate 10, it can prevent joining to the 1st board | substrate 10 in the joining process of the cross-sectional shape member 1. FIG. Here, the FAB is also irradiated to, for example, the cured resin as the inclusion 93, but the bonding at the room temperature bonding between the cross-sectional shape member and the cured resin is less likely to occur than the room temperature bonding to the lower substrate. This can also be expected to improve yield.

また、断面形状部材1の接合を常温接合とすることで、断面形状部材間をアニール融着等をもちいて接合する必要がなくなり、簡便に強固な接合が得られる。さらに、常温接合では加熱を必要としないため,熱膨張係数の異なる材料などの接合も簡便に行うことが可能である。   In addition, by joining the cross-sectional members 1 at room temperature, it is not necessary to join the cross-sectional members using annealing fusion or the like, and a simple and strong joint can be obtained. Furthermore, since normal temperature bonding does not require heating, it is possible to simply bond materials having different coefficients of thermal expansion.

その後、図5(c)に示すように、ターゲット基板60に接合された断面形状部材1を引き上げ、それにより連結部材2を破断させて断面形状部材1をドナー基板10より切り離す。次に、ターゲット基板60を動かして、これらの各工程を繰り返す。すなわち、図5(d)〜(f)に示すように、ターゲット基板60上に断面形状部材1をストライプパターンが直交するように接合転写して積層する。さらに、これらの各工程を交互に繰り返して、図5(g)に示すような3次元フォトニック結晶40を作製する。なお、本実施例では、断面形状部材1の積層時にターゲット基板60を動かして行ったが、ドナー基板15を動かして行ってもよい。   After that, as shown in FIG. 5C, the cross-sectional member 1 bonded to the target substrate 60 is pulled up, thereby breaking the connecting member 2 and separating the cross-sectional member 1 from the donor substrate 10. Next, the target substrate 60 is moved to repeat these steps. That is, as shown in FIGS. 5D to 5F, the cross-sectional member 1 is bonded and transferred onto the target substrate 60 so that the stripe patterns are orthogonal to each other. Further, these steps are alternately repeated to produce a three-dimensional photonic crystal 40 as shown in FIG. In this embodiment, the target substrate 60 is moved when the cross-sectional members 1 are stacked. However, the donor substrate 15 may be moved.

また、本実施例では、ターゲット基板60のメサ頂部を断面形状部材1の1つと同程度または若干大きい面積としたが、ターゲット基板60をドナー基板15に押し付ける際、ドナー基板15が柱状部4間に複数の断面形状部材1を含む構造で、ターゲット基板60と柱状部4が干渉しない場合には、一回の接合転写工程で複数の断面形状部材を転写することができるので、このような場合には、ターゲット基板60のメサ部の頂部の面積を大きくすることができ、大量生産と同時に作業性を改善することができる。   In this embodiment, the top of the mesa of the target substrate 60 has an area that is approximately the same as or slightly larger than that of one of the cross-sectional members 1, but when the target substrate 60 is pressed against the donor substrate 15, the donor substrate 15 is between the columnar portions 4. In this case, when the target substrate 60 and the columnar part 4 do not interfere with each other, the plurality of cross-sectional members can be transferred in one bonding transfer step. Therefore, the area of the top of the mesa portion of the target substrate 60 can be increased, and workability can be improved simultaneously with mass production.

このように、本発明に係る3次元構造体の製造方法は、第1の基板上に保持部材を介して空中保持された3次元構造体のスライスパターンに応じた複数の断面形状部材を形成する工程と、後工程の断面形状部材の接合時における保持部材の破断を防止するための介在物を第1の基板と断面形状部材との間に配置する工程と、断面形状部材を第2の基板上に順次接合転写して積層する工程とを備える。この介在物を配置する工程は、介在物の材料を第1の基板上に塗布する工程と、この塗布された材料を硬化させる工程とを含む。また、塗布された材料が保持部材および断面形状部材の少なくとも一方の一部または全部を覆っている場合には、この覆っている材料を除去する工程を含む。ここで、塗布される材料は、例えばフォトレジストであり、これを除去する工程は、例えばアッシングを含むものである。   As described above, the method for manufacturing a three-dimensional structure according to the present invention forms a plurality of cross-sectional shape members according to the slice pattern of the three-dimensional structure held in the air via the holding member on the first substrate. A step, a step of disposing an inclusion for preventing breakage of the holding member at the time of joining the cross-sectional member in the subsequent step, between the first substrate and the cross-sectional member, and the cross-sectional member as the second substrate And sequentially laminating by bonding and transferring. The step of disposing the inclusion includes a step of applying a material of the inclusion on the first substrate and a step of curing the applied material. Further, when the applied material covers a part or all of at least one of the holding member and the cross-sectional shape member, a step of removing the covering material is included. Here, the applied material is, for example, a photoresist, and the step of removing it includes, for example, ashing.

このように、本発明では、断面形状部材の下部の空隙をレジストやポリイミド等の介在物により埋めることで、上記空隙をなくするか、またはその大きさを小さくすることができ、断面形状部材の接合時の連結部材のたわみを少なくすることが出来る。また、介在物の存在でFABが下部基板に照射されないため、断面形状部材と下部基板との接合を防ぐことができる。これにより、3次元構造体の製造上の歩留まりが改善される。   As described above, in the present invention, by filling the gap below the cross-sectional shape member with inclusions such as resist and polyimide, the gap can be eliminated or the size thereof can be reduced. Deflection of the connecting member during joining can be reduced. Further, since the FAB is not irradiated to the lower substrate due to the inclusions, it is possible to prevent the cross-sectional member and the lower substrate from being joined. Thereby, the manufacturing yield of the three-dimensional structure is improved.

本発明は、光通信、光インターコネクション、オプトエレクトロニクスや光計測の分野において、光導波路、光共振器、近接場光学プローブ、複屈折素子、フィルター、分岐素子、波面変換素子や偏向素子として使用される、回折型の光学素子、周期構造をもつ多層膜やフォトニック結晶等を含む3次元構造体の製造方法及び3次元構造体製造用基板に関するものであり、産業上の利用可能性がある。   The present invention is used as an optical waveguide, an optical resonator, a near-field optical probe, a birefringence element, a filter, a branch element, a wavefront conversion element, and a deflection element in the fields of optical communication, optical interconnection, optoelectronics, and optical measurement. The present invention relates to a method for manufacturing a three-dimensional structure including a diffraction optical element, a multilayer film having a periodic structure, a photonic crystal, and the like, and a substrate for manufacturing a three-dimensional structure, and has industrial applicability.

本発明に係る3次元構造体の製造方法に用いるパターン部材を示す図で、(a)はパターン部材加工前、(b)はパターン部材加工後を示す図である。It is a figure which shows the pattern member used for the manufacturing method of the three-dimensional structure which concerns on this invention, (a) is before a pattern member process, (b) is a figure which shows after a pattern member process. 断面形状部材の保持状態の一例を示す図で、(a)は平面図、(b)は(a)におけるA−B断面図、(c)は(a)の一部拡大図である。It is a figure which shows an example of the holding | maintenance state of a cross-sectional shape member, (a) is a top view, (b) is AB sectional drawing in (a), (c) is the partially expanded view of (a). (a)〜(d)は断面形状部材の接合時における保持部材の破断を防止するための介在物を第1の基板と断面形状部材との間に設ける方法の一例を説明するための図である。(A)-(d) is a figure for demonstrating an example of the method of providing the inclusion for preventing the fracture | rupture of a holding member at the time of joining of a cross-sectional shape member between a 1st board | substrate and a cross-sectional shape member. is there. (a)は本発明に係る3次元構造体の製造方法に用いられる製造装置の一例を示す図、(b)はこれにより作製されるウッドパイル型3次元フォトニック結晶の一例を示す図である。(A) is a figure which shows an example of the manufacturing apparatus used for the manufacturing method of the three-dimensional structure which concerns on this invention, (b) is a figure which shows an example of the woodpile type | mold three-dimensional photonic crystal produced by this. . (a)〜(g)は本発明に係る3次元構造体の製造方法の一実施例を示す図である。(A)-(g) is a figure which shows one Example of the manufacturing method of the three-dimensional structure which concerns on this invention.

符号の説明Explanation of symbols

1 断面形状部材
2 連結部材
3 枠状部材
4 柱状部
5 枠部
6 接続部
7 保持部材
10 第1の基板
15 パターン部材
40 3次元フォトニック結晶
60 第2の基板
90 空隙
91 樹脂
92 アッシング
93 介在物
DESCRIPTION OF SYMBOLS 1 Section shape member 2 Connection member 3 Frame-shaped member 4 Column-shaped part 5 Frame part 6 Connection part 7 Holding member 10 1st board | substrate 15 Pattern member 40 3D photonic crystal 60 2nd board | substrate 90 Cavity 91 Resin 92 Ashing 93 Interposition object

Claims (12)

第1の基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材を、第2の基板上に順次接合転写して積層する工程を備える3次元フォトニック結晶の製造方法において、前記断面形状部材の接合時における前記保持部材の破断を防止するための介在物を前記第1の基板と前記断面形状部材との間に設けたことを特徴とする3次元フォトニック結晶の製造方法。 A plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure via the holding member on the first substrate, a three-dimensional with a step of laminating sequentially joined transferred onto the second substrate In the photonic crystal manufacturing method, an inclusion for preventing breakage of the holding member at the time of joining of the cross-sectional members is provided between the first substrate and the cross-sectional member. A method for producing a three-dimensional photonic crystal . 前記介在物が、後処理で除去可能な材料からなることを特徴とする請求項1記載の3次元フォトニック結晶の製造方法。 The method for producing a three-dimensional photonic crystal according to claim 1, wherein the inclusion is made of a material that can be removed by post-processing. 前記後処理で除去可能な材料が、フォトレジストであることを特徴とする請求項2記載の3次元フォトニック結晶の製造方法。 3. The method for producing a three-dimensional photonic crystal according to claim 2, wherein the material that can be removed by the post-treatment is a photoresist. 前記断面形状部材の接合が、常温接合で行われることを特徴とする請求項1〜3のいずれかに記載の3次元フォトニック結晶の製造方法。 The method for producing a three-dimensional photonic crystal according to any one of claims 1 to 3, wherein the joining of the cross-sectional members is performed by room temperature joining. 第1の基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材を形成する工程と、後工程の断面形状部材の接合時における前記保持部材の破断を防止するための介在物を前記第1の基板と前記断面形状部材との間に配置する工程と、前記断面形状部材を第2の基板上に順次接合転写して積層する工程とを備えることを特徴とする3次元フォトニック結晶の製造方法。 Forming a plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure via the holding member on the first substrate, the holding member during the bonding of the cross-shaped member in a subsequent step A step of disposing an inclusion for preventing breakage between the first substrate and the cross-sectional shape member; and a step of sequentially bonding and transferring the cross-sectional shape member onto the second substrate and laminating. A method for producing a three-dimensional photonic crystal . 前記介在物を配置する工程が、前記介在物の材料を前記第1の基板上に塗布する工程と、前記塗布された材料を硬化させる工程とを含むことを特徴とする請求項5記載の3次元フォトニック結晶の製造方法。 6. The method according to claim 5, wherein the step of disposing the inclusion includes a step of applying a material of the inclusion on the first substrate and a step of curing the applied material. A method for producing a two-dimensional photonic crystal . 前記塗布された材料が前記保持部材および断面形状部材の少なくとも一方の一部または全部を覆っている場合に、前記覆っている材料を除去する工程を含むことを特徴とする請求項6記載の3次元フォトニック結晶の製造方法。 7. The method according to claim 6, further comprising the step of removing the covering material when the applied material covers a part or all of at least one of the holding member and the cross-sectional shape member. A method for producing a two-dimensional photonic crystal . 前記塗布された材料が、フォトレジストであることを特徴とする請求項7記載の3次元フォトニック結晶の製造方法。 The method for producing a three-dimensional photonic crystal according to claim 7, wherein the applied material is a photoresist. 前記覆っている材料を除去する工程が、アッシングを含むものであることを特徴とする請求項8記載の3次元フォトニック結晶の製造方法。 The method for producing a three-dimensional photonic crystal according to claim 8, wherein the step of removing the covering material includes ashing. 複数の断面形状部材を順次接合転写して積層する工程を備える3次元フォトニック結晶の製造方法に用いる3次元フォトニック結晶製造用基板であって、基板と、前記基板上に保持部材を介して保持された3次元構造体のスライスパターンに応じた複数の断面形状部材と、前記基板と前記断面形状部材との間に設けられた前記断面形状部材の接合時における前記保持部材の破断を防止するための介在物とを備えたことを特徴とする3次元フォトニック結晶製造用基板。 A substrate for manufacturing a three-dimensional photonic crystal used in a method for manufacturing a three-dimensional photonic crystal comprising a step of sequentially joining, transferring, and laminating a plurality of cross-sectional shape members, the substrate and a holding member on the substrate via a holding member prevention and a plurality of cross-sectional shape member in accordance with the slice pattern of retained three-dimensional structure, the breakage of the holding member during the bonding of the cross-sectional shape member provided between the cross-sectional shape member and the substrate And a substrate for manufacturing a three-dimensional photonic crystal , characterized in that the substrate includes an inclusion for the purpose. 前記介在物が、後処理で除去可能な材料からなることを特徴とする請求項10記載の3次元フォトニック結晶製造用基板。 The substrate for manufacturing a three-dimensional photonic crystal according to claim 10, wherein the inclusion is made of a material that can be removed by post-processing. 前記後処理で除去可能な材料が、フォトレジストであることを特徴とする請求項11記載の3次元フォトニック結晶製造用基板。 12. The substrate for manufacturing a three-dimensional photonic crystal according to claim 11, wherein the material that can be removed by the post-treatment is a photoresist.
JP2005162863A 2005-06-02 2005-06-02 Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal Expired - Fee Related JP4645309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162863A JP4645309B2 (en) 2005-06-02 2005-06-02 Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162863A JP4645309B2 (en) 2005-06-02 2005-06-02 Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal

Publications (2)

Publication Number Publication Date
JP2006337758A JP2006337758A (en) 2006-12-14
JP4645309B2 true JP4645309B2 (en) 2011-03-09

Family

ID=37558364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162863A Expired - Fee Related JP4645309B2 (en) 2005-06-02 2005-06-02 Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal

Country Status (1)

Country Link
JP (1) JP4645309B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5845679B2 (en) 2011-07-21 2016-01-20 セイコーエプソン株式会社 Electro-optical device, method of manufacturing electro-optical device, and projection display device
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
KR102603675B1 (en) 2016-05-06 2023-11-16 매직 립, 인코포레이티드 Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating
JP7142015B2 (en) * 2017-01-27 2022-09-26 マジック リープ, インコーポレイテッド Diffraction gratings formed by metasurfaces with differently directed nanobeams
EP3574350A4 (en) 2017-01-27 2020-12-09 Magic Leap, Inc. Antireflection coatings for metasurfaces
CN109917502A (en) * 2019-02-28 2019-06-21 上海集成电路研发中心有限公司 A kind of two-dimensional grating structure and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000180606A (en) * 1998-12-15 2000-06-30 Fuji Xerox Co Ltd Optical element and manufacture thereof
JP3161362B2 (en) * 1997-05-01 2001-04-25 富士ゼロックス株式会社 Microstructure, its manufacturing method, its manufacturing apparatus, substrate and molding die
JP2003043274A (en) * 2001-07-27 2003-02-13 Inst Of Physical & Chemical Res Three-dimensional photonic crystal, method for manufacturing the crystal and probe
JP2004188513A (en) * 2002-12-09 2004-07-08 Fuji Xerox Co Ltd Method for manufacturing three-dimensional structure, and manufacturing part
JP2004347788A (en) * 2003-05-21 2004-12-09 Fuji Xerox Co Ltd Method for manufacturing three-dimensional structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3161362B2 (en) * 1997-05-01 2001-04-25 富士ゼロックス株式会社 Microstructure, its manufacturing method, its manufacturing apparatus, substrate and molding die
JP2000180606A (en) * 1998-12-15 2000-06-30 Fuji Xerox Co Ltd Optical element and manufacture thereof
JP2003043274A (en) * 2001-07-27 2003-02-13 Inst Of Physical & Chemical Res Three-dimensional photonic crystal, method for manufacturing the crystal and probe
JP2004188513A (en) * 2002-12-09 2004-07-08 Fuji Xerox Co Ltd Method for manufacturing three-dimensional structure, and manufacturing part
JP2004347788A (en) * 2003-05-21 2004-12-09 Fuji Xerox Co Ltd Method for manufacturing three-dimensional structure

Also Published As

Publication number Publication date
JP2006337758A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4645309B2 (en) Method for producing three-dimensional photonic crystal and substrate for producing three-dimensional photonic crystal
EP1130626B1 (en) Method of manufacturing a photonic crystal structure
US7244385B2 (en) Process for production of three-dimensional photonic crystal as well as probe used therefor
JP2007225688A (en) Method of forming three-dimensional photonic crystal
JP2005157336A (en) Method for fabrication of optical element, and optical element having three-dimensional laminated structure
JP4341296B2 (en) Method for producing photonic crystal three-dimensional structure
JP2003270417A (en) Periodical structural body of refractive index and method for manufacturing the same
JP4936530B2 (en) Manufacturing method of three-dimensional photonic crystal
JP2004219688A (en) Heat bonding method for heterogeneous member
KR101787209B1 (en) Saturable absorber and manufacturing method thereof, and pulse laser device using the same
JP4686786B2 (en) Method for aligning two substrates and method for producing photonic crystal using the same
Schneider et al. Combination lithography for photonic-crystal circuits
US20110075260A1 (en) Grating device and method of fabricating the same
JP2007292952A (en) Optical element and method for manufacturing the same
JP2000180606A (en) Optical element and manufacture thereof
WO2021214862A1 (en) Photonic crystal optical element and method for manufacturing same
KR101339647B1 (en) Method of manufacturing photonic crystal bandgap device using wet etching process
JP2007003810A (en) Optical element and method of manufacturing same
JP2006323088A (en) Manufacturing method of donor substrate and minute structure, and donor substrate
JP2005331812A (en) Three-dimensional photonic crystal structure and its manufacturing method
Sakanas et al. Consequences of Non-uniform Expansion of InP-on-Si Wafers for the Performance of Buried Heterostructure Photonic Crystal Lasers
Okano et al. Fabrication and analysis of GaAs triangular two-dimensional photonic crystals on silicon wafers
JP2004053789A (en) Optical circuit substrate and its manufacturing method
Taysing-Lara et al. Fabrication of reconfigurable photonic bandgap-MEMS waveguide device
JP4150653B2 (en) Ion exchange type optical waveguide device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4645309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees