JP4638132B2 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP4638132B2
JP4638132B2 JP2003131960A JP2003131960A JP4638132B2 JP 4638132 B2 JP4638132 B2 JP 4638132B2 JP 2003131960 A JP2003131960 A JP 2003131960A JP 2003131960 A JP2003131960 A JP 2003131960A JP 4638132 B2 JP4638132 B2 JP 4638132B2
Authority
JP
Japan
Prior art keywords
power load
fuel cell
load
constant output
following operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003131960A
Other languages
Japanese (ja)
Other versions
JP2004335368A (en
Inventor
元晴 安宅
裕人 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2003131960A priority Critical patent/JP4638132B2/en
Publication of JP2004335368A publication Critical patent/JP2004335368A/en
Application granted granted Critical
Publication of JP4638132B2 publication Critical patent/JP4638132B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システムに係り、特に、電力負荷状況に応じて運転方式を切換えることで耐久性を向上させた燃料電池システムに関する。
【0002】
【従来の技術】
従来のこの種の燃料電池システムとして、燃料電池システムの制御装置は、蓄電池と、運転スケジュール作成部と、制御部とを備え、運転スケジュール作成部は1日の時間帯を3つの時間帯として、高電気料金時間帯、等価時間帯、低電気料金時間帯に分割し、高電気料金時間帯では燃料電池は電力負荷が消費する量の電力を発電し、等価時間帯では燃料電池は消費されなかった電力を蓄電池に充電し、低電気料金時間帯では燃料電池を停止もしくは第一の運転能力で運転するようにしている(例えば、特許文献1参照)。
【特許文献1】
特開2002−198079号公報(請求項1、図1)
【0003】
【発明が解決しようとする課題】
ところで、前記構造の燃料電池システムの制御装置は、導入効果(ランニングコスト削減)を得るために、電力負荷に追従して出力を変動させる方式がとられるが、電力負荷は時々刻々で大きく変動するため、それに伴って燃料電池の周辺環境(温度、湿度等)も変動し、例えば熱ストレス等によって燃料電池スタック、特に高分子電解質膜やMEA(電解質膜と電極のアッセンブリー)、さらには周辺機器の劣化を早める虞があった。
【0004】
本発明は、このような問題に鑑みてなされたものであって、その目的とするところは、燃料電池スタックに大きな熱ストレスを与えることを防止し、高分子電解質膜や電極アッセンブリーの耐久性を向上し、周辺機器の劣化を遅らせて耐久性を向上できる燃料電池システムを提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成すべく、本発明に係る燃料電池システムは、燃料電池ユニットで電気と熱とを生成し、この電気を商用電源に供給して電気機器に出力すると共に、生成された熱を熱機器に出力するシステムであって、このシステムは、負荷追従運転と、電力負荷に関係なく前記燃料電池ユニットの定格出力より低い一定の出力で運転する一定出力運転とを切換えて運転する
【0006】
この構成により、本発明の燃料電池システムは、常時負荷追従運転を行なうのではなく、そのときの負荷状況に応じて負荷追従運転と、一定出力運転とを切換えて運転するため、負荷が大きく変動して燃料電池を頻繁に高負荷運転に切換えるというように、燃料電池ユニットの燃料電池スタックに大きな熱ストレスを与えることがなくなり、燃料電池スタックの耐久性を向上させることができる。また、停止状態と負荷追従運転とを切換えるシステムと比較すると、起動損を少なくできると共に、切換え時の熱ストレスが少ないため、耐久性を向上できる。
【0007】
そして、本発明に係る燃料電池システムは、電力負荷計測手段を備え、電力負荷計測手段で計測された電力負荷が所定値以下のときは一定出力運転を行ない、電力負荷が所定値より大きいときは負荷追従運転を行なうことを特徴としている。この構成によれば、電力負荷が所定値以下で小さいときには一定出力運転して燃料電池ユニットで使用するエネルギーを削減し、電力負荷が所定値より大きいときだけ負荷追従運転をするためエネルギーを効率良く使用でき、燃料電池スタックに対する熱ストレスを少なくできる。
【0008】
さらに、本発明に係る燃料電池システムの好ましい具体的な他の態様としては、前記システムは、タイマー手段をさらに備え、時間帯により負荷追従運転と一定出力運転とを切換えることを特徴としている。この構成によれば、夜間等の電力負荷の小さい時間帯は一定出力運転し、昼間等の電力負荷の大きい時間帯は負荷追従運転することで燃料電池スタック等への熱ストレスを少なくすることができ、耐久性を向上できる。しかも、簡単な構成で達成することができる。
【0009】
また、前記システムは、電力負荷計測手段と時間計測手段とをさらに備え、通常は負荷追従運転を行ない、電力負荷計測手段で計測された電力負荷が所定値以下の状態が所定時間続いたときには一定出力運転に切換え、その状態で電力負荷が所定値以上の状態が所定時間続いたときには負荷追従運転に復帰させるように制御すると好適である。このように構成すると、電力負荷が瞬間的に、あるいは短時間だけ変動したときには運転状態を切換えないため、燃料電池スタックへの熱ストレスや周辺機器への影響を防止することができ、耐久性を向上させることができる。
【0010】
さらに、前記システムは、電力負荷計測手段とその演算手段とをさらに備え、通常は負荷追従運転を行ない、電力負荷計測手段で計測され演算手段で積算された直前までの所定時間分の電力負荷積算量又は電力負荷平均値が所定値以下のときには一定出力運転に切換え、一定出力運転時に電力負荷積算量又は電力負荷平均値が所定値より大きいときには負荷追従運転に復帰させるように制御すると好ましい。このように構成すると、瞬間的な電力負荷の変動や、短時間の電力負荷の変動は電力負荷積算量や電力負荷平均値で均されるため、運転切換えが頻繁に行われず燃料電池スタックへの熱ストレスや周辺機器への影響を防止することができ、システムの耐久性を向上させることができる。また、エネルギーの消費を減らすことができる。
【0011】
【発明の実施の形態】
以下、本発明に係る燃料電池システムとして、燃料電池コジェネレーションシステムの第1の実施形態を図面に基づき詳細に説明する。図1は、本実施形態に係る燃料電池コジェネレーションシステムのシステム構成図、図2は、図1のシステムのある1日の電力負荷の変動を示すグラフと、その切換え状態を示す運転パターン図である。
【0012】
図1において、燃料電池コジェネレーションシステムは、都市ガス等の燃料ガス2が燃料電池ユニット10に供給され、燃料電池ユニット10で電気と熱とを生成し、電気を商用電源1に供給して電気機器5に出力すると共に、生成した熱を給湯等の熱機器6に出力するシステムである。燃料電池ユニット10は、燃料を改質する改質装置11、燃料電池スタック12、インバータ13及び熱交換器14を備え、これらは制御装置15により制御される。
【0013】
改質装置11は高温の状態で燃料ガス2の炭化水素に水蒸気を加えることによって改質し、水素を得る装置である。燃料電池スタック12は固体高分子型燃料電池であり、ここで水素と酸素を反応させて発生された直流電気はインバータ13に供給され、交流に変換されて商用電源1の幹線ライン4に出力される。熱交換器14は燃料電池スタック12の反応熱回収の他に、改質装置11の排熱回収を行ない、温水を循環させて排熱を市水3が導入された貯湯槽16に蓄熱し、冷暖房や給湯等の熱機器6の熱源として利用する。幹線ライン4は各種電気機器等の電気負荷5に接続され、貯湯槽16から給湯器、床暖房等の熱機器6に温水用の配管が接続される。なお、燃料ガス2は、都市ガス、LPG、天然ガス等を用いてもよい。また、熱機器6の前に補助熱源7を設置し湯温が低いときに加熱するようにしてもよい。
【0014】
制御装置15はマイクロコンピュータ等で構成され、電気機器5や熱機器6の使用状況に対応して、燃料電池ユニット10を起動、停止させ、要求される電力や熱を発生させるものであり、プログラムタイマー機能を備えていてもよい。プログラムタイマーは、1日の時刻を計測すると共に、例えば所定の時刻にシステムを起動させ、他の所定時刻にシステムを停止させることができる。
【0015】
このシステムは、電力負荷計測手段20をさらに幹線ライン4に備えており、この電力負荷計測手段は、例えば住宅内で使用される電気機器6で使用される電力負荷を計測するものである。そして、制御装置15は、電力負荷計測手段20からの信号出力に基づき負荷追従運転と一定出力運転とを切換えてシステムを運転し、計測された電力負荷が所定値以下のときは一定出力運転を行ない、電力負荷が所定値より大きいときは負荷追従運転を行なう。負荷追従運転は、使用される電力負荷の量に応じて出力を変動させて運転するものである。また、一定出力運転は、電力負荷に関係なく、燃料電池ユニット10の定格出力より低い一定の出力で運転するものである。
【0016】
電力負荷に追従する負荷追従運転の場合、給湯等の熱負荷に関係なく運転されるため、給湯負荷の小さい温暖期には熱余りを発生させ、総合効率を低下させる可能性がある。一定出力運転は、燃料電池ユニット10の定格出力より少ない出力で運転するものであり、電力負荷が増えたときには商用電源1から足らない電力を供給して対応する。このシステムでは、燃料電池ユニット10を停止させる間歇運転(DSS運転等)は行なわないため、システムの起動、停止を行なう際の起動損によるデメリットが少なく、燃料電池スタック12にかかる熱ストレスを少なくできる。
【0017】
前記の如く構成された本実施形態の燃料電池コジェネレーションシステムの動作について以下に説明する。燃料電池コジェネレーションシステムの定格出力を1000W、下限出力を200Wとする。図2aは一般的な家庭での1日の電力負荷を1時間おきにプロットしたグラフである。
【0018】
図2aに示すように、電力負荷は0時から5時までは電力負荷、及びその変動が小さく、5時から電力負荷は急激に増大し変動の大きい時間帯が翌日の0時まで続く。そこで、電力負荷計測手段20で計測された電力負荷が所定値(例えば、200W)以下のときは一定出力運転を行ない、電力負荷が所定値(例えば、200W)より大きいときは負荷追従運転を行なうように制御装置15が燃料電池ユニット10の運転を制御する。
【0019】
この結果、図2bに示すように、電気負荷が200W以下となる、0時30分頃から5時頃までの時間帯と、14時から15時の時間帯は一定出力運転を行ない、200Wを超える5時から14時の時間帯と、15時から0時30分までの時間帯は負荷追従運転を行なう。このようにシステムの運転を制御することにより、熱余りを防止してエネルギーコストを低減し、燃料電池スタック12への熱ストレスを防止した効率の良い運転が可能となる。そして、燃料電池ユニット10やこれに付随する周辺機器の耐久性を向上することができる。なお、夜間等の一定出力運転で発生する電力は売電することができ、このとき生成する熱は貯湯槽16に蓄えられる。また、燃料電池ユニット10で賄えない電力は商用電源から買電して対応する。
【0020】
従来の負荷追従運転の場合、図7aに示すように電力負荷に応じて出力を大きく変動させるため、燃料電池スタックへの熱ストレスが大きく変動して耐久性を落とす虞があるが、本実施形態の場合は図2aに示すように、燃料電池(FC)出力を200〜1000Wの範囲で変動させて熱ストレスを低減できるため、耐久性を向上できる。また、従来のDSS運転は、図7bに示すように夜間の時間帯は燃料電池ユニット10を停止している。この運転では夜間のエネルギーコストを「0」にできるためコスト低減が可能となるが、起動、停止に伴う熱ストレスや、起動時の起動損が大きいというデメリットがある。
【0021】
つぎに、本発明の他の実施形態を図3,4に基づき詳細に説明する。図3は本発明に係る燃料電池コジェネレーションシステムの第2の実施形態のシステム構成図、図4はその運転パターン図である。なお、この実施形態のシステムは、前記した実施形態に対し、タイマー手段をさらに備え、時間帯により負荷追従運転と一定出力運転とを切換えることを特徴とする。そして、他の実質的に同等の構成については同じ符号を付して詳細な説明は省略する。
【0022】
図4において、制御装置15はタイマー手段21を備えており、タイマー手段はプログラムタイマー機能を備えており、1日の時刻を計測すると共に、例えば所定の時刻に制御装置15に切換え信号を送り燃料電池ユニット10を負荷追従運転させると共に、他の所定時刻に制御装置15に切換え信号を送って燃料電池ユニット10を一定出力運転させる等の運転切換えを行なうことができる。1日に多数回、切換えを行なうことも勿論可能である。
【0023】
この実施形態においては、図4に示すように、1時から5時までは燃料電池ユニット10の下限出力である200Wの一定出力運転を行ない、5時から翌日1時までは負荷追従運転を行なうように制御装置15で制御する。この時間帯については、ユーザーが任意に設定してもよいし、システムに備えた電力負荷計測手段20の計測値に基づいて設定してもよい。また、例えば平日は朝5時から負荷追従運転とし、休日は朝7時から負荷追従運転とする等、タイマー手段21のプログラム機能により適宜変更することができる。これにより、燃料電池スタック12への熱ストレスを防止した効率の良い運転が可能となると共に、燃料電池ユニット10やこれに付随する周辺機器の耐久性を向上することができる。
【0024】
さらに、本発明の他の実施形態を図5に基づき詳細に説明する。図5は本発明に係る燃料電池コジェネレーションシステムの第3の実施形態のシステム構成図である。なお、この実施形態のシステムは、前記した第1の実施形態に対し、システムは電力負荷計測手段と時間計測手段とをさらに備え、通常は負荷追従運転を行ない、電力負荷計測手段で計測された電力負荷が所定値以下の状態が所定時間続いたときには一定出力運転に切換え、その状態で電力負荷が所定値以上の状態が所定時間続いたときには負荷追従運転に復帰させるものである。
【0025】
図5において、制御装置15は前記第2の実施形態と同様のタイマー手段21を時間計測手段として備えており、燃料電池ユニット10を起動、停止させることができると共に、時間間隔を計測できるものである。すなわち、タイマー手段21は電力負荷の変化の状態を時間計測することができ、例えば電力負荷が200W以下や、200W以上の状態がどの程度の時間続くかを計測できる機能を有する。
【0026】
この実施形態においては、タイマー手段21は電力負荷が、例えば200W以下の状態が10分間続いた場合は一定出力運転に切換え、その状態で電力負荷が200W以上の状態が10分間続いたときには負荷追従運転に復帰させるように、切換え信号を制御装置15に送出する。このように運転を切換える制御を行なうと、例えば10分未満の200W以下の電力負荷変動は無視することができるため、一定出力運転への切換えは行われず、燃料電池スタック12への熱ストレスを防止できる。なお、計測する時間間隔を任意に設定できることは勿論である。この運転パターンの場合も、燃料電池ユニット10を起動、停止させないため、燃料電池スタック12へ熱ストレスがかかることを防止でき、耐久性を向上できる。
【0027】
さらに、本発明の他の実施形態を図6に基づき詳細に説明する。図6は本発明に係る燃料電池コジェネレーションシステムの第4の実施形態のシステム構成図である。なお、この実施形態のシステムは、前記した第1の実施形態に対し、システムは電力負荷計測手段とその演算手段とをさらに備え、通常は負荷追従運転を行ない、電力負荷計測手段で計測され演算手段で積算された直前までの所定時間分の電力負荷積算量又は電力負荷平均値が所定値以下のときには一定出力運転に切換え、一定出力運転時に電力負荷積算量又は電力負荷平均値が所定値より大きいときには負荷追従運転に復帰させることを特徴とする。
【0028】
図6において、このシステムは電力負荷計測手段20で計測した電力負荷を積算する演算手段22とを備えており、演算手段22の出力は制御装置15に入力される。演算手段22は演算する直前までの所定時間分の電力負荷積算量を算出できると共に、所定時間で割って電力負荷平均値を算出できる。そして、制御装置15は演算装置22で演算された電力負荷積算量又は電力負荷平均値を基準として、燃料電池ユニット10の運転を切換えることができるものである。
【0029】
すなわち、制御装置15は、通常は負荷追従運転を行なうように制御し、演算装置22で演算された例えば30分間の電力負荷積算量又は電力負荷平均値が、例えば時間あたり200W以下のときには一定出力運転に切換え、一定出力運転時に時間あたり200Wより大きくなったときには負荷追従運転に復帰させるように制御する。
【0030】
このため、瞬間的な電力負荷の低減や、30分未満の電力負荷の低減は平均化されて演算装置22から信号が出力されず、一定出力運転への切換えは行われない。なお、時間設定は30分に限らず、任意の時間に設定できる。このように瞬間的、あるいは極短時間の電力負荷変動で運転が頻繁に切換えられることがなくなり、燃料電池スタック12へ熱ストレスが頻繁にかかることを防止することができる。そして、周辺機器の劣化を遅らせることができる。
【0031】
以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行なうことができるものである。例えば、燃料電池は固体高分子型燃料電池の例を示したが、リン酸型、溶融炭酸塩型、固体電解質型等でもよいことは勿論である。
【0032】
また、第2の実施形態のタイマー手段は制御装置内に設置されるものに限らず制御装置外でもよい。第3の実施形態のタイマー手段は制御装置と電力負荷計測手段との間に設置してもよい。第4の実施形態の演算手段は制御装置に含まれるように設置してもよい。さらに、前記の各実施形態では、燃料電池コジェネレーションシステムについて説明したが、コジェネレーションシステムでなくてもよいことは勿論である。
【0033】
【発明の効果】
以上の説明から理解できるように、本発明の燃料電池システムは、負荷追従運転と一定出力運転とを切換えて運転するで、燃料電池スタックへの熱ストレスを少なくすることができ、燃料電池ユニットや周辺機器の耐久性を向上することができる。また、燃料電池ユニットを停止させないため、起動損を少なくしてエネルギー効率を高めることができる。
【0034】
さらに、電力負荷計測手段を備えて、電力負荷に応じて一定出力運転と負荷追従運転を切換えると、エネルギー効率をさらに高めることができる。タイマー手段により時間帯を決めて運転状態を切換えると、簡単な構成でエネルギー効率を高めることができる。電力負荷計測手段と時間計測手段とを備えて運転状態を切換えると、瞬間的、あるいは短時間の電力負荷変動で運転を切換えないため、耐久性をさらに向上できる。また、電力負荷計測手段とその演算手段とを備えて運転状態を切換えると、同様に瞬間的、あるいは短時間の電力負荷変動で運転を切換えないため、耐久性をさらに向上できる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池コジェネレーションシステムの第1の実施形態を示すシステム構成図。
【図2】(a)は図1のシステムのある1日の電力負荷の変動を示すグラフ、(b)は第1の実施形態による切換え状態を示す運転パターン図。
【図3】本発明に係る燃料電池コジェネレーションシステムの第2の実施形態を示すシステム構成図。
【図4】図3の第2の実施形態による切換え状態を示す運転パターン図。
【図5】本発明に係る燃料電池コジェネレーションシステムの第3の実施形態を示すシステム構成図。
【図6】本発明に係る燃料電池コジェネレーションシステムの第4の実施形態を示すシステム構成図。
【図7】(a)は従来の負荷追従運転の運転パターン図、(b)は従来のDSS運転の運転パターン図。
【符号の説明】
1…商用電源、2…燃料ガス、10…燃料電池ユニット、12…燃料電池スタック、15…制御装置、20…電力負荷計測手段、21…タイマー手段、22…演算手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell system, and more particularly to a fuel cell system in which durability is improved by switching an operation method according to a power load situation.
[0002]
[Prior art]
As a conventional fuel cell system of this type, the control device of the fuel cell system includes a storage battery, an operation schedule creation unit, and a control unit, and the operation schedule creation unit sets the time zone of the day as three time zones, It is divided into a high electricity bill time zone, an equivalent time zone, and a low electricity bill time zone. In the high electricity bill time zone, the fuel cell generates the amount of power consumed by the power load, and the fuel cell is not consumed in the equivalent time zone. The storage battery is charged with the electric power, and the fuel cell is stopped or operated with the first operating capacity in the low electricity bill period (see, for example, Patent Document 1).
[Patent Document 1]
JP 2002-198079 A (Claim 1, FIG. 1)
[0003]
[Problems to be solved by the invention]
By the way, in order to obtain the introduction effect (running cost reduction), the control device of the fuel cell system having the above structure adopts a method of changing the output following the power load. However, the power load varies greatly from moment to moment. Accordingly, the surrounding environment (temperature, humidity, etc.) of the fuel cell also fluctuates. For example, the fuel cell stack, particularly a polymer electrolyte membrane or MEA (an assembly of an electrolyte membrane and an electrode) due to thermal stress, etc. There was a risk of rapid deterioration.
[0004]
The present invention has been made in view of such problems, and the object of the present invention is to prevent the fuel cell stack from being subjected to large thermal stress, and to improve the durability of the polymer electrolyte membrane and the electrode assembly. An object of the present invention is to provide a fuel cell system that can improve the durability by delaying deterioration of peripheral devices.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a fuel cell system according to the present invention generates electricity and heat in a fuel cell unit, supplies this electricity to a commercial power source and outputs it to an electrical device, and heats the generated heat. a system for outputting to the device, the system is operated by switching the load following operation, a constant power operation operating at a low constant output than the rated output of the fuel cell unit regardless of the power load.
[0006]
With this configuration, the fuel cell system of the present invention does not always perform load following operation, but switches between load following operation and constant output operation according to the load condition at that time, so the load varies greatly. Thus, the fuel cell is frequently switched to a high load operation, so that no great thermal stress is applied to the fuel cell stack of the fuel cell unit, and the durability of the fuel cell stack can be improved. Further, compared with a system that switches between a stopped state and a load following operation, the start-up loss can be reduced, and the durability can be improved because the thermal stress at the time of switching is small.
[0007]
The fuel cell system according to the present invention includes power load measuring means, and performs a constant output operation when the power load measured by the power load measuring means is less than or equal to a predetermined value, and when the power load is greater than a predetermined value. It is characterized by performing load following operation. According to this configuration, when the power load is less than or equal to a predetermined value, a constant output operation is performed to reduce the energy used in the fuel cell unit, and the load following operation is performed only when the power load is greater than the predetermined value. It can be used and heat stress on the fuel cell stack can be reduced.
[0008]
Furthermore, as another preferable specific aspect of the fuel cell system according to the present invention, the system further includes a timer unit, and is characterized in that the load following operation and the constant output operation are switched according to a time zone. According to this configuration, it is possible to reduce the thermal stress on the fuel cell stack or the like by performing a constant output operation at a time when the power load is small such as nighttime and performing a load following operation at a time when the power load is large such as daytime. And durability can be improved. In addition, this can be achieved with a simple configuration.
[0009]
The system further includes a power load measuring unit and a time measuring unit, and normally performs load following operation, and is constant when the power load measured by the power load measuring unit is below a predetermined value for a predetermined time. It is preferable to switch to the output operation and control to return to the load following operation when the state in which the power load is equal to or higher than a predetermined value continues for a predetermined time. With this configuration, the operating state is not switched when the power load fluctuates momentarily or for a short period of time, so it is possible to prevent thermal stress on the fuel cell stack and influence on peripheral devices, and durability is improved. Can be improved.
[0010]
Further, the system further includes a power load measuring unit and a calculation unit thereof, and normally performs load following operation, and integrates the power load for a predetermined time until immediately before being measured by the power load measuring unit and integrated by the calculation unit. It is preferable to control to switch to a constant output operation when the amount or the power load average value is less than or equal to a predetermined value, and to return to the load following operation when the power load integrated amount or the power load average value is greater than a predetermined value during the constant output operation. With this configuration, instantaneous power load fluctuations and short-time power load fluctuations are averaged by the power load integration amount and the power load average value, so that the operation switching is not frequently performed and the fuel cell stack It is possible to prevent thermal stress and influence on peripheral devices, and improve the durability of the system. In addition, energy consumption can be reduced.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a fuel cell cogeneration system according to a first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram of a fuel cell cogeneration system according to the present embodiment, and FIG. 2 is a graph showing fluctuations of a daily power load of the system of FIG. 1 and an operation pattern diagram showing its switching state. is there.
[0012]
In FIG. 1, the fuel cell cogeneration system is such that a fuel gas 2 such as city gas is supplied to a fuel cell unit 10, electricity and heat are generated by the fuel cell unit 10, and electricity is supplied to a commercial power source 1 to generate electricity. In this system, the generated heat is output to the heat device 6 such as hot water supply as well as being output to the device 5. The fuel cell unit 10 includes a reformer 11 that reforms fuel, a fuel cell stack 12, an inverter 13, and a heat exchanger 14, which are controlled by a controller 15.
[0013]
The reforming device 11 is a device that obtains hydrogen by reforming the hydrocarbons of the fuel gas 2 by adding water vapor in a high temperature state. The fuel cell stack 12 is a polymer electrolyte fuel cell. Here, direct current electricity generated by reacting hydrogen and oxygen is supplied to an inverter 13, converted into alternating current, and output to the main line 4 of the commercial power source 1. The In addition to the reaction heat recovery of the fuel cell stack 12, the heat exchanger 14 recovers the exhaust heat of the reformer 11, circulates hot water, stores the exhaust heat in the hot water storage tank 16 into which the city water 3 is introduced, It is used as a heat source for the heat equipment 6 such as air conditioning and hot water supply. The main line 4 is connected to an electric load 5 such as various electric devices, and a hot water pipe is connected from the hot water storage tank 16 to a thermal device 6 such as a water heater or floor heating. The fuel gas 2 may be city gas, LPG, natural gas, or the like. Alternatively, an auxiliary heat source 7 may be installed in front of the heat device 6 to heat the hot water when the temperature is low.
[0014]
The control device 15 is composed of a microcomputer or the like, and starts and stops the fuel cell unit 10 in accordance with the usage status of the electric device 5 and the heat device 6, and generates required power and heat. A timer function may be provided. The program timer measures the time of the day and can start the system at a predetermined time and stop the system at another predetermined time, for example.
[0015]
This system further includes a power load measuring means 20 in the main line 4, and this power load measuring means measures a power load used in an electric device 6 used in a house, for example. Then, the control device 15 operates the system by switching between the load following operation and the constant output operation based on the signal output from the power load measuring means 20, and performs the constant output operation when the measured power load is a predetermined value or less. If the power load is greater than a predetermined value, load following operation is performed. The load following operation is performed by changing the output according to the amount of power load used. The constant output operation is an operation with a constant output lower than the rated output of the fuel cell unit 10 regardless of the power load.
[0016]
In the load following operation that follows the electric power load, the operation is performed regardless of the heat load such as hot water supply. Therefore, there is a possibility that the heat efficiency is generated in the warm season when the hot water supply load is small, and the overall efficiency is lowered. The constant output operation is an operation with an output smaller than the rated output of the fuel cell unit 10, and when the power load is increased, the power is supplied from the commercial power source 1 to cope with it. In this system, since intermittent operation (DSS operation or the like) for stopping the fuel cell unit 10 is not performed, there are few disadvantages due to startup loss when starting and stopping the system, and thermal stress applied to the fuel cell stack 12 can be reduced. .
[0017]
The operation of the fuel cell cogeneration system of the present embodiment configured as described above will be described below. The rated output of the fuel cell cogeneration system is 1000 W, and the lower limit output is 200 W. FIG. 2a is a graph in which a daily power load in a general home is plotted every other hour.
[0018]
As shown in FIG. 2a, the power load is from 0 o'clock to 5 o'clock, and the fluctuation thereof is small. From 5 o'clock, the power load increases rapidly, and a time zone with large fluctuation continues until 0 o'clock the next day. Therefore, when the power load measured by the power load measuring means 20 is a predetermined value (for example, 200 W) or less, a constant output operation is performed, and when the power load is larger than the predetermined value (for example, 200 W), a load following operation is performed. Thus, the control device 15 controls the operation of the fuel cell unit 10.
[0019]
As a result, as shown in FIG. 2b, the electric load becomes 200 W or less, the time zone from about 0:30 to about 5 o'clock and the time zone from 14:00 to 15:00 perform constant output operation, and 200 W The load following operation is performed in the time zone from 5:00 to 14:00 and from 15:00 to 0:30. By controlling the operation of the system in this way, it is possible to perform an efficient operation that prevents excessive heat and reduces energy costs and prevents thermal stress on the fuel cell stack 12. In addition, the durability of the fuel cell unit 10 and peripheral devices associated therewith can be improved. The electric power generated by the constant output operation such as at night can be sold, and the heat generated at this time is stored in the hot water tank 16. Further, electric power that cannot be covered by the fuel cell unit 10 is purchased from a commercial power source.
[0020]
In the conventional load following operation, as shown in FIG. 7a, the output greatly fluctuates in accordance with the power load. Therefore, the thermal stress on the fuel cell stack may fluctuate greatly and the durability may be reduced. In this case, as shown in FIG. 2a, since the fuel cell (FC) output can be varied in the range of 200 to 1000 W to reduce thermal stress, durability can be improved. Further, in the conventional DSS operation, the fuel cell unit 10 is stopped during the night time period as shown in FIG. 7b. In this operation, the energy cost at night can be reduced to “0”, so that the cost can be reduced. However, there is a demerit that a heat loss due to starting and stopping and a large starting loss at the time of starting.
[0021]
Next, another embodiment of the present invention will be described in detail with reference to FIGS. FIG. 3 is a system configuration diagram of a second embodiment of the fuel cell cogeneration system according to the present invention, and FIG. 4 is an operation pattern diagram thereof. In addition, the system of this embodiment is characterized by further comprising a timer means for switching the load follow-up operation and the constant output operation depending on the time zone. Other substantially equivalent configurations are denoted by the same reference numerals, and detailed description thereof is omitted.
[0022]
In FIG. 4, the control device 15 is provided with a timer means 21, and the timer means is provided with a program timer function, which measures the time of the day and sends a switching signal to the control device 15 at a predetermined time, for example. The battery unit 10 can be operated to follow the load, and operation switching such as sending a switching signal to the control device 15 at another predetermined time to cause the fuel cell unit 10 to perform a constant output operation can be performed. Of course, it is possible to perform switching many times a day.
[0023]
In this embodiment, as shown in FIG. 4, a constant output operation of 200 W, which is the lower limit output of the fuel cell unit 10, is performed from 1 to 5 o'clock, and a load following operation is performed from 5 o'clock to 1 o'clock the next day. Control is performed by the control device 15 as described above. About this time slot | zone, a user may set arbitrarily and may set based on the measured value of the electric power load measurement means 20 with which the system was equipped. Further, for example, the load follow-up operation is performed from 5:00 am on weekdays, and the load follow-up operation is performed from 7:00 am on holidays. As a result, it is possible to perform an efficient operation while preventing thermal stress on the fuel cell stack 12, and it is possible to improve the durability of the fuel cell unit 10 and peripheral devices associated therewith.
[0024]
Furthermore, another embodiment of the present invention will be described in detail with reference to FIG. FIG. 5 is a system configuration diagram of a third embodiment of the fuel cell cogeneration system according to the present invention. In addition, the system of this embodiment is further provided with a power load measuring means and a time measuring means with respect to the first embodiment described above, and normally performs a load following operation and is measured by the power load measuring means. When the state where the power load is below the predetermined value continues for a predetermined time, the operation is switched to the constant output operation, and when the state where the power load is equal to or higher than the predetermined value continues for a predetermined time in that state, the operation is returned to the load following operation.
[0025]
In FIG. 5, the control device 15 includes a timer means 21 similar to that of the second embodiment as a time measuring means, which can start and stop the fuel cell unit 10 and measure a time interval. is there. That is, the timer unit 21 can measure the state of change of the power load for a time, and has a function of measuring, for example, how long the power load is 200 W or less or 200 W or more.
[0026]
In this embodiment, the timer means 21 switches to a constant output operation when the power load is 200 W or less for 10 minutes, for example, and when the power load is 200 W or more for 10 minutes in that state, the load follow-up is performed. A switching signal is sent to the control device 15 so as to return to operation. When the control for switching the operation is performed in this way, for example, a power load fluctuation of 200 W or less for less than 10 minutes can be ignored, so the switching to the constant output operation is not performed and the thermal stress on the fuel cell stack 12 is prevented. it can. Of course, the measurement time interval can be set arbitrarily. Also in this operation pattern, since the fuel cell unit 10 is not started and stopped, it is possible to prevent thermal stress from being applied to the fuel cell stack 12 and to improve durability.
[0027]
Furthermore, another embodiment of the present invention will be described in detail with reference to FIG. FIG. 6 is a system configuration diagram of a fourth embodiment of the fuel cell cogeneration system according to the present invention. In addition, the system of this embodiment is further provided with a power load measuring means and its calculation means, and normally performs load following operation, and is measured and calculated by the power load measurement means, as compared with the first embodiment described above. When the power load integrated amount or power load average value for a predetermined time until immediately before being integrated by the means is equal to or less than the predetermined value, the operation is switched to the constant output operation, and during the constant output operation, the power load integrated amount or power load average value is more than the predetermined value. When it is larger, it is returned to the load following operation.
[0028]
In FIG. 6, the system includes a calculation unit 22 that integrates the power load measured by the power load measurement unit 20, and the output of the calculation unit 22 is input to the control device 15. The calculation means 22 can calculate the power load integrated amount for a predetermined time until immediately before the calculation, and can calculate the average power load by dividing by the predetermined time. Then, the control device 15 can switch the operation of the fuel cell unit 10 based on the integrated power load amount or the average power load value calculated by the arithmetic device 22.
[0029]
That is, the control device 15 normally performs control so as to perform load following operation, and for example, when the integrated amount of power load for 30 minutes or the average value of power load calculated by the arithmetic device 22 is 200 W or less per hour, for example, a constant output The operation is switched to the operation, and the control is performed so as to return to the load following operation when it becomes larger than 200 W per hour during the constant output operation.
[0030]
For this reason, instantaneous power load reduction and power load reduction for less than 30 minutes are averaged, no signal is output from the arithmetic unit 22, and switching to constant output operation is not performed. The time setting is not limited to 30 minutes and can be set to any time. As described above, the operation is not frequently switched due to a momentary or extremely short time electric power fluctuation, and it is possible to prevent the fuel cell stack 12 from being frequently subjected to thermal stress. And deterioration of a peripheral device can be delayed.
[0031]
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention described in the claims. Design changes can be made. For example, the fuel cell is an example of a solid polymer fuel cell, but it is of course possible to use a phosphoric acid type, a molten carbonate type, a solid electrolyte type, or the like.
[0032]
Further, the timer means of the second embodiment is not limited to being installed in the control device, but may be outside the control device. The timer means of the third embodiment may be installed between the control device and the power load measuring means. The computing means of the fourth embodiment may be installed so as to be included in the control device. Furthermore, although the fuel cell cogeneration system has been described in each of the above-described embodiments, it is needless to say that the fuel cell cogeneration system may not be used.
[0033]
【The invention's effect】
As can be understood from the above description, the fuel cell system of the present invention can be operated by switching between the load following operation and the constant output operation, so that the thermal stress on the fuel cell stack can be reduced. The durability of peripheral devices can be improved. Further, since the fuel cell unit is not stopped, the start-up loss can be reduced and the energy efficiency can be increased.
[0034]
Furthermore, if the power load measuring means is provided and the constant output operation and the load following operation are switched according to the power load, the energy efficiency can be further improved. Energy efficiency can be increased with a simple configuration by switching the operating state by determining the time zone by the timer means. When the operation state is switched by providing the power load measuring means and the time measuring means, the operation is not switched due to an instantaneous or short-time power load fluctuation, so that the durability can be further improved. Further, if the operation state is switched by providing the power load measuring means and the calculation means, the operation is not switched due to the momentary or short-time power load fluctuation, so that the durability can be further improved.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a first embodiment of a fuel cell cogeneration system according to the present invention.
2A is a graph showing fluctuations of a daily power load of the system of FIG. 1, and FIG. 2B is an operation pattern diagram showing a switching state according to the first embodiment.
FIG. 3 is a system configuration diagram showing a second embodiment of a fuel cell cogeneration system according to the present invention.
4 is an operation pattern diagram showing a switching state according to the second embodiment of FIG. 3;
FIG. 5 is a system configuration diagram showing a third embodiment of a fuel cell cogeneration system according to the present invention.
FIG. 6 is a system configuration diagram showing a fourth embodiment of a fuel cell cogeneration system according to the present invention.
7A is an operation pattern diagram of conventional load following operation, and FIG. 7B is an operation pattern diagram of conventional DSS operation.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Commercial power supply, 2 ... Fuel gas, 10 ... Fuel cell unit, 12 ... Fuel cell stack, 15 ... Control apparatus, 20 ... Electric power load measurement means, 21 ... Timer means, 22 ... Calculation means

Claims (4)

燃料電池ユニットで電気と熱とを生成し、該電気を商用電源に供給して出力すると共に前記熱を出力する燃料電池システムであって、
前記システムは、負荷追従運転と、電力負荷に関係なく前記燃料電池ユニットの定格出力より低い一定の出力で運転する一定出力運転とを切換えて運転するものであり、
前記システムは、電力負荷計測手段を備え、該電力負荷計測手段で計測された電力負荷が所定値以下のときは前記一定出力運転を行ない、前記電力負荷が所定値より大きいときは前記負荷追従運転を行なうことを特徴とする燃料電池システム。
A fuel cell system that generates electricity and heat in a fuel cell unit, supplies the electricity to a commercial power source, outputs the electricity, and outputs the heat,
The system operates by switching between load following operation and constant output operation that operates at a constant output lower than the rated output of the fuel cell unit regardless of the power load ,
The system includes a power load measuring unit, and performs the constant output operation when the power load measured by the power load measuring unit is a predetermined value or less, and performs the load following operation when the power load is larger than a predetermined value. The fuel cell system characterized by performing .
前記システムは、タイマー手段をさらに備え、時間帯により前記負荷追従運転と一定出力運転とを切換えることを特徴とする請求項1に記載の燃料電池システム。  2. The fuel cell system according to claim 1, wherein the system further includes timer means, and switches between the load following operation and the constant output operation according to a time period. 前記システムは、電力負荷計測手段と時間計測手段とをさらに備え、通常は前記負荷追従運転を行ない、前記電力負荷計測手段で計測された電力負荷が所定値以下の状態が所定時間続いたときには前記一定出力運転に切換え、その状態で前記電力負荷が所定値以上の状態が所定時間続いたときには前記負荷追従運転に復帰させることを特徴とする請求項1に記載の燃料電池システム。  The system further includes a power load measuring means and a time measuring means, normally performing the load following operation, and when the power load measured by the power load measuring means continues for a predetermined time or less. 2. The fuel cell system according to claim 1, wherein the fuel cell system is switched to a constant output operation, and is returned to the load following operation when the state in which the power load is equal to or higher than a predetermined value continues for a predetermined time. 前記システムは、電力負荷計測手段とその演算手段とをさらに備え、通常は前記負荷追従運転を行ない、前記電力負荷計測手段で計測され前記演算手段で積算された直前までの所定時間分の電力負荷積算量又は電力負荷平均値が所定値以下のときには前記一定出力運転に切換え、前記一定出力運転時に前記電力負荷積算量又は電力負荷平均値が所定値より大きいときには前記負荷追従運転に復帰させることを特徴とする請求項1に記載の燃料電池システム。  The system further includes a power load measuring unit and a calculation unit thereof, and normally performs the load following operation, and a power load for a predetermined time until immediately before being measured by the power load measuring unit and integrated by the calculation unit. When the integrated amount or the power load average value is less than or equal to a predetermined value, the operation is switched to the constant output operation, and when the power load integrated amount or the power load average value is larger than the predetermined value during the constant output operation, the load following operation is restored. The fuel cell system according to claim 1, wherein
JP2003131960A 2003-05-09 2003-05-09 Fuel cell system Expired - Fee Related JP4638132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003131960A JP4638132B2 (en) 2003-05-09 2003-05-09 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003131960A JP4638132B2 (en) 2003-05-09 2003-05-09 Fuel cell system

Publications (2)

Publication Number Publication Date
JP2004335368A JP2004335368A (en) 2004-11-25
JP4638132B2 true JP4638132B2 (en) 2011-02-23

Family

ID=33507005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003131960A Expired - Fee Related JP4638132B2 (en) 2003-05-09 2003-05-09 Fuel cell system

Country Status (1)

Country Link
JP (1) JP4638132B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4898146B2 (en) * 2005-06-01 2012-03-14 株式会社荏原製作所 Operation method of fuel cell system and fuel cell system
JP5800381B2 (en) * 2010-09-30 2015-10-28 本田技研工業株式会社 Other vehicle information provision device
JP5580237B2 (en) * 2011-03-30 2014-08-27 東邦瓦斯株式会社 Operation method of power generator
JP7356946B2 (en) * 2020-03-30 2023-10-05 東京瓦斯株式会社 Power monitoring and control device, power monitoring and control program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131521A (en) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd Fuel cell system and power load prediction device
JP2002083606A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell co-generation system
JP2002184441A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell device
JP2002291161A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Output control method for household fuel cell
JP2003045460A (en) * 2001-08-03 2003-02-14 Tokyo Gas Co Ltd Fuel cell device and its control method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1131521A (en) * 1997-05-12 1999-02-02 Matsushita Electric Ind Co Ltd Fuel cell system and power load prediction device
JP2002083606A (en) * 2000-09-06 2002-03-22 Matsushita Electric Ind Co Ltd Polyelectrolyte type fuel cell co-generation system
JP2002184441A (en) * 2000-12-11 2002-06-28 Toyota Motor Corp Fuel cell device
JP2002291161A (en) * 2001-03-28 2002-10-04 Osaka Gas Co Ltd Output control method for household fuel cell
JP2003045460A (en) * 2001-08-03 2003-02-14 Tokyo Gas Co Ltd Fuel cell device and its control method

Also Published As

Publication number Publication date
JP2004335368A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP5183211B2 (en) Fuel cell system
JP2003197231A (en) Fuel cell power generation system and its control method
US20030148154A1 (en) Fuel cell system
JP2004178962A (en) Fuel cell power generating system using hydrogen manufacturing device having combustor
US20050119842A1 (en) Load following algorithm for a fuel cell based system
WO2014002798A1 (en) Solid polymer fuel cell system
JP6943285B2 (en) Fuel cell system and fuel cell system control method
JP6174578B2 (en) Solid oxide fuel cell system
JP5069489B2 (en) Solid oxide fuel cell system
JP2015186408A (en) Operation method for fuel cell system, and fuel cell system
US20050255353A1 (en) Fuel-cell power system
WO2014002799A1 (en) Solid oxide fuel cell system
JP5380039B2 (en) Fuel cell power generation system and operation method thereof
JP4984344B2 (en) Fuel cell system and supply power switching method
JP4638132B2 (en) Fuel cell system
JP2004342440A (en) Small fuel cell system
JP4358825B2 (en) Fuel cell power generation system
JP6611649B2 (en) Combined heat and power system
JP5145313B2 (en) Fuel cell system
JP3992423B2 (en) Method and apparatus for starting operation of fuel cell system
JP5683031B2 (en) Fuel cell system and operation method thereof
JP4325306B2 (en) Operation control device for fuel cell system
JP2004103397A (en) Control device of fuel cell system
JP6213771B2 (en) Fuel cell power generation system
JP7484354B2 (en) Fuel cell system and method for determining fuel shortage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090902

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4638132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees