JP4611111B2 - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
JP4611111B2
JP4611111B2 JP2005145265A JP2005145265A JP4611111B2 JP 4611111 B2 JP4611111 B2 JP 4611111B2 JP 2005145265 A JP2005145265 A JP 2005145265A JP 2005145265 A JP2005145265 A JP 2005145265A JP 4611111 B2 JP4611111 B2 JP 4611111B2
Authority
JP
Japan
Prior art keywords
central axis
image
optical system
cross
front group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005145265A
Other languages
Japanese (ja)
Other versions
JP2006276816A (en
Inventor
孝吉 研野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2005145265A priority Critical patent/JP4611111B2/en
Publication of JP2006276816A publication Critical patent/JP2006276816A/en
Application granted granted Critical
Publication of JP4611111B2 publication Critical patent/JP4611111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Description

本発明は、光学系に関し、特に、対象物に対して視差方向が連続的に回転している複数の連続的な視差像を同時に撮像できる光学系に関するものである。   The present invention relates to an optical system, and more particularly to an optical system capable of simultaneously capturing a plurality of continuous parallax images whose parallax directions are continuously rotated with respect to an object.

従来、共通の1つの結像光学系と1つの撮像面を持つ撮影光学系の入射側に分離した右眼用と左目用のミラー光学系又は三角プリズムを配置し、左右の入射瞳を分割形成して左右視差像を同一撮像面上に並列して撮像することは、特許文献1、特許文献2、特許文献3、特許文献4等において知られている。
特開平7−134345号公報 特開平8−106067号公報 特開2003−60947号公報 特許第3298905号公報
Conventionally, separate right and left eye mirror optical systems or triangular prisms are arranged on the entrance side of a photographic optical system with one common imaging optical system and one imaging surface, and the left and right entrance pupils are divided. It is known in Patent Document 1, Patent Document 2, Patent Document 3, Patent Document 4, and the like that the right and left parallax images are captured in parallel on the same imaging surface.
Japanese Patent Laid-Open No. 7-134345 Japanese Patent Laid-Open No. 8-106067 JP 2003-60947 A Japanese Patent No. 3298905

しかしながら、従来の視差像を並列して撮像する光学系においては、同時に撮影できる視差像は特定の視差方向、例えば水平方向の1対の視差像であり、それ以外の垂直方向、斜め方向等の異なる視差方向の視差像を得るには、右眼用と左目用のミラー光学系又は三角プリズムを光軸の周りで回転させて別画面として撮影しなければならなかった。   However, in an optical system that captures parallel parallax images in parallel, the parallax images that can be captured simultaneously are a pair of parallax images in a specific parallax direction, for example, the horizontal direction, and other vertical directions, diagonal directions, and the like. In order to obtain parallax images in different parallax directions, the right-eye and left-eye mirror optical systems or triangular prisms must be rotated around the optical axis and photographed as separate screens.

この場合、対象物が動きの速いものである場合には、相対位置が異なってしまうため、異なる複数の視差方向の視差像を同時に撮像することはできなかった。   In this case, when the object is fast moving, the relative positions are different, so that it is not possible to simultaneously capture parallax images in a plurality of different parallax directions.

本発明は従来技術のこのような問題点に鑑みてなされたものであり、その目的は、対象物に対して視差方向が連続的に回転している複数の連続的な視差像を同時に撮像できる光学系を提供することである。   The present invention has been made in view of such problems of the prior art, and an object of the present invention is to simultaneously capture a plurality of continuous parallax images whose parallax directions are continuously rotated with respect to an object. It is to provide an optical system.

上記目的を達成する本発明の光学系は、像面中心を通る中心軸の周りで回転対称な前群と、中心軸の周りで回転対称で正パワーを有し、中心軸と同軸の円形開口を有する後群とを備えており、
前記前群は、中心軸を含む断面内で、前記後群の円形開口の像を、中心軸に同軸の輪帯状であって入射瞳に変換する1面以上の光学作用面を備えており、
中心軸を含む断面内で、物体から中心軸に対して対称の前記入射瞳の2つの開口に向かって進み前記前群に入射した光束は、前記前群と前記後群を順に経て、像面の中心軸が通る点を境にして相互に反対側に別々に結像し、
前記前群は、中心軸の周りで回転対称な少なくとも1面の反射面を備えており、前記反射面の少なくとも1面は、中心軸を含む断面内で、共通の物体の像を二重像の実像又は虚像として結像するような面形状のものであり、
前記前群は、中心軸の周りで回転対称な透明媒体を有し、前記透明媒体は、2面の内面反射面と2面の屈折面を持ち、中心軸を含む断面内で、入射瞳の2つの開口に向かって進む光束は、入射面の屈折面を経て透明媒体内に入り、内面反射面で順に反射されて射出面の屈折面を経て透明媒体から外に出て、前記後群を経て像面の中心軸が通る点を境にして相互に反対側の位置に別々に結像し、
物体から前記入射瞳の2つの開口に向かって進み前記前群に入射する光束は、中心軸を含む断面内でそれぞれ1回中間結像し、中心軸を含む断面に対して直交し、その光束の中心光線を含む平面内では中間結像せず、
中心軸を含む断面において、前記入射瞳位置から前記円形開口までの光路長をA、前記入射瞳位置から前記前群における入射面までの光路長をBとするとき、
5<|A/B| ・・・(2)
なる条件を満足することを特徴とするものである。
An optical system of the present invention that achieves the above object includes a front group that is rotationally symmetric about a central axis passing through the center of the image plane, a circular aperture that is rotationally symmetric about the central axis and has positive power, and is coaxial with the central axis. And a rear group having
The front group includes one or more optical action surfaces that convert an image of the circular aperture of the rear group into an entrance pupil that is coaxial with the center axis in a cross section including the center axis,
Within the cross section including the central axis, the luminous flux that travels from the object toward the two apertures of the entrance pupil that is symmetric with respect to the central axis and enters the front group passes through the front group and the rear group in order, and enters the image plane. Are imaged separately on the opposite sides with respect to the point through which the central axis passes ,
The front group includes at least one reflecting surface that is rotationally symmetric about a central axis, and at least one of the reflecting surfaces is a double image of a common object within a cross section including the central axis. Of a surface shape that forms an image as a real image or a virtual image of
The front group includes a transparent medium that is rotationally symmetric about a central axis, and the transparent medium has two internal reflection surfaces and two refractive surfaces, and the cross-section including the central axis includes the entrance pupil. The light beam traveling toward the two apertures enters the transparent medium through the refracting surface of the incident surface, is sequentially reflected by the inner reflecting surface, exits from the transparent medium through the refracting surface of the exit surface, and passes through the rear group. After that, the images are separately imaged at opposite positions with respect to the point through which the central axis of the image plane passes.
A light beam that travels from the object toward the two apertures of the entrance pupil and enters the front group forms an intermediate image once in the cross section including the central axis, and is orthogonal to the cross section including the central axis. In the plane containing the central ray of
In the cross section including the central axis, when the optical path length from the entrance pupil position to the circular aperture is A, and the optical path length from the entrance pupil position to the entrance plane in the front group is B,
5 <| A / B | (2)
It satisfies the following conditions .

また、前記反射面又は前記透過屈折面の少なくとも1面は、中心軸上に面頂を有する回転対称な非球面からなり、その面の有効径をD、面頂近傍の曲率半径をRとするとき、
10<|D/R| ・・・(1)
なる条件を満足することが望ましい。
Further, at least one of the reflection surface or the transmission refracting surface is a rotationally symmetric aspheric surface having a surface apex on the central axis, and the effective diameter of the surface is D and the radius of curvature near the surface apex is R. When
10 <| D / R | (1)
It is desirable to satisfy the following conditions.

また、光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFxとするとき、
−10<Fy/Fx<0.5 ・・・(3)
の条件を満たすことが望ましい。
Further, when the focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane perpendicular to the cross section and including the central ray is Fx,
−10 <Fy / Fx <0.5 (3)
It is desirable to satisfy the following conditions.

また、光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFx、前記前群の中心軸を含む断面内の焦点距離をFfy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFfxとするとき、
−1000<Fx/Ffx<−0.1 ・・・(4)
又は、
0.1<Fx/Ffx<1000 ・・・(5)
の条件を満たすことが望ましい。
Further, the focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane perpendicular to the cross section including the central ray is Fx, and the cross section including the central axis of the front group is in the cross section. When the focal length is Ffy, orthogonal to the cross section, and the focal length in the plane including the central ray is Ffx,
−1000 <Fx / Ffx <−0.1 (4)
Or
0.1 <Fx / Ffx <1000 (5)
It is desirable to satisfy the following conditions.

また、光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFx、前記前群の中心軸を含む断面内の焦点距離をFfy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFfxとするとき、
−100<Fy/Ffy<−0.001 ・・・(6)
の条件を満たすことが望ましい。
Further, the focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane perpendicular to the cross section including the central ray is Fx, and the cross section including the central axis of the front group is in the cross section. When the focal length is Ffy, orthogonal to the cross section, and the focal length in the plane including the central ray is Ffx,
−100 <Fy / Ffy <−0.001 (6)
It is desirable to satisfy the following conditions.

また、前記反射面又は前記透過屈折面の少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状、又は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有するように構成することもできる。   Further, at least one of the reflection surface or the transmission / refractive surface is a rotationally symmetric shape formed by rotating a line segment having no symmetry surface around a central axis, or an arbitrary number including an odd-order term. It can also be configured to have a rotationally symmetric shape formed by rotating a line segment of the shape around the central axis.

本発明においては、対象物に対してその方向に向かう中心軸の周りで視差方向が連続的に回転している複数の連続的な視差像を同時に撮像できる光学系が得られ、測距光学系、衝突防止装置の光学系、ステレオ像の撮像・観察用の光学系等に利用できる。   In the present invention, an optical system capable of simultaneously capturing a plurality of continuous parallax images whose parallax directions are continuously rotated around the central axis in the direction of the object is obtained. It can be used for an optical system of a collision prevention device, an optical system for taking and observing a stereo image, and the like.

以下、実施例基づいて本発明の光学系について説明する。なお、実施例4は、参考例である。

Hereinafter, a description will be given of an optical system of the present invention with reference to Examples. Example 4 is a reference example.

図1は、後記する実施例1の光学系50の中心軸(回転対称軸)1を含む断面図であり、光路は中心軸1に対して片側に入射する光路のみをとっており、中心軸1に対して対称な光路も同時に存在するが、図示を省いてある。図2は、この光学系50の入射瞳2と前群10の透明媒体19内の光路を示す正面図である。また、図3は、この光学系50により結像する物体の例(a)と像面30に結像されるその像(b)を示す図である。この図1〜図3を用いて本発明の光学系50を説明する。以下、本発明の光学系50を像面30への結像系として説明する。   FIG. 1 is a cross-sectional view including a central axis (rotationally symmetric axis) 1 of an optical system 50 of Example 1 to be described later. The optical path takes only an optical path incident on one side with respect to the central axis 1. An optical path symmetrical with respect to 1 also exists at the same time, but is not shown. FIG. 2 is a front view showing the optical path within the entrance pupil 2 of the optical system 50 and the transparent medium 19 of the front group 10. FIG. 3 is a diagram showing an example (a) of an object imaged by the optical system 50 and an image (b) imaged on the image plane 30. The optical system 50 of the present invention will be described with reference to FIGS. Hereinafter, the optical system 50 of the present invention will be described as an imaging system on the image plane 30.

本発明の光学系50は、像面30中心を通る中心軸1の周りで回転対称な前群10と、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20とを備えており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群の入射面11近傍に位置する入射瞳2に変換する1面以上の光学作用面(反射面、屈折面)11〜14を備えてなる。そして、中心軸1を含む断面内で、図1の左方向の図示を省いた物体(図3(a))から中心軸1に対して対称の入射瞳2の2つの開口に向かって進み前群10に入射した光束は、前群10と後群20を順に経て、像面30の中心軸1が通る点を境にして相互に反対側に別々に結像するように構成されているものである。   The optical system 50 of the present invention includes a front group 10 that is rotationally symmetric about the central axis 1 passing through the center of the image plane 30, a rotationally symmetric positive power around the central axis 1, and a circular shape that is coaxial with the central axis 1. A rear group 20 having an aperture (aperture) 21. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of a ring zone coaxial with the central axis 1 and in the vicinity of the entrance surface 11 of the front group. 1 or more optical action surfaces (reflective surfaces, refracting surfaces) 11 to 14 to be converted into the entrance pupil 2 located at the center. Then, in the cross section including the central axis 1, before proceeding toward two openings of the entrance pupil 2 symmetric with respect to the central axis 1 from the object (FIG. 3A) not shown in the left direction in FIG. The light beams incident on the group 10 pass through the front group 10 and the rear group 20 in order, and are formed separately on the opposite sides with respect to the point through which the central axis 1 of the image plane 30 passes. It is.

また、本発明の光学系50において、中心軸1を含む断面内で、前群10は後群20の円形開口21の像を、図2に示すように、中心軸1に同軸の輪帯状であって前群の入射面11近傍に位置する入射瞳2に変換するので、前群10は中心軸1を含む断面内では正パワーを有することになり、逆光線追跡で開口21の像を図1の場合は透明媒体19内の位置5近傍に結像している(図1の場合、位置5の像の入射面11による像が入射瞳2になる。)。また、中心軸1を含む平面に対して直交する面内では、前群10を構成する面11〜14は全て中心軸1に対して同心であるので、前群10はパワーを持たないアフォーカル光学系となる。そのため、物体からの光束は、図1の回転対称軸1を含む断面内で少なくとも1回中間結像し(図1の場合は、透明媒体19内の位置4近傍に1回結像し)、その断面に対して直交し、軸上主光線3を含む平面内(図2)では結像しない構成となっている。   Further, in the optical system 50 of the present invention, in the cross section including the central axis 1, the front group 10 shows an image of the circular opening 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1 as shown in FIG. 2. Since it is converted into the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group, the front group 10 has a positive power in the cross section including the central axis 1, and the image of the aperture 21 is obtained by back ray tracing in FIG. In this case, an image is formed in the vicinity of the position 5 in the transparent medium 19 (in the case of FIG. 1, the image of the image at the position 5 by the incident surface 11 becomes the entrance pupil 2). Further, in a plane orthogonal to the plane including the central axis 1, the surfaces 11 to 14 constituting the front group 10 are all concentric with the central axis 1, so that the front group 10 has no power. It becomes an optical system. Therefore, the light beam from the object forms an intermediate image at least once in the cross section including the rotational symmetry axis 1 in FIG. 1 (in the case of FIG. 1, the image is formed once in the vicinity of position 4 in the transparent medium 19). The image is orthogonal to the cross section and does not form an image in a plane including the axial principal ray 3 (FIG. 2).

なお、図1の実施例1の場合、前群10は、中心軸1の周りで回転対称な形状の透明媒体19からなり、その透明媒体19は、少なくとも1面の内面反射面12、13(図1の場合は2面)と少なくとも2面の屈折面11、14を持つものである。透明媒体19は、中心軸1の周りで回転対称な形状であり、その屈折面11、14、内面反射面12、13も中心軸1の周りで回転対称な形状をしている。   1, the front group 10 includes a transparent medium 19 having a rotationally symmetric shape around the central axis 1, and the transparent medium 19 includes at least one inner reflection surface 12, 13 ( In the case of FIG. 1, it has two surfaces) and at least two refracting surfaces 11 and. The transparent medium 19 has a rotationally symmetric shape around the central axis 1, and the refracting surfaces 11 and 14 and the internal reflection surfaces 12 and 13 also have a rotationally symmetric shape around the central axis 1.

図1の実施例のように、前群10が、中心軸1の周りで回転対称な少なくとも1面の反射面12、13を備えて構成される場合、反射面の少なくとも1面13は、中心軸1を含む断面内で、共通の物体の像を二重像の実像又は虚像として結像するような面形状をとる必要がある。   As in the embodiment of FIG. 1, when the front group 10 includes at least one reflecting surface 12, 13 that is rotationally symmetric about the central axis 1, at least one surface 13 of the reflecting surface is centered. In the cross section including the axis 1, it is necessary to take a surface shape that forms an image of a common object as a real or virtual image of a double image.

あるいは、前群10が、中心軸1の周りで回転対称な複数の屈折透過面のみから構成される場合、その屈折透過面の少なくとも1面は、中心軸1を含む断面内で、共通の物体の像を二重像の実像又は虚像として結像するような面形状をとる必要がある(実施例4)。   Alternatively, when the front group 10 is composed of only a plurality of refractive and transmissive surfaces that are rotationally symmetric about the central axis 1, at least one of the refractive and transmissive surfaces is a common object within the cross section including the central axis 1. It is necessary to take a surface shape that forms a double image as a real image or a virtual image (Example 4).

前群10が中心軸1を含む断面内でこのような二重像を形成する反射面あるいは屈折透過面を持つと、中心軸1に対して対称の入射瞳2の2つの開口を経て像面に別々に結像される像は相互に視差を持つ像となり、立体(ステレオ)像の撮像、距離測定等に資することができる。   When the front group 10 has a reflection surface or a refractive transmission surface that forms such a double image in a cross section including the central axis 1, the image plane passes through two openings of the entrance pupil 2 that is symmetrical with respect to the central axis 1. The images formed separately are images having parallax with each other, which can contribute to imaging of a stereoscopic image, distance measurement, and the like.

以下、この点を図3を参照にして説明する。図3は、図1の光学系50により結像される物体面の例(a)と像面30に結像されるその像(b)を示す図である。図3(a)の物体面が本発明の光学系50を経ると、図3(b)に示すように、物体面の中心(c)の点は、像面30では、その中心O(中心軸1との交点)を中心にして一定の半径の円(c)に変換される。そして、像面30では、その円(c)の外側と内側に図3(a)の物体面の(1)〜(12)が変形さた画像として結像される。図3(b)の(c)及びその内外の符号(1)〜(12)位置は、図3(a)の物体面での符号(1)〜(12)の位置に対応し、図3(a)の物体面の変形された画像が円(c)の外側と内側に結像されていることが分かる。   Hereinafter, this point will be described with reference to FIG. FIG. 3 is a diagram showing an example (a) of an object plane imaged by the optical system 50 of FIG. 1 and an image (b) imaged on the image plane 30. When the object plane of FIG. 3A passes through the optical system 50 of the present invention, the center (c) of the object plane is the center O (center of the image plane 30 as shown in FIG. 3B. It is converted into a circle (c) with a constant radius centered on the intersection with the axis 1). Then, the image plane 30 is imaged as an image obtained by deforming the object planes (1) to (12) of FIG. 3A on the outside and inside of the circle (c). (C) in FIG. 3B and positions (1) to (12) inside and outside thereof correspond to positions (1) to (12) on the object plane in FIG. It can be seen that the deformed image of the object plane in (a) is formed on the outside and inside of the circle (c).

いま、図3(a)の物体面の中心(c)通る直線d’−d’の方向と、図3(b)の像面30の中心Oを通る直径d−d上の方向とが、中心軸1を含む同じ断面上に位置しているとすると、図3(a)の物体面における直線d’−d’の像は、図3(b)の像面30の中心Oを通る直径d−d上に中心Oを境にしてその両側に1次元画像として二重結像される(物体面の直線d’−d’上の(1)−(9)−(c)−(11)−(3)の像は、像面30の直径d−d上に中心Oを境にしてその両側に(1)−(9)−(c)−(11)−(3)の1次元画像として結像されている。)。そして、像面30の直径d−d上の中心Oを境にして一方の側に結像される1次元画像は、中心軸1を含む同じ断面上で反対側の入射瞳2を介して結像された像であり、中心Oを境にして他方の側の1次元画像は、それと対向する位置の入射瞳2を介して結像された像であり、その2つの1次元画像は、物体面上の直線d’−d’方向、すなわち視差方向d’−d’の輪帯状の入射瞳2の開口間の視差を相互に持つ1次元画像である。したがって、図3(b)の像面30において、中心Oを通る全ての直径上での中心Oを境にした2つの1次元画像は相互にその方向の視差を持つ画像であり、直径d−d上の中心Oの両側で相互に一致点探索をすることにより、物体面上の各点までの距離、3次元位置関係を求めることができる。そのため、本発明の光学系50は、測距光学系、衝突防止装置の光学系、ステレオ像の撮像・観察用の光学系等に利用できることになる。   Now, the direction of a straight line d′-d ′ passing through the center (c) of the object plane in FIG. 3A and the direction on the diameter dd passing through the center O of the image plane 30 in FIG. If it is located on the same cross section including the central axis 1, the image of the straight line d'-d 'on the object plane in FIG. 3 (a) has a diameter passing through the center O of the image plane 30 in FIG. 3 (b). A double image is formed as a one-dimensional image on both sides of the center O on the boundary dd ((1)-(9)-(c)-(11 on the straight line d′-d ′ on the object plane) )-(3) is a one-dimensional image of (1)-(9)-(c)-(11)-(3) on the both sides of the center O on the diameter dd of the image plane 30. It is imaged as an image.) A one-dimensional image formed on one side with the center O on the diameter dd on the image plane 30 as a boundary is connected via the entrance pupil 2 on the opposite side on the same cross section including the central axis 1. The one-dimensional image on the other side with respect to the center O is an image formed through the entrance pupil 2 at a position facing the center O, and the two one-dimensional images are the object It is a one-dimensional image having parallax between the openings of the annular entrance pupil 2 in the direction of the straight line d′-d ′ on the surface, that is, the parallax direction d′-d ′. Therefore, in the image plane 30 in FIG. 3B, two one-dimensional images with the center O on all the diameters passing through the center O are images having parallax in the direction of each other, and the diameter d− By searching for coincident points on both sides of the center O on d, the distance to each point on the object plane and the three-dimensional positional relationship can be obtained. Therefore, the optical system 50 of the present invention can be used for a distance measuring optical system, an optical system of a collision prevention device, an optical system for capturing and observing a stereo image, and the like.

ところで、前群10における共通の物体の像を二重像の実像又は虚像として結像するような面形状の1つとして、中心軸1上に面頂を有する回転対称な非球面を用いることができる。また、中心軸1上に面頂を有さない任意線形状を光軸を中心に回転してできる回転自由曲面で構成することも可能である。   By the way, a rotationally symmetric aspherical surface having a surface apex on the central axis 1 is used as one of the surface shapes that forms an image of a common object in the front group 10 as a real image or a virtual image of a double image. it can. It is also possible to form an arbitrary line shape having no top on the central axis 1 by a rotation free-form surface that can be rotated around the optical axis.

共通の物体の像を二重像の実像又は虚像として結像するような反射面あるいは屈折透過面の面形状に、中心軸1上に面頂を有する回転対称な非球面を用いる場合には、その面の有効径(中心軸1を中心とする直径)をD、面頂近傍の曲率半径をRとするとき、
10<|D/R| ・・・(1)
なる条件を満足することが好ましい。
When using a rotationally symmetric aspherical surface having a top on the central axis 1 as a surface shape of a reflective surface or a refractive and transmissive surface that forms an image of a common object as a real or virtual image of a double image, When the effective diameter (diameter centered on the central axis 1) of the surface is D and the radius of curvature near the surface top is R,
10 <| D / R | (1)
It is preferable to satisfy the following conditions.

曲率半径Rが面の有効径Dの2分の1より小さいと、入射瞳2を経た光束が通るその面の領域の形状は非球面の球面項以外の高次項によって決まるため、光束を2つに分離して二重像を形成しやすくなる。この条件の下限の10を越えると、光束を2つに分離する分離角が小さくなり、分離した視差像を得る画角が狭すぎて実用に耐えないばかりか、光学系50の全長の長さに対する輪帯状の入射瞳2の径を大きくとることができない。   If the radius of curvature R is smaller than half of the effective diameter D of the surface, the shape of the area of the surface through which the light beam passing through the entrance pupil 2 passes is determined by higher order terms other than the aspherical spherical term. This makes it easy to form a double image. If the lower limit of 10 is exceeded, the separation angle for separating the light beam into two becomes small, the angle of view for obtaining the separated parallax image is too narrow to be practically used, and the total length of the optical system 50 The diameter of the annular entrance pupil 2 cannot be increased.

さらに好ましくは、
100<|D/R| ・・・(1−1)
なる条件を満足することが好ましい。
More preferably,
100 <| D / R | (1-1)
It is preferable to satisfy the following conditions.

また、本発明において、輪帯状の入射瞳2を前群10の入射面11近傍に配置することにより、その入射面を経て光学系50に入射する光束の有効径を小さくすることが可能となり、余ったスペースで光束をさらに反射する等の作用を持たせることが可能となる。   In the present invention, by arranging the annular entrance pupil 2 in the vicinity of the entrance surface 11 of the front group 10, it becomes possible to reduce the effective diameter of the light beam incident on the optical system 50 through the entrance surface, It is possible to provide an action such as further reflecting the light beam in the remaining space.

また、本発明の光学系50において、中心軸1を含む断面において、入射瞳2位置から絞り21位置までの光路長をA、入射瞳2位置から前群10の第1面までの光路長を光線の進む方向を正とした値をB、それらの比をA/ Bとするとき、後記の実施例1〜6では、次のようになる。   In the optical system 50 of the present invention, in the cross section including the central axis 1, the optical path length from the entrance pupil 2 position to the stop 21 position is A, and the optical path length from the entrance pupil 2 position to the first surface of the front group 10 is Assuming that the value in which the traveling direction of the light beam is positive is B and the ratio thereof is A / B, in Examples 1 to 6 described later, the following is obtained.

実施例1 実施例2 実施例3 実施例4 実施例5 実施例6
A 174.166 82.205 83.367 214.364 176.809 133.536
B 3.136 0.211 0.557 -51.126 0.000 -2.606
|A/ B| 55.538 389.597 149.588 4.193 2.430×1014 51.248
Example 1 Example 2 Example 3 Example 4 Example 5 Example 6
A 174.166 82.205 83.367 214.364 176.809 133.536
B 3.136 0.211 0.557 -51.126 0.000 -2.606
| A / B | 55.538 389.597 149.588 4.193 2.430 × 10 14 51.248
.

ここで、|A/B|は、前群10の入射面11近傍に入射瞳2が配置されている度合いを表す値である。   Here, | A / B | is a value representing the degree to which the entrance pupil 2 is arranged in the vicinity of the entrance surface 11 of the front group 10.

本発明では、中心軸1を含む断面のみで絞り21が物体側に投影されて入射瞳2を形成しており、より入射面11近傍に入射瞳2を配置することにより、観察画角を100°以上と広くとることに成功したものである。さらに、入射面11近傍に入射瞳2を配置することにより、ゴースト等を防ぐフレアー絞りを効果的に配置することが可能となる。   In the present invention, the iris 21 is projected to the object side only by the cross section including the central axis 1 to form the entrance pupil 2, and the entrance pupil 2 is arranged closer to the entrance surface 11, so that the viewing angle of view is 100. It has succeeded in taking widely over °. Furthermore, by arranging the entrance pupil 2 in the vicinity of the entrance surface 11, it is possible to effectively arrange a flare stop that prevents ghosts and the like.

これにより、光学系50の入射面11を中心軸1を含む断面において小さくすることが可能となり、前群10、特に第1面11近傍に反射作用を有する他の面を配置でき、広画角化に大きく貢献することが可能となる。さらに、第1面11に入射する不要光を効果的に防ぐことが可能となり、フレアー対策に効果を発揮する。また、有効面が小さいことにより、光学系50を小型に構成することも可能である。ここで、
5<|A/B| ・・・(2)
を満足することが望ましい。
This makes it possible to reduce the incident surface 11 of the optical system 50 in the cross section including the central axis 1, and to arrange another surface having a reflecting action near the front group 10, particularly in the vicinity of the first surface 11. It is possible to greatly contribute to the development. Furthermore, unnecessary light incident on the first surface 11 can be effectively prevented, and an effect for flare countermeasures is exhibited. Further, since the effective surface is small, the optical system 50 can be configured to be small. here,
5 <| A / B | (2)
It is desirable to satisfy

この条件(1)の下限の5を越えると、入射瞳2が光学系第1面11から離れてしまい、第1面11の有効径が大きくなり、広い画角がとれなくなったり、有害なフレアー光が増える。この値が大きい程フレアー防止用のフレアー絞りを有効に働かせることが可能となる。   If the lower limit of 5 of the condition (1) is exceeded, the entrance pupil 2 is separated from the first surface 11 of the optical system, the effective diameter of the first surface 11 is increased, and a wide angle of view cannot be obtained or harmful flare is caused. Light increases. The larger this value is, the more effectively the flare stop for preventing flare can work.

さらに好ましくは、
10<|A/B| ・・・(2−1)
なる条件を満足することが好ましい。
More preferably,
10 <| A / B | (2-1)
It is preferable to satisfy the following conditions.

また、本発明の光学系50において、入射瞳2近傍にフレアー絞りを配置することが好ましい。これにより、光学系50内に入射するフレアー光を効果的にカットすることが可能となる。   In the optical system 50 of the present invention, it is preferable to arrange a flare stop near the entrance pupil 2. Thereby, the flare light incident on the optical system 50 can be effectively cut.

次に、回転対称軸1を含む面をY−Z面とし、Y−Z面に直交し、主光線3を含む平面内をX−Z面とするとき、Y−Z面内で主光線3から微小距離(0.1mm)離れた従属光線を追跡し、前群10又は光学系50から射出したときの従属光線と主光線のなす角度から、前群10の中心軸を含む断面内の焦点距離Ffy、その断面に対して直交し主光線3を含む平面内の焦点距離Ffx、全系50の同様の焦点距離Fy、Fxとする。後記の実施例1〜6に関し、これらのパラメータの値、及び、比は、次のようになる。   Next, when a plane including the rotationally symmetric axis 1 is a YZ plane, orthogonal to the YZ plane, and a plane including the principal ray 3 is an XZ plane, the principal ray 3 in the YZ plane. Dependent rays separated from each other by a minute distance (0.1 mm) are tracked, and the focal point in the cross section including the central axis of the front group 10 is determined from the angle formed by the dependent rays and the principal ray when emitted from the front group 10 or the optical system 50. A distance Ffy, a focal length Ffx in a plane orthogonal to the cross section and including the principal ray 3, and similar focal lengths Fy and Fx of the entire system 50 are set. Regarding Examples 1 to 6 to be described later, values and ratios of these parameters are as follows.

実施例1 実施例2 実施例3 実施例4
Ffx 90.909 74.627 64.516 161.290
Ffy 35.779 3.205 6.592 9.132
Fx -3.333×103 -4.545×102 -384.615 1.000×10-4
Fy -1.311 -0.650 -0.804 -4.411
Fy/Fx 3.944×10-4 1.447×10-3 2.107×10-3 -4.412×10-4
Fx/Ffx -36.667 -6.091 -5.962 62.000
Fy/Ffy -0.037 -0.203 -0.122 -0.483

実施例5 実施例6
Ffx 119.048 93.458
Ffy 63.271 12.739
Fx -666.667 -102.041
Fy -3.181 -1.184
Fy/Fx 4.774×10-3 1.165×10-2
Fx/Ffx -5.600 -1.092
Fy/Ffy -0.050 -0.093
Example 1 Example 2 Example 3 Example 4
Ffx 90.909 74.627 64.516 161.290
Ffy 35.779 3.205 6.592 9.132
Fx -3.333 × 10 3 -4.545 × 10 2 -384.615 1.000 × 10 -4
Fy -1.311 -0.650 -0.804 -4.411
Fy / Fx 3.944 × 10 -4 1.447 × 10 -3 2.107 × 10 -3 -4.412 × 10 -4
Fx / Ffx -36.667 -6.091 -5.962 62.000
Fy / Ffy -0.037 -0.203 -0.122 -0.483

Example 5 Example 6
Ffx 119.048 93.458
Ffy 63.271 12.739
Fx -666.667 -102.041
Fy -3.181 -1.184
Fy / Fx 4.774 × 10 -3 1.165 × 10 -2
Fx / Ffx -5.600 -1.092
Fy / Ffy -0.050 -0.093
.

前群10で回転対称軸1を含む断面内に結像された円環像を後群20で像面30上にリレーするようにしていることが、本発明の最大の特徴である。このような構成にするためには、各断面方向で著しく異なる全系の焦点距離を持つことが必須である。次の条件式(3)はこの著しく異なる焦点距離を規定したものである。   The greatest feature of the present invention is that the annular image formed in the cross section including the rotational symmetry axis 1 in the front group 10 is relayed on the image plane 30 in the rear group 20. In order to achieve such a configuration, it is essential to have a focal length of the entire system that is significantly different in each cross-sectional direction. The following conditional expression (3) defines this significantly different focal length.

−10<Fy/Fx<0.5 ・・・(3)
この条件(3)の下限の−10を越えると、Y方向の焦点距離がX方向の焦点距離に比較して長くなりすぎ、画角を大きくとることができなくなる。また、その上限の0.5を越えると、Y方向の焦点距離がX方向の焦点距離に比較して短くなりすぎ、Y方向の収差補正、特に像面湾曲や非点収差の発生が大きくなると同時に、円環状の画像の内径と外径の差が小さくなり、特に像面30に配置する撮像素子の解像力が限られている場合には、総合的な解像力がとれなくなってしまう。
−10 <Fy / Fx <0.5 (3)
If the lower limit of −10 of the condition (3) is exceeded, the focal length in the Y direction becomes too long compared to the focal length in the X direction, and the angle of view cannot be increased. When the upper limit of 0.5 is exceeded, the focal length in the Y direction becomes too short compared to the focal length in the X direction, and aberration correction in the Y direction, particularly the occurrence of curvature of field and astigmatism increases. At the same time, the difference between the inner diameter and the outer diameter of the annular image becomes small, and the total resolving power cannot be obtained particularly when the resolving power of the image sensor arranged on the image plane 30 is limited.

さらに好ましくは、
−2<Fy/Fx<0.2 ・・・(3−1)
なる条件を満足することが好ましい。
More preferably,
-2 <Fy / Fx <0.2 (3-1)
It is preferable to satisfy the following conditions.

次に、X方向、Y方向の全系50の焦点距離と前群10の焦点距離の関係について規定する。   Next, the relationship between the focal length of the entire system 50 in the X direction and the Y direction and the focal length of the front group 10 will be defined.

−1000<Fx/Ffx<−0.1 ・・・(4)
この条件式(4)は全系50の焦点距離に対して前群10がどの程度影響を与えているかを表したものでである。この条件式(4)の下限の−1000を越えると、全系50の焦点距離に比較して前群10の焦点距離が短くなることを表している。すると、本発明の光学系50のように、本来はX方向に関しては中間像を形成しない光学系において、中間像を形成することになってしまい、本発明の光学系50を構成することができない。その条件式(4)の上限の−0.1を越えると、前群10の焦点距離が長くなりすぎ、その分を後群20で補おうとするため、後群20に負担がかかり、後群20で発生する収差が大きくなり、周辺映像の解像力が像面湾曲や非点収差、倍率の色収差等で低下してしまう。その結果、光学系全系としては、上又は下に当たる円環状映像の外周部の解像が悪くなる。
−1000 <Fx / Ffx <−0.1 (4)
Conditional expression (4) represents how much the front group 10 affects the focal length of the entire system 50. If the lower limit of -1000 of the conditional expression (4) is exceeded, it indicates that the focal length of the front group 10 becomes shorter than the focal length of the entire system 50. Then, like the optical system 50 of the present invention, an intermediate image is formed in an optical system that originally does not form an intermediate image in the X direction, and the optical system 50 of the present invention cannot be configured. . If the upper limit of −0.1 of the conditional expression (4) is exceeded, the focal length of the front group 10 becomes too long, and the rear group 20 tries to compensate for that, so the rear group 20 is burdened, and the rear group The aberration generated at 20 increases, and the resolving power of the peripheral image decreases due to curvature of field, astigmatism, lateral chromatic aberration, and the like. As a result, for the entire optical system, the resolution of the outer peripheral portion of the annular image hitting the top or bottom is deteriorated.

又は、上記条件式(4)に代え、
0.1<Fx/Ffx<1000 ・・・(5)
なる条件式を満足することが好ましい。この条件式(5)の下限の0.1を越えると、前群10の焦点距離が長くなりすぎ、その分を後群20で補おうとするため、後群20に負担がかかり、後群20で発生する収差が大きくなり、周辺映像の解像力が像面湾曲や非点収差、倍率の色収差等で低下してしまう。その結果、光学系全系としては、上又は下に当たる円環状映像の外周部の解像が悪くなる。その条件式(5)の上限の1000を越えると、全系50の焦点距離に比較して前群10の焦点距離が短くなることを表している。すると、本発明の光学系50のように、本来はX方向に関しては中間像を形成しない光学系において、中間像を形成することになってしまい、本発明の光学系50を構成することができない。
Or, instead of the conditional expression (4),
0.1 <Fx / Ffx <1000 (5)
It is preferable to satisfy the following conditional expression: If the lower limit of 0.1 of this conditional expression (5) is exceeded, the focal length of the front group 10 becomes too long and the rear group 20 tries to compensate for that, so the rear group 20 is burdened, and the rear group 20 As a result, the resolving power of peripheral images is reduced due to curvature of field, astigmatism, lateral chromatic aberration, and the like. As a result, for the entire optical system, the resolution of the outer peripheral portion of the annular image hitting the top or bottom is deteriorated. If the upper limit of 1000 of the conditional expression (5) is exceeded, it indicates that the focal length of the front group 10 becomes shorter than the focal length of the entire system 50. Then, like the optical system 50 of the present invention, an intermediate image is formed in an optical system that originally does not form an intermediate image in the X direction, and the optical system 50 of the present invention cannot be configured. .

次に、
−100<Fy/Ffy<−0.001 ・・・(6)
なる条件式を満足することが重要である。Y方向に関しては、前群10で円環状に形成した画像を後群20で像面30に投影しているために、原理的に異符号になる。この条件式(6)の下限の−100を越えると、前群10の焦点距離が短くなりすぎ、前群10で形成される円環状の中間像が小さくなると同時に、前群10で発生する収差が大きくなり、これを後群20で補うことが不可能にある。その条件式(6)の上限の−0.001を越えると、前群10の焦点距離が長くなりすぎ、装置全体が大きくなってしまう。また、後群20に要求される瞳径が大きくなり、後群の特に色収差の補正が難しくなる。
next,
−100 <Fy / Ffy <−0.001 (6)
It is important to satisfy the following conditional expression. Regarding the Y direction, an image formed in an annular shape in the front group 10 is projected on the image plane 30 in the rear group 20, and therefore has a different sign in principle. If the lower limit of −100 of the conditional expression (6) is exceeded, the focal length of the front group 10 becomes too short, the annular intermediate image formed by the front group 10 becomes smaller, and at the same time, aberrations occurring in the front group 10. It becomes impossible to compensate for this by the rear group 20. If the upper limit of -0.001 of the conditional expression (6) is exceeded, the focal length of the front group 10 becomes too long and the entire apparatus becomes large. In addition, the pupil diameter required for the rear group 20 becomes large, and correction of chromatic aberration, in particular, in the rear group becomes difficult.

上記条件式をそれぞれ、さらに好ましくは、条件式(4)と(6)又は条件式(5)と(5)を同時に満足することが望ましい。   Each of the above conditional expressions is more preferably satisfied simultaneously with conditional expressions (4) and (6) or conditional expressions (5) and (5).

さらに好ましくは、条件式(4)〜(6)に関して、
−100<Fx/Ffx<−0.5 ・・・(4−1)
2<Fx/Ffx<100 ・・・(5−1)
−1<Fy/Ffy<−0.01 ・・・(6−1)
なる条件を満足することが好ましい。
More preferably, regarding conditional expressions (4) to (6),
−100 <Fx / Ffx <−0.5 (4-1)
2 <Fx / Ffx <100 (5-1)
-1 <Fy / Ffy <-0.01 (6-1)
It is preferable to satisfy the following conditions.

以下に、本発明の光学系の実施例1〜6を説明する。これら光学系の構成パラメータは後記する。これら実施例の構成パラメータは、例えば図1に示すように、物体面から前群10と後群20を経て像面30に至る順光線追跡の結果に基づくものである。   Examples 1 to 6 of the optical system of the present invention will be described below. The configuration parameters of these optical systems will be described later. The configuration parameters of these embodiments are based on the result of tracking the normal ray from the object plane to the image plane 30 through the front group 10 and the rear group 20, as shown in FIG.

座標系は、順光線追跡において、実施例1〜4では、例えば図1に示すように、入射瞳2を回転対称軸(中心軸)1に投影した位置を偏心光学系の偏心光学面の原点とし、回転対称軸(中心軸)1の光の進行方向に沿う方向をZ軸正方向とし、図1の紙面内をY−Z平面とする。そして、図1の紙面内のいま考えている入射瞳2の一方の側と反対側の方向をY軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。また、実施例5〜6では、例えば図11に示すように、像面30が回転対称軸(中心軸)1と交わる中心を原点とし、回転対称軸(中心軸)1の光の進行方向に沿う方向をZ軸正方向とし、図11の紙面内をY−Z平面とする。そして、図11の紙面内のいま考えている入射瞳2の一方の側と反対側の方向をY軸正方向とし、Y軸、Z軸と右手直交座標系を構成する軸をX軸正方向とする。   In the forward ray tracing, the coordinate system is the origin of the decentered optical surface of the decentered optical system in the first to fourth embodiments, for example, as shown in FIG. 1, the position where the entrance pupil 2 is projected on the rotational symmetry axis (center axis) 1. The direction along the light traveling direction of the rotationally symmetric axis (center axis) 1 is the Z-axis positive direction, and the inside of FIG. 1 is the YZ plane. Then, the direction opposite to one side of the entrance pupil 2 currently considered in FIG. 1 is the Y axis positive direction, and the Y axis, the Z axis, and the axes constituting the right-handed orthogonal coordinate system are the X axis positive direction. And In Examples 5 to 6, for example, as shown in FIG. 11, the center at which the image plane 30 intersects the rotational symmetry axis (center axis) 1 is the origin, and the traveling direction of light on the rotational symmetry axis (center axis) 1 The direction along the Z-axis positive direction is defined as the YZ plane. Then, the direction opposite to one side of the entrance pupil 2 currently considered in FIG. 11 is the Y axis positive direction, and the Y axis, the Z axis and the axis constituting the right-handed orthogonal coordinate system are the X axis positive direction. And

偏心面については、その面が定義される座標系の上記光学系の原点の中心からの偏心量(X軸方向、Y軸方向、Z軸方向をそれぞれX,Y,Z)と、光学系の原点に定義される座標系のX軸、Y軸、Z軸それぞれを中心とする各面を定義する座標系の傾き角(それぞれα,β,γ(°))とが与えられている。その場合、αとβの正はそれぞれの軸の正方向に対して反時計回りを、γの正はZ軸の正方向に対して時計回りを意味する。なお、面の中心軸のα,β,γの回転のさせ方は、各面を定義する座標系を光学系の原点に定義される座標系のまずX軸の回りで反時計回りにα回転させ、次に、その回転した新たな座標系のY軸の回りで反時計回りにβ回転させ、次いで、その回転した別の新たな座標系のZ軸の回りで時計回りにγ回転させるものである。   For the decentered surface, the amount of decentering from the center of the origin of the optical system in the coordinate system in which the surface is defined (X-axis direction, Y-axis direction, and Z-axis direction are X, Y, and Z, respectively) and the optical system The inclination angles (α, β, γ (°), respectively) of the coordinate system defining each surface centered on the X axis, Y axis, and Z axis of the coordinate system defined at the origin are given. In this case, positive α and β mean counterclockwise rotation with respect to the positive direction of each axis, and positive γ means clockwise rotation with respect to the positive direction of the Z axis. Note that the α, β, and γ rotations of the central axis of the surface are performed by rotating the coordinate system defining each surface counterclockwise around the X axis of the coordinate system defined at the origin of the optical system. Then rotate it around the Y axis of the new rotated coordinate system by β and then rotate it around the Z axis of another rotated new coordinate system by γ. It is.

また、各実施例の光学系を構成する光学作用面の中、特定の面とそれに続く面が共軸光学系を構成する場合には面間隔が与えられており、その他、面の曲率半径、媒質の屈折率、アッベ数が慣用法に従って与えられている。   Further, among the optical action surfaces constituting the optical system of each embodiment, when a specific surface and a subsequent surface constitute a coaxial optical system, a surface interval is given, in addition, the curvature radius of the surface, The refractive index and Abbe number of the medium are given according to conventional methods.

なお、後記の構成パラメータ中にデータの記載されていない非球面に関する項は0である。屈折率、アッベ数については、d線(波長587.56nm)に対するものを表記してある。長さの単位はmmである。各面の偏心は、上記のように、入射瞳2を回転対称軸(中心軸)1に投影した位置からの偏心量で表わす。   It should be noted that a term relating to an aspheric surface for which no data is described in the constituent parameters described later is zero. The refractive index and the Abbe number are shown for the d-line (wavelength 587.56 nm). The unit of length is mm. The eccentricity of each surface is represented by the amount of eccentricity from the position where the entrance pupil 2 is projected onto the rotational symmetry axis (center axis) 1 as described above.

なお、非球面は、以下の定義式で与えられる回転対称非球面である。   The aspheric surface is a rotationally symmetric aspheric surface given by the following definition.

Z=(Y2 /R)/[1+{1−(1+k)Y2 /R2 1 /2
+aY4 +bY6 +cY8 +dY10+・・・
・・・(a)
ただし、Zを光の進行方向を正とした光軸(軸上主光線)とし、Yを光軸と垂直な方向にとる。ここで、Rは近軸曲率半径、kは円錐定数、a、b、c、d、…はそれぞれ4次、6次、8次、10次の非球面係数である。この定義式のZ軸が回転対称非球面の軸となる。
Z = (Y 2 / R) / [1+ {1- (1 + k) Y 2 / R 2} 1/2]
+ AY 4 + bY 6 + cY 8 + dY 10 +...
... (a)
However, Z is an optical axis (axial principal ray) with the light traveling direction being positive, and Y is a direction perpendicular to the optical axis. Here, R is a paraxial radius of curvature, k is a conic constant, a, b, c, d,... Are fourth-order, sixth-order, eighth-order, and tenth-order aspherical coefficients, respectively. The Z axis of this defining formula is the axis of a rotationally symmetric aspherical surface.

また、次の定義式(b)でY回転自由曲面が定義される。   Further, the Y-rotation free-form surface is defined by the following definition formula (b).

R(Y)=C1 +C2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
Z=±R(Y)[1−{X/R(Y)}2 1/2 ・・・(b)
このY回転自由曲面は、Y軸の周りで曲線R(Y)を回転してできる回転対称面である。その結果、その面はY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|C1 |の円になる。
R (Y) = C 1 + C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
Z = ± R (Y) [1- {X / R (Y)} 2 ] 1/2 (b)
This Y rotation free-form surface is a rotationally symmetric surface formed by rotating the curve R (Y) around the Y axis. As a result, the surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | C 1 | in the XZ plane.

また、拡張回転自由曲面は、以下の定義で与えられる回転対称面である。   The extended rotation free-form surface is a rotationally symmetric surface given by the following definition.

まず、Y−Z座標面上で原点を通る下記の曲線(c)が定められる。   First, the following curve (c) passing through the origin on the YZ coordinate plane is determined.

Z=(Y2 /RY)/[1+{1−(C1 +1)Y2 /RY2 1 /2
2 Y+C3 2 +C4 3 +C5 4 +C6 5 +C7 6
+・・・・+C2120+・・・・+Cn+1 n +・・・・
・・・(c)
次いで、この曲線(c)をX軸正方向を向いて左回りを正として角度θ(°)回転した曲線F(Y)が定められる。この曲線F(Y)もY−Z座標面上で原点を通る。
Z = (Y 2 / RY) / [1+ {1- (C 1 +1) Y 2 / RY 2} 1/2]
C 2 Y + C 3 Y 2 + C 4 Y 3 + C 5 Y 4 + C 6 Y 5 + C 7 Y 6
+ ··· + C 21 Y 20 + ··· + C n + 1 Y n + ····
... (c)
Next, a curve F (Y) obtained by rotating the curve (c) in the positive direction of the X axis and turning the counterclockwise to the positive angle θ (°) is determined. This curve F (Y) also passes through the origin on the YZ coordinate plane.

その曲線F(Y)をZ正方向に距離R(負のときはZ負方向)だけ平行移動し、その後にY軸の周りでその平行移動した曲線を回転させてできる回転対称面を拡張回転自由曲面とする。   The curve F (Y) is translated in the positive Z direction by a distance R (or negative Z direction if negative), and then the rotationally symmetric surface formed by rotating the translated curve around the Y axis is expanded and rotated. Let it be a free-form surface.

その結果、拡張回転自由曲面はY−Z面内で自由曲面(自由曲線)になり、X−Z面内で半径|R|の円になる。   As a result, the extended rotation free-form surface becomes a free-form surface (free-form curve) in the YZ plane and a circle with a radius | R | in the XZ plane.

この定義からY軸が拡張回転自由曲面の軸(回転対称軸)となる。   From this definition, the Y-axis becomes the axis of the extended rotation free-form surface (rotation symmetry axis).

ここで、RYはY−Z断面での球面項の曲率半径、C1 は円錐定数、C2 、C3 、C4 、C5 …はそれぞれ1次、2次、3次、4次…の非球面係数である。 Where RY is the radius of curvature of the spherical term in the YZ section, C 1 is the conic constant, C 2 , C 3 , C 4 , C 5 . Aspheric coefficient.

実施例1の光学系50の中心軸(回転対称軸)1を含む断面図を図1に示す。ただし、図1では中心軸1に対して片側に入射する光路のみを図示しており、中心軸1に対して対称な光路も同時に存在するが、図示は省いてある。この光学系50の入射瞳2と前群10の透明媒体19内の光路を示す正面図を図2に示す。なお、図1のY−Z断面図には回転対称軸(中心軸)1上にとる座標系を記入してある。以下、同じ。   FIG. 1 shows a cross-sectional view including the central axis (rotation symmetry axis) 1 of the optical system 50 of the first embodiment. However, in FIG. 1, only the optical path incident on one side with respect to the central axis 1 is illustrated, and an optical path that is symmetrical with respect to the central axis 1 also exists at the same time, but is not illustrated. A front view showing the optical path in the entrance pupil 2 of the optical system 50 and the transparent medium 19 of the front group 10 is shown in FIG. In addition, the coordinate system taken on the rotational symmetry axis (center axis) 1 is entered in the YZ sectional view of FIG. same as below.

この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の透明媒体19からなる反射屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10の入射面11近傍に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a catadioptric optical system made of a transparent medium 19 having a symmetric shape is disposed. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1. It is configured to convert to the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称で、何れも回転対称軸(中心軸)1上に面頂を有する非球面からなる入射面(屈折面)11と、内面反射面12と、内面反射面13と、射出面(屈折面)14とからなる透明媒体19からなる。この前群10において、少なくとも1つの面、好ましくは反射面を、光学面の有効径をDとし、面頂付近の曲率半径をRとするとき、D/R>10なる光学面で構成することにより、後群20内の円形の開口絞り21の前群10の前方から見た像である入射瞳2をメリジオナル面(中心軸1を含む断面)内で左右の2つの入射瞳に分割することが可能になる。実施例1においては、内面反射面13のD、Rの値は、
D 46.24
R -0.13×10-5
|D/R| 0.35×108
となっており、非球面の球面項以外の高次項によってこの内面反射面13の有効径内の対角方向両端近傍に入射した光束は、2つに分離して二重像を形成するのに十分寄与することができる。
In this embodiment, the front group 10 is rotationally symmetric about the central axis 1, both of which are an aspherical entrance surface (refractive surface) 11 having an apex on the rotationally symmetric axis (central axis) 1 and an inner surface. The transparent medium 19 includes a reflective surface 12, an internal reflective surface 13, and an exit surface (refractive surface) 14. In this front group 10, at least one surface, preferably a reflecting surface, is composed of an optical surface with D / R> 10, where D is the effective diameter of the optical surface and R is the radius of curvature near the top of the surface. Thus, the entrance pupil 2 which is an image viewed from the front of the front group 10 of the circular aperture stop 21 in the rear group 20 is divided into two left and right entrance pupils in the meridional plane (cross section including the central axis 1). Is possible. In Example 1, the values of D and R of the internal reflection surface 13 are:
D 46.24
R -0.13 × 10 -5
| D / R | 0.35 × 10 8
In order to form a double image, a light beam incident on both ends in the diagonal direction within the effective diameter of the inner surface reflecting surface 13 by a higher order term other than the aspherical spherical term is separated into two. It can contribute enough.

また、後群20は、中心軸1の周りで回転対称で、物体側に凹面を向けた正メニスカスレンズL1と、円形の開口絞り21と、両凸正レンズL2と、両凸正レンズL3と、物体側に凸面を向けた正メニスカスレンズL4の4群4枚構成の正レンズ系からなる。   The rear group 20 is rotationally symmetric about the central axis 1 and has a positive meniscus lens L1 having a concave surface facing the object side, a circular aperture stop 21, a biconvex positive lens L2, and a biconvex positive lens L3. The positive lens system has a four-group four-lens configuration of a positive meniscus lens L4 having a convex surface facing the object side.

そして、図1の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の入射面11から前群10の透明媒体19に入射し、内面反射面12と、内面反射面13で順に2回反射されて、射出面の屈折面14を経て透明媒体19から別々に出た光束は、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして相互に反対側に別々に結像する。   In the cross section including the central axis 1 in FIG. 1, the light beams from the common object that are not shown in the left direction in the figure are separated toward the two openings of the entrance pupil 2 that is symmetric with respect to the central axis 1. Then, the light enters the transparent medium 19 of the front group 10 from the entrance surface 11 of the front group 10, is reflected twice in turn by the inner surface reflecting surface 12 and the inner surface reflecting surface 13, and passes through the refracting surface 14 of the exit surface. The luminous fluxes separately emitted from 19 are separately imaged on the opposite sides from the point where the central axis 1 of the image plane 30 passes through the rotationally symmetric lens system of the rear group 20.

そして、この実施例においては、入射瞳2に入射する光束は、図1の回転対称軸1を含む断面図内の反射面12と反射面13の間の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図2)では像面30に入射するまで中間結像しない。そして、後群20の絞り21の像は前群10の屈折面11と反射面12の間の位置5に結像し、屈折面11でその絞り21の像の虚像として入射瞳2が形成されている。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 between the reflecting surface 12 and the reflecting surface 13 in the sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to the cross section (FIG. 2), intermediate image formation is not performed until it enters the image plane 30. The image of the stop 21 in the rear group 20 is formed at a position 5 between the refracting surface 11 and the reflecting surface 12 in the front group 10, and the entrance pupil 2 is formed on the refracting surface 11 as a virtual image of the image of the stop 21. ing.

この実施例では、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   In this embodiment, the aberration generated in the front group 10 for separating the light beam and the aberration generated in the rear group 20 mainly having an image forming function are mutually corrected, so that the overall condition is good. It is possible to enter an aberration state.

この実施例1の仕様は、
画角 100°
入射瞳径 0.41mm×6.80mm
絞り径 φ2.00mm
像の大きさ φ1.88〜φ6.12mm
である。
The specification of this Example 1 is
Angle of view 100 °
Entrance pupil diameter 0.41mm x 6.80mm
Diaphragm diameter φ2.00mm
Image size φ1.88 ~ φ6.12mm
It is.

実施例2の光学系50の図1と同様の図を図4に、図2と同様の図を図5にそれぞれ示す。この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   A view similar to FIG. 1 of the optical system 50 of the second embodiment is shown in FIG. 4, and a view similar to FIG. 2 is shown in FIG. The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の透明媒体19からなる反射屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10の入射面11近傍に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a catadioptric optical system made of a transparent medium 19 having a symmetric shape is disposed. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1. It is configured to convert to the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称で、何れも回転対称軸(中心軸)1上に面頂を有する非球面からなる入射面(屈折面)11と、内面反射面12と、内面反射面13と、射出面(屈折面)14とからなる透明媒体19からなる。この前群10において、少なくとも1つの面、好ましくは反射面を、光学面の有効径をDとし、面頂付近の曲率半径をRとするとき、D/R>10なる光学面で構成することにより、後群20内の円形の開口絞り21の前群10の前方から見た像である入射瞳2をメリジオナル面(中心軸1を含む断面)内で左右の2つの入射瞳に分割することが可能になる。実施例2においては、内面反射面13のD、Rの値は、
D 25.76
R -1.12
|D/R| 23.00
となっており、非球面の球面項以外の高次項によってこの内面反射面13の有効径内の対角方向両端近傍に入射した光束は、2つに分離して二重像を形成するのに十分寄与することができる。
In this embodiment, the front group 10 is rotationally symmetric about the central axis 1, both of which are an aspherical entrance surface (refractive surface) 11 having an apex on the rotationally symmetric axis (central axis) 1 and an inner surface. The transparent medium 19 includes a reflective surface 12, an internal reflective surface 13, and an exit surface (refractive surface) 14. In this front group 10, at least one surface, preferably a reflecting surface, is composed of an optical surface with D / R> 10, where D is the effective diameter of the optical surface and R is the radius of curvature near the top of the surface. Thus, the entrance pupil 2 which is an image viewed from the front of the front group 10 of the circular aperture stop 21 in the rear group 20 is divided into two left and right entrance pupils in the meridional plane (cross section including the central axis 1). Is possible. In Example 2, the values of D and R of the internal reflection surface 13 are:
D 25.76
R -1.12
| D / R | 23.00
In order to form a double image, a light beam incident on both ends in the diagonal direction within the effective diameter of the inner surface reflecting surface 13 by a higher order term other than the aspherical spherical term is separated into two. It can contribute enough.

また、後群20は、円形の開口絞り21と、この例の場合は抽象的に、回転対称なレンズ系からなり正パワーの理想レンズ22とからなる。   The rear group 20 includes a circular aperture stop 21 and, in this example, an abstract lens 22 having a rotationally symmetrical lens system and having a positive power.

そして、図4の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の入射面11から前群10の透明媒体19に入射し、内面反射面12と、内面反射面13で順に2回反射されて、射出面の屈折面14を経て透明媒体19から別々に出た光束は、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして反対側に別々に結像する。   Then, in the cross section including the central axis 1 in FIG. 4, the light beams from the common object that are not shown in the left direction in the figure are separated toward the two openings of the entrance pupil 2 that is symmetric with respect to the central axis 1. Then, the light enters the transparent medium 19 of the front group 10 from the entrance surface 11 of the front group 10, is reflected twice in turn by the inner surface reflecting surface 12 and the inner surface reflecting surface 13, and passes through the refracting surface 14 of the exit surface. The luminous fluxes separately emitted from 19 are separately imaged on the opposite side through a point where the central axis 1 of the image plane 30 passes through the rotationally symmetric lens system of the rear group 20.

そして、この実施例においては、入射瞳2に入射する光束は、図4の回転対称軸1を含む断面図内の反射面12と反射面13の間の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図5)では像面30に入射するまで結像しない。そして、後群20の絞り21の像は前群10の透明媒体19内の屈折面11近傍の位置5に結像し、屈折面11でその絞り21の像の虚像として入射瞳2が形成されている。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 between the reflecting surface 12 and the reflecting surface 13 in the cross-sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to the cross section (FIG. 5), no image is formed until it enters the image plane 30. Then, the image of the diaphragm 21 in the rear group 20 forms an image at a position 5 near the refractive surface 11 in the transparent medium 19 of the front group 10, and the entrance pupil 2 is formed on the refractive surface 11 as a virtual image of the image of the diaphragm 21. ing.

この実施例でも、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   Even in this embodiment, the aberration generated in the front group 10 for separating the light flux and the aberration generated in the rear group 20 mainly having an image forming function are corrected to each other, so that the overall condition is good. It is possible to enter an aberration state.

この実施例2の仕様は、
画角 140°
入射瞳径 0.15mm×4.41mm
絞り径 φ1.20mm
像の大きさ φ1.94〜φ5.70mm
である。
The specification of Example 2 is
Angle of view 140 °
Entrance pupil diameter 0.15mm x 4.41mm
Diaphragm diameter 1.20mm
Image size φ1.94 ~ φ5.70mm
It is.

実施例3の光学系50の図1と同様の図を図6に、図2と同様の図を図7にそれぞれ示す。この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   FIG. 6 shows a diagram similar to FIG. 1 of the optical system 50 of Example 3, and FIG. 7 shows a diagram similar to FIG. The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の透明媒体19からなる反射屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10の入射面11近傍に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a catadioptric optical system made of a transparent medium 19 having a symmetric shape is disposed. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1. It is configured to convert to the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称で、回転対称軸(中心軸)1上に面頂を有する非球面からなる入射面(屈折面)11と、何れも回転対称軸(中心軸)1上に面頂を有さないY回転自由曲面からなる内面反射面12と、内面反射面13と、射出面(屈折面)14とからなる透明媒体19からなる。この実施例では、これらのY回転自由曲面は、それらの有効径内の対角方向両端近傍に入射した光束が2つに分離して二重像を形成するのに十分寄与することができる。   In this embodiment, the front group 10 is rotationally symmetric about the central axis 1, and both the incident surface (refractive surface) 11 made of an aspheric surface having a surface apex on the rotationally symmetric axis (central axis) 1 are rotated. It consists of a transparent medium 19 consisting of an inner reflection surface 12 consisting of a Y-rotation free-form surface having no surface apex on the axis of symmetry (center axis) 1, an inner reflection surface 13, and an exit surface (refractive surface) 14. In this embodiment, these Y-rotation free-form surfaces can sufficiently contribute to the separation of the light beams incident near the opposite ends in the diagonal direction within their effective diameters to form a double image.

また、後群20は、円形の開口絞り21と、この例の場合は抽象的に、回転対称なレンズ系からなり正パワーの理想レンズ22とからなる。   The rear group 20 includes a circular aperture stop 21 and, in this example, an abstract lens 22 having a rotationally symmetrical lens system and having a positive power.

そして、図6の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の入射面11から前群10の透明媒体19に入射し、内面反射面12と、内面反射面13で順に2回反射されて、射出面の屈折面14を経て透明媒体19から別々に出た光束は、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして反対側に別々に結像する。   Then, in the cross section including the central axis 1 in FIG. 6, the light beams from the common object that are not shown in the left direction in the figure are separated toward the two openings of the entrance pupil 2 that is symmetric with respect to the central axis 1. Then, the light enters the transparent medium 19 of the front group 10 from the entrance surface 11 of the front group 10, is reflected twice in turn by the inner surface reflecting surface 12 and the inner surface reflecting surface 13, and passes through the refracting surface 14 of the exit surface. The luminous fluxes separately emitted from 19 are separately imaged on the opposite side through a point where the central axis 1 of the image plane 30 passes through the rotationally symmetric lens system of the rear group 20.

そして、この実施例においては、入射瞳2に入射する光束は、図6の回転対称軸1を含む断面図内の反射面12と反射面13の間の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図7)では像面30に入射するまで結像しない。そして、後群20の絞り21の像は前群10の透明媒体19外の屈折面11近傍の位置5に結像し、この位置5が入射瞳2となる。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 between the reflecting surface 12 and the reflecting surface 13 in the sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to the cross section (FIG. 7), no image is formed until it enters the image plane 30. The image of the diaphragm 21 of the rear group 20 is formed at a position 5 near the refractive surface 11 outside the transparent medium 19 of the front group 10, and this position 5 becomes the entrance pupil 2.

この実施例でも、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   Even in this embodiment, the aberration generated in the front group 10 for separating the light flux and the aberration generated in the rear group 20 mainly having an image forming function are corrected to each other, so that the overall condition is good. It is possible to enter an aberration state.

この実施例3の仕様は、
画角 120°
入射瞳径 0.18mm×4.56mm
絞り径 φ1.20mm
像の大きさ φ2.60〜φ5.77mm
である。
The specification of this Example 3 is
Angle of view 120 °
Entrance pupil diameter 0.18mm x 4.56mm
Diaphragm diameter 1.20mm
Image size φ2.60 ~ φ5.77mm
It is.

実施例4の光学系50の中心軸(回転対称軸)1を含む図1と同様の断面図を図8に示す。この光学系50の中心軸(回転対称軸)1を含み図8に垂直な面への光路投影図を図9に示す。また、この光学系50の入射瞳2と前群10内の光路を示す正面図を図10に示す。   FIG. 8 shows a cross-sectional view similar to FIG. 1 including the central axis (rotation symmetry axis) 1 of the optical system 50 of the fourth embodiment. FIG. 9 shows an optical path projection diagram on a plane including the central axis (rotation symmetry axis) 1 of the optical system 50 and perpendicular to FIG. FIG. 10 is a front view showing the entrance pupil 2 of the optical system 50 and the optical path in the front group 10.

この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の複数枚の非球面レンズL11〜L16からなる屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10中に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a refractive optical system composed of a plurality of symmetrical aspherical lenses L11 to L16 is arranged, and the front group 10 is coaxial with the central axis 1 for the image of the circular aperture 21 of the rear group 20. It is configured to convert to an entrance pupil 2 that is annular and located in the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称な6枚の両面非球面レンズL11〜L16からなり、その全ての非球面は中心軸1上に面頂を有する回転対称非球面で構成されている。この前群10において、少なくとも1つの屈折透過面の有効径をDとし、面頂付近の曲率半径をRとするとき、D/R>10なる光学面で構成することにより、後群20内の円形の開口絞り21の前群10の前方から見た像である入射瞳2をメリジオナル面(中心軸1を含む断面)内で左右の2つの入射瞳に分割することが可能になる。実施例4においては、最も後群20側の両面非球面レンズL16の後面(後群20に面した面)のD、Rの値は、
D 52.51
R 2.00
|D/R| 26.26
となっており、非球面の球面項以外の高次項によってこの非球面の有効径内の対角方向両端近傍に入射した光束は、2つに分離して二重像を形成するのに十分寄与することができる。
In this embodiment, the front group 10 is composed of six double-sided aspherical lenses L11 to L16 that are rotationally symmetric about the central axis 1, and all of the aspherical surfaces have a rotationally symmetric non-spherical surface having a top on the central axis 1. It consists of a spherical surface. In this front group 10, when the effective diameter of at least one refractive transmission surface is D and the radius of curvature near the surface top is R, by configuring with an optical surface with D / R> 10, It is possible to divide the entrance pupil 2, which is an image viewed from the front of the front group 10 of the circular aperture stop 21, into two left and right entrance pupils in the meridional plane (cross section including the central axis 1). In Example 4, the values of D and R on the rear surface (surface facing the rear group 20) of the double-sided aspheric lens L16 closest to the rear group 20 are:
D 52.51
R 2.00
| D / R | 26.26
The light beam incident near the opposite ends of the aspherical surface within the effective diameter of the aspherical surface by a higher-order term other than the spherical surface of the aspherical surface contributes enough to split into two and form a double image. can do.

また、後群20は、中心軸1の周りで回転対称で、物体側に凸面を向けた正メニスカスレンズL1と、両凸正レンズL2と、円形の開口絞り21と、両凸正レンズL3と、物体側に凸面を向けた正メニスカスレンズL4の4群4枚構成の正レンズ系からなる。   The rear group 20 is rotationally symmetric about the central axis 1 and has a positive meniscus lens L1 having a convex surface facing the object side, a biconvex positive lens L2, a circular aperture stop 21, and a biconvex positive lens L3. The positive lens system has a four-group four-lens configuration of a positive meniscus lens L4 having a convex surface facing the object side.

そして、図8の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の第1レンズL11を経て前群10に入射し、第2レンズL12〜第6レンズL16で順に屈折されて、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして相互に反対側に別々に結像する。   Then, in the cross section including the central axis 1 in FIG. 8, the light beams from the common object that are not shown in the left direction in the figure are separated toward the two openings of the entrance pupil 2 that is symmetric with respect to the central axis 1. , And enters the front group 10 through the first lens L11 of the front group 10, is sequentially refracted by the second lens L12 to the sixth lens L16, passes through the rotationally symmetric lens system of the rear group 20, and is centered on the image plane 30. The images are separately formed on the opposite sides with respect to the point through which the axis 1 passes.

そして、この実施例においては、入射瞳2に入射する光束は、図8の回転対称軸1を含む断面図内の第5レンズL5の後面近傍の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図9)では像面30に入射するまで中間結像しない。そして、後群20の絞り21の像は前群10の第2レンズL12と第3レンズL13の間の位置5に結像し、第1レンズL11と第2レンズL12でその絞り21の像の虚像として入射瞳2が形成されている。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 near the rear surface of the fifth lens L5 in the cross-sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to (FIG. 9), intermediate image formation is not performed until it enters the image plane 30. The image of the diaphragm 21 of the rear group 20 is formed at a position 5 between the second lens L12 and the third lens L13 of the front group 10, and the image of the diaphragm 21 is formed by the first lens L11 and the second lens L12. An entrance pupil 2 is formed as a virtual image.

この実施例では、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   In this embodiment, the aberration generated in the front group 10 for separating the light beam and the aberration generated in the rear group 20 mainly having an image forming function are mutually corrected, so that the overall condition is good. It is possible to enter an aberration state.

この実施例4の仕様は、
画角 28°
入射瞳径 2.00mm×18.63mm
絞り径 φ3.82mm
像の大きさ φ2.14〜φ5.85mm
である。
The specification of this Example 4 is
Angle of view 28 °
Entrance pupil diameter 2.00mm x 18.63mm
Diaphragm diameter φ3.82mm
Image size φ2.14 to φ5.85mm
It is.

実施例5の光学系50の図1と同様の図を図11に、図2と同様の図を図12にそれぞれ示す。この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   A view similar to FIG. 1 of the optical system 50 of the fifth embodiment is shown in FIG. 11, and a view similar to FIG. 2 is shown in FIG. The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の透明媒体19からなる反射屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10の入射面11近傍に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a catadioptric optical system made of a transparent medium 19 having a symmetric shape is disposed. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1. It is configured to convert to the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称で、何れも拡張回転自由曲面からなる入射面(屈折面)11と、内面反射面12と、内面反射面13と、射出面(屈折面)14とからなる透明媒体19からなる。なお、これら拡張回転自由曲面の円錐定数は0である。この前群10において、特に内面反射面12、13を拡張回転自由曲面の球面項以外の高次項によって、これら内面反射面12、13の有効径内の対角方向両端近傍に入射した光束が2つに分離して二重像を形成するのに十分寄与することができる。   In this embodiment, the front group 10 is rotationally symmetric about the central axis 1, all of which are an entrance surface (refractive surface) 11 made of an extended rotation free-form surface, an internal reflection surface 12, an internal reflection surface 13, and an exit surface. It consists of a transparent medium 19 composed of a surface (refractive surface) 14. Note that the conic constant of these extended rotation free-form surfaces is zero. In the front group 10, particularly, the inner reflecting surfaces 12, 13 are incident on the opposite ends in the diagonal direction within the effective diameter of the inner reflecting surfaces 12, 13 due to higher-order terms other than the spherical term of the extended rotation free-form surface. It can contribute enough to separate into two and form a double image.

また、後群20は、中心軸1の周りで回転対称で、物体側に凸面を向けた正メニスカスレンズL1と、物体側に凸面を向けた正メニスカスレンズL2と、両凹負レンズL3と両凸正レンズL4の接合レンズと、その接合レンズの接合面上に位置する円形の開口絞り21と、両凸正レンズL5と、両凸正レンズL6の5群6枚構成の正レンズ系からなる。   The rear group 20 is rotationally symmetric about the central axis 1 and has a positive meniscus lens L1 having a convex surface on the object side, a positive meniscus lens L2 having a convex surface on the object side, a biconcave negative lens L3, and both It consists of a cemented lens of a convex positive lens L4, a circular aperture stop 21 located on the cemented surface of the cemented lens, a biconvex positive lens L5, and a positive lens system of a five-group six-lens configuration including a biconvex positive lens L6. .

そして、図11の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の入射面11から前群10の透明媒体19に入射し、内面反射面12と、内面反射面13で順に2回反射されて、射出面の屈折面14を経て透明媒体19から別々に出た光束は、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして反対側に別々に結像する。   Then, in the cross section including the central axis 1 in FIG. 11, light beams from a common object that is not shown in the left direction of the figure are separated toward two openings of the entrance pupil 2 that is symmetrical with respect to the central axis 1. Then, the light enters the transparent medium 19 of the front group 10 from the entrance surface 11 of the front group 10, is reflected twice in turn by the inner surface reflecting surface 12 and the inner surface reflecting surface 13, and passes through the refracting surface 14 of the exit surface. The luminous fluxes separately emitted from 19 are separately imaged on the opposite side through a point where the central axis 1 of the image plane 30 passes through the rotationally symmetric lens system of the rear group 20.

そして、この実施例においては、入射瞳2に入射する光束は、図11の回転対称軸1を含む断面図内の反射面12と反射面13の間の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図12)では像面30に入射するまで結像しない。そして、後群20の絞り21の像は前群10の透明媒体19内の屈折面11と反射面12の間の位置5に結像し、屈折面11でその絞り21の像の虚像として入射瞳2が形成されている。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 between the reflecting surface 12 and the reflecting surface 13 in the sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to the cross section (FIG. 12), no image is formed until it enters the image plane 30. The image of the stop 21 in the rear group 20 is formed at a position 5 between the refracting surface 11 and the reflecting surface 12 in the transparent medium 19 of the front group 10 and is incident on the refracting surface 11 as a virtual image of the image of the stop 21. A pupil 2 is formed.

この実施例でも、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   Even in this embodiment, the aberration generated in the front group 10 for separating the light flux and the aberration generated in the rear group 20 mainly having an image forming function are corrected to each other, so that the overall condition is good. It is possible to enter an aberration state.

この実施例5の仕様は、
画角 100°
入射瞳径 0.80mm×9.78mm
絞り径 φ2.93mm
像の大きさ φ1.99〜φ5.99mm
である。
The specification of this Example 5 is
Angle of view 100 °
Entrance pupil diameter 0.80mm x 9.78mm
Diaphragm diameter 2.93mm
Image size φ1.99 to φ5.99 mm
It is.

実施例6の光学系50の図1と同様の図を図13に、図2と同様の図を図14にそれぞれ示す。この実施例の光学系50は、中心軸1に沿った前群10の前方の共通の物体の中心(図3(a)の(c)点)を通る全方向の1次元物体を、この光学系50の入射瞳2の直径を眼幅(基線長)とする一対の1次元視差像として、像面30のその1次元物体の方向と同じ方向の直径上の対角位置に結像させる(図3(b))光学系である。   A view similar to FIG. 1 of the optical system 50 of Example 6 is shown in FIG. 13, and a view similar to FIG. 2 is shown in FIG. The optical system 50 of this embodiment converts a one-dimensional object in all directions passing through the center of the common object in front of the front group 10 along the central axis 1 (point (c) in FIG. 3A) to this optical system. As a pair of one-dimensional parallax images in which the diameter of the entrance pupil 2 of the system 50 is the eye width (baseline length), an image is formed at a diagonal position on the diameter in the same direction as the direction of the one-dimensional object on the image plane 30 ( FIG. 3B is an optical system.

この光学系50は、中心軸1の周りで回転対称で正パワーを有し、中心軸1と同軸の円形開口(絞り)21を有する後群20の入射側に、中心軸1の周りで回転対称な形状の透明媒体19からなる反射屈折光学系の前群10が配置されており、前群10は、後群20の円形開口21の像を、中心軸1に同軸の輪帯状であって前群10の入射面11近傍に位置する入射瞳2に変換する構成になっている。   This optical system 50 is rotationally symmetric about the central axis 1 on the incident side of the rear group 20 having a circular aperture (aperture) 21 coaxial with the central axis 1. A front group 10 of a catadioptric optical system made of a transparent medium 19 having a symmetric shape is disposed. The front group 10 has an image of the circular aperture 21 of the rear group 20 in the shape of an annular zone coaxial with the central axis 1. It is configured to convert to the entrance pupil 2 located in the vicinity of the entrance surface 11 of the front group 10.

この実施例において、前群10は、中心軸1の周りで回転対称で、何れも回転対称軸(中心軸)1上に面頂を有する非球面からなる入射面(屈折面)11と、内面反射面12と、内面反射面13と、射出面(屈折面)14とからなる透明媒体19からなる。この前群10において、少なくとも1つの面、好ましくは反射面を、光学面の有効径をDとし、面頂付近の曲率半径をRとするとき、D/R>10なる光学面で構成することにより、後群20内の円形の開口絞り21の前群10の前方から見た像である入射瞳2をメリジオナル面(中心軸1を含む断面)内で左右の2つの入射瞳に分割することが可能になる。実施例1においては、内面反射面13のD、Rの値は、
D 43.80
R -1.33×10-5
|D/R| 3.29×106
となっており、非球面の球面項以外の高次項によってこの内面反射面13の有効径内の対角方向両端近傍に入射した光束は、2つに分離して二重像を形成するのに十分寄与することができる。
In this embodiment, the front group 10 is rotationally symmetric about the central axis 1, both of which are an aspherical entrance surface (refractive surface) 11 having an apex on the rotationally symmetric axis (central axis) 1 and an inner surface. The transparent medium 19 includes a reflective surface 12, an internal reflective surface 13, and an exit surface (refractive surface) 14. In this front group 10, at least one surface, preferably a reflecting surface, is composed of an optical surface with D / R> 10, where D is the effective diameter of the optical surface and R is the radius of curvature near the top of the surface. Thus, the entrance pupil 2 which is an image viewed from the front of the front group 10 of the circular aperture stop 21 in the rear group 20 is divided into two left and right entrance pupils in the meridional plane (cross section including the central axis 1). Is possible. In Example 1, the values of D and R of the internal reflection surface 13 are:
D 43.80
R -1.33 × 10 -5
| D / R | 3.29 × 10 6
In order to form a double image, a light beam incident on both ends in the diagonal direction within the effective diameter of the inner surface reflecting surface 13 by a higher order term other than the aspherical spherical term is separated into two. It can contribute enough.

また、後群20は、中心軸1の周りで回転対称で、物体側に凸面を向けた正メニスカスレンズL1と、物体側に凹面を向けた負メニスカスレンズL2と、物体側に凸面を向けた正メニスカスレンズL3と、円形の開口絞り21と、物体側に凸面を向けた負メニスカスレンズL4と両凸正レンズL5の接合レンズと、物体側に凸面を向けた正メニスカスレンズL6と、両凸正レンズL7の6群7枚構成の正レンズ系からなる。   The rear group 20 is rotationally symmetric about the central axis 1 and has a positive meniscus lens L1 having a convex surface facing the object side, a negative meniscus lens L2 having a concave surface facing the object side, and a convex surface facing the object side. A positive meniscus lens L3, a circular aperture stop 21, a cemented lens of a negative meniscus lens L4 and a biconvex positive lens L5 having a convex surface facing the object side, a positive meniscus lens L6 having a convex surface facing the object side, and a biconvex lens The positive lens system is composed of a positive lens system composed of 7 elements in 6 groups.

そして、図13の中心軸1を含む断面内で、図の左方向の図示を省いた共通の物体からの光束は、中心軸1に対して対称の入射瞳2の2つの開口に向かって別々に進み、前群10の入射面11から前群10の透明媒体19に入射し、内面反射面12と、内面反射面13で順に2回反射されて、射出面の屈折面14を経て透明媒体19から別々に出た光束は、後群20の回転対称レンズ系を経て像面30の中心軸1が通る点を境にして反対側に別々に結像する。   Then, in the cross section including the central axis 1 in FIG. 13, light beams from a common object that is not shown in the left direction in the figure are separated toward two openings of the entrance pupil 2 that is symmetric with respect to the central axis 1. Then, the light enters the transparent medium 19 of the front group 10 from the entrance surface 11 of the front group 10, is reflected twice in turn by the inner surface reflecting surface 12 and the inner surface reflecting surface 13, and passes through the refracting surface 14 of the exit surface. The luminous fluxes separately emitted from 19 are separately imaged on the opposite side through a point where the central axis 1 of the image plane 30 passes through the rotationally symmetric lens system of the rear group 20.

そして、この実施例においては、入射瞳2に入射する光束は、図13の回転対称軸1を含む断面図内の反射面12と反射面13の間の位置4で1回中間結像し、その断面に対して直交するサジタル面内(図14)では像面30に入射するまで結像しない。そして、後群20の絞り21の像は前群10の透明媒体19内の屈折面11と反射面12の間の位置5に結像し、屈折面11でその絞り21の像の虚像として入射瞳2が形成されている。   In this embodiment, the light beam incident on the entrance pupil 2 forms an intermediate image once at a position 4 between the reflecting surface 12 and the reflecting surface 13 in the sectional view including the rotational symmetry axis 1 in FIG. In the sagittal plane orthogonal to the cross section (FIG. 14), no image is formed until it enters the image plane 30. The image of the stop 21 in the rear group 20 is formed at a position 5 between the refracting surface 11 and the reflecting surface 12 in the transparent medium 19 of the front group 10 and is incident on the refracting surface 11 as a virtual image of the image of the stop 21. A pupil 2 is formed.

この実施例でも、光束を分離するための前群10で発生する収差と、主に結像作用を有する後群20で発生する収差とをお互いに補正するようにすることにより、全体として良好な収差状態にすることが可能である。   Even in this embodiment, the aberration generated in the front group 10 for separating the light flux and the aberration generated in the rear group 20 mainly having an image forming function are corrected to each other, so that the overall condition is good. It is possible to enter an aberration state.

この実施例6の仕様は、
画角 100°
入射瞳径 0.80mm×9.45mm
絞り径 φ2.70mm
像の大きさ φ2.05〜φ5.99mm
である。
The specification of Example 6 is
Angle of view 100 °
Entrance pupil diameter 0.80mm x 9.45mm
Diaphragm diameter 2.70mm
Image size φ2.05-φ5.99mm
It is.

以下に、上記実施例1〜6の構成パラメータを示す。なお、以下の表中の“ASS”は非球面、“YRFS”はY回転自由曲面、“ERFS”は拡張回転自由曲面をそれぞれ示す。また、“IDL”は理想レンズを示す。また、“RE”は反射面をそれぞれ示す。   The configuration parameters of Examples 1 to 6 are shown below. In the table below, “ASS” indicates an aspherical surface, “YRFS” indicates a Y rotation free-form surface, and “ERFS” indicates an extended rotation free-form surface. “IDL” indicates an ideal lens. “RE” indicates a reflective surface.


実施例1
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳) -6.65 偏心(1)
2 ASS[1] 17.52 1.8830 40.7
3 ASS[2] (RE) -10.56 1.8830 40.7
4 ASS[3] (RE) 5.26 1.8830 40.7
5 ASS[4] 16.48
6 -161.04 20.00 1.7620 40.1
7 -33.05 32.48
8 ∞(絞り) 0.10
9 12.16 5.62 1.4970 81.5
10 -29.28 0.10
11 9.91 5.01 1.6204 60.3
12 -39.58 0.10
13 8.32 2.15 1.7859 44.2
14 37.54 2.00
像 面 ∞
ASS[1]
R 0.00
k -6.3047 ×10+27
a 7.7540 ×10-6
b 1.7502 ×10-9
c -1.1235 ×10-11
d 5.6493 ×10-15
ASS[2]
R 0.00
k -2.3809 ×10+1
a -8.4686 ×10-6
b 1.7120 ×10-9
c 1.7760 ×10-12
d -9.4138 ×10-16
ASS[3]
R 0.00
k -1.3000 ×10+1
a 5.8645 ×10-6
b 2.2749 ×10-9
c -1.3811 ×10-11
d 1.2551 ×10-14
ASS[4]
R 0.00
k -1.0263 ×10+1
a 1.2129 ×10-5
b 1.9876 ×10-8
c 4.4798 ×10-11
d -1.6528 ×10-13
偏心(1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00 。

Example 1
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil) -6.65 Eccentricity (1)
2 ASS [1] 17.52 1.8830 40.7
3 ASS [2] (RE) -10.56 1.8830 40.7
4 ASS [3] (RE) 5.26 1.8830 40.7
5 ASS [4] 16.48
6 -161.04 20.00 1.7620 40.1
7 -33.05 32.48
8 ∞ (Aperture) 0.10
9 12.16 5.62 1.4970 81.5
10 -29.28 0.10
11 9.91 5.01 1.6204 60.3
12 -39.58 0.10
13 8.32 2.15 1.7859 44.2
14 37.54 2.00
Image plane ∞
ASS [1]
R 0.00
k -6.3047 × 10 +27
a 7.7540 × 10 -6
b 1.7502 × 10 -9
c -1.1235 × 10 -11
d 5.6493 × 10 -15
ASS [2]
R 0.00
k -2.3809 × 10 +1
a -8.4686 × 10 -6
b 1.7120 × 10 -9
c 1.7760 × 10 -12
d -9.4138 × 10 -16
ASS [3]
R 0.00
k -1.3000 × 10 +1
a 5.8645 × 10 -6
b 2.2749 × 10 -9
c -1.3811 × 10 -11
d 1.2551 × 10 -14
ASS [4]
R 0.00
k -1.0263 × 10 +1
a 1.2129 × 10 -5
b 1.9876 × 10 -8
c 4.4798 × 10 -11
d -1.6528 × 10 -13
Eccentricity (1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00.


実施例2
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳) -0.71 偏心(1)
2 ASS[1] 18.43 1.8830 40.8
3 ASS[2] (RE) -4.11 1.8830 40.8
4 ASS[3] (RE) -1.07 1.8830 40.8
5 ASS[4] 10.87
6 ∞(絞り) 3.50
7 IDL 4.47
像 面 ∞
ASS[1]
R 0.68
k -2.4501 ×10+19
a 1.6632 ×10-6
b -8.2041 ×10-10
ASS[2]
R -110.41
k 7.8658
a -1.0026 ×10-5
b 1.0431 ×10-8
c -4.1325 ×10-12
ASS[3]
R -1.12
k -2.0004
a 2.0366 ×10-4
b -1.1329 ×10-6
c 2.2020 ×10-9
ASS[4]
R -7.44
k -1.1687
a 2.0636 ×10-3
b -2.3025 ×10-5
c 9.2967 ×10-8
偏心(1)
X 0.00 Y -33.20 Z 0.00
α 0.00 β 0.00 γ 0.00 。

Example 2
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil) -0.71 Eccentricity (1)
2 ASS [1] 18.43 1.8830 40.8
3 ASS [2] (RE) -4.11 1.8830 40.8
4 ASS [3] (RE) -1.07 1.8830 40.8
5 ASS [4] 10.87
6 ∞ (Aperture) 3.50
7 IDL 4.47
Image plane ∞
ASS [1]
R 0.68
k -2.4501 × 10 +19
a 1.6632 × 10 -6
b -8.2041 × 10 -10
ASS [2]
R -110.41
k 7.8658
a -1.0026 × 10 -5
b 1.0431 × 10 -8
c -4.1325 × 10 -12
ASS [3]
R -1.12
k -2.0004
a 2.0366 × 10 -4
b -1.1329 × 10 -6
c 2.2020 × 10 -9
ASS [4]
R -7.44
k -1.1687
a 2.0636 × 10 -3
b -2.3025 × 10 -5
c 9.2967 × 10 -8
Eccentricity (1)
X 0.00 Y -33.20 Z 0.00
α 0.00 β 0.00 γ 0.00.


実施例3
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳) 偏心(1)
2 ASS[1] 偏心(2) 1.8830 40.7
3 YRFS[1] (RE) 偏心(3) 1.8830 40.7
4 YRFS[2] (RE) 偏心(4) 1.8830 40.7
5 YRFS[3] 偏心(5)
6 ∞(絞り) 3.50 偏心(6)
7 IDL 4.12
像 面 ∞
YRFS[1]
1 3.5286 ×10+12 -1.0315 C3 -9.6674 ×10-2
4 -2.3210 ×10-35 -4.0592 ×10-6
YRFS[2]
1 1.3506 ×10+12 -1.6876 C3 4.9906 ×10-2
4 -1.4575 ×10-35 -4.2825 ×10-4
YRFS[3]
1 -1.0687 ×10+12 2.3460 C3 2.0089 ×10-1
4 1.6813 ×10-1
ASS[1]
R 66.06
k -1.0364 ×10+1
a 9.2919 ×10-6
b -5.9493 ×10-9
偏心(1)
X 0.00 Y -35.23 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z -8.83
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 0.00 Z 4.28
α -90.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y 0.00 Z 3.27
α -90.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y 0.00 Z 9.04
α 90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y 0.00 Z 28.76
α 0.00 β 0.00 γ 0.00 。

Example 3
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil) Eccentricity (1)
2 ASS [1] Eccentricity (2) 1.8830 40.7
3 YRFS [1] (RE) Eccentricity (3) 1.8830 40.7
4 YRFS [2] (RE) Eccentricity (4) 1.8830 40.7
5 YRFS [3] Eccentricity (5)
6 ∞ (aperture) 3.50 Eccentricity (6)
7 IDL 4.12
Image plane ∞
YRFS [1]
C 1 3.5286 × 10 +1 C 2 -1.0315 C 3 -9.6674 × 10 -2
C 4 -2.3210 × 10 -3 C 5 -4.0592 × 10 -6
YRFS [2]
C 1 1.3506 × 10 +1 C 2 -1.6876 C 3 4.9906 × 10 -2
C 4 -1.4575 × 10 -3 C 5 -4.2825 × 10 -4
YRFS [3]
C 1 -1.0687 × 10 +1 C 2 2.3460 C 3 2.0089 × 10 -1
C 4 1.6813 × 10 -1
ASS [1]
R 66.06
k -1.0364 × 10 +1
a 9.2919 × 10 -6
b -5.9493 × 10 -9
Eccentricity (1)
X 0.00 Y -35.23 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric (2)
X 0.00 Y 0.00 Z -8.83
α 0.00 β 0.00 γ 0.00
Eccentricity (3)
X 0.00 Y 0.00 Z 4.28
α -90.00 β 0.00 γ 0.00
Eccentricity (4)
X 0.00 Y 0.00 Z 3.27
α -90.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y 0.00 Z 9.04
α 90.00 β 0.00 γ 0.00
Eccentricity (6)
X 0.00 Y 0.00 Z 28.76
α 0.00 β 0.00 γ 0.00.


実施例4
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳) -56.27 偏心(1)
2 ASS[1] 6.09 1.8830 40.7
3 ASS[2] -0.33
4 ASS[3] 13.07 1.8830 40.7
5 ASS[4] 63.32
6 ASS[5] 4.68 1.8830 40.7
7 ASS[6] 24.60
8 ASS[7] 6.22 1.8830 40.7
9 ASS[8] 6.04
10 ASS[9] 17.32 1.8830 40.7
11 ASS[10] 15.83
12 ASS[11] 8.15 1.8830 40.7
13 ASS[12] 37.20
14 29.79 1.23 1.7495 35.3
15 6.28 2.36
16 9.39 7.20 1.4970 81.5
17 -10.59 0.10
18 ∞(絞り) 0.00
19 13.45 11.39 1.6204 60.3
20 -17.40 0.10
21 6.23 2.00 1.7859 44.2
22 100.92 2.00
像 面 ∞
ASS[1]
R 70.26
k 1.0315
a -2.4623 ×10-6
ASS[2]
R 88.71
k -1.2825 ×1010
a 1.8607 ×10-6
ASS[3]
R 43.04
k 3.6119 ×10-1
a 1.4073 ×10-5
ASS[4]
R 26.22
k -2.3136 ×10-1
a 3.5115 ×10-5
ASS[5]
R -35.59
k 0.0000
a 1.2914 ×10-5
ASS[6]
R 3898.10
k 0.0000
a -3.0244 ×10-6
ASS[7]
R 95.34
k 0.0000
a 1.3144 ×10-5
ASS[8]
R 45.61
k 0.0000
a 1.5361 ×10-5
ASS[9]
R 37.36
k 0.0000
a 6.1272 ×10-6
ASS[10]
R 69.65
k 0.0000
a 2.6211 ×10-5
ASS[11]
R -111.97
k 0.0000
a 3.6489 ×10-5
ASS[12]
R 2.00
k -2.8996 ×104
a 1.5060 ×10-5
偏心(1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00

実施例5
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳面) 偏心(1)
3 ERFS[1] 偏心(2) 1.8348 42.7
4 ERFS[2] (RE) 偏心(3) 1.8348 42.7
5 ERFS[3] (RE) 偏心(4) 1.8348 42.7
6 ERFS[4] 偏心(5)
8 10.16 偏心(6) 1.6816 44.0
9 17.38 偏心(7)
10 6.49 偏心(8) 1.6796 51.1
11 47.91 偏心(9)
12 -17.21 偏心(10) 1.7528 30.1
13 2.27(絞り) 偏心(11) 1.6761 47.7
14 -65.08 偏心(12)
15 8.85 偏心(13) 1.5423 48.8
16 -161.93 偏心(14)
17 5.61 偏心(15) 1.4920 67.7
18 -10.28 偏心(16)
像 面 ∞
ERFS[1]
RY ∞
θ 8.63
R -30.00
3 1.4564 ×10-2
4 5.1891 ×10-4
ERFS[2]
RY ∞
θ -22.63
R -29.08
3 -2.3468 ×10-2
4 5.0000 ×10-4
5 -2.0000 ×10-5
ERFS[3]
RY ∞
θ -15.80
R -15.47
3 1.1196 ×10-3
4 -1.8330 ×10-4
5 1.6660 ×10-5
ERFS[4]
RY ∞
θ 8.01
R -16.59
3 -2.4780 ×10-2
4 -7.1046 ×10-5
偏心(1)
X 0.00 Y -30.00 Z -63.44
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z -66.78
α 90.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 0.00 Z -53.48
α 90.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y 0.00 Z -65.23
α 90.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y 0.00 Z -52.33
α 90.00 β 0.00 γ 0.00
偏心(6)
X 0.00 Y 0.00 Z -15.43
α 0.00 β 0.00 γ 0.00
偏心(7)
X 0.00 Y 0.00 Z -13.41
α 0.00 β 0.00 γ 0.00
偏心(8)
X 0.00 Y 0.00 Z -13.29
α 0.00 β 0.00 γ 0.00
偏心(9)
X 0.00 Y 0.00 Z -11.21
α 0.00 β 0.00 γ 0.00
偏心(10)
X 0.00 Y 0.00 Z -10.30
α 0.00 β 0.00 γ 0.00
偏心(11)
X 0.00 Y 0.00 Z -7.76
α 0.00 β 0.00 γ 0.00
偏心(12)
X 0.00 Y 0.00 Z -5.96
α 0.00 β 0.00 γ 0.00
偏心(13)
X 0.00 Y 0.00 Z -5.86
α 0.00 β 0.00 γ 0.00
偏心(14)
X 0.00 Y 0.00 Z -4.00
α 0.00 β 0.00 γ 0.00
偏心(15)
X 0.00 Y 0.00 Z -3.90
α 0.00 β 0.00 γ 0.00
偏心(16)
X 0.00 Y 0.00 Z -2.00
α 0.00 β 0.00 γ 0.00 。

Example 4
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil) -56.27 Eccentricity (1)
2 ASS [1] 6.09 1.8830 40.7
3 ASS [2] -0.33
4 ASS [3] 13.07 1.8830 40.7
5 ASS [4] 63.32
6 ASS [5] 4.68 1.8830 40.7
7 ASS [6] 24.60
8 ASS [7] 6.22 1.8830 40.7
9 ASS [8] 6.04
10 ASS [9] 17.32 1.8830 40.7
11 ASS [10] 15.83
12 ASS [11] 8.15 1.8830 40.7
13 ASS [12] 37.20
14 29.79 1.23 1.7495 35.3
15 6.28 2.36
16 9.39 7.20 1.4970 81.5
17 -10.59 0.10
18 ∞ (Aperture) 0.00
19 13.45 11.39 1.6204 60.3
20 -17.40 0.10
21 6.23 2.00 1.7859 44.2
22 100.92 2.00
Image plane ∞
ASS [1]
R 70.26
k 1.0315
a -2.4623 × 10 -6
ASS [2]
R 88.71
k -1.2825 × 10 10
a 1.8607 × 10 -6
ASS [3]
R 43.04
k 3.6119 × 10 -1
a 1.4073 × 10 -5
ASS [4]
R 26.22
k -2.3136 × 10 -1
a 3.5115 × 10 -5
ASS [5]
R -35.59
k 0.0000
a 1.2914 × 10 -5
ASS [6]
R 3898.10
k 0.0000
a -3.0244 × 10 -6
ASS [7]
R 95.34
k 0.0000
a 1.3144 × 10 -5
ASS [8]
R 45.61
k 0.0000
a 1.5361 × 10 -5
ASS [9]
R 37.36
k 0.0000
a 6.1272 × 10 -6
ASS [10]
R 69.65
k 0.0000
a 2.6211 × 10 -5
ASS [11]
R -111.97
k 0.0000
a 3.6489 × 10 -5
ASS [12]
R 2.00
k -2.8996 × 10 4
a 1.5060 × 10 -5
Eccentricity (1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00

Example 5
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil plane) Eccentricity (1)
3 ERFS [1] Eccentricity (2) 1.8348 42.7
4 ERFS [2] (RE) Eccentricity (3) 1.8348 42.7
5 ERFS [3] (RE) Eccentricity (4) 1.8348 42.7
6 ERFS [4] Eccentricity (5)
8 10.16 Eccentricity (6) 1.6816 44.0
9 17.38 Eccentricity (7)
10 6.49 Eccentricity (8) 1.6796 51.1
11 47.91 Eccentricity (9)
12 -17.21 Eccentricity (10) 1.7528 30.1
13 2.27 (Aperture) Eccentricity (11) 1.6761 47.7
14 -65.08 Eccentric (12)
15 8.85 Eccentricity (13) 1.5423 48.8
16 -161.93 Eccentricity (14)
17 5.61 Eccentricity (15) 1.4920 67.7
18 -10.28 Eccentricity (16)
Image plane ∞
ERFS [1]
RY ∞
θ 8.63
R -30.00
C 3 1.4564 × 10 -2
C 4 5.1891 × 10 -4
ERFS [2]
RY ∞
θ -22.63
R -29.08
C 3 -2.3468 × 10 -2
C 4 5.0000 × 10 -4
C 5 -2.0000 × 10 -5
ERFS [3]
RY ∞
θ -15.80
R -15.47
C 3 1.1196 × 10 -3
C 4 -1.8330 × 10 -4
C 5 1.6660 × 10 -5
ERFS [4]
RY ∞
θ 8.01
R -16.59
C 3 -2.4780 × 10 -2
C 4 -7.1046 × 10 -5
Eccentricity (1)
X 0.00 Y -30.00 Z -63.44
α 0.00 β 0.00 γ 0.00
Eccentric (2)
X 0.00 Y 0.00 Z -66.78
α 90.00 β 0.00 γ 0.00
Eccentricity (3)
X 0.00 Y 0.00 Z -53.48
α 90.00 β 0.00 γ 0.00
Eccentricity (4)
X 0.00 Y 0.00 Z -65.23
α 90.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y 0.00 Z -52.33
α 90.00 β 0.00 γ 0.00
Eccentricity (6)
X 0.00 Y 0.00 Z -15.43
α 0.00 β 0.00 γ 0.00
Eccentricity (7)
X 0.00 Y 0.00 Z -13.41
α 0.00 β 0.00 γ 0.00
Eccentricity (8)
X 0.00 Y 0.00 Z -13.29
α 0.00 β 0.00 γ 0.00
Eccentric (9)
X 0.00 Y 0.00 Z -11.21
α 0.00 β 0.00 γ 0.00
Eccentric (10)
X 0.00 Y 0.00 Z -10.30
α 0.00 β 0.00 γ 0.00
Eccentric (11)
X 0.00 Y 0.00 Z -7.76
α 0.00 β 0.00 γ 0.00
Eccentric (12)
X 0.00 Y 0.00 Z -5.96
α 0.00 β 0.00 γ 0.00
Eccentric (13)
X 0.00 Y 0.00 Z -5.86
α 0.00 β 0.00 γ 0.00
Eccentric (14)
X 0.00 Y 0.00 Z -4.00
α 0.00 β 0.00 γ 0.00
Eccentric (15)
X 0.00 Y 0.00 Z -3.90
α 0.00 β 0.00 γ 0.00
Eccentric (16)
X 0.00 Y 0.00 Z -2.00
α 0.00 β 0.00 γ 0.00.


実施例6
面番号 曲率半径 面間隔 偏心 屈折率 アッベ数
物体面 ∞ ∞
1 ∞(入射瞳) 偏心(1)
2 ASS[1] 偏心(2) 1.8348 42.7
3 ASS[2] (RE) 偏心(3) 1.8348 42.7
4 ASS[3] (RE) 偏心(4) 1.8348 42.7
5 ASS[4] 33.12 偏心(5)
6 6.72 1.36 1.6204 60.3
7 199.30 0.51
8 -9.52 0.55 1.7477 37.0
9 -27.46 0.10
10 6.08 2.37 1.7440 44.8
11 7.60 0.16
12 ∞(絞り) 0.00
13 98.44(絞り) 0.55 1.7552 27.6
14 2.99 1.09 1.5512 46.7
15 -9.29 0.10
16 6.36 1.66 1.7440 44.8
17 12.29 0.10
18 5.26 1.86 1.4877 70.4
19 -15.05 2.00
像 面 ∞
ASS[1]
R 0.00
k -6.3047 ×1027
a 4.5316 ×10-6
b 1.7275 ×10-9
c -8.1518 ×10-12
d 4.1919 ×10-15
ASS[2]
R 0.00
k -2.3809 ×10
a -8.9084 ×10-6
b 9.9615 ×10-10
c 3.0546 ×10-12
d -1.7171 ×10-15
ASS[3]
R -0.00
k -1.3000 ×101
a 9.1379 ×10-7
b 8.0294 ×10-9
c -2.5281 ×10-11
d 2.1044 ×10-14
ASS[4]
R 0.00
k -1.0263 ×101
a -3.2922 ×10-5
b 2.0084 ×10-8
c 7.7715 ×10-12
d -1.5578 ×10-14
偏心(1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00
偏心(2)
X 0.00 Y 0.00 Z -4.66
α 0.00 β 0.00 γ 0.00
偏心(3)
X 0.00 Y 0.00 Z 11.81
α 0.00 β 0.00 γ 0.00
偏心(4)
X 0.00 Y 0.00 Z 2.83
α 0.00 β 0.00 γ 0.00
偏心(5)
X 0.00 Y 0.00 Z 11.64
α 0.00 β 0.00 γ 0.00 。

Example 6
Surface number Curvature radius Surface spacing Eccentricity Refractive index Abbe number Object surface ∞ ∞
1 ∞ (entrance pupil) Eccentricity (1)
2 ASS [1] Eccentricity (2) 1.8348 42.7
3 ASS [2] (RE) Eccentricity (3) 1.8348 42.7
4 ASS [3] (RE) Eccentricity (4) 1.8348 42.7
5 ASS [4] 33.12 Eccentricity (5)
6 6.72 1.36 1.6204 60.3
7 199.30 0.51
8 -9.52 0.55 1.7477 37.0
9 -27.46 0.10
10 6.08 2.37 1.7440 44.8
11 7.60 0.16
12 ∞ (Aperture) 0.00
13 98.44 (Aperture) 0.55 1.7552 27.6
14 2.99 1.09 1.5512 46.7
15 -9.29 0.10
16 6.36 1.66 1.7440 44.8
17 12.29 0.10
18 5.26 1.86 1.4877 70.4
19 -15.05 2.00
Image plane ∞
ASS [1]
R 0.00
k -6.3047 × 10 27
a 4.5316 × 10 -6
b 1.7275 × 10 -9
c -8.1518 × 10 -12
d 4.1919 × 10 -15
ASS [2]
R 0.00
k -2.3809 × 10
a -8.9084 × 10 -6
b 9.9615 × 10 -10
c 3.0546 × 10 -12
d -1.7171 × 10 -15
ASS [3]
R -0.00
k -1.3000 × 10 1
a 9.1379 × 10 -7
b 8.0294 × 10 -9
c -2.5281 × 10 -11
d 2.1044 × 10 -14
ASS [4]
R 0.00
k -1.0263 × 10 1
a -3.2922 × 10 -5
b 2.0084 × 10 -8
c 7.7715 × 10 -12
d -1.5578 × 10 -14
Eccentricity (1)
X 0.00 Y -30.00 Z 0.00
α 0.00 β 0.00 γ 0.00
Eccentric (2)
X 0.00 Y 0.00 Z -4.66
α 0.00 β 0.00 γ 0.00
Eccentricity (3)
X 0.00 Y 0.00 Z 11.81
α 0.00 β 0.00 γ 0.00
Eccentricity (4)
X 0.00 Y 0.00 Z 2.83
α 0.00 β 0.00 γ 0.00
Eccentricity (5)
X 0.00 Y 0.00 Z 11.64
α 0.00 β 0.00 γ 0.00.

以上、本発明の光学系を中心軸(回転対称軸)を対象物方向に向けて対象物に対して視差方向が連続的に回転している複数の連続的な視差像を同時に撮像できる撮像光学系として説明してきたが、本発明は撮影光学系、観察光学系に限定されず、光路を逆にとって画像を投影する投影光学系として用いることもできる。   As described above, the optical system of the present invention is capable of simultaneously imaging a plurality of continuous parallax images whose parallax directions are continuously rotated with respect to the object with the central axis (rotation symmetry axis) directed toward the object. Although described as a system, the present invention is not limited to a photographing optical system and an observation optical system, but can be used as a projection optical system that projects an image with the optical path reversed.

本発明の実施例1の光学系の中心軸を含む断面図である。It is sectional drawing containing the central axis of the optical system of Example 1 of this invention. 実施例1の光学系の入射瞳と前群の透明媒体内の光路を示す正面図である。FIG. 6 is a front view showing an entrance pupil of the optical system of Example 1 and an optical path in a front group of transparent media. 実施例1の光学系により結像する物体の例(a)と像面に結像されるその像(b)を示す図である。It is a figure which shows the example (a) of the object imaged with the optical system of Example 1, and the image (b) imaged on an image surface. 本発明の実施例2の光学系の中心軸を含む断面図である。It is sectional drawing containing the central axis of the optical system of Example 2 of this invention. 実施例2の光学系の入射瞳と前群の透明媒体内の光路を示す正面図である。FIG. 6 is a front view showing an entrance pupil of the optical system of Example 2 and an optical path in a front group of transparent media. 本発明の実施例3の光学系の中心軸を含む断面図である。It is sectional drawing containing the central axis of the optical system of Example 3 of this invention. 実施例3の光学系の入射瞳と前群の透明媒体内の光路を示す正面図である。FIG. 10 is a front view showing an entrance pupil of an optical system of Example 3 and an optical path in a front group of transparent media. 本発明の実施例4の光学系の中心軸を含む図1と同様の断面図である。It is sectional drawing similar to FIG. 1 containing the central axis of the optical system of Example 4 of this invention. 実施例4の光学系の中心軸を含み図8に垂直な面への光路投影図である。FIG. 10 is an optical path projection view onto a plane that includes the central axis of the optical system of Example 4 and is perpendicular to FIG. 8. 実施例4の光学系の入射瞳と前群内の光路を示す正面図である。FIG. 10 is a front view showing an entrance pupil of the optical system of Example 4 and an optical path in the front group. 本発明の実施例5の光学系の中心軸を含む断面図である。It is sectional drawing containing the central axis of the optical system of Example 5 of this invention. 実施例5の光学系の入射瞳と前群の透明媒体内の光路を示す正面図である。FIG. 10 is a front view showing an entrance pupil of an optical system of Example 5 and an optical path in a front group of transparent media. 本発明の実施例6の光学系の中心軸を含む断面図である。It is sectional drawing containing the central axis of the optical system of Example 6 of this invention. 実施例6の光学系の入射瞳と前群の透明媒体内の光路を示す正面図である。FIG. 10 is a front view showing an entrance pupil of an optical system of Example 6 and an optical path in a front group of transparent media.

符号の説明Explanation of symbols

1…中心軸(回転対称軸)
2…入射瞳
3…軸上主光線
4…物体中間結像位置
5…開口の像位置
10…前群
11…入射面(屈折面)
12、13…内面反射面
14…射出面(屈折面)
19…透明媒体
20…前群
21…円形開口(絞り)
22…理想レンズ
30…像面
50…光学系(本発明)
L1〜L7…後群を構成するレンズ
L11〜L16…前群を構成する非球面レンズ
1 ... Center axis (axis of rotational symmetry)
2 ... Entrance pupil 3 ... Axial principal ray 4 ... Object intermediate imaging position 5 ... Image position of aperture 10 ... Front group 11 ... Incident surface (refractive surface)
12, 13 ... Internal reflecting surface 14 ... Ejection surface (refractive surface)
19 ... Transparent medium 20 ... Front group 21 ... Circular aperture (aperture)
22 ... Ideal lens 30 ... Image plane 50 ... Optical system (present invention)
L1-L7: Lenses constituting the rear group L11-L16: Aspherical lenses constituting the front group

Claims (7)

像面中心を通る中心軸の周りで回転対称な前群と、中心軸の周りで回転対称で正パワーを有し、中心軸と同軸の円形開口を有する後群とを備えており、
前記前群は、中心軸を含む断面内で、前記後群の円形開口の像を、中心軸に同軸の輪帯状であって入射瞳に変換する1面以上の光学作用面を備えており、
中心軸を含む断面内で、物体から中心軸に対して対称の前記入射瞳の2つの開口に向かって進み前記前群に入射した光束は、前記前群と前記後群を順に経て、像面の中心軸が通る点を境にして相互に反対側に別々に結像し、
前記前群は、中心軸の周りで回転対称な少なくとも1面の反射面を備えており、前記反射面の少なくとも1面は、中心軸を含む断面内で、共通の物体の像を二重像の実像又は虚像として結像するような面形状のものであり、
前記前群は、中心軸の周りで回転対称な透明媒体を有し、前記透明媒体は、2面の内面反射面と2面の屈折面を持ち、中心軸を含む断面内で、入射瞳の2つの開口に向かって進む光束は、入射面の屈折面を経て透明媒体内に入り、内面反射面で順に反射されて射出面の屈折面を経て透明媒体から外に出て、前記後群を経て像面の中心軸が通る点を境にして相互に反対側の位置に別々に結像し、
物体から前記入射瞳の2つの開口に向かって進み前記前群に入射する光束は、中心軸を含む断面内でそれぞれ1回中間結像し、中心軸を含む断面に対して直交し、その光束の中心光線を含む平面内では中間結像せず、
中心軸を含む断面において、前記入射瞳位置から前記円形開口までの光路長をA、前記入射瞳位置から前記前群における入射面までの光路長をBとするとき、
5<|A/B| ・・・(2)
なる条件を満足することを特徴とする光学系。
A front group that is rotationally symmetric about the central axis passing through the center of the image plane, and a rear group that is rotationally symmetric about the central axis and has a positive power, and has a circular aperture coaxial with the central axis,
The front group includes one or more optical action surfaces that convert an image of the circular aperture of the rear group into an entrance pupil that is coaxial with the center axis in a cross section including the center axis,
Within the cross section including the central axis, the luminous flux that travels from the object toward the two apertures of the entrance pupil that is symmetric with respect to the central axis and enters the front group passes through the front group and the rear group in order, and enters the image plane. Are imaged separately on the opposite sides with respect to the point through which the central axis passes ,
The front group includes at least one reflecting surface that is rotationally symmetric about a central axis, and at least one of the reflecting surfaces is a double image of a common object within a cross section including the central axis. Of a surface shape that forms an image as a real image or a virtual image of
The front group includes a transparent medium that is rotationally symmetric about a central axis, and the transparent medium has two internal reflection surfaces and two refractive surfaces, and the cross-section including the central axis includes the entrance pupil. The light beam traveling toward the two apertures enters the transparent medium through the refracting surface of the incident surface, is sequentially reflected by the inner reflecting surface, exits from the transparent medium through the refracting surface of the exit surface, and passes through the rear group. After that, the images are separately imaged at opposite positions with respect to the point through which the central axis of the image plane passes.
A light beam that travels from the object toward the two apertures of the entrance pupil and enters the front group forms an intermediate image once in the cross section including the central axis, and is orthogonal to the cross section including the central axis. In the plane containing the central ray of
In the cross section including the central axis, when the optical path length from the entrance pupil position to the circular aperture is A, and the optical path length from the entrance pupil position to the entrance plane in the front group is B,
5 <| A / B | (2)
An optical system characterized by satisfying the following conditions .
前記反射面又は前記透過屈折面の少なくとも1面は、中心軸上に面頂を有する回転対称な非球面からなり、その面の有効径をD、面頂近傍の曲率半径をRとするとき、
10<|D/R| ・・・(1)
なる条件を満足することを特徴とする請求項記載の光学系。
At least one of the reflecting surface or the transmission / refracting surface is a rotationally symmetric aspheric surface having a surface apex on the central axis, and when the effective diameter of the surface is D and the radius of curvature near the surface apex is R,
10 <| D / R | (1)
Optical system according to claim 1, characterized by satisfying the following condition.
光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFxとするとき、
−10<Fy/Fx<0.5 ・・・(3)
の条件を満たすことを特徴とする請求項1又は2記載の光学系。
When the focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane perpendicular to the cross section and including the central ray is Fx,
−10 <Fy / Fx <0.5 (3)
Satisfy the condition according to claim 1 or 2 optical system wherein the.
光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFx、前記前群の中心軸を含む断面内の焦点距離をFfy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFfxとするとき、
−1000<Fx/Ffx<−0.1 ・・・(4)
又は、
0.1<Fx/Ffx<1000 ・・・(5)
の条件を満たすことを特徴とする請求項1からの何れか1項記載の光学系。
The focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane orthogonal to the cross section and including the central ray is Fx, and the focal length in the cross section including the central axis of the front group Is Ffy, orthogonal to the cross section, and the focal length in the plane including the central ray is Ffx,
−1000 <Fx / Ffx <−0.1 (4)
Or
0.1 <Fx / Ffx <1000 (5)
Optical system of any one of claims 1, wherein the condition is satisfied for 3.
光学系全系の中心軸を含む断面内の焦点距離をFy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFx、前記前群の中心軸を含む断面内の焦点距離をFfy、その断面に対して直交し、中心光線を含む平面内の焦点距離をFfxとするとき、
−100<Fy/Ffy<−0.001 ・・・(6)
の条件を満たすことを特徴とする請求項1からの何れか1項記載の光学系。
The focal length in the cross section including the central axis of the entire optical system is Fy, the focal length in the plane orthogonal to the cross section and including the central ray is Fx, and the focal length in the cross section including the central axis of the front group Is Ffy, orthogonal to the cross section, and the focal length in the plane including the central ray is Ffx,
−100 <Fy / Ffy <−0.001 (6)
Satisfy conditions optics according to any one of claims 1 to 4, wherein the.
前記反射面又は前記透過屈折面の少なくとも1面は、対称面を持たない任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1からの何れか1項記載の光学系。 The at least one surface of the reflection surface or the transmission refracting surface has a rotationally symmetric shape formed by rotating an arbitrary-shaped line segment having no symmetry surface around a central axis. 6. The optical system according to any one of items 1 to 5 . 前記反射面又は前記透過屈折面の少なくとも1面は、奇数次項を含む任意形状の線分を中心軸の周りで回転させて形成される回転対称な形状を有することを特徴とする請求項1からの何れか1項記載の光学系。 The at least one surface of the reflection surface or the transmission refracting surface has a rotationally symmetric shape formed by rotating an arbitrary-shaped line segment including an odd-order term around a central axis. The optical system according to any one of 6 .
JP2005145265A 2004-12-07 2005-05-18 Optical system Expired - Fee Related JP4611111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005145265A JP4611111B2 (en) 2004-12-07 2005-05-18 Optical system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004354350 2004-12-07
JP2005055728 2005-03-01
JP2005145265A JP4611111B2 (en) 2004-12-07 2005-05-18 Optical system

Publications (2)

Publication Number Publication Date
JP2006276816A JP2006276816A (en) 2006-10-12
JP4611111B2 true JP4611111B2 (en) 2011-01-12

Family

ID=37211603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005145265A Expired - Fee Related JP4611111B2 (en) 2004-12-07 2005-05-18 Optical system

Country Status (1)

Country Link
JP (1) JP4611111B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10653298B2 (en) 2015-05-26 2020-05-19 Olympus Corporation Optical system, imaging apparatus, endoscope system, and rangefinder system
JP7262015B2 (en) 2019-01-23 2023-04-21 パナソニックIpマネジメント株式会社 speaker device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101688970B (en) 2007-07-09 2013-07-03 奥林巴斯株式会社 Optical system and endoscope equipped with same
JP5074114B2 (en) * 2007-07-09 2012-11-14 オリンパス株式会社 Optical element, optical system including the same, and endoscope using the same
JP2009080410A (en) * 2007-09-27 2009-04-16 Olympus Corp Optical system and endoscope using the same
JPWO2014038397A1 (en) * 2012-09-07 2016-08-08 オリンパスメディカルシステムズ株式会社 Stereoscopic optical system
CN107436485B (en) * 2017-09-21 2022-09-06 浙江舜宇光学有限公司 Optical imaging system
EP3955043A4 (en) * 2019-04-12 2022-06-08 Panasonic Intellectual Property Management Co., Ltd. Optical system
CN113260899B (en) * 2019-04-26 2024-04-02 松下知识产权经营株式会社 Optical system
JP7340789B2 (en) * 2019-05-29 2023-09-08 パナソニックIpマネジメント株式会社 Optical system, image projection device and imaging device
JP2021117276A (en) * 2020-01-23 2021-08-10 セイコーエプソン株式会社 Projection optical system and projector
TWI786560B (en) * 2021-03-03 2022-12-11 大陸商信泰光學(深圳)有限公司 Lens assembly
JP2024048085A (en) * 2022-09-27 2024-04-08 キヤノン株式会社 Ranging device, vehicle-mounted system, and mobile device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10653298B2 (en) 2015-05-26 2020-05-19 Olympus Corporation Optical system, imaging apparatus, endoscope system, and rangefinder system
JP7262015B2 (en) 2019-01-23 2023-04-21 パナソニックIpマネジメント株式会社 speaker device

Also Published As

Publication number Publication date
JP2006276816A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4611111B2 (en) Optical system
US6166866A (en) Reflecting type optical system
US6041193A (en) Real-image zoom finder with rotationally asymmetric surface
US6643062B1 (en) Finder optical system and image pickup apparatus using the same
JP4422432B2 (en) Decentered optical system and optical system using the same
US6078411A (en) Real-image finder optical system and apparatus using the same
JP3761957B2 (en) Reflective optical system and imaging apparatus using the same
JPH08292371A (en) Reflection type optical system and image pickup device using the system
US7542218B2 (en) Optical system
JPH1164734A (en) Photographic optical system and image pickup device using the same
JPH09211331A (en) Reflection optical system
US7800839B2 (en) Optical system
JP7214382B2 (en) LENS DEVICE AND IMAGING DEVICE HAVING THE SAME
JP3292051B2 (en) Variable power optical system and imaging apparatus using the same
JP5185744B2 (en) Optical system and endoscope using the same
JP2009251323A (en) Observation optical system and imaging device with the same
JP4847133B2 (en) Optical system
JP4083419B2 (en) Upright observation optical system
WO2020153355A1 (en) Optical system, optical instrument, imaging device, and methods for manufacturing optical system and imaging device
WO2020153356A1 (en) Imaging device
JP2000241707A (en) Prism optical system
JPH11202205A (en) Optical element and optical system using the same
JP3332890B2 (en) Optical element and imaging device having the same
JP4451271B2 (en) Optical system
JP2006154365A (en) Optical system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101013

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4611111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees