JP4613787B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4613787B2
JP4613787B2 JP2005300177A JP2005300177A JP4613787B2 JP 4613787 B2 JP4613787 B2 JP 4613787B2 JP 2005300177 A JP2005300177 A JP 2005300177A JP 2005300177 A JP2005300177 A JP 2005300177A JP 4613787 B2 JP4613787 B2 JP 4613787B2
Authority
JP
Japan
Prior art keywords
exhaust
execution
control
catalyst
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005300177A
Other languages
Japanese (ja)
Other versions
JP2007107474A (en
Inventor
英之 半田
淳 田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2005300177A priority Critical patent/JP4613787B2/en
Publication of JP2007107474A publication Critical patent/JP2007107474A/en
Application granted granted Critical
Publication of JP4613787B2 publication Critical patent/JP4613787B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

本発明は、内燃機関の排気浄化装置に関するものである。   The present invention relates to an exhaust emission control device for an internal combustion engine.

ディーゼルエンジン等の内燃機関に適用される排気浄化装置として、煤を主成分とする微粒子(PM:Particulate Matter)を捕集するPMフィルタを同機関の排気系に設け、更に窒素酸化物(NOx)についての排気浄化を行う吸蔵還元型のNOx触媒を上記排気系に設けられた触媒コンバータや上記PMフィルタに担持したものが知られている。   As an exhaust gas purification device applied to internal combustion engines such as diesel engines, a PM filter that collects particulates (PM) mainly containing soot is provided in the exhaust system of the engine, and nitrogen oxide (NOx) A NOx storage reduction catalyst for purifying exhaust gas is supported on a catalytic converter provided in the exhaust system or the PM filter.

こうした排気浄化装置では、PMフィルタ及び触媒コンバータが微粒子の堆積によって目詰まりを起こしたり、NOx触媒への硫黄酸化物(SOx)等の吸蔵によって当該NOx触媒のNOx吸蔵能力が低下したりする。従って、この種の排気浄化装置の多くは、PMフィルタ及び触媒コンバータの微粒子による目詰まりを解消するためのPM再生制御、及び、SOxの吸蔵によって低下したNOx触媒のNOx吸蔵能力を回復するためのS被毒回復制御を行うようにしている。   In such an exhaust purification device, the PM filter and the catalytic converter are clogged due to the accumulation of fine particles, or the NOx occlusion capacity of the NOx catalyst is reduced by occlusion of sulfur oxide (SOx) or the like in the NOx catalyst. Therefore, many of this type of exhaust purification devices are designed to recover the NOx occlusion ability of the NOx catalyst, which has been reduced by the SOx occlusion, and the PM regeneration control for eliminating clogging caused by the particulate matter of the PM filter and the catalytic converter. S poison recovery control is performed.

上記PM再生制御は、機関運転状態から推定される排気系での微粒子の堆積量が許容値以上になったときに実行され、その微粒子の堆積量が「0」になるまで継続される。このPM再生制御では、排気系の触媒コンバータやPMフィルタに担持されたNOx触媒に未燃燃料成分を供給することで、その未燃燃料成分の排気中や触媒上での酸化に伴う発熱によりNOx触媒を例えば600〜700℃程度まで昇温させるとともに触媒周りの微粒子を燃焼させている。そして、その微粒子を燃焼させて二酸化炭素(CO2)と水(H2O)として排出することで、PMフィルタや触媒コンバータの上記微粒子による目詰まりを解消するようにしている。   The PM regeneration control is executed when the accumulation amount of the particulates in the exhaust system estimated from the engine operating state exceeds the allowable value, and is continued until the accumulation amount of the particulates becomes “0”. In this PM regeneration control, an unburned fuel component is supplied to a NOx catalyst supported by an exhaust system catalytic converter or a PM filter, so that NOx is generated due to heat generated by oxidation of the unburned fuel component in the exhaust or on the catalyst. The temperature of the catalyst is raised to, for example, about 600 to 700 ° C., and fine particles around the catalyst are burned. Then, the fine particles are burned and discharged as carbon dioxide (CO2) and water (H2O) to eliminate clogging of the PM filter and the catalytic converter due to the fine particles.

また、上記S被毒回復制御は、機関運転状態の履歴に基づき算出されるNOx触媒のSOx吸蔵量が許容値以上になったときに実行される。このS被毒回復制御では、排気系の触媒への未燃燃料成分の供給を通じて、触媒を例えば600〜700℃程度まで昇温するとともに、その高温下で排気空燃比をリッチにすることにより、NOx触媒からのSOxの放出及びその還元を促進して、上記NOx吸蔵能力の回復を図るようにしている。なお、排気の空燃比をリッチにした状態が続くと、排気中や触媒上での未燃燃料成分の酸化に伴う発熱が大となり、触媒が過度に昇温されるおそれがある。このため、S被毒回復制御においては、排気の空燃比をリッチ化するための触媒への未燃燃料成分の供給を間欠的に行い、これにより排気の空燃比のリッチ化を間欠的に行うようにして触媒の過昇温を抑制している。   Further, the S poison recovery control is executed when the SOx occlusion amount of the NOx catalyst calculated based on the history of the engine operation state exceeds the allowable value. In this S poison recovery control, the temperature of the catalyst is raised to, for example, about 600 to 700 ° C. through the supply of the unburned fuel component to the exhaust system catalyst, and the exhaust air-fuel ratio is made rich at that high temperature, The release of SOx from the NOx catalyst and its reduction are promoted to restore the NOx storage capacity. If the exhaust air-fuel ratio continues to be rich, the heat generated by the oxidation of the unburned fuel component in the exhaust or on the catalyst increases, and the catalyst may be excessively heated. For this reason, in the S poison recovery control, the supply of the unburned fuel component to the catalyst for enriching the air-fuel ratio of the exhaust gas is intermittently performed, whereby the air-fuel ratio of the exhaust gas is intermittently enriched. In this way, excessive heating of the catalyst is suppressed.

ところで、S被毒回復制御を実行する際に排気系に微粒子が堆積していると、触媒への未燃燃料成分の供給を通じて高温下での排気空燃比のリッチ化を図るとき、排気系に堆積した微粒子が一気に燃焼して触媒の過昇温が生じるおそれがある。このため、特許文献1に示されるように、S被毒回復制御の実行に先立って排気系での微粒子の堆積量が許容値以上であるか否かに関係なくPM再生制御を実行し、S被毒回復制御の実行前に排気系に堆積した微粒子を除去しておくことが提案されている。   By the way, if particulates are accumulated in the exhaust system when performing the S poison recovery control, when exhaust gas air-fuel ratio is enriched at a high temperature by supplying unburned fuel components to the catalyst, There is a possibility that the accumulated fine particles burn at once and the catalyst is overheated. For this reason, as shown in Patent Document 1, prior to the execution of the S poison recovery control, the PM regeneration control is executed regardless of whether or not the amount of particulates accumulated in the exhaust system is greater than or equal to an allowable value. It has been proposed to remove particulates accumulated in the exhaust system before execution of poisoning recovery control.

このようにS被毒回復制御の実行前に、排気系での微粒子の堆積量に関係なく強制的にPM再生制御を実行することで、S被毒回復制御の実行時に排気系に堆積した微粒子の燃焼に伴う触媒の過昇温が生じるのを抑制することができる。なお、特許文献1においては、S被毒回復制御の実行前に行われるPM再生制御での触媒の昇温率を上記微粒子の堆積量が少ないほど小とし、そのPM再生制御の実行時に触媒の過昇温が生じるのを抑制するようにもしている。
特開2002−38930公報
Thus, before executing the S poisoning recovery control, the PM regeneration control is forcibly executed regardless of the amount of particulates accumulated in the exhaust system, so that the particulates deposited in the exhaust system during the execution of the S poisoning recovery control. It is possible to prevent the catalyst from being overheated due to combustion. In Patent Document 1, the temperature increase rate of the catalyst in the PM regeneration control performed before the execution of the S poison recovery control is set to be smaller as the amount of the fine particles deposited is smaller. It also tries to suppress the overheating.
JP 2002-38930 A

上述したように、S被毒回復制御の実行前には必ずPM再生制御を実行しておくことで、S被毒回復制御の実行時に排気系に堆積した微粒子の燃焼に伴う触媒の過昇温が生じるのを抑制することはできるようになる。しかし、S被毒回復制御の実行前に排気系での微粒子の堆積量に関係なく強制的にPM再生制御を実行すると、状況によっては上記PM再生制御が無駄に行われることになり、同制御にて触媒に未燃燃料成分が供給される分だけ内燃機関の燃費が悪化する。   As described above, the PM regeneration control is always executed before the execution of the S poison recovery control, so that the catalyst overheated due to the combustion of the fine particles accumulated in the exhaust system when the S poison recovery control is executed. Can be suppressed. However, if the PM regeneration control is forcibly executed regardless of the amount of particulates accumulated in the exhaust system before the execution of the S poison recovery control, the PM regeneration control is wastefully performed depending on the situation. Thus, the fuel consumption of the internal combustion engine is deteriorated by the amount of unburned fuel component supplied to the catalyst.

このようにS被毒回復制御の実行前に無駄なPM再生制御が実行される状況としては、例えば、PM再生制御により排気系に堆積した微粒子が除去された直後にS被毒回復制御が実行されるという状況があげられる。この場合、排気系での微粒子の堆積量が「0」、或いはS被毒回復制御実行時に触媒の過昇温を招くおそれのないほど少ない値であるのに、S被毒回復制御の実行前に強制的にPM再生制御が実行され、その制御が無駄に実行されることとなる。   As described above, for example, the useless PM regeneration control is executed before the execution of the S poison recovery control. For example, the S poison recovery control is executed immediately after the particulates accumulated in the exhaust system are removed by the PM regeneration control. The situation that is done. In this case, the accumulation amount of the fine particles in the exhaust system is “0”, or is a value that does not cause the excessive temperature rise of the catalyst when the S poison recovery control is executed, but before the execution of the S poison recovery control. Therefore, the PM regeneration control is forcibly executed, and the control is executed wastefully.

なお、特許文献1では、S被毒回復制御の実行前に強制的にPM再生制御を実行する際、そのときの微粒子の堆積量が少なければ上記PM再生制御での触媒の昇温率が小となるようにされるため、同制御が無駄に行われるに際して触媒への未燃燃料成分の供給量は少なくなるものと推測される。ただし、このように同制御を実行したとしても、それに伴い触媒への未燃燃料成分の供給が行われることには変わりがないため、内燃機関の燃費が悪化することは避けられない。   In Patent Document 1, when the PM regeneration control is forcibly executed before the execution of the S poisoning recovery control, if the amount of accumulated particulates is small at that time, the catalyst temperature increase rate in the PM regeneration control is small. Therefore, when the control is performed wastefully, it is estimated that the amount of unburned fuel component supplied to the catalyst decreases. However, even if the same control is executed in this way, the unburned fuel component is still supplied to the catalyst accordingly, so that the fuel consumption of the internal combustion engine is inevitably deteriorated.

本発明はこのような実情に鑑みてなされたものであって、その目的は、S被毒回復制御の実行に先立つPM再生制御が無駄に行われて内燃機関の燃費が悪化するのを抑制することのできる内燃機関の排気浄化装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to prevent the PM regeneration control prior to the execution of the S poison recovery control from being performed wastefully and deteriorating the fuel consumption of the internal combustion engine. An object of the present invention is to provide an exhaust emission control device for an internal combustion engine.

以下、上記目的を達成するための手段及びその作用効果について記載する。
上記目的を達成するため、請求項1記載の発明では、排気中の微粒子を捕集するPMフィルタ、及び吸蔵還元型のNOx 触媒が排気系に設けられる内燃機関に適用され、前記排気系に設けられた触媒への未燃燃料成分の供給を通じて前記排気系に堆積した微粒子を燃焼させて除去するPM再生制御と、同じく前記排気系に設けられた触媒への未燃燃料成分の供給を通じて高温下での排気空燃比のリッチ化を図って前記NOx 触媒に吸蔵された硫黄酸化物を放出させるS被毒回復制御とを実行する内燃機関の排気浄化装置において、前記S被毒回復制御の実行が要求されたとき、前記排気系での微粒子の堆積量に応じて、前記S被毒回復制御の実行に先立つ前記PM再生制御の実行の有無を決定する制御手段であって、前記S被毒回復制御の実行が要求されたとき、前記排気系での微粒子の堆積量が、S被毒回復制御の実行のための前記触媒への未燃料成分の供給を通じて前記排気系に堆積した微粒子が燃焼しても、同排気系の触媒の過昇温を招くことのない前記微粒子の堆積量として設定された所定値以上であればS被毒回復制御の実行に先立つPM再生制御を実行し、前記堆積量が前記所定値未満であればS被毒回復制御の実行に先立つPM再生制御の実行を中止するとともに、前記所定値の初期値をその許容上限値よりも小さい値に設定し、機関運転状態を表すパラメータのうち内燃機関の排気温度に影響を及ぼすパラメータが排気温度を低下させる側に変化するほど前記所定値を前記許容上限値に向けて大きくする制御手段を備えた。
In the following, means for achieving the above object and its effects are described.
In order to achieve the above object, the invention according to claim 1 is applied to an internal combustion engine in which a PM filter that collects particulates in exhaust gas and a NOx storage reduction catalyst are provided in the exhaust system, and is provided in the exhaust system. PM regeneration control that burns and removes particulates accumulated in the exhaust system through the supply of unburned fuel components to the catalyst, and the supply of unburned fuel components to the catalyst provided in the exhaust system. In the exhaust gas purification apparatus for an internal combustion engine that executes the S poison recovery control for releasing the sulfur oxide stored in the NOx catalyst by enriching the exhaust air-fuel ratio at the engine, the S poison recovery control is executed. When requested, the control means determines whether or not to execute the PM regeneration control prior to the execution of the S poison recovery control according to the amount of particulates accumulated in the exhaust system, the S poison recovery Control execution When the particulate matter accumulated in the exhaust system burns through the supply of unfueled components to the catalyst for the execution of S poison recovery control, PM regeneration control is executed prior to the execution of S poison recovery control if the amount of accumulation of the fine particles that does not cause excessive temperature rise of the catalyst in the exhaust system is greater than the predetermined value, If it is less than the predetermined value, the execution of the PM regeneration control prior to the execution of the S poison recovery control is stopped, the initial value of the predetermined value is set to a value smaller than the allowable upper limit value, and a parameter representing the engine operating state Control means for increasing the predetermined value toward the allowable upper limit as the parameter that affects the exhaust temperature of the internal combustion engine changes to a side that lowers the exhaust temperature .

上記構成によれば、S被毒回復制御実行の要求時、排気系での微粒子の堆積量が多いときにS被毒回復制御の実行に先立ってPM再生制御を実行し、上記堆積量が少ないときにはS被毒回復制御の実行に先立ってのPM再生制御の実行を中止することが可能になる。従って、S被毒回復制御の実行に先立つPM再生制御が排気系の堆積量の少ない状況下で無駄に行われて内燃機関の燃費が悪化するのを抑制することができる。   According to the above configuration, when the S poisoning recovery control execution request is made, the PM regeneration control is executed prior to the execution of the S poisoning recovery control when the amount of particulate deposition in the exhaust system is large, and the amount of deposition is small. Sometimes it becomes possible to stop the execution of the PM regeneration control prior to the execution of the S poison recovery control. Therefore, it is possible to prevent the PM regeneration control prior to the execution of the S poison recovery control from being performed wastefully under a situation where the amount of accumulation in the exhaust system is small and the fuel consumption of the internal combustion engine to deteriorate.

また上記構成によれば、S被毒回復制御実行の要求時、排気系での微粒子の堆積量が所定値未満と少ないときには、S被毒回復制御の実行に先立ってのPM再生制御の実行が中止されるため、そのPM再生制御が無駄に行われて内燃機関の燃費が悪化するのを抑制することができる。 Further , according to the above configuration, when the S poison recovery control execution request is made, if the amount of particulate deposition in the exhaust system is less than a predetermined value, the PM regeneration control is executed prior to the execution of the S poison recovery control. Therefore, the PM regeneration control can be prevented from being performed wastefully and the fuel consumption of the internal combustion engine from being deteriorated.

更に上記構成によれば、S被毒回復制御実行の要求時、排気系での微粒子の堆積量がS被毒回復制御の実行に伴い触媒の過昇温を招くことのない値未満であるときには、S被毒回復制御の実行に先立ってのPM再生制御の実行が中止される。従って、そのPM再生制御が無駄に行われるのを的確に抑制することができる。また、S被毒回復制御の実行に先立つPM再生制御の実行が中止された後に上記S被毒回復制御が実行されたとき、触媒の過昇温が生じることもない。 Further , according to the above configuration, when the execution of the S poison recovery control is requested, the amount of particulates accumulated in the exhaust system is less than a value that does not cause an excessive temperature rise of the catalyst accompanying the execution of the S poison recovery control. The execution of the PM regeneration control prior to the execution of the S poison recovery control is stopped. Therefore, it is possible to accurately prevent the PM regeneration control from being performed wastefully. Further, when the S poison recovery control is executed after the execution of the PM regeneration control prior to the execution of the S poison recovery control, the catalyst is not overheated.

なお、S被毒回復制御の実行時、内燃機関の排気温度が高いほど、排気系に堆積した微粒子の燃焼に起因する触媒の過昇温が生じやすくなる。上記構成によれば、排気温度の高い機関運転状態にあっては、所定値が初期値寄りの値となることから、排気系での微粒子の堆積量がより少ない状況下で、S被毒回復制御に先立ってのPM再生制御が実行されるようになる。そして、このPM再生制御により排気系に堆積した微粒子が除去されるため、その後のS被毒回復制御実行時の排気温度が高いとしても、同制御の実行に伴う排気系での微粒子の燃焼に起因して触媒の過昇温が生じるのを的確に抑制することができる。また、排気温度が低くなる機関運転状態にあっては、排気温度に影響を及ぼすパラメータが排気温度を低下させる側に変化するほど、所定値がその許容上限値に向けて大きくなり、排気系での微粒子の堆積量が極力所定値を越えて多くならないようにされる。その結果、S被毒回復制御に先立ってのPM再生制御が可能な限り行われないようにすることができる。以上により、S被毒回復制御に先立ってのPM再生制御を必要なときに的確に行いつつ、そのPM再生制御を可能な限り無駄に行わないようにすることができる。 Note that when the S poison recovery control is executed, the higher the exhaust temperature of the internal combustion engine, the more likely the catalyst to overheat due to the combustion of particulates deposited in the exhaust system. According to the above configuration, when the engine temperature is high, the predetermined value is close to the initial value, so that the S poison recovery can be performed under the condition that the amount of particulates accumulated in the exhaust system is smaller. Prior to the control, PM regeneration control is executed. Since particulates accumulated in the exhaust system are removed by this PM regeneration control, even if the exhaust temperature during the subsequent S poison recovery control execution is high, the particulates burn in the exhaust system accompanying the execution of the control. As a result, it is possible to accurately suppress the occurrence of excessive heating of the catalyst. Also, in an engine operating state where the exhaust temperature becomes low, the predetermined value increases toward the allowable upper limit as the parameter that affects the exhaust temperature changes to the side that lowers the exhaust temperature. The amount of accumulated fine particles is kept from exceeding a predetermined value as much as possible. As a result, it is possible to prevent the PM regeneration control prior to the S poison recovery control from being performed as much as possible. As described above, the PM regeneration control prior to the S poison recovery control can be accurately performed when necessary, and the PM regeneration control can be prevented from being performed as wastefully as possible.

請求項記載の発明では、請求項記載の発明において、前記排気温度に影響を及ぼすパラメータとしては、内燃機関の燃料噴射量と機関回転速度との少なくとも一方が用いられることを要旨とした。 The invention according to claim 2 is characterized in that, in the invention according to claim 1 , at least one of the fuel injection amount of the internal combustion engine and the engine rotational speed is used as the parameter affecting the exhaust gas temperature.

内燃機関の燃料噴射量が多くなると、一回の燃料噴射に伴う燃料燃焼時の燃焼エネルギが増大するため、排気に付与される熱量も増大し、内燃機関の排気温度が上昇しやすくなる傾向がある。また、機関回転速度が高くなると、単位時間あたりの燃料燃焼時の燃焼エネルギが増大するため、排気に付与される熱量も増大し、内燃機関の排気温度が上昇しやすくなる傾向がある。上記構成によれば、排気温度に影響を及ぼすパラメータである燃料噴射量や機関回転速度が小となるほど、上記所定値がその許容上限値に向けて大きくされるようになる。従って、排気温度が低くなる機関運転状態にあるとき、上記所定値を排気温度の低下に伴い的確に許容上限値に向けて大きくすることができるようになる。   When the fuel injection amount of the internal combustion engine increases, the combustion energy at the time of fuel combustion accompanying one fuel injection increases, so the amount of heat applied to the exhaust also increases, and the exhaust temperature of the internal combustion engine tends to rise. is there. Further, when the engine rotational speed increases, the combustion energy at the time of fuel combustion increases per unit time, so the amount of heat applied to the exhaust also increases, and the exhaust temperature of the internal combustion engine tends to increase. According to the above configuration, the predetermined value is increased toward the allowable upper limit value as the fuel injection amount and the engine rotational speed, which are parameters affecting the exhaust gas temperature, are decreased. Therefore, when the engine is in an engine operating state where the exhaust temperature is lowered, the predetermined value can be accurately increased toward the allowable upper limit as the exhaust temperature decreases.

以下、本発明を自動車用の内燃機関に適用した一実施形態を図1〜図3に従って説明する。
図1は、本実施形態の制御装置が適用される内燃機関10の構成を示している。この内燃機関10は、コモンレール方式の燃料噴射装置、及びターボチャージャ11を備えるディーゼル機関となっており、大きくは吸気通路12、燃焼室13、及び排気通路14を備えて構成されている。
Hereinafter, an embodiment in which the present invention is applied to an internal combustion engine for an automobile will be described with reference to FIGS.
FIG. 1 shows a configuration of an internal combustion engine 10 to which the control device of the present embodiment is applied. The internal combustion engine 10 is a diesel engine including a common rail fuel injection device and a turbocharger 11, and mainly includes an intake passage 12, a combustion chamber 13, and an exhaust passage 14.

内燃機関10の吸気系を構成する吸気通路12には、その最上流部に配設されたエアクリーナ15から下流側に向けて順に、エアフローメータ16、上記ターボチャージャ11のコンプレッサ17、インタークーラ18、及び吸気絞り弁19が配設されている。また吸気通路12は、吸気絞り弁19の下流側に設けられた吸気マニホールド20において分岐され、吸気ポート21を介して内燃機関10の各気筒の燃焼室13に接続されている。   In an intake passage 12 constituting the intake system of the internal combustion engine 10, an air flow meter 16, a compressor 17 of the turbocharger 11, an intercooler 18, And an intake throttle valve 19 is provided. The intake passage 12 is branched at an intake manifold 20 provided on the downstream side of the intake throttle valve 19 and connected to the combustion chamber 13 of each cylinder of the internal combustion engine 10 via an intake port 21.

一方、内燃機関10の排気系を構成する排気通路14では、各気筒の燃焼室13にそれぞれ接続された排気ポート22が排気マニホールド23を介して上記ターボチャージャ11の排気タービン24に接続されている。また排気通路14の排気タービン24下流には、上流側から順に、NOx触媒コンバータ25、PMフィルタ26、酸化触媒コンバータ27が配設されている。   On the other hand, in the exhaust passage 14 constituting the exhaust system of the internal combustion engine 10, the exhaust port 22 connected to the combustion chamber 13 of each cylinder is connected to the exhaust turbine 24 of the turbocharger 11 via the exhaust manifold 23. . In addition, a NOx catalytic converter 25, a PM filter 26, and an oxidation catalytic converter 27 are disposed downstream from the exhaust turbine 24 in the exhaust passage 14 in order from the upstream side.

NOx触媒コンバータ25には、吸蔵還元型のNOx触媒が担持されている。このNOx触媒は、排気の酸素濃度が高いときに排気中のNOxを吸蔵し、排気の酸素濃度が低いときにその吸蔵したNOxを放出する。またNOx触媒は、上記NOx放出時に、還元剤となる未燃燃料成分がその周囲に十分存在していれば、その放出されたNOxを還元して浄化する。   The NOx catalytic converter 25 carries an NOx storage reduction catalyst. The NOx catalyst stores NOx in the exhaust when the oxygen concentration of the exhaust is high, and releases the stored NOx when the oxygen concentration of the exhaust is low. Further, the NOx catalyst reduces and purifies the released NOx if there is sufficient unburned fuel component as a reducing agent at the time of releasing the NOx.

PMフィルタ26は、多孔質材料によって形成されており、排気中の煤を主成分とする微粒子(PM)が捕集されるようになっている。このPMフィルタ26にも、上記NOx触媒コンバータ25と同様に、吸蔵還元型のNOx触媒が担持されており、排気中のNOxの浄化が行われるようになっている。またこのNOx触媒によって触発される反応により、上記捕集されたPMが燃焼(酸化)されて除去されるようにもなっている。   The PM filter 26 is made of a porous material and collects fine particles (PM) mainly composed of soot in the exhaust gas. Similarly to the NOx catalytic converter 25, the PM filter 26 also carries an NOx storage reduction catalyst so that NOx in the exhaust gas can be purified. Further, the collected PM is burned (oxidized) and removed by a reaction triggered by the NOx catalyst.

酸化触媒コンバータ27には、酸化触媒が担持されている。この酸化触媒は、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して浄化する。
なお排気通路14の上記PMフィルタ26の上流側及び下流側には、PMフィルタ26に流入する排気の温度である入ガス温度を検出する入ガス温度センサ28、及びPMフィルタ26通過後の排気の温度である出ガス温度を検出する出ガス温度センサ29がそれぞれ配設されている。また排気通路14には、上記PMフィルタ26の排気上流側とその排気下流側との差圧を検出する差圧センサ30が配設されている。更に排気通路14の上記NOx触媒コンバータ25の排気上流側、及び上記PMフィルタ26と上記酸化触媒コンバータ27との間には、排気中の酸素濃度を検出する2つの酸素センサ31、32がそれぞれ配設されている。
The oxidation catalyst converter 27 carries an oxidation catalyst. This oxidation catalyst oxidizes and purifies hydrocarbons (HC) and carbon monoxide (CO) in the exhaust.
In addition, on the upstream side and the downstream side of the PM filter 26 in the exhaust passage 14, an inlet gas temperature sensor 28 that detects the inlet gas temperature that is the temperature of the exhaust gas flowing into the PM filter 26, and the exhaust gas after passing through the PM filter 26. An outgas temperature sensor 29 for detecting an outgas temperature, which is a temperature, is provided. The exhaust passage 14 is provided with a differential pressure sensor 30 for detecting a differential pressure between the exhaust upstream side of the PM filter 26 and the exhaust downstream side thereof. Further, two oxygen sensors 31 and 32 for detecting the oxygen concentration in the exhaust gas are arranged on the exhaust gas upstream side of the NOx catalytic converter 25 in the exhaust passage 14 and between the PM filter 26 and the oxidation catalytic converter 27, respectively. It is installed.

更にこの内燃機関10には、排気の一部を吸気通路12内の空気に再循環させる排気再循環(以下、EGRと記載する)装置が設けられている。EGR装置は、排気通路14と吸気通路12とを連通するEGR通路33を備えて構成されている。EGR通路33の最上流部は、排気通路14の上記排気タービン24の排気上流側に接続されている。EGR通路33には、その上流側から、再循環される排気を改質するEGR触媒34、その排気を冷却するEGRクーラ35、その排気の流量を調整するEGR弁36が配設されている。そしてEGR通路33の最下流部は、吸気通路12の上記吸気絞り弁19の下流側に接続されている。   Further, the internal combustion engine 10 is provided with an exhaust gas recirculation (hereinafter referred to as EGR) device that recirculates a part of the exhaust gas to the air in the intake passage 12. The EGR device includes an EGR passage 33 that allows the exhaust passage 14 and the intake passage 12 to communicate with each other. The most upstream portion of the EGR passage 33 is connected to the exhaust upstream side of the exhaust turbine 24 in the exhaust passage 14. The EGR passage 33 is provided with an EGR catalyst 34 for reforming the recirculated exhaust, an EGR cooler 35 for cooling the exhaust, and an EGR valve 36 for adjusting the flow rate of the exhaust from the upstream side. The most downstream portion of the EGR passage 33 is connected to the downstream side of the intake throttle valve 19 in the intake passage 12.

一方、内燃機関10の各気筒の燃焼室13には、同燃焼室13内での燃焼に供される燃料を噴射するインジェクタ40がそれぞれ配設されている。各気筒のインジェクタ40は、高圧燃料供給管41を介してコモンレール42に接続されている。コモンレール42には、燃料ポンプ43を通じて高圧燃料が供給される。コモンレール42内の高圧燃料の圧力は、同コモンレール42に取り付けられたレール圧センサ44によって検出されるようになっている。更に燃料ポンプ43からは、低圧燃料供給管45を通じて、低圧燃料が添加弁46に供給されるようになっている。   On the other hand, an injector 40 for injecting fuel to be used for combustion in the combustion chamber 13 is disposed in the combustion chamber 13 of each cylinder of the internal combustion engine 10. The injector 40 of each cylinder is connected to a common rail 42 via a high pressure fuel supply pipe 41. High pressure fuel is supplied to the common rail 42 through a fuel pump 43. The pressure of the high-pressure fuel in the common rail 42 is detected by a rail pressure sensor 44 attached to the common rail 42. Further, low pressure fuel is supplied from the fuel pump 43 to the addition valve 46 through the low pressure fuel supply pipe 45.

こうした内燃機関10の各種制御は、電子制御装置50により実施されている。電子制御装置50は、機関制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。   Various controls of the internal combustion engine 10 are performed by the electronic control unit 50. The electronic control unit 50 includes a CPU that executes various arithmetic processes related to engine control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores CPU arithmetic results, and signals between the outside The input / output port for inputting / outputting is provided.

電子制御装置50の入力ポートには、上述した各センサに加え、機関回転速度を検出するNEセンサ51、アクセル操作量を検出するアクセルセンサ52、吸気絞り弁19の開度を検出する絞り弁センサ53、内燃機関10の吸気温度を検出する吸気温センサ54、及び、同機関10の冷却水温を検出する水温センサ55等が接続されている。また電子制御装置50の出力ポートには、上記吸気絞り弁19やEGR弁36、インジェクタ40、燃料ポンプ43、添加弁46等の駆動回路が接続されている。   In addition to the above-described sensors, the input port of the electronic control unit 50 includes an NE sensor 51 that detects the engine speed, an accelerator sensor 52 that detects the accelerator operation amount, and a throttle valve sensor that detects the opening of the intake throttle valve 19. 53, an intake air temperature sensor 54 for detecting the intake air temperature of the internal combustion engine 10, a water temperature sensor 55 for detecting the cooling water temperature of the engine 10, and the like are connected. The output port of the electronic control unit 50 is connected to drive circuits such as the intake throttle valve 19, the EGR valve 36, the injector 40, the fuel pump 43, and the addition valve 46.

電子制御装置50は、上記各センサから入力される検出信号より把握される機関運転状態に応じて、上記出力ポートに接続された各機器類の駆動回路に指令信号を出力する。こうして上記吸気絞り弁19の開度制御、上記EGR弁36の開度制御に基づくEGR制御、上記インジェクタ40からの燃料噴射量、燃料噴射時期、及び燃料噴射圧の制御、上記添加弁46からの燃料添加の制御等の各種制御が電子制御装置50により実施されている。   The electronic control unit 50 outputs a command signal to the drive circuit of each device connected to the output port according to the engine operating state grasped from the detection signal input from each sensor. Thus, the opening control of the intake throttle valve 19, EGR control based on the opening control of the EGR valve 36, control of the fuel injection amount, fuel injection timing, and fuel injection pressure from the injector 40, Various controls such as fuel addition control are performed by the electronic control unit 50.

以上の如く構成された本実施形態では、NOx触媒コンバータ25及びPMフィルタ26でのPMによる目詰まりを解消するためのPM再生制御、及び、硫黄酸化物(SOx)等のNOx触媒への吸蔵によって低下した当該NOx触媒のNOx吸蔵能力を回復するためのS被毒回復制御を行うようにしている。   In the present embodiment configured as described above, by PM regeneration control for eliminating clogging by PM in the NOx catalytic converter 25 and the PM filter 26, and occlusion in the NOx catalyst such as sulfur oxide (SOx). S poisoning recovery control is performed to recover the reduced NOx storage capacity of the NOx catalyst.

上記PM再生制御は、機関運転状態から推定される排気系でのPM堆積量が許容値以上になったときに実行され、そのPM堆積量が「0」になるまで継続される。このPM再生制御では、上記NOx触媒コンバータ25やPMフィルタ26に担持されたNOx触媒に未燃燃料成分を供給することで、その未燃燃料成分の排気中や触媒上での酸化に伴う発熱により触媒を例えば600〜700℃程度まで昇温させるとともに触媒周りのPMを燃焼(酸化)させている。そして、そのPMを燃焼させて二酸化炭素(CO2)と水(H2O)として排出することで、NOx触媒コンバータ25及びPMフィルタ26でのPMによる目詰まりを解消するようにしている。なお、PM再生制御でのNOx触媒への未燃燃料成分の供給は、添加弁46からの排気に対する燃料添加等によって行われる。   The PM regeneration control is executed when the PM accumulation amount in the exhaust system estimated from the engine operating state exceeds an allowable value, and is continued until the PM accumulation amount becomes “0”. In this PM regeneration control, an unburned fuel component is supplied to the NOx catalyst carried on the NOx catalytic converter 25 and the PM filter 26, thereby generating heat due to oxidation of the unburned fuel component in the exhaust or on the catalyst. The temperature of the catalyst is raised to, for example, about 600 to 700 ° C., and PM around the catalyst is burned (oxidized). Then, the PM is burned and discharged as carbon dioxide (CO2) and water (H2O), so that clogging due to PM in the NOx catalytic converter 25 and the PM filter 26 is eliminated. The unburned fuel component is supplied to the NOx catalyst in the PM regeneration control by adding fuel to the exhaust from the addition valve 46 or the like.

また、上記S被毒回復制御は、機関運転状態の履歴に基づき算出されるNOx触媒のSOx吸蔵量が許容値以上になったときに実行される。このS被毒回復制御では、NOx触媒への未燃燃料成分の供給を通じて、同触媒を例えば600〜700℃程度まで昇温するとともに、その高温下で排気空燃比をリッチにすることにより、NOx触媒からのSOxの放出及びその還元を促進して、上記NOx吸蔵能力の回復を図るようにしている。なお、S被毒回復制御でのNOx触媒への未燃燃料成分の供給も、添加弁46からの排気に対する燃料添加等によって行われる。ただし、こうした添加弁46からの燃料添加により上述した排気空燃比のリッチが続くと、排気中や触媒上での未燃燃料成分の酸化に伴う発熱が大となり、触媒が過度に昇温されるおそれがある。このため、S被毒回復制御においては、排気の空燃比をリッチ化するための添加弁46からの燃料添加を間欠的に行って排気空燃比をリッチとリーンとの間で反転させ、これにより同排気空燃比のリッチ化を間欠的に行うようにして上述した触媒の過昇温を抑制するようにしている。   Further, the S poison recovery control is executed when the SOx occlusion amount of the NOx catalyst calculated based on the history of the engine operation state exceeds the allowable value. In this S poison recovery control, the temperature of the catalyst is raised to, for example, about 600 to 700 ° C. through the supply of the unburned fuel component to the NOx catalyst, and the exhaust air-fuel ratio is made rich at that high temperature, thereby reducing the NOx. The release of SOx from the catalyst and its reduction are promoted to restore the NOx storage capacity. In addition, the supply of the unburned fuel component to the NOx catalyst in the S poison recovery control is also performed by adding fuel to the exhaust from the addition valve 46 or the like. However, if the exhaust air / fuel ratio rich as described above continues due to the fuel addition from the addition valve 46, the heat generated by the oxidation of the unburned fuel component in the exhaust or on the catalyst becomes large, and the catalyst is excessively heated. There is a fear. For this reason, in the S poison recovery control, fuel addition from the addition valve 46 for enriching the exhaust air-fuel ratio is intermittently performed to reverse the exhaust air-fuel ratio between rich and lean, thereby The exhaust air-fuel ratio is enriched intermittently to suppress the above-described excessive temperature rise of the catalyst.

ところで、S被毒回復制御を実行する際に排気系にPMが堆積していると、排気空燃比のリッチ化を図るための添加弁46からの燃料添加に伴い、排気系に堆積したPMが一気に燃焼してNOx触媒が過昇温してしまうおそれがある。こうしたNOx触媒の過昇温を抑制するため、S被毒回復制御を実行する際には、それに先立ちPM再生制御を強制的に実行して排気系に堆積したPMを予め除去しておくことが行われる。   By the way, when PM is accumulated in the exhaust system when the S poison recovery control is executed, the PM accumulated in the exhaust system is increased along with fuel addition from the addition valve 46 for enriching the exhaust air-fuel ratio. There is a risk that the NOx catalyst will overheat when burned at once. In order to suppress such excessive temperature rise of the NOx catalyst, when executing the S poison recovery control, the PM regeneration control is forcibly executed prior to the removal of the PM accumulated in the exhaust system. Done.

次に、S被毒回復制御の実行に先立つPM再生制御の実行手順について、煤払い制御ルーチンを示す図2のフローチャートを参照して説明する。この煤払い制御ルーチンは、電子制御装置50を通じて、例えば所定時間毎(16ms毎など)の時間割り込みにて周期的に実行される。   Next, the execution procedure of the PM regeneration control prior to the execution of the S poison recovery control will be described with reference to the flowchart of FIG. This scavenging payment control routine is periodically executed through the electronic control unit 50, for example, with a time interruption every predetermined time (for example, every 16 ms).

同ルーチンにおいては、NOx触媒のSOx吸蔵量が許容値以上になってS被毒回復制御の実行要求がなされると(S101:YES)、そのS被毒回復制御の実行に先立ってPM再生制御を強制的に実行するための処理(ステップS102〜S104)が行われる。こうしたPM再生制御の強制的な実行は、機関運転状態に基づき推定された排気系でのPM堆積量を許容値以上の値、例えばPM堆積量の最大値(1.1g等)に書き換えることによって実現される(S103)。このようにPM堆積量が許容値以上の値に書き換えられると、PM再生制御の実行要求がなされて同制御が開始されるようになる(S104)。こうして開始されたPM再生制御については、同制御の実行を通じてPM堆積量が「0」になるまで継続される。   In this routine, when the SOx occlusion amount of the NOx catalyst exceeds the allowable value and an execution request for S poison recovery control is made (S101: YES), PM regeneration control is performed prior to the execution of the S poison recovery control. Processing for forcibly executing (steps S102 to S104) is performed. The forced execution of such PM regeneration control is performed by rewriting the PM accumulation amount in the exhaust system estimated based on the engine operating state to a value greater than an allowable value, for example, the maximum value (1.1 g, etc.) of the PM accumulation amount. Realized (S103). When the PM accumulation amount is rewritten to a value greater than or equal to the allowable value in this way, an execution request for PM regeneration control is made and the control is started (S104). The PM regeneration control thus started is continued until the PM accumulation amount becomes “0” through execution of the control.

上記のようにS被毒回復制御の実行に先立ってPM再生制御を強制的に実行し、排気系に堆積したPMを予め除去しておくことで、その後のS被毒回復制御の実行に際して排気空燃比のリッチ化を図るための添加弁46からの燃料添加が行われたとき、排気系に堆積したPMが一気に燃焼してNOx触媒の過昇温が生じるのを抑制することができる。しかしながら、S被毒回復制御の実行に先立ってPM堆積量に関係なくPM再生制御を強制的に実行すると、状況によっては上記PM再生制御が無駄に行われることになり、同制御での添加弁46からの燃料添加によってNOx触媒に未燃燃料成分が供給される分だけ、内燃機関10の燃費が悪化することは避けられない。   As described above, the PM regeneration control is forcibly executed prior to the execution of the S poison recovery control, and the PM accumulated in the exhaust system is removed in advance, so that the exhaust is performed when the S poison recovery control is executed thereafter. When fuel addition from the addition valve 46 for enriching the air-fuel ratio is performed, it is possible to suppress the PM accumulated in the exhaust system from burning at a stretch and causing the NOx catalyst to overheat. However, if the PM regeneration control is forcibly executed regardless of the PM accumulation amount prior to the execution of the S poison recovery control, the PM regeneration control is performed wastefully depending on the situation, and the addition valve in the control The fuel consumption of the internal combustion engine 10 is inevitably deteriorated as much as the unburned fuel component is supplied to the NOx catalyst by the fuel addition from 46.

そこで、この実施形態では、S被毒回復制御の実行要求がなされたとき(S101:YES)、機関運転状態に基づき推定される排気系でのPM堆積量に応じて、S被毒回復制御に先立つPM再生制御の実行の有無を決定するようにしている。より詳しくは、上記PM堆積量が所定値a未満であるとき(S102:NO)にはPM再生制御を強制的に実行するための処理(S103,S104)をスキップし、上記PM堆積量が所定値a以上であるとき(S102:YES)のみPM再生制御を強制的に実行するための処理(S103,S104)を行うようにしている。このため、S被毒回復制御実行の要求時、排気系でのPM堆積量が所定値a未満と少ないときには、S被毒回復制御に先立ってのPM再生制御の強制的な実行が中止される。従って、そのPM再生制御が無駄に行われて内燃機関10の燃費が悪化するのを抑制することができるようになる。   Therefore, in this embodiment, when the execution request of the S poison recovery control is made (S101: YES), the S poison recovery control is performed according to the PM accumulation amount in the exhaust system estimated based on the engine operating state. Whether or not to execute prior PM regeneration control is determined. More specifically, when the PM accumulation amount is less than the predetermined value a (S102: NO), the processing (S103, S104) for forcibly executing PM regeneration control is skipped, and the PM accumulation amount is predetermined. Only when the value is greater than or equal to the value a (S102: YES), processing for forcibly executing PM regeneration control (S103, S104) is performed. For this reason, when the PM poisoning recovery control execution request is made and the amount of accumulated PM in the exhaust system is less than the predetermined value a, the forcible execution of the PM regeneration control prior to the S poison recovery control is stopped. . Therefore, it is possible to prevent the PM regeneration control from being performed wastefully and deteriorating the fuel consumption of the internal combustion engine 10.

ここで、ステップS102で用いられる所定値aは、S被毒回復制御の実行時にNOx触媒への未燃燃料成分の供給を通じて排気系に堆積したPMが燃焼しても、同NOx触媒の過昇温を招くことのないPM堆積量に設定される。また、この所定値aは、機関運転状態を表すパラメータのうち内燃機関10の排気温度に影響を及ぼすパラメータ、例えば燃料噴射量及び機関回転速度に基づき可変とされる。こうした所定値aの可変設定の詳細について、燃料噴射量及び機関回転速度の変化に対する所定値aの変化態様を示す図3のグラフを参照して説明する。   Here, the predetermined value a used in step S102 is an excessive increase in the NOx catalyst even when PM accumulated in the exhaust system burns through the supply of the unburned fuel component to the NOx catalyst during the execution of the S poison recovery control. The PM deposition amount is set so as not to cause temperature. The predetermined value a is variable based on parameters that affect the exhaust temperature of the internal combustion engine 10 among parameters representing the engine operating state, for example, the fuel injection amount and the engine speed. Details of such variable setting of the predetermined value a will be described with reference to the graph of FIG. 3 showing how the predetermined value a changes with respect to changes in the fuel injection amount and the engine speed.

所定値aについては、その初期値Pが当該所定値aの許容上限値Xよりも小さい値、例えば内燃機関10の排気温度が想定し得る最高値となる機関運転状態のもとでS被毒回復制御を実施したときにNO触媒に過昇温が生じることのないPM堆積量とされる。なお、ここでの許容上限値Xとは、内燃機関10の排気温度が想定し得る最低値である状況下でS被毒回復制御を実施したときにNOx触媒に過昇温が生じることのないPM堆積量のことである。そして、燃料噴射量及び機関回転速度が内燃機関10の排気温度を最低値とし得る値(初期値Pに対応する値)に対し排気温度を低下させる側に変化するほど、所定値aがその許容上限値Xに向けて大きくされる。   As for the predetermined value a, S poisoning is performed under an engine operating state in which the initial value P is smaller than the allowable upper limit value X of the predetermined value a, for example, the exhaust gas temperature of the internal combustion engine 10 is assumed to be the highest value. When the recovery control is performed, the PM accumulation amount is such that no excessive temperature rise occurs in the NO catalyst. Here, the allowable upper limit value X does not cause an excessive increase in temperature of the NOx catalyst when the S poison recovery control is performed in a situation where the exhaust temperature of the internal combustion engine 10 is the lowest value that can be assumed. It is the amount of PM deposition. As the fuel injection amount and the engine rotational speed change to a value that lowers the exhaust temperature with respect to a value that can make the exhaust temperature of the internal combustion engine 10 the minimum value (a value corresponding to the initial value P), the predetermined value a is allowed The value is increased toward the upper limit value X.

なお、内燃機関10の排気温度については、燃料噴射量が多くなるほど上昇しやすくなる。これは、燃料噴射量が多くなるほど、内燃機関10での一回の燃料噴射に伴う燃料燃焼時の燃焼エネルギが増大し、排気に付与される熱量も増大するためである。また、内燃機関10の排気温度については、機関回転速度が高くなるほど上昇しやすくもなる。これは、機関回転速度が高くなるほど、単位時間当たりの燃料燃焼時の燃焼エネルギが増大し、排気に付与される熱量も増大するためである。従って、燃料噴射量及び機関回転速度が初期値Pに対応する値よりも小になるほど、上記所定値aが大きくされることとなる。   Note that the exhaust temperature of the internal combustion engine 10 tends to increase as the fuel injection amount increases. This is because as the fuel injection amount increases, the combustion energy at the time of fuel combustion accompanying one fuel injection in the internal combustion engine 10 increases, and the amount of heat applied to the exhaust also increases. Further, the exhaust temperature of the internal combustion engine 10 tends to increase as the engine speed increases. This is because as the engine speed increases, the combustion energy during fuel combustion per unit time increases and the amount of heat applied to the exhaust also increases. Therefore, the predetermined value a is increased as the fuel injection amount and the engine rotational speed are smaller than the values corresponding to the initial value P.

以上のように所定値aを可変設定することで、S被毒回復制御に先立ってのPM再生制御が、必要なときに的確に行われ、且つ可能な限り無駄に行われないよう、次のように実施される。   By variably setting the predetermined value a as described above, the PM regeneration control prior to the S poison recovery control is accurately performed when necessary and the following is performed so as not to be performed as wastefully as possible. Is implemented as follows.

すなわち、例えば排気温度が最高値をとり得るような機関運転状態にあっては、所定値aが上述した初期値Pとなることから、排気系でのPM堆積量がより少ない状況下で、S被毒回復制御に先立ってのPM再生制御が実行されるようになる。そして、このPM再生制御により排気系に堆積したPMが除去されるため、その後のS被毒回復制御実行時の排気温度が高いとしても、同制御の実行に伴う排気系でのPMの燃焼に起因してNOx触媒の過昇温が生じるのを的確に抑制することができる。   That is, for example, in an engine operating state in which the exhaust gas temperature can take the maximum value, the predetermined value a becomes the above-described initial value P. PM regeneration control is executed prior to poisoning recovery control. Since PM accumulated in the exhaust system is removed by this PM regeneration control, even if the exhaust temperature during the subsequent S poison recovery control execution is high, the PM in the exhaust system accompanying the execution of the control is burned. As a result, it is possible to accurately suppress the excessive temperature rise of the NOx catalyst.

また、排気温度が上記最高値よりも低くなる機関運転状態にあっては、排気温度に影響を及ぼすパラメータである燃料噴射量及び機関回転速度が減少側(排気温度を低下させる側)に変化するほど、所定値aがその許容上限値Xに向けて大きくなり、排気系でのPMの堆積量が極力所定値aを越えて多くならないようにされる。その結果、S被毒回復制御の実行に先立つPM再生制御の無駄な実行が可能な限り回避される。   Further, in an engine operating state in which the exhaust temperature is lower than the maximum value, the fuel injection amount and the engine rotation speed, which are parameters that affect the exhaust temperature, change to the decreasing side (the exhaust temperature decreasing side). The predetermined value a increases toward the allowable upper limit value X, and the amount of PM accumulated in the exhaust system is prevented from exceeding the predetermined value a as much as possible. As a result, useless execution of PM regeneration control prior to execution of S poison recovery control is avoided as much as possible.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)S被毒回復制御の実行要求時、排気系でのPM堆積量がS被毒回復制御の実行に伴いNOx触媒の過昇温を招くことのない値である所定値a未満であるときにはS被毒回復制御の実行に先立つPM再生制御の実行を中止し、上記PM堆積量が所定値a以上であるときのみS被毒回復制御の実行に先立つPM再生制御を実行するようにした。従って、S被毒回復制御の実行に先立ってPM再生制御を行わなくても、そのS被毒回復制御の実行時にNOx触媒の過昇温が生じるおそれがないという状況下で、上記PM再生制御が無駄に実行されて内燃機関10の燃費が悪化してしまうのを抑制することができる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) At the time of execution request for S poison recovery control, the amount of PM accumulated in the exhaust system is less than a predetermined value a that is a value that does not cause excessive temperature rise of the NOx catalyst with the execution of S poison recovery control. In some cases, the execution of the PM regeneration control prior to the execution of the S poison recovery control is stopped, and the PM regeneration control prior to the execution of the S poison recovery control is executed only when the PM accumulation amount is equal to or greater than the predetermined value a. . Therefore, even if the PM regeneration control is not performed prior to the execution of the S poison recovery control, the PM regeneration control is performed in a situation where there is no possibility that the NOx catalyst will overheat when the S poison recovery control is performed. Can be prevented from being executed wastefully and the fuel consumption of the internal combustion engine 10 is deteriorated.

(2)上記所定値aについては、その初期値Pが当該所定値aの許容上限値Xよりも小さい値であって、内燃機関10の排気温度が想定し得る最高値となる機関運転状態のもとでS被毒回復制御を実行したときにNO触媒に過昇温が生じることのない値とされる。更に、内燃機関10の排気温度に影響を及ぼすパラメータである燃料噴射量及び機関回転速度が初期値Pに対応する値よりも小になるほど、上記所定値aがその許容上限値Xに向けて大きくされる。以上のように所定値aを可変設定することにより、S被毒回復制御に先立ってのPM再生制御が、必要なときに的確に行われ、且つ可能な限り無駄に行われないようにすることができる。   (2) The predetermined value a is an engine operating state in which the initial value P is smaller than the allowable upper limit value X of the predetermined value a and the exhaust temperature of the internal combustion engine 10 becomes a maximum value that can be assumed. Originally, when NO poisoning recovery control is executed, the NO catalyst is set to a value that does not cause excessive temperature rise. Further, as the fuel injection amount and the engine speed, which are parameters that affect the exhaust temperature of the internal combustion engine 10, become smaller than the values corresponding to the initial value P, the predetermined value a increases toward the allowable upper limit value X. Is done. As described above, by variably setting the predetermined value a, the PM regeneration control prior to the S poison recovery control is accurately performed when necessary and is not performed as wastefully as possible. Can do.

なお、上記実施形態は、例えば以下のように変更することもできる。
・所定値aを可変設定する際に用いる内燃機関10の排気温度に影響を及ぼすパラメータとして燃料噴射量と機関回転速度との両方を用いたが、いずれか一方のみを用いてもよい。
In addition, the said embodiment can also be changed as follows, for example.
Although both the fuel injection amount and the engine rotational speed are used as parameters that affect the exhaust temperature of the internal combustion engine 10 used when variably setting the predetermined value a, only one of them may be used.

・上記パラメータとして、燃料噴射量及び機関回転速度以外のパラメータ、例えば内燃機関10の冷却水温、潤滑油温、及び吸気温といったパラメータを用いてもよい。
・所定値aを固定値とすることも可能である。この場合、所定値aを例えば初期値Pで固定することが考えられる。
As the above parameters, parameters other than the fuel injection amount and the engine rotational speed, for example, parameters such as the cooling water temperature, the lubricating oil temperature, and the intake air temperature of the internal combustion engine 10 may be used.
The predetermined value a can be a fixed value. In this case, it is conceivable that the predetermined value a is fixed at the initial value P, for example.

・上記実施形態のようにPMフィルタ26の排気上流側にNOx触媒が担持されたNOx触媒コンバータ25を設けている場合には、PMフィルタ26にNOx触媒を必ずしも担持する必要はない。   When the NOx catalyst converter 25 in which the NOx catalyst is supported on the exhaust upstream side of the PM filter 26 is provided as in the above embodiment, it is not always necessary to support the NOx catalyst on the PM filter 26.

・上記実施形態のようにPMフィルタ26にNOx触媒を担持している場合には、NOx触媒コンバータ25を必ずしもPMフィルタ26の排気上流側に設ける必要はない。
・通常のPM再生制御での触媒への未燃燃料成分の供給を、インジェクタ40から燃焼室13内での燃焼に供される燃料の噴射後に排気行程や膨張行程で行われる副噴射(アフター噴射)により実現してもよい。
When the NOx catalyst is supported on the PM filter 26 as in the above embodiment, the NOx catalytic converter 25 is not necessarily provided upstream of the PM filter 26 on the exhaust side.
Sub-injection (after-injection) in which an unburned fuel component is supplied to the catalyst in normal PM regeneration control after the injection of fuel to be used for combustion in the combustion chamber 13 from the injector 40 in the exhaust stroke or expansion stroke ).

本実施形態の排気浄化装置が適用される内燃機関全体を示す略図。1 is a schematic diagram showing an entire internal combustion engine to which an exhaust emission control device of an embodiment is applied. S被毒回復制御の実行に先立つPM再生制御の実行手順を示すフローチャート。The flowchart which shows the execution procedure of PM reproduction | regeneration control prior to execution of S poison recovery control. 燃料噴射量及び機関回転速度の変化に対する所定値aの変化態様を示すグラフ。The graph which shows the change aspect of the predetermined value a with respect to the change of a fuel injection amount and an engine speed.

符号の説明Explanation of symbols

10…内燃機関、11…ターボチャージャ、12…吸気通路、13…燃焼室、14…排気通路、15…エアクリーナ、16…エアフローメータ、17…コンプレッサ、18…インタークーラ、19…吸気絞り弁、20…吸気マニホールド、21…吸気ポート、22…排気ポート、23…排気マニホールド、24…排気タービン、25…NOx触媒コンバータ、26…PMフィルタ、27…酸化触媒コンバータ、28…入ガス温度センサ、29…出ガス温度センサ、30…差圧センサ、31…酸素センサ、32…酸素センサ、33…EGR通路、34…EGR触媒、35…EGRクーラ、36…EGR弁、40…インジェクタ、41…高圧燃料供給管、42…コモンレール、43…燃料ポンプ、44…レール圧センサ、45…低圧燃料供給管、46…添加弁、50…電子制御装置(制御手段)、51…NEセンサ、52…アクセルセンサ、53…絞り弁センサ、54…吸気温センサ、55…水温センサ。   DESCRIPTION OF SYMBOLS 10 ... Internal combustion engine, 11 ... Turbocharger, 12 ... Intake passage, 13 ... Combustion chamber, 14 ... Exhaust passage, 15 ... Air cleaner, 16 ... Air flow meter, 17 ... Compressor, 18 ... Intercooler, 19 ... Intake throttle valve, 20 DESCRIPTION OF SYMBOLS ... Intake manifold, 21 ... Intake port, 22 ... Exhaust port, 23 ... Exhaust manifold, 24 ... Exhaust turbine, 25 ... NOx catalytic converter, 26 ... PM filter, 27 ... Oxidation catalytic converter, 28 ... Incoming gas temperature sensor, 29 ... Outgas temperature sensor, 30 ... Differential pressure sensor, 31 ... Oxygen sensor, 32 ... Oxygen sensor, 33 ... EGR passage, 34 ... EGR catalyst, 35 ... EGR cooler, 36 ... EGR valve, 40 ... Injector, 41 ... High pressure fuel supply Pipe 42. Common rail 43 Fuel pump 44 Rail pressure sensor 45 Low pressure fuel supply pipe 6 ... addition valve, 50 ... electronic control device (control means), 51 ... NE sensor 52: accelerator sensor, 53 ... throttle valve sensor, 54 ... intake air temperature sensor, 55 ... water temperature sensor.

Claims (2)

排気中の微粒子を捕集するPMフィルタ、及び吸蔵還元型のNOx 触媒が排気系に設けられる内燃機関に適用され、前記排気系に設けられた触媒への未燃燃料成分の供給を通じて前記排気系に堆積した微粒子を燃焼させて除去するPM再生制御と、同じく前記排気系に設けられた触媒への未燃燃料成分の供給を通じて高温下での排気空燃比のリッチ化を図って前記NOx 触媒に吸蔵された硫黄酸化物を放出させるS被毒回復制御とを実行する内燃機関の排気浄化装置において、
前記S被毒回復制御の実行が要求されたとき、前記排気系での微粒子の堆積量に応じて、前記S被毒回復制御の実行に先立つ前記PM再生制御の実行の有無を決定する制御手段であって、
前記S被毒回復制御の実行が要求されたとき、前記排気系での微粒子の堆積量が、S被毒回復制御の実行のための前記触媒への未燃料成分の供給を通じて前記排気系に堆積した微粒子が燃焼しても、同排気系の触媒の過昇温を招くことのない前記微粒子の堆積量として設定された所定値以上であればS被毒回復制御の実行に先立つPM再生制御を実行し、前記堆積量が前記所定値未満であればS被毒回復制御の実行に先立つPM再生制御の実行を中止するとともに、
前記所定値の初期値をその許容上限値よりも小さい値に設定し、機関運転状態を表すパラメータのうち内燃機関の排気温度に影響を及ぼすパラメータが排気温度を低下させる側に変化するほど前記所定値を前記許容上限値に向けて大きくする制御手段を備える
ことを特徴とする内燃機関の排気浄化装置。
A PM filter that collects particulates in the exhaust and an NOx storage reduction catalyst are applied to an internal combustion engine provided in the exhaust system, and the exhaust system is supplied through the supply of unburned fuel components to the catalyst provided in the exhaust system. PM regeneration control that burns and removes particulates deposited on the exhaust gas, and supply of unburned fuel components to the catalyst provided in the exhaust system to enrich the exhaust air / fuel ratio at high temperatures to the NOx catalyst In an exhaust gas purification apparatus for an internal combustion engine that performs S poison recovery control for releasing stored sulfur oxides,
Control means for determining whether or not to execute the PM regeneration control prior to the execution of the S poison recovery control when the execution of the S poison recovery control is requested according to the amount of particulates deposited in the exhaust system Because
When execution of the S poison recovery control is requested, the amount of particulates deposited in the exhaust system accumulates in the exhaust system through the supply of unfueled components to the catalyst for execution of S poison recovery control. PM regeneration control prior to the execution of the S poison recovery control is performed as long as it is greater than a predetermined value set as the accumulation amount of the fine particles without causing excessive temperature rise of the catalyst in the exhaust system even if the fine particles burned. And if the accumulation amount is less than the predetermined value, the execution of the PM regeneration control prior to the execution of the S poison recovery control is stopped,
The initial value of the predetermined value is set to a value smaller than the allowable upper limit value, and the predetermined value increases as the parameter that affects the exhaust temperature of the internal combustion engine among the parameters representing the engine operating state changes to the side that lowers the exhaust temperature. An exhaust emission control device for an internal combustion engine , comprising control means for increasing the value toward the allowable upper limit value .
前記排気温度に影響を及ぼすパラメータとしては、内燃機関の燃料噴射量と機関回転速度との少なくとも一方が用いられる
請求項記載の内燃機関の排気浄化装置。
As the influence on the exhaust temperature parameter, at least one of exhaust purifying apparatus for an internal combustion engine according to claim 1 for use with a fuel injection amount and the engine rotational speed of the internal combustion engine.
JP2005300177A 2005-10-14 2005-10-14 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4613787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005300177A JP4613787B2 (en) 2005-10-14 2005-10-14 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005300177A JP4613787B2 (en) 2005-10-14 2005-10-14 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2007107474A JP2007107474A (en) 2007-04-26
JP4613787B2 true JP4613787B2 (en) 2011-01-19

Family

ID=38033527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005300177A Expired - Fee Related JP4613787B2 (en) 2005-10-14 2005-10-14 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4613787B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427919B1 (en) * 2012-10-11 2014-09-23 현대자동차 주식회사 System for purifying exhaust of vehicle and regeneration control method thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101683488B1 (en) * 2013-11-22 2016-12-07 현대자동차 주식회사 SYSTEM AND METHOD OF DEFULFURIZING LEAN NOx TRAP
JP6455246B2 (en) 2015-03-11 2019-01-23 いすゞ自動車株式会社 Exhaust purification system
JP6545572B2 (en) * 2015-08-21 2019-07-17 日野自動車株式会社 Exhaust purification system
KR101816430B1 (en) 2016-08-17 2018-02-21 현대자동차주식회사 Control method of exhaust gas purification system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038930A (en) * 2000-07-21 2002-02-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005076495A (en) * 2003-08-29 2005-03-24 Isuzu Motors Ltd Exhaust gas purifying method and exhaust gas purifying system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038930A (en) * 2000-07-21 2002-02-06 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2005076495A (en) * 2003-08-29 2005-03-24 Isuzu Motors Ltd Exhaust gas purifying method and exhaust gas purifying system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101427919B1 (en) * 2012-10-11 2014-09-23 현대자동차 주식회사 System for purifying exhaust of vehicle and regeneration control method thereof

Also Published As

Publication number Publication date
JP2007107474A (en) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4304447B2 (en) Exhaust gas purification method and exhaust gas purification system
EP1555401B1 (en) Exhaust purifying apparatus for internal combustion engine
JP4270155B2 (en) Exhaust purification catalyst thermal degradation state detection device
EP2559876B1 (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP6007489B2 (en) Exhaust gas purification system and exhaust gas purification method
KR100683267B1 (en) Exhaust purifying apparatus and exhaust purifying method for internal combustion engine
JP3962386B2 (en) Exhaust gas purification device for internal combustion engine
KR100785751B1 (en) Exhaust purifying apparatus for internal combustion engine
JP4613787B2 (en) Exhaust gas purification device for internal combustion engine
JP2016145532A (en) Exhaust emission control system for internal combustion engine, internal combustion engine and exhaust emission control method for internal combustion engine
JP2010116817A (en) Exhaust emission control device of engine
WO2016132875A1 (en) Exhaust gas purification system for internal combustion engine, internal combustion engine, and exhaust gas purification method for internal combustion engine
JP6729473B2 (en) Filter regeneration control device and filter regeneration control method
JP4357241B2 (en) Exhaust purification equipment
JP4069043B2 (en) Exhaust gas purification device for internal combustion engine
JP2004176636A (en) Exhaust emission control device for internal combustion engine
JP2010196569A (en) Exhaust emission control system and exhaust emission control method
JP2009002192A (en) Exhaust emission control device for internal combustion engine
JP4727472B2 (en) Exhaust purification device
JP2005163652A (en) Emission control device
JP2007040223A (en) Exhaust emission control device
JP4523317B2 (en) Diesel engine exhaust purification system
JP2007154773A (en) Exhaust emission control device
JP4349096B2 (en) Exhaust gas purification device for internal combustion engine
JP2004036552A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101004

R151 Written notification of patent or utility model registration

Ref document number: 4613787

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees