JP4617434B2 - Distance measuring device - Google Patents

Distance measuring device Download PDF

Info

Publication number
JP4617434B2
JP4617434B2 JP2004379689A JP2004379689A JP4617434B2 JP 4617434 B2 JP4617434 B2 JP 4617434B2 JP 2004379689 A JP2004379689 A JP 2004379689A JP 2004379689 A JP2004379689 A JP 2004379689A JP 4617434 B2 JP4617434 B2 JP 4617434B2
Authority
JP
Japan
Prior art keywords
beat signal
filter
frequency
beat
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004379689A
Other languages
Japanese (ja)
Other versions
JP2006184181A (en
Inventor
薫 美濃島
弘一 松本
義行 飯野
健一郎 吉野
薫 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Topcon Corp
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp, National Institute of Advanced Industrial Science and Technology AIST filed Critical Topcon Corp
Priority to JP2004379689A priority Critical patent/JP4617434B2/en
Publication of JP2006184181A publication Critical patent/JP2006184181A/en
Application granted granted Critical
Publication of JP4617434B2 publication Critical patent/JP4617434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

本発明は、光周波数コムを用いた距離測定装置に関するものである。   The present invention relates to a distance measuring device using an optical frequency comb.

距離測定装置として、レーザ光線を測定対象物に照射し、該測定対象物からの反射光を用いて測定対象物迄の距離を測定する光波距離測定装置がある。   As a distance measuring device, there is a light wave distance measuring device that irradiates a measuring object with a laser beam and measures the distance to the measuring object using reflected light from the measuring object.

従来、光波距離測定装置では、一定周波数で測距光を強度変調して射出し、測定対象物で反射された反射測距光を受光し、受光された該反射測距光と、測距光又は距離測定装置内部に形成された参照用光路を通過して受光された光(以下、参照光と言う)とを比較し、反射測距光と参照光との強度変調の位相差から距離を測定している。   Conventionally, in a light wave distance measuring device, distance measuring light is intensity-modulated and emitted at a constant frequency, reflected distance measuring light reflected by a measurement object is received, and the received reflected distance measuring light and distance measuring light are received. Or, it compares the light received through the reference optical path formed inside the distance measuring device (hereinafter referred to as reference light), and the distance is calculated from the phase difference of the intensity modulation between the reflected distance measuring light and the reference light. Measuring.

測距光と反射測距光から距離を測定した場合には距離測定装置内部の検出回路のドリフト等が測定誤差となって現れるので、測距光と反射測距光との位相差と、参照光と測距光との位相差とを求め、両位相差を減算して測距光と参照光から正確な距離測定が行われることが一般的である。   When measuring the distance from the distance measuring light and the reflected distance measuring light, the drift of the detection circuit inside the distance measuring device appears as a measurement error, so refer to the phase difference between the distance measuring light and the reflected distance measuring light. In general, the phase difference between the light and the distance measuring light is obtained, and both phase differences are subtracted to perform accurate distance measurement from the distance measuring light and the reference light.

上記距離測定装置に於ける距離測定では、測距距離に応じて前記位相差が変化することを利用したもので、位相差を△φ、距離をD、変調周波数をf、光速をCとすれば、位相差△φは△φ=4πfD/C(式1)と表され、距離Dは位相差△φを測定することにより求めることができる。実際には2つ以上の大きさの異なる周波数での変調光がそれぞれ測定に使用され、それぞれの分解能に応じて距離値の測定有効桁が決定される様になっている。   The distance measurement in the distance measuring device utilizes the fact that the phase difference changes according to the distance measured. The phase difference is Δφ, the distance is D, the modulation frequency is f, and the speed of light is C. For example, the phase difference Δφ is expressed as Δφ = 4πfD / C (formula 1), and the distance D can be obtained by measuring the phase difference Δφ. Actually, two or more modulated lights at different frequencies are used for measurement, and the measurement effective digit of the distance value is determined according to the resolution.

次に、図5により上記距離測定装置について説明する。   Next, the distance measuring apparatus will be described with reference to FIG.

基準発振器1の信号は分周器2に入力され必要な周波数に分周される。周波数選別器3は発光素子5を駆動する周波数kを選別し、発光素子駆動回路4に出力する。該発光素子駆動回路4は周波数kで前記発光素子5を駆動し、測距光6を発光させる。   The signal of the reference oscillator 1 is input to the frequency divider 2 and divided to a necessary frequency. The frequency selector 3 selects the frequency k for driving the light emitting element 5 and outputs it to the light emitting element driving circuit 4. The light emitting element driving circuit 4 drives the light emitting element 5 at a frequency k to emit distance measuring light 6.

該測距光6は対物レンズ7を通り、測定地点に置かれた測定対象物である反射鏡8で反射測距光9として反射され、該反射測距光9は前記対物レンズ7を通って入射する。入射した前記反射測距光9は受光素子11に受光され、該受光素子11から送出された受光信号fdは広帯域増幅フィルタ12で増幅された後、前記分周器2からの周波数信号fc+fdとミキシングされビートダウンされる。ビートダウンされた測距光ビートダウン信号feは増幅帯域フィルタ14で増幅され位相差測定器15に入力される。   The distance measuring light 6 passes through the objective lens 7 and is reflected as reflected distance measuring light 9 by the reflecting mirror 8 which is a measurement object placed at the measurement point. The reflected distance measuring light 9 passes through the objective lens 7. Incident. The incident reflected distance measuring light 9 is received by the light receiving element 11, and the light receiving signal fd transmitted from the light receiving element 11 is amplified by the broadband amplification filter 12 and then mixed with the frequency signal fc + fd from the frequency divider 2. And beat down. The beat-down range-finding light beatdown signal fe is amplified by the amplification band filter 14 and input to the phase difference measuring device 15.

又、前記発光素子5から発光されハーフミラー16で反射され内部光路を通った参照光17は、前記受光素子11で受光され、該受光素子11から送出される受光信号fdは前記広帯域増幅フィルタ12で増幅された後、ミキシングによりビートダウンされ参照光ビートダウン信号fe’として、前記増幅帯域フィルタ14にて増幅され前記位相差測定器15に入力される。   The reference light 17 emitted from the light emitting element 5, reflected by the half mirror 16 and passed through the internal optical path is received by the light receiving element 11, and the received light signal fd transmitted from the light receiving element 11 is the broadband amplification filter 12. After being amplified in step (b), the signal is beat-down by mixing, amplified as the reference light beat-down signal fe ′ by the amplification band filter 14, and input to the phase difference measuring device 15.

前記反射測距光9と前記参照光17は図示しない光路切換器によって択一的に選択され、前記位相差測定器15では、前記反射測距光9のビートダウン信号feと前記参照光17のビートダウン信号fe’から位相差を求める。更に、前記位相差測定器15からの信号を基に演算部18は距離に応じた複数の周波数を組合わせて位相差を求め前記式(1)により距離に換算する。表示器19は求められた距離を表示する。   The reflected distance measuring light 9 and the reference light 17 are alternatively selected by an optical path switch (not shown), and the phase difference measuring device 15 selects the beat-down signal fe of the reflected distance measuring light 9 and the reference light 17. A phase difference is obtained from the beat down signal fe ′. Further, based on the signal from the phase difference measuring device 15, the calculation unit 18 obtains a phase difference by combining a plurality of frequencies according to the distance, and converts it to the distance by the above equation (1). The display 19 displays the determined distance.

上記した従来の距離測定装置では、前記分周器2で分周した周波数に基づいて前記発光素子駆動回路4が前記発光素子5を駆動している。位相差で測定する距離計の精度を高めるには、変調周波数を高くしなければならないが、現在、距離測定装置の光源として広く用いられているレーザダイオードでは数GHz程度が上限となり、それ以上の高周波数は望めない。又、前記発光素子5の発光素子駆動回路4は、ノイズの発生源となり易く測定誤差の原因となる虞れがある。   In the conventional distance measuring apparatus described above, the light emitting element driving circuit 4 drives the light emitting element 5 based on the frequency divided by the frequency divider 2. In order to improve the accuracy of the distance meter that measures by the phase difference, the modulation frequency must be increased. However, in the laser diode that is currently widely used as the light source of the distance measuring device, the upper limit is about several GHz, and more High frequency cannot be expected. Further, the light emitting element driving circuit 4 of the light emitting element 5 is likely to be a source of noise and may cause a measurement error.

特開2001−13245号公報JP 2001-13245 A

光周波数コム−新しい光のものさし−(http://www.aist.go.jp/aist_j/museum/keisoku/komu/komu.html)Optical frequency comb-New light measure-(http://www.aist.go.jp/aist_j/museum/keisoku/komu/komu.html)

本発明は斯かる実情に鑑み、高精度で安定した測定が可能であり、発光素子駆動回路を省略し、回路構成を簡略化すると共に回路からのノイズの発生を抑制し、測定精度、信頼性を向上させる距離測定装置を提供するものである。   In view of such circumstances, the present invention enables highly accurate and stable measurement, omits the light emitting element driving circuit, simplifies the circuit configuration, suppresses the generation of noise from the circuit, and improves the measurement accuracy and reliability. Provided is a distance measuring device that improves the above.

本発明は、レーザ光線として光周波数コムを発生するレーザ装置と、該レーザ装置からのレーザ光線を基準光と測距光に分割する分割手段と、前記基準光を受光して多数のビート信号を出力する基準受光部と、前記測距光を受光して多数のビート信号を出力する測定受光部と、該測定受光部から少なくとも1つのビート信号を取出す第1電気的フィルタと、前記基準受光部から少なくとも1つのビート信号を取出す第2電気的フィルタとを有し、前記第1電気的フィルタから出力されるビート信号を基に得られる位相と前記第2電気的フィルタから出力されるビート信号を基に得られる位相とに基づき位相差を求め、該位相差に基づいて距離を測定する距離測定装置に係り、又第3電気的フィルタを更に有し、該第3電気的フィルタ及び前記第2電気的フィルタに前記基準受光部からのビート信号がそれぞれ入力され、前記第3電気的フィルタの選択するビート信号は前記第1電気的フィルタの選択するビート信号と僅かに差があり、前記第1電気的フィルタと第3電気的フィルタが選択するビート信号からセルフビート信号を生成し、前記第2電気的フィルタは前記セルフビート信号と同じ周波数のビート信号を選択し、前記セルフビート信号と選択したビート信号との位相差に基づいて距離を測定する距離測定装置に係り、又前記レーザ装置に共振器長を変化させる共振器長変更手段を設け、発振周波数を変化させることで測定距離を変える距離測定装置に係り、又前記共振器長変更手段によるレーザ装置の発振周波数に応じた電気的フィルタを備えた距離測定装置に係り、又前記第1電気的フィルタ、前記第2電気的フィルタは同一の周波数のビート信号を選択し、選択されたビート信号と周波数が僅かに異なる周波数信号を発する発振器を有し、前記ビート信号と周波数信号を基にそれぞれビート信号を取出す第1ミキサ、第2ミキサを有し、該第1ミキサと第2ミキサのビート信号の位相差に基づいて距離を測定する距離測定装置に係り、更に又前記発振器の替りに、前記選択されたビート信号と周波数が僅かに異なる周波数を前記基準受光部から取出す第5フィルタを設けた距離測定装置に係るものである。   The present invention includes a laser device that generates an optical frequency comb as a laser beam, a dividing unit that divides the laser beam from the laser device into a reference light and a ranging light, and a plurality of beat signals that are received by the reference light. A reference light receiving unit that outputs, a measurement light receiving unit that receives the ranging light and outputs a number of beat signals, a first electrical filter that extracts at least one beat signal from the measurement light receiving unit, and the reference light receiving unit A second electric filter for extracting at least one beat signal from the phase, and a phase obtained based on the beat signal output from the first electric filter and a beat signal output from the second electric filter. A phase difference is obtained based on a phase obtained based on the phase difference, and a distance measuring device that measures a distance based on the phase difference, further includes a third electrical filter, the third electrical filter, The beat signal from the reference light receiving unit is input to each of the two electrical filters, and the beat signal selected by the third electrical filter is slightly different from the beat signal selected by the first electrical filter, A self-beat signal is generated from beat signals selected by one electrical filter and a third electrical filter, and the second electrical filter selects a beat signal having the same frequency as the self-beat signal, and selects the self-beat signal. The present invention relates to a distance measuring device for measuring a distance based on a phase difference from a beat signal, and a resonator length changing means for changing a resonator length is provided in the laser device, and a measuring distance is changed by changing an oscillation frequency. The present invention relates to a distance measuring device, a distance measuring device including an electrical filter corresponding to the oscillation frequency of the laser device by the resonator length changing means, and The first electrical filter and the second electrical filter have an oscillator that selects a beat signal having the same frequency and generates a frequency signal having a frequency slightly different from that of the selected beat signal. A distance measuring device having a first mixer and a second mixer for taking out a beat signal based on the phase difference of the beat signals of the first mixer and the second mixer, and the oscillator Instead of this, the distance measuring device is provided with a fifth filter for extracting a frequency slightly different from the selected beat signal from the reference light receiving unit.

本発明によれば、本発明は、レーザ光線として光周波数コムを発生するレーザ装置と、該レーザ装置からのレーザ光線を基準光と測距光に分割する分割手段と、前記基準光を受光して多数のビート信号を出力する基準受光部と、前記測距光を受光して多数のビート信号を出力する測定受光部と、該測定受光部から少なくとも1つのビート信号を取出す第1電気的フィルタと、前記基準受光部から少なくとも1つのビート信号を取出す第2電気的フィルタとを有し、前記第1電気的フイルタから出力されるビート信号を基に得られる位相と前記第2電気的フィルタから出力されるビート信号を基に得られる位相とに基づき位相差を求め、該位相差に基づいて距離を測定し、光周波数コムは非常に安定し、高精度に発せられるので、高精度の測定が可能であり、又発光素子の発光素子駆動回路が不要となり、回路構成が簡略化すると共に発光素子駆動回路からのノイズの発生がなくなる。   According to the present invention, the present invention provides a laser device that generates an optical frequency comb as a laser beam, a splitting unit that divides the laser beam from the laser device into a reference light and a ranging light, and receives the reference light. A reference light receiving unit that outputs a large number of beat signals, a measurement light receiving unit that receives the distance measuring light and outputs a large number of beat signals, and a first electrical filter that extracts at least one beat signal from the measurement light receiving unit And a second electrical filter for extracting at least one beat signal from the reference light receiving unit, and a phase obtained based on the beat signal output from the first electrical filter and the second electrical filter The phase difference is calculated based on the phase obtained based on the output beat signal, the distance is measured based on the phase difference, and the optical frequency comb is very stable and can be emitted with high accuracy. It is possible, also the light emitting element driving circuit of the light emitting element is not required, generation of noise from the light emitting element driving circuit together with a circuit configuration is simplified eliminated.

又本発明によれば、前記レーザ装置に共振器長を変化させる共振器長変更手段を設け、発振周波数を変化させることで測定距離を変えるので、種々の測定範囲での距離測定が可能となる等の優れた効果を発揮する。   Further, according to the present invention, the laser device is provided with a resonator length changing means for changing the resonator length, and the measurement distance is changed by changing the oscillation frequency, so that distance measurement in various measurement ranges becomes possible. Exhibits excellent effects such as.

以下、図面を参照しつつ本発明を実施する為の最良の形態を説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

近年、コンパクトで安定なフェムト秒モード同期パルスレーザ(超短パルス光)が得られる様になり、高機能、高精度計測への応用が急速に広がっている。フェムト秒周波数コム距離計は従来のパルス距離計と異なり、フェムト秒という短い時間幅を利用しているのではない。フェムト秒周波数コム距離計は、フェムト秒モード同期パルスレーザの安定した多数の光周波数モード間ビート成分を利用した光変調距離計である。   In recent years, a compact and stable femtosecond mode-locked pulse laser (ultra-short pulse light) has been obtained, and its application to high-function and high-accuracy measurement is rapidly expanding. Unlike conventional pulse rangefinders, femtosecond frequency comb rangefinders do not use a short time span of femtoseconds. The femtosecond frequency comb rangefinder is an optical modulation rangefinder that uses a number of stable beat components between optical frequency modes of a femtosecond mode-locked pulse laser.

フェムト秒モード同期パルスレーザは、フェムト秒という非常に狭い時間幅(パルス幅)を持っており、この1つ1つのパルスは共振器長に依存した一定間隔(繰返し周波数)で発生している。図1(A)に示される様に、1つのパルスは広いスペクトル幅を持ち、光周波数領域では多数の縦モードを持った数THzのスペクトルとなる。この縦モードの間隔は一定の間隔で繰返し発生する。又、この間隔の精度は非常に高いことが知られている。   The femtosecond mode-locked pulse laser has a very narrow time width (pulse width) of femtosecond, and each pulse is generated at a constant interval (repetition frequency) depending on the resonator length. As shown in FIG. 1A, one pulse has a wide spectrum width, and has a spectrum of several THz with a number of longitudinal modes in the optical frequency domain. The longitudinal mode interval is repeatedly generated at a constant interval. It is known that the accuracy of this interval is very high.

櫛の歯の様に正確な間隔の多数のモードが立つので、光周波数コム(comb)と呼ばれている。この光スペクトルをフォトディテクタで光電検出すると、図1(B)に示される様に、各モード間のビート周波数のみが検出される。これらはモード間ビートと呼ばれている。   It is called an optical frequency comb because there are many modes with precise intervals like comb teeth. When this light spectrum is photoelectrically detected by a photodetector, only the beat frequency between the modes is detected as shown in FIG. These are called beats between modes.

該モード間ビートの安定性は即ち繰返し周波数の安定性であり、フェムト秒モード同期パルスレーザに於いては非常に安定している。   The stability of the inter-mode beat is the stability of the repetition frequency, which is very stable in the femtosecond mode-locked pulse laser.

この領域に於けるモード間ビートを時間領域に直して考えると、繰返し周波数の整数倍の周波数を持った電気的な波である。即ちフェムト秒モード同期パルスレーザは多数の強度変調波の集まりと見なせる。フェムト秒周波数コム距離計ではこの電気的な波の位相測定により、光変調距離計に於ける変調波の位相測定と同様に距離測定を行う。   If the beat between modes in this region is considered in the time domain, it is an electric wave having a frequency that is an integral multiple of the repetition frequency. That is, the femtosecond mode-locked pulse laser can be regarded as a collection of many intensity-modulated waves. In the femtosecond frequency comb rangefinder, the distance measurement is performed by measuring the phase of the electric wave in the same manner as the phase measurement of the modulated wave in the optical modulation rangefinder.

ここで、フェムト秒モード同期パルスレーザの発生原理について説明する。   Here, the generation principle of the femtosecond mode-locked pulse laser will be described.

一般のレーザでは共振器中での位相は個々のモードによって様々であり、時間的に同期しているわけではない。然しフェムト秒モード同期パルスレーザの共振器では、各モード間の位相を時間的に同期させ、モード間の位相差を一定にすることでパルスを発生させている。この方法はモード同期と呼ばれている。   In a general laser, the phase in the resonator varies depending on each mode and is not synchronized in time. However, in a resonator of a femtosecond mode-locked pulse laser, pulses are generated by temporally synchronizing the phases between the modes and making the phase difference between the modes constant. This method is called mode synchronization.

各々のモード間で位相同期条件(モード同期)が成立すると、共振器内では各モードが互いに干渉し合い、強め合うパルスピークが出現する。このパルス光の最大強度はモード同期の取れていない場合より大きなものとなる。   When a phase synchronization condition (mode synchronization) is established between the modes, pulse peaks appear in the resonator that interfere with each other and strengthen each other. The maximum intensity of the pulsed light is larger than that when the mode synchronization is not achieved.

発生した各パルスピークの時間間隔はパルス光が共振器中を往復する時間に等しい。つまり共振器内では、多数の光が重なり合い、パルス光として共振器中を往復しているのである。又モード同期によって発生するパルスは、パルス時間幅が短い程、スペクトル幅が広くなる。   The time interval between the generated pulse peaks is equal to the time for the pulsed light to reciprocate in the resonator. That is, in the resonator, a large number of lights overlap and reciprocate in the resonator as pulsed light. Further, the pulse generated by mode synchronization has a wider spectrum width as the pulse time width is shorter.

実際に超短光パルスによる光周波数コムを発生させるには、広い利得スペクトルを持ったレーザ活性媒質を内蔵する共振器を用い、より多くの縦モードを一定位相間隔で発生する様に励起することが必要である。このモード同期の方法には、能動(強制)モード同期、受動(自己)モード同期の2種類がある。   In order to generate an optical frequency comb using ultrashort optical pulses, a resonator with a built-in laser active medium with a wide gain spectrum is used to excite more longitudinal modes at a constant phase interval. is required. There are two types of mode synchronization methods, active (forced) mode synchronization and passive (self) mode synchronization.

能動モード同期とは、共振器内に変調器を挿入し、共振器損失を変調周波数で周期的に変化させ、モード間隔を変調周波数と同期させる方法である。   The active mode synchronization is a method in which a modulator is inserted in a resonator, the resonator loss is periodically changed at the modulation frequency, and the mode interval is synchronized with the modulation frequency.

又、受動モード同期は、共振器内に可飽和吸収体の機能を持たせている。例えば、代表的なものに可飽和色素がある。これはレーザ周波数に対して非常に大きな吸収断面積を持つ吸収遷移がある物質からなっている。その為光が可飽和吸収体を通過すると、飽和強度以下の光は吸収され、飽和強度以上の光のみが増幅していく。その為共振器内で往復するパルス光は、次第にパルス幅を狭めていく。現在では固体レーザ結晶が可飽和吸収体の機能を備えている共振器が主流である。100fs以下のパルス光の発生には、一般に受動モード同期が用いられている。   Further, the passive mode locking has a saturable absorber function in the resonator. For example, a typical example is a saturable dye. This consists of a substance with an absorption transition having a very large absorption cross section with respect to the laser frequency. Therefore, when light passes through the saturable absorber, light below the saturation intensity is absorbed, and only light above the saturation intensity is amplified. Therefore, the pulse width of the pulsed light reciprocating in the resonator gradually narrows the pulse width. At present, a resonator in which a solid-state laser crystal has a saturable absorber function is the mainstream. In general, passive mode locking is used to generate pulsed light of 100 fs or less.

尚、光周波数コムを発生するレーザ装置としては、光共振器に電気光学結晶を組込み、CWレーザを光共振器に入射し電気光学結晶で光変調をかけることでも成立する。   Note that a laser device that generates an optical frequency comb can also be realized by incorporating an electro-optic crystal in an optical resonator, injecting a CW laser into the optical resonator, and applying optical modulation with the electro-optic crystal.

次に、図2により第1の実施の形態について説明する。   Next, the first embodiment will be described with reference to FIG.

図2中、21は超短パルス光発光源、即ちフェムト秒モード同期レーザ装置であり、22は発振周波数変更手段を示す。該発振周波数変更手段22は、前記フェムト秒モード同期レーザ装置21の共振器が内蔵する共振鏡間の距離を変え共振器長を変更して発振周波数を変更するものであり、共振器長は共振鏡を移動させることで変更でき、共振器長変更手段として、例えばピエゾ素子が用いられる。   In FIG. 2, 21 is an ultrashort pulse light emission source, that is, a femtosecond mode-locked laser device, and 22 indicates an oscillation frequency changing means. The oscillation frequency changing means 22 changes the oscillation frequency by changing the distance between the resonator mirrors built in the resonator of the femtosecond mode-locked laser device 21 and changing the resonator length. For example, a piezo element is used as the resonator length changing means.

前記フェムト秒モード同期レーザ装置21から測距光31として射出される超短パルス光の光路上に、前記測距光31の一部を分割するスプリッタ23が設けられ、該スプリッタ23を透過した測距光31は対物レンズ24を透過して測定対象物25を照射する。該測定対象物25は、測定に必要な光量を反射するだけの面性状を有しておればよく、例えば反射プリズム、再帰反射プレート、或は明るい自然物の面等が測定対象物として選択される。   A splitter 23 for dividing a part of the distance measuring light 31 is provided on the optical path of the ultrashort pulse light emitted as the distance measuring light 31 from the femtosecond mode-locked laser device 21, and the measurement that has passed through the splitter 23 is provided. The distance light 31 passes through the objective lens 24 and irradiates the measurement object 25. The measuring object 25 only needs to have a surface property that reflects the amount of light necessary for measurement. For example, a reflecting prism, a retroreflective plate, or a surface of a bright natural object is selected as the measuring object. .

前記測定対象物25で反射された測距光は、反射測距光32として受光レンズ26を透過してフォトディテクタ等(例えばMSM:Metal−Semiconductor Metal)の第1受光素子27を具備する受光部により受光される。尚、前記対物レンズ24が前記受光レンズ26を兼ねる様にしてもよい。   The distance measuring light reflected by the measurement object 25 passes through the light receiving lens 26 as the reflected distance measuring light 32 and is received by a light receiving unit including a first light receiving element 27 such as a photodetector (MSM: Metal-Semiconductor Metal). Received light. The objective lens 24 may also serve as the light receiving lens 26.

前記スプリッタ23と前記対物レンズ24との間の前記測距光31の光路上には第2ハーフミラー28が設けられ、前記受光レンズ26と前記第1受光素子27との間の前記反射測距光32の光路上には該反射測距光32を透過する第3ハーフミラー29が配設され、反射測距光32は前記第3ハーフミラー29を通過して前記第1受光素子27に受光される。前記第2ハーフミラー28で前記測距光31の一部は内部参照光33として反射され、該内部参照光33は前記第3ハーフミラー29で反射され、前記第1受光素子27に入射する様になっている。該第1受光素子27からは受光信号が第1フィルタ34を介してミキサ35に送出される。   A second half mirror 28 is provided on the optical path of the distance measuring light 31 between the splitter 23 and the objective lens 24, and the reflection distance measuring between the light receiving lens 26 and the first light receiving element 27. A third half mirror 29 that transmits the reflected distance measuring light 32 is disposed on the optical path of the light 32, and the reflected distance measuring light 32 passes through the third half mirror 29 and is received by the first light receiving element 27. Is done. A part of the distance measuring light 31 is reflected as internal reference light 33 by the second half mirror 28, and the internal reference light 33 is reflected by the third half mirror 29 and enters the first light receiving element 27. It has become. A light reception signal is sent from the first light receiving element 27 to the mixer 35 via the first filter 34.

前記第2ハーフミラー28を透過した前記測距光31の光路と前記第2ハーフミラー28で反射された前記内部参照光33の光路とに掛渡って光路切換器(チョッパ)30が設けられている。該光路切換器30によって前記測距光31と内部参照光33が択一的に選択され、前記第1受光素子27には前記反射測距光32と前記内部参照光33が交互に入射する。   An optical path switch (chopper) 30 is provided across the optical path of the distance measuring light 31 transmitted through the second half mirror 28 and the optical path of the internal reference light 33 reflected by the second half mirror 28. Yes. The distance measuring light 31 and the internal reference light 33 are alternatively selected by the optical path switch 30, and the reflected distance measuring light 32 and the internal reference light 33 are alternately incident on the first light receiving element 27.

前記スプリッタ23で分割された測距光31の一部は、基準光36としてフォトディテクタ等(例えばMSM:Metal−Semiconductor Metal)の第2受光素子37を具備する受光部で受光される。該第2受光素子37からの受光信号は、第2フィルタ38及び第3フィルタ39にそれぞれ送出され、前記第3フィルタ39に入力された信号は前記ミキサ35に送出され、該ミキサ35で前記第1フィルタ34からの信号とミキシングされ、第4フィルタ41を介して位相差測定回路42に入力される。又、前記第2フィルタ38に入力された信号も又前記位相差測定回路42に入力され、該位相差測定回路42に於いて前記第4フィルタ41からの信号と前記第2フィルタ38からの信号の位相が測定され、演算部43は前記位相差測定回路42が演算した位相差に基づき前記測定対象物25迄の距離を演算する。   A part of the distance measuring light 31 divided by the splitter 23 is received as a reference light 36 by a light receiving unit including a second light receiving element 37 such as a photodetector (MSM: Metal-Semiconductor Metal). The light receiving signal from the second light receiving element 37 is sent to the second filter 38 and the third filter 39, respectively, and the signal inputted to the third filter 39 is sent to the mixer 35, and the mixer 35 The signal from the first filter 34 is mixed and input to the phase difference measurement circuit 42 via the fourth filter 41. The signal input to the second filter 38 is also input to the phase difference measurement circuit 42, and the signal from the fourth filter 41 and the signal from the second filter 38 are input to the phase difference measurement circuit 42. The calculation unit 43 calculates the distance to the measurement object 25 based on the phase difference calculated by the phase difference measurement circuit 42.

以下、作用について説明する。   The operation will be described below.

前記フェムト秒モード同期レーザ装置21により作出された正確なパルス光は、例えば50MHzで周期的に発振され、前記スプリッタ23により前記測距光31と基準光36に分割される。発振される個々のパルス光は、フェムト秒モード同期レーザの特性により、周波数差が正確で規則正しい、50MHzの周波数間隔の広い周波数帯からなる。   Accurate pulse light generated by the femtosecond mode-locked laser device 21 is periodically oscillated at, for example, 50 MHz, and is divided into the distance measuring light 31 and the reference light 36 by the splitter 23. Each pulsed light to be oscillated consists of a wide frequency band with a frequency interval of 50 MHz, which has a precise and regular frequency difference due to the characteristics of the femtosecond mode-locked laser.

前記スプリッタ23を通った測距光31は、更に前記第2ハーフミラー28により前記測距光31と内部参照光33とに分割される。該内部参照光33と前記測距光31は前記チョッパ30により択一的に選択され、順次前記第1受光素子27に受光される。前記内部参照光33は測定回路特有の誤差の補正に使われる。前記測距光31は前記測定対象物25で反射され、前記反射測距光32は前記受光レンズ26から入射し前記第1受光素子27に受光される。   The distance measuring light 31 that has passed through the splitter 23 is further divided into the distance measuring light 31 and the internal reference light 33 by the second half mirror 28. The internal reference light 33 and the distance measuring light 31 are alternatively selected by the chopper 30 and sequentially received by the first light receiving element 27. The internal reference beam 33 is used to correct an error specific to the measurement circuit. The distance measuring light 31 is reflected by the measurement object 25, and the reflected distance measuring light 32 enters from the light receiving lens 26 and is received by the first light receiving element 27.

前記第2受光素子37に入射した前記基準光36は、光電変換され、該第2受光素子37から出力される多数のモード間ビート信号から前記第3フィルタ39により選択された1つのビート信号と、前記第1受光素子27で光電変換され、出力される多数のモード間ビート信号から前記第1フィルタ34により選択された1つのビート信号とが前記ミキサ35に入力され、入力された2つのビート信号の周波数の和と差の周波数を有する2つのビート信号が前記ミキサ35で生成される。前記第1フィルタ34の選択するビート信号と前記第3フィルタ39の選択するビート信号とは周波数の差が僅かにある。本実施の形態では50MHzの差があり、前記ミキサ35に於いて50MHzのセルフビート信号が生成される。   The reference light 36 incident on the second light receiving element 37 is photoelectrically converted, and one beat signal selected by the third filter 39 from a large number of inter-mode beat signals output from the second light receiving element 37. One beat signal selected by the first filter 34 from a number of inter-mode beat signals that are photoelectrically converted and output by the first light receiving element 27 is input to the mixer 35, and two input beats are input. Two beat signals having the sum and difference frequencies of the signals are generated by the mixer 35. There is a slight frequency difference between the beat signal selected by the first filter 34 and the beat signal selected by the third filter 39. In this embodiment, there is a difference of 50 MHz, and the mixer 35 generates a 50 MHz self-beat signal.

前記第4フィルタ41にて前記第3フィルタ39で選択されたビート信号と前記第1フィルタ34で選択されたビート信号との差の周波数を選択する(以下、前記第4フィルタ41で選択されたビート信号をセルフビート信号と記す)。   The fourth filter 41 selects the difference frequency between the beat signal selected by the third filter 39 and the beat signal selected by the first filter 34 (hereinafter, selected by the fourth filter 41). The beat signal is referred to as a self-beat signal).

前記第2フィルタ38は、前記第2受光素子37で光電変換されたモード間ビート信号から前記セルフビート信号と同じ周波数のビート信号を選択する。前記位相差測定回路42は前記第2フィルタ38で選択されたビート信号と前記セルフビート信号から位相差を測定する。   The second filter 38 selects a beat signal having the same frequency as the self beat signal from the inter-mode beat signal photoelectrically converted by the second light receiving element 37. The phase difference measuring circuit 42 measures a phase difference from the beat signal selected by the second filter 38 and the self beat signal.

セルフビート信号は前記第1フィルタ34で選択された前記測距光31のビート信号の位相が保存されているので、前記セルフビート信号と前記第2フィルタ38で選択された前記基準光36のビート信号との位相差が求められ、求めた位相差から前記測距光31の光路距離(外部光路距離)が測定可能となる。同様にして前記基準光36のビート信号と前記第1受光素子27が前記内部参照光33を受光した場合のセルフビート信号とで前記内部参照光33の光路距離(内部光路距離)が測定可能となる。   Since the phase of the beat signal of the distance measuring light 31 selected by the first filter 34 is stored in the self beat signal, the beat of the reference light 36 selected by the self beat signal and the second filter 38 is stored. The phase difference with the signal is obtained, and the optical path distance (external optical path distance) of the distance measuring light 31 can be measured from the obtained phase difference. Similarly, the optical path distance (internal optical path distance) of the internal reference light 33 can be measured from the beat signal of the reference light 36 and the self-beat signal when the first light receiving element 27 receives the internal reference light 33. Become.

前記内部光路距離を測定し、該内部光路距離と前記外部光路距離とを比較することにより、回路による位相変化を補正して、より正確な距離を測定することが出来る。   By measuring the internal optical path distance and comparing the internal optical path distance with the external optical path distance, it is possible to correct a phase change due to a circuit and measure a more accurate distance.

前記第1フィルタ34で選択されたビート信号の周波数で距離を測定しているが、モード間ビート信号は広い周波数帯域にあるので、該第1フィルタ34、前記第3フィルタ39で選択するビート信号を変えることで、距離測定に使用する周波数を変更できる。   Although the distance is measured at the frequency of the beat signal selected by the first filter 34, the beat signal between the modes is in a wide frequency band. Therefore, the beat signal selected by the first filter 34 and the third filter 39 is selected. By changing, the frequency used for distance measurement can be changed.

例えば、前記第1フィルタ34で10GHzを選択した場合、位相差で測定できる距離は15mmとなり、該第1フィルタ34で50MHzを選択した場合、位相差で測定できる距離は3mとなる。周波数を数種類用いて測定範囲を広げながら、精度よく距離を測定する手法は測量装置で一般的に用いられている手法である。尚、前記第1フィルタ34、第2フィルタ38、第3フィルタ39、第4フィルタ41は電気的素子であっても、電気回路であってもよい。   For example, when 10 GHz is selected for the first filter 34, the distance that can be measured by the phase difference is 15 mm, and when 50 MHz is selected by the first filter 34, the distance that can be measured by the phase difference is 3 m. A technique for measuring the distance with high accuracy while expanding the measurement range using several types of frequencies is a technique generally used in surveying instruments. The first filter 34, the second filter 38, the third filter 39, and the fourth filter 41 may be electric elements or electric circuits.

更に長い距離の測定を必要とする場合、発振周波数が共振器長に依存するフェムト秒モード同期レーザ装置では、共振器長を変更しない限り周波数は変更できない。本実施の形態では50MHzより低い周波数はモード間ビート信号で得られないので、3mより長い距離を測定することが出来ない。その場合は例えば、光共振器を構成する反射ミラーを移動する様にピエゾ素子で共振器長を変化させると、周波数コムの間隔を変化させることができる。又、共振器長変更手段としてはピエゾ素子に替えて移動ステージ等の移動手段を用いてもよい。   When a longer distance measurement is required, in a femtosecond mode-locked laser device in which the oscillation frequency depends on the resonator length, the frequency cannot be changed unless the resonator length is changed. In the present embodiment, since a frequency lower than 50 MHz cannot be obtained by the beat signal between modes, a distance longer than 3 m cannot be measured. In that case, for example, when the resonator length is changed by a piezo element so as to move the reflecting mirror constituting the optical resonator, the frequency comb interval can be changed. As the resonator length changing means, moving means such as a moving stage may be used instead of the piezo element.

周波数コムの間隔と測定可能な距離とが対応するので、周波数を変化させることで、3mを超える距離が測定可能となる。   Since the frequency comb interval corresponds to the measurable distance, the distance exceeding 3 m can be measured by changing the frequency.

発振波長の変化によるモード間ビート信号の周波数変化が数MHz以下であれば、予め周波数変化分が通過する様に、前記第1フィルタ34、第2フィルタ38、第3フィルタ39の透過特性を選択すればよい。更に、周波数変化が大きい場合は、特性の異なるフィルタを複数用意し、選択する周波数に応じてフィルタを切替える様にしてもよい。又、該フィルタの切替えは前記発振周波数変更手段22により共振器長を変更させるのと対応して切替える様にしてもよい。   If the frequency change of the beat signal between modes due to the change of the oscillation wavelength is several MHz or less, the transmission characteristics of the first filter 34, the second filter 38, and the third filter 39 are selected so that the frequency change is passed in advance. do it. Furthermore, when the frequency change is large, a plurality of filters having different characteristics may be prepared, and the filters may be switched according to the selected frequency. The filter may be switched in correspondence with the change of the resonator length by the oscillation frequency changing means 22.

図3は第2の実施の形態を示しており、図3中、図2中で示したものと同等のものには同符号を付してある。尚、光学系は同様な構成であるので、以下は説明を省略してある。   FIG. 3 shows a second embodiment. In FIG. 3, the same components as those shown in FIG. 2 are denoted by the same reference numerals. Since the optical system has the same configuration, the following description is omitted.

第1受光素子27からの受光信号は、第1フィルタ34を介して第1ミキサ45に入力され、第2受光素子37からの受光信号は第2フィルタ38を介して第2ミキサ46に入力される。前記第1ミキサ45及び前記第2ミキサ46には発振器47によって発生されたミキシング用の周波数48が入力される。   The light reception signal from the first light receiving element 27 is input to the first mixer 45 via the first filter 34, and the light reception signal from the second light receiving element 37 is input to the second mixer 46 via the second filter 38. The A frequency 48 for mixing generated by an oscillator 47 is input to the first mixer 45 and the second mixer 46.

前記第1ミキサ45から送出されるビート信号は第3フィルタ49を介して位相差測定回路42に送出され、前記第2ミキサ46から送出されるビート信号は第4フィルタ51を介して前記位相差測定回路42に送出される。該位相差測定回路42によって両ビート信号間の位相が演算され、演算された位相は演算部43に出力される。   The beat signal sent from the first mixer 45 is sent to the phase difference measuring circuit 42 via the third filter 49, and the beat signal sent from the second mixer 46 is sent to the phase difference via the fourth filter 51. It is sent to the measurement circuit 42. The phase difference measurement circuit 42 calculates the phase between both beat signals, and the calculated phase is output to the calculation unit 43.

以下、第2の実施の形態に於ける作用について説明する。   Hereinafter, the operation in the second embodiment will be described.

該第2の実施の形態では測距光31、基準光36より得られるモード間ビート信号から選択した同一の周波数に対して周波数の差が僅かにある周波数信号48を前記発振器47で発生させる様にしたものである。   In the second embodiment, the oscillator 47 generates a frequency signal 48 having a slight frequency difference with respect to the same frequency selected from beat signals between modes obtained from the ranging light 31 and the reference light 36. It is a thing.

前記第1フィルタ34、前記第2フィルタ38は同一の周波数のモード間ビート信号を選択し、前記第1ミキサ45、前記第2ミキサ46に入力する。前記第1ミキサ45、第2ミキサ46には、選択されたモード間ビート信号と周波数が異なる周波数信号48が前記発振器47から入力される。   The first filter 34 and the second filter 38 select an inter-mode beat signal having the same frequency and input it to the first mixer 45 and the second mixer 46. A frequency signal 48 having a frequency different from that of the selected inter-mode beat signal is input to the first mixer 45 and the second mixer 46 from the oscillator 47.

前記第1ミキサ45からは、前記第1フィルタ34で選択された周波数と前記周波数信号48の周波数との和と差のビート信号が出力される。前記第3フィルタ49は前記第1ミキサ45から出力される2つのビート信号の内差の周波数のビート信号を選択する。   The first mixer 45 outputs a beat signal that is the sum and difference of the frequency selected by the first filter 34 and the frequency of the frequency signal 48. The third filter 49 selects a beat signal having a frequency that is the difference between the two beat signals output from the first mixer 45.

前記第2ミキサ46からは、前記第2フィルタ38で選択された周波数と前記周波数信号48の周波数との和と差の2つのビート信号が出力される。前記第4フィルタ51は前記第2ミキサ46から出力される2つのビート信号の内差の周波数のビート信号を選択する。   The second mixer 46 outputs two beat signals, the sum and difference of the frequency selected by the second filter 38 and the frequency of the frequency signal 48. The fourth filter 51 selects a beat signal having an internal difference frequency between the two beat signals output from the second mixer 46.

前記位相差測定回路42に於いて、前記第3フィルタ49と前記第4フィルタ51で選択されたビート信号の位相差が演算され、前記演算部43は演算された位相差に基づき距離を演算する。   In the phase difference measuring circuit 42, a phase difference between beat signals selected by the third filter 49 and the fourth filter 51 is calculated, and the calculation unit 43 calculates a distance based on the calculated phase difference. .

尚、内部参照光と前記基準光に基づき内部光路距離を求め外部光路距離を補正することは第1の実施の形態と同様である。   Note that the internal optical path distance is obtained based on the internal reference light and the reference light, and the external optical path distance is corrected as in the first embodiment.

図4は第3の実施の形態を示すものであり、該第3の実施の形態では、図3で示した発振器47の替りに第5フィルタ50を設けたものである。該第5フィルタ50は第2受光素子37から得られるモード間ビート信号より周波数信号48を選択し、第1ミキサ45、第2ミキサ46に入力する。尚、作用については第2の実施の形態と同様であるので説明を省略する。   FIG. 4 shows a third embodiment. In the third embodiment, a fifth filter 50 is provided instead of the oscillator 47 shown in FIG. The fifth filter 50 selects the frequency signal 48 from the inter-mode beat signal obtained from the second light receiving element 37 and inputs it to the first mixer 45 and the second mixer 46. Since the operation is the same as that of the second embodiment, the description thereof is omitted.

(A)は本発明で利用する光周波数コムのスペクトルの説明図であり、(B)は光周波数コムを受光素子で受光した場合の受光信号の説明図である。(A) is explanatory drawing of the spectrum of the optical frequency comb utilized by this invention, (B) is explanatory drawing of the light reception signal at the time of light-receiving a light frequency comb with a light receiving element. 本発明の第1の実施の形態を示す構成図である。It is a block diagram which shows the 1st Embodiment of this invention. 本発明の第2の実施の形態を示す構成図である。It is a block diagram which shows the 2nd Embodiment of this invention. 本発明の第3の実施の形態を示す構成図である。It is a block diagram which shows the 3rd Embodiment of this invention. 従来例を示す構成図である。It is a block diagram which shows a prior art example.

符号の説明Explanation of symbols

21 フェムト秒モード同期レーザ装置
22 発振周波数変更手段
23 スプリッタ
27 第1受光素子
31 測距光
32 反射測距光
33 内部参照光
34 第1フィルタ
35 ミキサ
37 第2受光素子
38 第2フィルタ
39 第3フィルタ
41 第4フィルタ
42 位相差測定回路
45 第1ミキサ
46 第2ミキサ
48 周波数信号
49 第3フィルタ
50 第5フィルタ
51 第4フィルタ
21 Femtosecond mode-locked laser device 22 Oscillation frequency changing means 23 Splitter 27 First light receiving element 31 Distance measuring light 32 Reflected distance measuring light 33 Internal reference light 34 First filter 35 Mixer 37 Second light receiving element 38 Second filter 39 Third filter Filter 41 Fourth filter 42 Phase difference measurement circuit 45 First mixer 46 Second mixer 48 Frequency signal 49 Third filter 50 Fifth filter 51 Fourth filter

Claims (6)

各モード間の位相差を一定にすることにより形成されるレーザ光線である光周波数コムを発生するレーザ装置と、該レーザ装置からのレーザ光線を基準光と測距光に分割する分割手段と、前記基準光を受光して多数のビート信号を出力する基準受光部と、前記測距光を受光して多数のビート信号を出力する測定受光部と、該測定受光部から少なくとも1つのビート信号を取出す第1電気的フィルタと、前記基準受光部から少なくとも1つのビート信号を取出す第2電気的フィルタとを有し、前記第1電気的フィルタから出力されるビート信号を基に得られる位相と前記第2電気的フィルタから出力されるビート信号を基に得られる位相とに基づき位相差を求め、該位相差に基づいて距離を測定することを特徴とする距離測定装置。 A laser device that generates an optical frequency comb that is a laser beam formed by making the phase difference between the modes constant , and a splitting unit that splits the laser beam from the laser device into a reference light and a ranging light; A reference light receiving unit that receives the reference light and outputs a number of beat signals, a measurement light receiving unit that receives the distance measurement light and outputs a number of beat signals, and at least one beat signal from the measurement light receiving unit. A first electrical filter to be taken out, and a second electrical filter to take out at least one beat signal from the reference light receiving unit, and a phase obtained based on a beat signal output from the first electrical filter; A distance measuring device characterized in that a phase difference is obtained based on a phase obtained based on a beat signal output from a second electrical filter, and a distance is measured based on the phase difference. 各モード間の位相差を一定にすることにより形成されるレーザ光線である光周波数コムを発生するレーザ装置と、該レーザ装置からのレーザ光線を基準光と測距光に分割する分割手段と、前記基準光を受光して多数のビート信号を出力する基準受光部と、前記測距光を受光して多数のビート信号を出力する測定受光部と、該測定受光部から少なくとも1つのビート信号を取出す第1電気的フィルタと、前記基準受光部から少なくとも1つのビート信号を取出す第2電気的フィルタと、第3電気的フィルタとを有し、
該第3電気的フィルタ及び前記第2電気的フィルタに前記基準受光部からのビート信号がそれぞれ入力され、前記第3電気的フィルタの選択するビート信号は前記第1電気的フィルタの選択するビート信号と僅かに差があり、前記第1電気的フィルタと第3電気的フィルタが選択するビート信号からセルフビート信号を生成し、前記第2電気的フィルタは前記セルフビート信号と同じ周波数のビート信号を選択し、前記セルフビート信号と選択したビート信号との位相差に基づいて距離を測定することを特徴とする距離測定装置。
A laser device that generates an optical frequency comb that is a laser beam formed by making the phase difference between the modes constant, and a splitting unit that splits the laser beam from the laser device into a reference light and a ranging light; A reference light receiving unit that receives the reference light and outputs a number of beat signals, a measurement light receiving unit that receives the distance measurement light and outputs a number of beat signals, and at least one beat signal from the measurement light receiving unit. It possesses a first electrical filter is taken out, and a second electrical filter for taking out at least one beat signal from the reference light receiving unit, and a third electrical filter,
Beat signals from the reference light receiving unit are respectively input to the third electrical filter and the second electrical filter, and a beat signal selected by the third electrical filter is a beat signal selected by the first electrical filter. The self-beat signal is generated from the beat signal selected by the first electric filter and the third electric filter, and the second electric filter generates a beat signal having the same frequency as the self-beat signal. A distance measuring apparatus that selects and measures a distance based on a phase difference between the self beat signal and the selected beat signal.
前記レーザ装置に共振器長を変化させる共振器長変更手段を設け、発振周波数を変化させることで測定距離を変える請求項1の距離測定装置。   2. The distance measuring device according to claim 1, wherein the laser device is provided with a resonator length changing means for changing a resonator length, and the measuring distance is changed by changing an oscillation frequency. 前記共振器長変更手段によるレーザ装置の発振周波数に応じた電気的フィルタを備えた請求項3の距離測定装置。   4. The distance measuring device according to claim 3, further comprising an electrical filter corresponding to the oscillation frequency of the laser device by the resonator length changing means. 前記第1電気的フィルタ、前記第2電気的フィルタは同一の周波数のビート信号を選択し、選択されたビート信号と周波数が僅かに異なる周波数信号を発する発振器を有し、前記ビート信号と周波数信号を基にそれぞれビート信号を取出す第1ミキサ、第2ミキサを有し、該第1ミキサと第2ミキサのビート信号の位相差に基づいて距離を測定する請求項1の距離測定装置。   The first electric filter and the second electric filter have an oscillator that selects a beat signal having the same frequency and emits a frequency signal slightly different in frequency from the selected beat signal, and the beat signal and the frequency signal 2. A distance measuring apparatus according to claim 1, further comprising a first mixer and a second mixer for taking out beat signals based on each of the first and second mixers, and measuring a distance based on a phase difference between beat signals of the first mixer and the second mixer. 前記発振器の替りに、前記選択されたビート信号と周波数が僅かに異なる周波数を前記基準受光部から取出す第5フィルタを設けた請求項5の距離測定装置。   6. The distance measuring device according to claim 5, further comprising a fifth filter that takes out a frequency slightly different from the selected beat signal from the reference light receiving unit, instead of the oscillator.
JP2004379689A 2004-12-28 2004-12-28 Distance measuring device Active JP4617434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379689A JP4617434B2 (en) 2004-12-28 2004-12-28 Distance measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379689A JP4617434B2 (en) 2004-12-28 2004-12-28 Distance measuring device

Publications (2)

Publication Number Publication Date
JP2006184181A JP2006184181A (en) 2006-07-13
JP4617434B2 true JP4617434B2 (en) 2011-01-26

Family

ID=36737406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379689A Active JP4617434B2 (en) 2004-12-28 2004-12-28 Distance measuring device

Country Status (1)

Country Link
JP (1) JP4617434B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581703A (en) * 2011-01-05 2012-07-18 财团法人精密机械研究发展中心 Measuring device for double coaxial feed shafts
WO2013084616A1 (en) 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4613351B2 (en) * 2006-08-25 2011-01-19 独立行政法人産業技術総合研究所 Positioning mechanism
JP5254844B2 (en) * 2009-03-03 2013-08-07 株式会社トプコン Distance measuring device
JP5506491B2 (en) 2010-03-26 2014-05-28 株式会社日立製作所 Distance measuring device and distance measuring method
JP5736247B2 (en) * 2011-06-23 2015-06-17 株式会社日立製作所 Distance measuring method and apparatus
JP6019360B2 (en) * 2012-02-28 2016-11-02 ネオアーク株式会社 Optical heterodyne rangefinder
JP6311923B2 (en) * 2014-03-31 2018-04-18 株式会社東京精密 Temperature measuring apparatus and temperature measuring method
JP7107268B2 (en) * 2019-04-03 2022-07-27 日本製鉄株式会社 Velocity measuring method and velocity measuring device
JP7289222B2 (en) * 2019-06-03 2023-06-09 株式会社ミツトヨ Measuring device and measuring method
JP7247058B2 (en) * 2019-08-26 2023-03-28 株式会社ミツトヨ Measuring device and method
CN111522018B (en) * 2020-04-07 2022-05-10 清华大学深圳国际研究生院 Double-femtosecond laser frequency comb distance measuring device and method
CN117130006B (en) * 2023-08-24 2024-05-03 光维(广东)科技有限公司 Automatic aliasing elimination double-optical comb ranging device and method
CN117111045B (en) * 2023-10-25 2023-12-29 成都量芯集成科技有限公司 Signal generator for phase type laser measurement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS61138191A (en) * 1984-12-10 1986-06-25 Matsushita Electric Ind Co Ltd Laser distance measuring method
JPS6317482U (en) * 1986-07-16 1988-02-05
JP2000505901A (en) * 1996-10-21 2000-05-16 ライカ ゲオジステームス アクチエンゲゼルシャフト Equipment for calibration of distance measuring instruments

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52131752A (en) * 1976-04-28 1977-11-04 Agency Of Ind Science & Technol Precise length measuring method utilizing oscillation area of two freq uencies of laser beams
JPS61138191A (en) * 1984-12-10 1986-06-25 Matsushita Electric Ind Co Ltd Laser distance measuring method
JPS6317482U (en) * 1986-07-16 1988-02-05
JP2000505901A (en) * 1996-10-21 2000-05-16 ライカ ゲオジステームス アクチエンゲゼルシャフト Equipment for calibration of distance measuring instruments

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102581703A (en) * 2011-01-05 2012-07-18 财团法人精密机械研究发展中心 Measuring device for double coaxial feed shafts
WO2013084616A1 (en) 2011-12-05 2013-06-13 株式会社日立製作所 Distance measurement method and device, and shape measurement device in which distance measurement device is installed

Also Published As

Publication number Publication date
JP2006184181A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP4793675B2 (en) Distance measuring device
US7414779B2 (en) Mode locking methods and apparatus
JP4617434B2 (en) Distance measuring device
JP5254844B2 (en) Distance measuring device
JP2896782B2 (en) Pulse type lightwave distance meter
US11112310B2 (en) Dual-comb spectroscopy
JP2016161411A (en) Light wave range finder
JP2010203877A (en) Distance measuring device
US20120092644A1 (en) Evaluation device, measuring arrangement and method for path length measurement
CN111208487B (en) Electro-optical distance meter and distance measuring method
JP2011232138A (en) Distribution type optical fiber sensor
JP5517818B2 (en) LIGHT SOURCE DEVICE AND IMAGING DEVICE USING THE SAME
JP5736247B2 (en) Distance measuring method and apparatus
US10714888B2 (en) Pulsed electromagnetic-wave generator and measuring apparatus
CN111796297B (en) Parallel frequency modulation continuous wave laser ranging device based on erbium glass laser
JP6264547B2 (en) Optical signal generation apparatus, distance measurement apparatus, spectral characteristic measurement apparatus, frequency characteristic measurement apparatus, and optical signal generation method
JP6628030B2 (en) Distance measuring device and method
CN109031852A (en) All solid state femtosecond laser frequency comb system
Pillet et al. Wideband dual-frequency lidar-radar for high-resolution ranging, profilometry, and Doppler measurement
US11879975B2 (en) Measurement apparatus and measurement method
JP2004069333A (en) Wavelength measuring method
US11821838B1 (en) Spectroscopy in frequency, time, and position with correlated frequency combs
JPS6018983A (en) Q-switched solid-state laser
JP2008098407A (en) Laser light emission device, and calibration method of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4617434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250