JP4608679B2 - Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer - Google Patents

Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer Download PDF

Info

Publication number
JP4608679B2
JP4608679B2 JP2005076921A JP2005076921A JP4608679B2 JP 4608679 B2 JP4608679 B2 JP 4608679B2 JP 2005076921 A JP2005076921 A JP 2005076921A JP 2005076921 A JP2005076921 A JP 2005076921A JP 4608679 B2 JP4608679 B2 JP 4608679B2
Authority
JP
Japan
Prior art keywords
diffraction grating
type diffraction
ray
amplitude
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005076921A
Other languages
Japanese (ja)
Other versions
JP2006259264A (en
Inventor
服部  正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Industry Research Organization NIRO
Original Assignee
New Industry Research Organization NIRO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Industry Research Organization NIRO filed Critical New Industry Research Organization NIRO
Priority to JP2005076921A priority Critical patent/JP4608679B2/en
Publication of JP2006259264A publication Critical patent/JP2006259264A/en
Application granted granted Critical
Publication of JP4608679B2 publication Critical patent/JP4608679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Radiation (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

本発明は、X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法に関する。   The present invention relates to a method for manufacturing a phase type diffraction grating and an amplitude type diffraction grating used in an X-ray Talbot interferometer.

X線透視装置は例えば医療用画像診断技術に関して広く用いられているが、被写体によるX線吸収の大小によって画像のコントラストを形成する原理であるために、血液、血管壁やそのまわりの軟組織についてはX線吸収係数が殆ど等しく、十分なコントラストを得難いという問題がある。長い時間を掛けて撮像すればある程度のコントラストを得ることはできるが、X線の照射線量が増大し、患者の負担を増大させるという問題がある。また、例えば画像中の血管のコントラストを強調するためにヨウ素などの造影物質を注射する方法も考えられるが、これも患者の負担を増大させてしまい、また検査コストも増大してしまう。   X-ray fluoroscopy devices are widely used for medical image diagnostic techniques, for example. However, because of the principle of forming an image contrast by the magnitude of X-ray absorption by a subject, blood, blood vessel walls and surrounding soft tissues There is a problem that X-ray absorption coefficients are almost equal and it is difficult to obtain a sufficient contrast. A certain amount of contrast can be obtained if imaging is performed for a long time, but there is a problem that the dose of X-rays increases and the burden on the patient increases. In addition, for example, a method of injecting a contrast material such as iodine in order to enhance the contrast of blood vessels in the image is conceivable, but this also increases the burden on the patient and increases the examination cost.

一方、例えばX線干渉計を利用する手法のように、X線を波として把握し、被写体中を波が伝わる速さの違いをコントラスト形成に利用する位相コントラスト法も知られている。即ち、被写体を透過することによるX線の位相シフトを検出する手法である。この位相コントラスト法は、X線の吸収に頼る方法に比べて約1000倍の感度改善が実現でき、付随してX線照射量を例えば1/100〜1/1000に軽減できるという利点がある。また、空間分解能を向上させるという観点からも、上記の感度の改善は極めて好ましい効果をもたらすといえる。   On the other hand, there is also known a phase contrast method that grasps X-rays as a wave and uses a difference in the speed at which the wave is transmitted through a subject for contrast formation, such as a method using an X-ray interferometer. In other words, this is a method for detecting a phase shift of X-rays due to transmission through a subject. This phase contrast method has an advantage that sensitivity can be improved by about 1000 times compared with a method that relies on absorption of X-rays, and the X-ray irradiation dose can be reduced to, for example, 1/100 to 1/1000. In addition, from the viewpoint of improving the spatial resolution, it can be said that the above improvement in sensitivity brings a very favorable effect.

本願の発明者はX線干渉計を利用して画像診断を行うことの有用性を早くから見出しており、例えば特許文献1においては、マッハツェンダー型のX線干渉計を構成し、このX線ビームパス中に被検査部位を配置し、得られたX線干渉図形のモアレ像を解析することで、被写体による位相シフトの分布を示す画像を得ることができると提案している。このような構成によれば、X線を用いて、血管や血液分布を無造影で、あるいは、重元素を含まない物質注入により容易に可視化できるとする。
特開2001−29340号公報
The inventor of the present application has found the usefulness of performing image diagnosis using an X-ray interferometer from an early stage. For example, in Patent Document 1, a Mach-Zehnder type X-ray interferometer is configured, and this X-ray beam path It is proposed that an image showing a phase shift distribution by a subject can be obtained by arranging a region to be inspected and analyzing a moire image of the obtained X-ray interferogram. According to such a configuration, it is assumed that blood vessels and blood distribution can be easily visualized by using X-rays without contrast or by injecting a substance not containing heavy elements.
JP 2001-29340 A

ここで近年、高輝度X線が得られる大規模設備(例えば、わが国のSPring8等)の利用等、可干渉で高輝度なX線を得られる環境が整備されるにつれて、空間的に可干渉な光源と2枚の回折格子を用いて入射波面の勾配を検出する構成のタルボ干渉計をX線分野に適用することが研究されている。   Here, in recent years, as an environment capable of obtaining coherent and high-intensity X-rays, such as the use of large-scale facilities (for example, SPring 8 in Japan) that can obtain high-intensity X-rays, spatial coherence is achieved. It has been studied to apply a Talbot interferometer configured to detect the gradient of an incident wavefront using a light source and two diffraction gratings in the X-ray field.

このタルボ干渉計は、簡素な光学系で実現できること等、種々の優位性が指摘されるところであるが、このX線タルボ干渉計を良好に機能させ得る上記2枚の回折格子を安定的に製造・供給する方法については、加工上の特別な技術が必要になり、未だ確立されていないのが実情である。   Although this Talbot interferometer can be realized with a simple optical system, various advantages are pointed out. However, the two diffraction gratings that allow this X-ray Talbot interferometer to function well can be manufactured stably.・ As for the supply method, special technology in processing is required, and the actual situation is not established yet.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。   The problems to be solved by the present invention are as described above. Next, means for solving the problems and the effects thereof will be described.

◆本発明の観点によれば、以下のような、X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法が提供される。両回折格子とも、金属製の幅2μm以上10μm以下のX線吸収部を2μm以上10μm以下の等間隔で並べた構成とし、X線吸収部の幅及び間隔は、位相型回折格子と振幅型回折格子とで同一とする。位相型回折格子の厚みを1μm以上5μm以下に構成し、振幅型回折格子の厚みを25μm以上100μm以下に構成する。振幅型回折格子は、X線マスクによるX線リソグラフィー(LIGA方式)によって樹脂に深い溝を形成し、この形成された溝に電鋳法によって前記X線吸収部を形成することにより製造される。 According to the viewpoint of the present invention, the following manufacturing method of a phase type diffraction grating and an amplitude type diffraction grating used for an X-ray Talbot interferometer is provided. Both diffraction gratings have a configuration in which X-ray absorption parts made of metal with a width of 2 μm or more and 10 μm or less are arranged at equal intervals of 2 μm or more and 10 μm or less. Same for the grid. The thickness of the phase type diffraction grating is configured to be 1 μm or more and 5 μm or less, and the thickness of the amplitude type diffraction grating is configured to be 25 μm or more and 100 μm or less. The amplitude type diffraction grating is manufactured by forming a deep groove in a resin by X-ray lithography (LIGA method) using an X-ray mask, and forming the X-ray absorption portion by electroforming in the formed groove.

これにより、X線吸収部の幅及び間隔(格子パターン)が位相型回折格子と振幅型回折格子で同一となっているので、X線タルボ干渉計において、振幅型回折格子の直後で正確なモアレ縞を確実に得ることができる。更に、位相型回折格子においては、それを通過する際の位相シフト量をπ/2(最も高いコントラストのモアレ縞を得るための位相シフト量)とするのに十分な厚みとでき、また、振幅型回折格子では、モアレ縞の可視性が良好な低い透過強度率を実現するのに十分な厚みとできる。従って、鮮明なモアレ縞が得られ、信頼性及び精度の高いX線タルボ干渉計を実現できる。また、厚みの大きい(アスペクト比の大きい加工を必要とする)振幅型回折格子においては、いわゆるLIGAプロセスを用いて十分な精度の加工を行うことができる。 As a result, since the width and interval (grating pattern) of the X-ray absorption part are the same in the phase type diffraction grating and the amplitude type diffraction grating, in the X-ray Talbot interferometer, an accurate moire immediately after the amplitude type diffraction grating. Stripes can be obtained reliably. Further, in the phase type diffraction grating, the phase shift amount when passing through it can be set to a thickness sufficient to make π / 2 (the phase shift amount for obtaining the highest contrast moire fringe), and the amplitude In the type diffraction grating, the thickness can be sufficient to realize a low transmission intensity ratio with good visibility of moire fringes. Therefore, clear moire fringes can be obtained, and an X-ray Talbot interferometer with high reliability and accuracy can be realized. Further, in an amplitude type diffraction grating having a large thickness (requiring processing with a large aspect ratio), processing with sufficient accuracy can be performed using a so-called LIGA process.

また、本発明の観点によれば、以下のような、X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法が提供される。両回折格子とも、金属製の幅2μm以上10μm以下のX線吸収部を2μm以上10μm以下の等間隔で並べた構成とし、X線吸収部の幅及び間隔は、位相型回折格子と振幅型回折格子とで同一とする。位相型回折格子の厚みを1μm以上5μm以下に構成し、振幅型回折格子の厚みを25μm以上100μm以下に構成する。振幅型回折格子は、酸化ケイ素皮膜を施したシリコン層の表面に樹脂層を形成し、光学リソグラフィーマスクを用いて上記樹脂層に対しパターニングを行い、前記樹脂層及び前記酸化ケイ素皮膜を選択的に除去する。上記により選択的に露出された前記シリコン層の表面に対してICPプラズマエッチングを施すことにより、当該シリコン層に溝を形成する。この形成された溝に電鋳法によって前記X線吸収部を形成する。 Further , according to the aspect of the present invention, there are provided the following method for manufacturing a phase type diffraction grating and an amplitude type diffraction grating used for an X-ray Talbot interferometer. Both diffraction gratings have a configuration in which X-ray absorption parts made of metal with a width of 2 μm or more and 10 μm or less are arranged at equal intervals of 2 μm or more and 10 μm or less. Same for the grid. The thickness of the phase type diffraction grating is configured to be 1 μm or more and 5 μm or less, and the thickness of the amplitude type diffraction grating is configured to be 25 μm or more and 100 μm or less. Amplitude-type diffraction grating, to form a resin layer on the surface of the silicon layer which has been subjected to silicon oxide film, patterning is performed with respect to the resin layer by using a light science lithography mask, selectively the resin layer and the silicon oxide film To remove. A groove is formed in the silicon layer by performing ICP plasma etching on the surface of the silicon layer exposed selectively. The X-ray absorption part is formed in the formed groove by electroforming.

これにより、X線吸収部の幅及び間隔(格子パターン)が位相型回折格子と振幅型回折格子で同一となっているので、X線タルボ干渉計において、振幅型回折格子の直後で正確なモアレ縞を確実に得ることができる。更に、位相型回折格子においては、それを通過する際の位相シフト量をπ/2(最も高いコントラストのモアレ縞を得るための位相シフト量)とするのに十分な厚みとでき、また、振幅型回折格子では、モアレ縞の可視性が良好な低い透過強度率を実現するのに十分な厚みとできる。従って、鮮明なモアレ縞が得られ、信頼性及び精度の高いX線タルボ干渉計を実現できる。また、厚みの大きい(アスペクト比の大きい加工を必要とする)振幅型回折格子においては、ICPプラズマエッチング法によって十分な精度の加工を行うことができる。 As a result, the width and interval (grating pattern) of the X-ray absorption part are the same for the phase type diffraction grating and the amplitude type diffraction grating, so that in the X-ray Talbot interferometer, an accurate moiré pattern immediately after the amplitude type diffraction grating. Stripes can be obtained reliably. Further, in the phase type diffraction grating, the phase shift amount when passing through it can be set to a thickness sufficient to make π / 2 (the phase shift amount for obtaining the highest contrast moire fringe), and the amplitude In the type diffraction grating, the thickness can be sufficient to realize a low transmission intensity ratio with good visibility of moire fringes. Therefore, clear moire fringes can be obtained, and an X-ray Talbot interferometer with high reliability and accuracy can be realized. Further, (requiring large processing aspect ratio) of thickness greater in the amplitude type diffraction grating, Ru can be performed processing of sufficient accuracy by ICP plasma etching method.

◆また、前記の振幅型回折格子においては、上記の製造方法で形成されたX線吸収部の部分を突出部とする成形型を製造し、この成形型を使用して溝形成体を成形し、この溝形成体に形成された溝に電鋳法によって前記X線吸収部を形成させることで当該振幅型回折格子を得ることとしても良い。   In addition, in the above-mentioned amplitude type diffraction grating, a mold having the projecting portion as an X-ray absorption portion formed by the above manufacturing method is manufactured, and a groove forming body is formed using this mold. The amplitude type diffraction grating may be obtained by forming the X-ray absorbing portion in the groove formed in the groove forming body by electroforming.

この場合、互いに同一の形状の溝形成体を容易に多数製造できるので、あとは溝形成体の溝にX線吸収部を形成するだけで良く、大量生産によるコストダウンに好適である。   In this case, since a large number of groove forming bodies having the same shape can be easily manufactured, it suffices to form X-ray absorbers in the grooves of the groove forming body, which is suitable for cost reduction due to mass production.

◆なお、前記の振幅型回折格子においては、上記の製造方法を適用して分割格子ブロックを複数製造し、これらを厚み方向に接合することにより当該振幅型回折格子を得ることとしても良い。In the amplitude-type diffraction grating, the above-described manufacturing method may be applied to produce a plurality of divided grating blocks, and the amplitude-type diffraction grating may be obtained by joining them in the thickness direction.

これにより、振幅型回折格子の加工を容易とすることができる。即ち、振幅型回折格子のような厚みの大きいものを一体物で構成する場合、X線吸収部を形成するための深い溝を形成しなければならず、X線吸収部の幅や間隔を一定に形成するのが加工上の問題から困難になる。この点、上記のようにそれぞれが厚みの小さい分割格子ブロックを複数製造してそれらを接合する方法を採れば、そのような精度上の問題も少なく、幅や間隔が厚み方向にわたって一様な振幅型回折格子を製造することが容易になる。This makes it possible to facilitate the processing of the amplitude type diffraction grating. That is, in the case where a thick one such as an amplitude type diffraction grating is formed as a single body, a deep groove for forming the X-ray absorption portion must be formed, and the width and interval of the X-ray absorption portion are constant. It becomes difficult to form due to processing problems. In this regard, if a method is employed in which a plurality of divided grid blocks each having a small thickness are manufactured and joined together as described above, such accuracy problems are reduced, and the widths and intervals are uniform in the thickness direction. It becomes easy to manufacture a type diffraction grating.

◆前記の位相型回折格子と振幅型回折格子の製造方法においては、前記X線吸収部は、白金、金、銀、プラチナのうち選択された一つ又は二つ以上の組み合わせよりなることが好ましい。   In the method for manufacturing the phase type diffraction grating and the amplitude type diffraction grating, it is preferable that the X-ray absorption part is made of one or a combination of two or more selected from platinum, gold, silver, and platinum. .

これにより、X線吸収部のX線吸収能が優れることとなるから、小さな厚みの回折格子でも良好なタルボ干渉像を得ることができ、回折格子の製造の容易化、タルボ干渉計のコンパクト化に寄与できる。   As a result, the X-ray absorption capability of the X-ray absorption unit is excellent, so that a good Talbot interference image can be obtained even with a diffraction grating having a small thickness, making the diffraction grating easier to manufacture, and making the Talbot interferometer more compact. Can contribute.

次に、発明の実施の形態を説明する。図1は本発明の製造方法に係る回折格子を利用するX線タルボ干渉計の概念図である。図2(a)はX線タルボ干渉計で得られるタルボ干渉像の例を示す図、図2(b)は縞走査法により得られる微分位相像を示す図、図2(c)はX線位相型CTの例を示す図である。   Next, embodiments of the invention will be described. FIG. 1 is a conceptual diagram of an X-ray Talbot interferometer using a diffraction grating according to the manufacturing method of the present invention. 2A is a diagram showing an example of a Talbot interference image obtained by an X-ray Talbot interferometer, FIG. 2B is a diagram showing a differential phase image obtained by a fringe scanning method, and FIG. 2C is an X-ray. It is a figure which shows the example of phase type CT.

先ず、本発明の方法で製造される回折格子が使用されるX線タルボ干渉計の光学系について、図1を参照しながら説明する。このX線タルボ干渉計では、1枚目の回折格子(位相型回折格子)11と2枚目の回折格子(振幅型回折格子)12とを特定の距離だけ離して平行に配置し、観察したい試料10を位相型回折格子11の前に配置する。2枚の回折格子11・12のそれぞれは、X線を吸収するy方向に細長いX線吸収部111・121を、x方向に周期的に並べて配置した構成となっている。   First, an optical system of an X-ray Talbot interferometer using a diffraction grating manufactured by the method of the present invention will be described with reference to FIG. In this X-ray Talbot interferometer, the first diffraction grating (phase-type diffraction grating) 11 and the second diffraction grating (amplitude-type diffraction grating) 12 are arranged in parallel at a specific distance to be observed. The sample 10 is placed in front of the phase type diffraction grating 11. Each of the two diffraction gratings 11 and 12 has a configuration in which X-ray absorbing portions 111 and 121 that are elongated in the y direction that absorb X-rays are periodically arranged in the x direction.

ここで、回折格子11・12の周期が波長に比べて十分に大きいとき、位相型回折格子11を通過した後の光は、回折角が非常に小さくなるために、回折された多数の光が重なり合って干渉する。そして、各回折光の位相が揃う条件を満たすような距離だけ離れた位置において、位相型回折格子11の透過直後と同じパターン、即ち自己像が干渉の結果として現れる(タルボ効果)。   Here, when the period of the diffraction gratings 11 and 12 is sufficiently larger than the wavelength, the light after passing through the phase-type diffraction grating 11 has a very small diffraction angle, so that a large number of diffracted lights are generated. Overlapping and interfering. Then, the same pattern as that immediately after the transmission through the phase-type diffraction grating 11, that is, the self-image appears as a result of interference (Talbot effect) at a position separated by a distance that satisfies the condition that the phases of the diffracted lights are aligned.

次に、試料10を位相型回折格子11の前に配置したときの自己像に着目すると、干渉する各回折光は試料10の内部において僅かに異なる光路を通過しているため、そのときの位相差によって干渉縞の様子が変化する。従って、この変形した自己像の位置に前記の振幅型回折格子12を重ねることによって、いわゆるモアレ縞の画像(タルボ干渉像)Gを取得でき、この画像Gにおいては微分位相が等高線のように現れることになる(図2の(a)を参照)。なお、図2の(a)は、直径1.2mmのプラスチック球を試料10として採用した際のタルボ干渉像である。   Next, focusing on the self-image when the sample 10 is placed in front of the phase-type diffraction grating 11, each interfering diffracted light passes through a slightly different optical path inside the sample 10, so that The appearance of interference fringes changes depending on the phase difference. Therefore, a so-called moire fringe image (Talbot interference image) G can be obtained by superimposing the amplitude diffraction grating 12 on the position of the deformed self-image, and in this image G, the differential phase appears as contour lines. (Refer to FIG. 2A). 2A is a Talbot interference image when a plastic sphere having a diameter of 1.2 mm is used as the sample 10. FIG.

上記のタルボ干渉像Gを観察するだけでは上記微分位相を定量的に取得することは困難であるが、縞の位相を人為的に変化させたときの干渉縞の変化を解析することによって、微分位相を決定することができる(縞走査法)。例えば、図1において2枚の回折格子11・12の相対位置関係をx方向にずらすことでモアレ縞の位相を変化させながら複数のタルボ干渉像Gを取得して解析することにより、図2(b)に示すような定量的な微分位相像を得ることができる。また、この画像を単純に積分処理すれば、位相像そのものを得ることもできる。   It is difficult to obtain the differential phase quantitatively only by observing the Talbot interference image G. However, by analyzing the change of the interference fringe when the fringe phase is artificially changed, the differential phase is obtained. The phase can be determined (stripe scanning method). For example, by acquiring and analyzing a plurality of Talbot interference images G while changing the phase of moire fringes by shifting the relative positional relationship between the two diffraction gratings 11 and 12 in FIG. A quantitative differential phase image as shown in b) can be obtained. If this image is simply integrated, the phase image itself can be obtained.

更に、試料10に対して多数の投影方向から前記の図2(b)に示すような微分位相像を取得し、これを積分することで位相像とし、多数の投影方向からの位相像を合成することで、図2(c)に示すように、位相型X線CT(コンピュータ断層撮影)を行うことも可能である。図2(c)では、試料10としてのプラスチック球をコンピュータ上で仮想的に1/8だけ切り取った断面が示されており、試料10としてのプラスチック球の形成時に生じたと思われる内部の泡10aの様子も明確に観察することができる。   Further, a differential phase image as shown in FIG. 2B is acquired from a large number of projection directions with respect to the sample 10, and this is integrated to obtain a phase image, and a phase image from a large number of projection directions is synthesized. Thus, as shown in FIG. 2C, phase X-ray CT (computer tomography) can be performed. FIG. 2C shows a cross section obtained by virtually cutting the plastic sphere as the sample 10 by 1/8 on the computer, and the internal bubbles 10a that are thought to have been formed when the plastic sphere as the sample 10 was formed. The situation can be clearly observed.

X線タルボ干渉計は、図1のように試料10の後に回折格子11・12を2枚配置するだけという簡素な光学系であり、また、結晶のような繊細な光学素子を用いないため、精密な光学素子調整や高い安定性をそれほど必要としないという特徴を有している。また、モアレ縞として強度を検出するので、空間分解能の高い検出器を必ずしも必要としない点でも有利である。更には、タルボ干渉計は原理的に小さな光源を必要とするが単色性はそれほど必要でなく、球面波のような発散光も使用できるので、巨大な設備を必要とする前記シンクロトロン放射光以外のX線源を利用できる余地があり、装置の小型化に貢献して病院などでの実用化に道を拓くものとして期待されている。   The X-ray Talbot interferometer is a simple optical system in which only two diffraction gratings 11 and 12 are arranged after the sample 10 as shown in FIG. 1 and does not use delicate optical elements such as crystals. It has the feature that precise optical element adjustment and high stability are not so necessary. In addition, since the intensity is detected as moire fringes, it is advantageous in that a detector with high spatial resolution is not necessarily required. In addition, the Talbot interferometer requires a small light source in principle, but not so much monochromaticity, and divergent light such as spherical waves can be used. The X-ray source can be used, and it is expected that it will contribute to the miniaturization of the apparatus and open the way to practical use in hospitals.

なお、上記のように有用性が指摘されるX線タルボ干渉計であるが、一般にX線は物質による吸収が非常に小さく、位相変化もそれほど大きくないため、上記の回折格子11・12は、可視光領域のタルボ干渉計のそれよりも製造が困難である。また当然ながら、タルボ干渉計を機能させるには、X線の可干渉距離よりも回折格子11・12の各X線吸収部111・121の周期を小さくする必要があり、10μm以下、望ましくは5μm程度とする必要がある。   In addition, although it is an X-ray Talbot interferometer whose usefulness is pointed out as described above, since the X-ray is generally very small in absorption by a substance and the phase change is not so large, the diffraction gratings 11 and 12 are manufacture than that of the Talbot interferometer of the visible light region is difficult. Of course, in order for the Talbot interferometer to function, it is necessary to make the period of each X-ray absorber 111 or 121 of the diffraction grating 11 or 12 smaller than the X-ray coherence distance, and it is 10 μm or less, preferably 5 μm. It needs to be about.

そして、いわゆる分数タルボ効果による自己像は、位相型回折格子11の位相シフト量がπ/2になるときに、最も高いコントラストが得られるという性質がある。そして、位相シフト量がπ/2を実現するのに必要な位相型回折格子11の厚さを本願の発明者が試算したところ、波長が0.7Å〜1.1Åの場合で、回折格子11のX線吸収部111としてX線吸収能の高い金を材料として用いた場合、位相型回折格子11では1μm〜10μmとなった。   The self-image due to the so-called fractional Talbot effect has the property that the highest contrast is obtained when the phase shift amount of the phase-type diffraction grating 11 is π / 2. Then, when the inventors of the present application estimated the thickness of the phase type diffraction grating 11 necessary for realizing the phase shift amount of π / 2, the diffraction grating 11 was obtained when the wavelength was 0.7 to 1.1 mm. In the case where gold having a high X-ray absorption capability was used as the material for the X-ray absorption portion 111, the phase diffraction grating 11 had a thickness of 1 μm to 10 μm.

一方、振幅型回折格子12については、タルボ干渉計で得られるモアレ縞の可視性の向上という観点からは振幅型回折格子12の強度透過率を小さくすることが重要であり、例えば強度透過率1%を実現できる程度のX線吸収を得られれば理想的である。この点、例えば強度透過率1%を実現するのに必要な振幅型回折格子12の厚さを本願の発明者が同様に試算したところ、金を材料として用いたとしても、波長が0.7Å〜1.1Åの場合で10μm〜100μmの厚みが必要になるとの結果が得られた。   On the other hand, with respect to the amplitude type diffraction grating 12, it is important to reduce the intensity transmittance of the amplitude type diffraction grating 12 from the viewpoint of improving the visibility of the moire fringes obtained by the Talbot interferometer. % is ideal as long to obtain an X-ray absorption of a degree that can be achieved. In this regard, for example, when the inventors of the present application similarly calculated the thickness of the amplitude type diffraction grating 12 necessary for realizing an intensity transmittance of 1%, even if gold was used as a material, the wavelength was 0.7 mm. The result that the thickness of 10 micrometers-100 micrometers was needed in the case of -1.1 mm was obtained.

従って、X線タルボ干渉計を実現するにあたっては、そのような2枚の回折格子11・12、特に、極めて大きいアスペクト比(例えば、5以上)が要求される振幅型回折格子12を製造できるか否かが重要な鍵となっている。   Accordingly, in realizing an X-ray Talbot interferometer, can such two diffraction gratings 11 and 12 be manufactured, in particular, an amplitude type diffraction grating 12 that requires a very large aspect ratio (for example, 5 or more)? No is an important key.

以上の課題を解決すべく、本願の発明者は鋭意研究を重ね、以下に説明するような位相型回折格子11及び振幅型回折格子12の製造方法を提案するに至ったものである。以下、それぞれについて詳細に説明する。   In order to solve the above problems, the inventor of the present application has made extensive studies and has proposed a method of manufacturing the phase type diffraction grating 11 and the amplitude type diffraction grating 12 as described below. Hereinafter, each will be described in detail.

先ず、図3を参照して、2つの回折格子11・12の具体的な構成を説明する。図3の上側に示す位相型回折格子11は、例えば厚さ約150μmのガラス基板Bの一側の面に一体的に形成されている。この位相型回折格子11は、ガラス基板B上に等間隔で多数並べて設けられた細長い前記X線吸収部111からなっている。X線吸収部111のそれぞれは、X線吸収能に優れた金を素材としており、そのガラス基板Bから突出する厚みt1(位相型回折格子11の厚みに相当する)は、何れのX線吸収部111においても互いに等しくなっており、1μm以上5μm以下としている。X線吸収部111とX線吸収部111との間は、単なる空間になっている。   First, a specific configuration of the two diffraction gratings 11 and 12 will be described with reference to FIG. The phase type diffraction grating 11 shown on the upper side of FIG. 3 is integrally formed on one surface of the glass substrate B having a thickness of about 150 μm, for example. The phase type diffraction grating 11 is composed of a long and narrow X-ray absorbing portion 111 provided on the glass substrate B in a line at equal intervals. Each of the X-ray absorption parts 111 is made of gold having excellent X-ray absorption ability, and the thickness t1 (corresponding to the thickness of the phase-type diffraction grating 11) protruding from the glass substrate B is any X-ray absorption. The portions 111 are also equal to each other and are 1 μm or more and 5 μm or less. The space between the X-ray absorber 111 and the X-ray absorber 111 is a simple space.

複数のX線吸収部111の幅w1は互いに等しく構成されており、その幅w1は、2μm以上10μm以下とされている。また、X線吸収部111同士の間隔g1も、2μm以上10μm以下とされている。   The widths w1 of the plurality of X-ray absorbers 111 are configured to be equal to each other, and the widths w1 are 2 μm or more and 10 μm or less. Further, the gap g1 between the X-ray absorbing portions 111 is also set to 2 μm or more and 10 μm or less.

一方、図3の下側に示す振幅型回折格子12は、前記の位相型回折格子11を厚み方向(X線の光軸方向)に引き伸ばしたものに相当する。具体的には、振幅型回折格子12のそれぞれのX線吸収部121は、小幅で細長くかつ大きな厚みを有する形状としており、これが幅方向に等間隔で多数並べて設けられている。X線吸収部121のそれぞれは、前記位相型回折格子11と同様にX線吸収能に優れた金を素材としており、その厚みt2(振幅型回折格子12の厚みに相当する)は、25μm以上100μm以下としている。X線吸収部121とX線吸収部121との間には、樹脂部材122がサンドイッチ状に介在されている。言い換えれば、X線吸収部121と樹脂部材122とが交互に重ねられて接合された構成となっている。なお、隣り合うX線吸収部121・121の間には、樹脂部材122に代えて、酸化ケイ素からなる保持部材123が介在されていても良い。   On the other hand, the amplitude type diffraction grating 12 shown in the lower side of FIG. 3 corresponds to the phase type diffraction grating 11 extended in the thickness direction (X-ray optical axis direction). Specifically, each X-ray absorption part 121 of the amplitude type diffraction grating 12 has a shape that is narrow and long and has a large thickness, and a large number of them are arranged in the width direction at equal intervals. Each of the X-ray absorption parts 121 is made of gold having excellent X-ray absorption capability as in the phase type diffraction grating 11, and the thickness t2 (corresponding to the thickness of the amplitude type diffraction grating 12) is 25 μm or more. 100 μm or less. A resin member 122 is sandwiched between the X-ray absorber 121 and the X-ray absorber 121. In other words, the X-ray absorbing portion 121 and the resin member 122 are alternately stacked and joined. Note that a holding member 123 made of silicon oxide may be interposed between the adjacent X-ray absorption parts 121 and 121 instead of the resin member 122.

そして、複数のX線吸収部121は幅w2が互いに等しく構成されており、その幅は、2μm以上10μm以下とされている。また、X線吸収部121同士の間隔g2も2μm以上10μm以下とされている。更に、両回折格子11・12のX線吸収部111・121は、その幅及び間隔が、両回折格子間で互いに等しくなっている(w1=w2,g1=g2)。   The plurality of X-ray absorbers 121 are configured to have the same width w2, and the width is 2 μm or more and 10 μm or less. Further, the gap g2 between the X-ray absorption parts 121 is also set to 2 μm or more and 10 μm or less. Furthermore, the X-ray absorption parts 111 and 121 of both diffraction gratings 11 and 12 have the same width and interval between the diffraction gratings (w1 = w2, g1 = g2).

以上の構成により、格子パターンが位相型回折格子11と振幅型回折格子12とで同一となっていることが確保され、図1のX線タルボ干渉計において、振幅型回折格子12の直後の位置で正確なモアレ縞のタルボ干渉像Gを確実に得ることができる。更に、位相型回折格子11においては、それをX線が通過する際の位相シフト量をπ/2とするのに十分な厚みとできる。また、振幅型回折格子12では、モアレ縞の可視性が良好な低い透過強度率を実現するのに十分な厚みとできる。従って、鮮明なモアレ縞が得られ、信頼性及び精度の高いX線タルボ干渉計を実現できる。   With the above configuration, it is ensured that the phase type diffraction grating 11 and the amplitude type diffraction grating 12 are the same, and the position immediately after the amplitude type diffraction grating 12 in the X-ray Talbot interferometer of FIG. Thus, an accurate moire fringe Talbot interference image G can be obtained with certainty. Furthermore, the phase type diffraction grating 11 can have a thickness sufficient to set the phase shift amount when X-rays pass through it to π / 2. Further, the amplitude type diffraction grating 12 can have a thickness sufficient to realize a low transmission intensity rate with good visibility of moire fringes. Therefore, clear moire fringes can be obtained, and an X-ray Talbot interferometer with high reliability and accuracy can be realized.

〔位相型回折格子の製造方法〕
次に、前記位相型回折格子11の製造方法について、図4を参照して説明する。まず図4(p1)に示すように、前述のガラス基板Bの一側の面に感光性樹脂(例えば、ポリビニルアルコール樹脂)31を塗布する一方、これをパターン露光するための光学リソグラフィーマスク(光学マスク)34を用意する。この光学マスク34としては、例えば、適宜のガラス基板32の一側の面にクロムや酸化クロムによりパターン33を薄膜状に形成したものを用いることができる。
[Method of manufacturing phase-type diffraction grating]
Next, a method for manufacturing the phase type diffraction grating 11 will be described with reference to FIG. First, as shown in FIG. 4 (p1), a photosensitive resin (for example, polyvinyl alcohol resin) 31 is applied to one surface of the glass substrate B, and an optical lithography mask (optical) for pattern exposure of the photosensitive resin 31 is applied. Mask) 34 is prepared. As this optical mask 34, for example, an appropriate glass substrate 32 having a pattern 33 formed in a thin film shape on one side surface of chromium or chromium oxide can be used.

次に図4(p2)に示すように、光源として紫外線を用い、前記光学マスク34のパターン33を、ガラス基板B上の感光性樹脂31に対して正確に転写する。そして、(p3)の現像工程で感光性樹脂31の露光部を選択的に除去し、(p4)の金メッキ工程により、前記感光性樹脂31が除去された部分にX線吸収部111を形成する。更に、図4(p5)のように、前述の感光性樹脂31を除去する。以上の工程により、位相型回折格子11を製造することができる。   Next, as shown in FIG. 4 (p2), ultraviolet rays are used as a light source, and the pattern 33 of the optical mask 34 is accurately transferred to the photosensitive resin 31 on the glass substrate B. Then, the exposed portion of the photosensitive resin 31 is selectively removed in the developing step (p3), and the X-ray absorbing portion 111 is formed in the portion where the photosensitive resin 31 is removed by the gold plating step (p4). . Further, as shown in FIG. 4 (p5), the above-described photosensitive resin 31 is removed. Through the above steps, it is possible to produce a phase-type diffraction grating 11.

〔振幅型回折格子の製造方法1〕
次に、振幅型回折格子12の製造方法について、図5を参照して説明する。この方法は、X線リソグラフィーと電鋳及びモールディングを組み合わせた方法であって、各工程のドイツ語の頭文字(LIthographie, Galvanoformung, Abformung)をとって「LIGA」と称されることがある。厚みの大きい感光性樹脂にX線マスクをパターン転写することで、数百μmのような深さの溝のようなアスペクト比の大きな精密形状を形成するのに好適な方法として知られるものである。
[Amplitude diffraction grating manufacturing method 1]
Next, a manufacturing method of the amplitude type diffraction grating 12 will be described with reference to FIG. This method combines X-ray lithography with electroforming and molding, and is sometimes referred to as “LIGA” after the German initials (LIthographie, Galvanoformung, Abformung) of each process. It is known as a suitable method for forming a precise shape having a large aspect ratio such as a groove having a depth of several hundred μm by pattern transfer of an X-ray mask to a photosensitive resin having a large thickness. .

詳細に説明すると、まず図5(p1)に示すように、回折格子を製造するベースとなる基板35を用意し、その一側の面にX線感光性樹脂(例えば、ポリメチルメタクリレート樹脂)36を、例えばロールコートやスピンコート等を用いて塗布する。   More specifically, first, as shown in FIG. 5 (p1), a substrate 35 serving as a base for manufacturing a diffraction grating is prepared, and an X-ray photosensitive resin (for example, polymethyl methacrylate resin) 36 is provided on one surface thereof. a, for example, it is applied using a roll coating or spin coating or the like.

その一方で、これをパターン露光するためのX線マスク47を用意する。このX線マスク47は、適宜の基板48の一面に金パターン49を形成し、更に合成樹脂等からなる保護膜50で覆ったものである。前記金パターン49は、前述の位相型回折格子11の格子パターンと同一のパターンとすべく、図4で説明した位相型回折格子11の製造方法で用いる光学マスク34をそのまま用いてパターン描画されることが好ましい。   On the other hand, which is prepared an X-ray mask 47 for pattern exposure. This X-ray mask 47 is formed by forming a gold pattern 49 on one surface of a suitable substrate 48 and further covering it with a protective film 50 made of synthetic resin or the like. The gold pattern 49 is patterned using the optical mask 34 used in the method of manufacturing the phase type diffraction grating 11 described with reference to FIG. 4 as it is so as to be the same pattern as the grating pattern of the phase type diffraction grating 11 described above. It is preferable.

次に図5(p2)に示すように、光源としてX線を用い、前記X線マスク47の金パターン49を、基板35上のX線感光性樹脂36に対して正確に転写する。X線に晒された部分は、高分子の連鎖が切れて分子量が減少するために現像液に溶解する一方、金パターン49の部分はそのまま残る。この結果、(p3)の現像工程で金パターン49に相当する部分以外のX線感光性樹脂36を選択的に除去でき、溝51を形成することができる。言い換えれば、図3の下側の図で説明した樹脂部材122が基板35上に形成される。その後、図5(p4)で樹脂部材122と樹脂部材122の間に金メッキによりX線吸収部121を形成する(電鋳)とともに、(p5)で前述の基板35を除去する。以上の工程により、振幅型回折格子12を製造することができる。   Next, as shown in FIG. 5 (p <b> 2), X-rays are used as a light source, and the gold pattern 49 of the X-ray mask 47 is accurately transferred to the X-ray photosensitive resin 36 on the substrate 35. The portion exposed to X-rays dissolves in the developer because the polymer chain is broken and the molecular weight is reduced, while the gold pattern 49 remains as it is. As a result, the X-ray photosensitive resin 36 other than the portion corresponding to the gold pattern 49 can be selectively removed in the developing step (p3), and the groove 51 can be formed. In other words, the resin member 122 described in the lower diagram of FIG. 3 is formed on the substrate 35. Thereafter, in FIG. 5 (p4), the X-ray absorption part 121 is formed by gold plating between the resin member 122 and the resin member 122 (electroforming), and the substrate 35 is removed in (p5). Through the above steps, it is possible to produce an amplitude type diffraction grating 12.

以上に示すように、厚みが小さくても良い(アスペクト比が例えば1以下の加工で十分な)位相型回折格子11においては、図4に示すようなコストや工数の少ない製造方法を採用して製造コストを低減する一方で、厚みの大きな(アスペクト比が例えば5以上の加工が要求される)振幅型回折格子12においては、いわゆるLIGAプロセスを用いて、そのようなアスペクト比の大きな加工を十分な精度をもって行うことができる。また、位相型回折格子11の製造工程で用いた光学マスク34を使用して振幅型回折格子12のX線マスク47を形成することから、両回折格子11・12の格子パターンの同一性を良好に確保できる。   As described above, in the phase type diffraction grating 11 which may be small in thickness (a processing with an aspect ratio of, for example, 1 or less), a manufacturing method with a low cost and man-hour as shown in FIG. 4 is adopted. While the manufacturing cost is reduced, the so-called LIGA process is used to sufficiently process such a large aspect ratio in the amplitude type diffraction grating 12 having a large thickness (processing requiring an aspect ratio of, for example, 5 or more). Can be performed with high accuracy. Further, since the X-ray mask 47 of the amplitude type diffraction grating 12 is formed using the optical mask 34 used in the manufacturing process of the phase type diffraction grating 11, the identity of the grating patterns of both diffraction gratings 11 and 12 is good. Can be secured.

〔振幅型回折格子の製造方法2〕
なお、振幅型回折格子12については、上記の方法のほか、図6に示す方法で製造することもできる。この図6の方法について説明すると、まず図6(p1)に示すように、適宜の厚み(例えば、50μm)の板状のシリコン層38を用意し、その一側の表面に酸化ケイ素皮膜(SiO2皮膜)39を形成し、更に、酸化ケイ素皮膜39の上にはポリビニルアルコール樹脂等の感光性樹脂層40を形成する。一方、シリコン層38の他側の表面には基板37を設ける。この基板37としては、例えばチタンをシリコン層38の他側の表面に蒸着して形成することが考えられるが、これに限定されず、例えばシリコンで形成されていても良い。
[Amplitude diffraction grating manufacturing method 2]
The amplitude type diffraction grating 12 can be manufactured by the method shown in FIG. 6 in addition to the above method. The method of FIG. 6 will be described. First, as shown in FIG. 6 (p1), a plate-like silicon layer 38 having an appropriate thickness (for example, 50 μm) is prepared, and a silicon oxide film (SiO 2) is formed on one surface thereof. 2 film) 39 and a photosensitive resin layer 40 such as polyvinyl alcohol resin is formed on the silicon oxide film 39. On the other hand, a substrate 37 is provided on the other surface of the silicon layer 38. The substrate 37 may be formed, for example, by depositing titanium on the surface on the other side of the silicon layer 38, but is not limited thereto, and may be formed of silicon, for example.

その一方で、上記感光性樹脂層40をパターン露光するための光学マスク34を用意する。これは、図4で説明した位相型回折格子11の製造工程で用いる光学マスク34をそのまま使用することとする。   On the other hand, an optical mask 34 for pattern exposure of the photosensitive resin layer 40 is prepared. This means that the optical mask 34 used in the manufacturing process of the phase type diffraction grating 11 described in FIG. 4 is used as it is.

次に図6(p2)に示すように、光源として紫外線を用い、前記光学マスク34のパターン33を、酸化ケイ素皮膜39上の感光性樹脂層40に対して正確に転写する。そして、(p3)の現像工程で、パターン33以外の感光性樹脂層40及び酸化ケイ素皮膜39を選択的に除去する。更に図6(p4)に示すように、今度はこの選択的に残された感光性樹脂層40及び酸化ケイ素皮膜39をマスクとして機能させつつ、露出したシリコン膜38を誘導結合方式(ICP)のプラズマエッチング法により選択的にエッチングする。こうして、図3の下側の図で示す保持部材123を形成することができる。その後、図6(p5)の工程では、保持部材123と保持部材123の間に金メッキによりX線吸収部121を形成する(電鋳法)とともに、前述の基板37を除去する。以上により、振幅型回折格子12を製造することができる。   Next, as shown in FIG. 6 (p <b> 2), ultraviolet rays are used as a light source, and the pattern 33 of the optical mask 34 is accurately transferred to the photosensitive resin layer 40 on the silicon oxide film 39. In the developing step (p3), the photosensitive resin layer 40 and the silicon oxide film 39 other than the pattern 33 are selectively removed. Further, as shown in FIG. 6 (p4), the exposed silicon film 38 is now inductively coupled (ICP) by using the selectively left photosensitive resin layer 40 and silicon oxide film 39 as a mask. Selective etching is performed by plasma etching. In this way, the holding member 123 shown in the lower diagram of FIG. 3 can be formed. Thereafter, in the process of FIG. 6 (p5), the X-ray absorbing portion 121 is formed by gold plating between the holding member 123 and the holding member 123 (electroforming method), and the substrate 37 is removed. Thus, it is possible to produce an amplitude type diffraction grating 12.

このように、厚みの大きい(アスペクト比の大きい加工を必要とする)振幅型回折格子12においては、ICPプラズマエッチング法を用いることによっても、十分な精度の加工を行うことができる。この図6の製造方法においても、位相型回折格子11の製造工程で用いた光学マスク34に基づいて振幅型回折格子12のICPプラズマエッチングの際のマスク(酸化ケイ素皮膜39及び感光性樹脂層40の部分)を形成することから、両回折格子11・12の格子パターンの同一性を良好に確保できる。   As described above, the amplitude type diffraction grating 12 having a large thickness (requiring processing with a large aspect ratio) can be processed with sufficient accuracy by using the ICP plasma etching method. Also in the manufacturing method of FIG. 6, a mask (silicon oxide film 39 and photosensitive resin layer 40 in the case of ICP plasma etching of the amplitude type diffraction grating 12 based on the optical mask 34 used in the manufacturing process of the phase type diffraction grating 11. Therefore, the identity of the grating patterns of both diffraction gratings 11 and 12 can be ensured satisfactorily.

〔分割型による振幅型回折格子の製造方法〕
なお、前述の製造方法1(図5)又は製造方法2(図6)を適用して、振幅型回折格子そのものではなくその分割体(分割格子ブロック)12sを複数製造し、その複数の分割格子ブロック12sを位置合わせしつつ図7に示すように厚み方向に接合することによって、図3の下側のような厚み方向の大きい振幅型回折格子12を容易に製造することができる。この方法は、X線吸収部121の厚みt2が幅w2あるいは間隔g2に対して極めて大きい振幅型回折格子12を形成する場合に好適である。即ち、このような厚みt2の大きいものを一体物で構成する場合、X線吸収部121・121を形成するための極めて深い溝(深さt2)を形成しなければならず、X線吸収部121の幅w2や間隔g2を一定に形成するのが加工上の問題から困難になるが、厚みの小さい分割格子ブロック12sを複数製造してそれらを接合する方法を採れば、そのような精度上の問題も少なく、幅w2や間隔g2が厚み方向にわたって一様な振幅型回折格子12を製造することが容易である。
[Method of manufacturing amplitude type diffraction grating by split type]
In addition, by applying the manufacturing method 1 (FIG. 5) or the manufacturing method 2 (FIG. 6), a plurality of divided bodies (divided grating blocks) 12s are manufactured instead of the amplitude type diffraction grating itself, and the plurality of divided gratings are manufactured. By joining the blocks 12s in the thickness direction as shown in FIG. 7 while aligning the blocks, the amplitude type diffraction grating 12 having a large thickness direction as shown in the lower side of FIG. 3 can be easily manufactured. This method is suitable for the case where the amplitude type diffraction grating 12 in which the thickness t2 of the X-ray absorber 121 is extremely large with respect to the width w2 or the interval g2 is formed. That is, when such a large thickness t2 is formed as a single body, an extremely deep groove (depth t2) for forming the X-ray absorbing portions 121 and 121 must be formed. Although it is difficult to form the width w2 and the gap g2 of 121 constant due to processing problems, if a method of manufacturing a plurality of divided grid blocks 12s having a small thickness and joining them is used, such accuracy is increased. It is easy to manufacture the amplitude type diffraction grating 12 in which the width w2 and the interval g2 are uniform in the thickness direction.

複数の分割格子ブロック12sの接合方法としては様々に考えられるが、例えば、水素終端で材料表面にOH基処理を施して分子接合することのほか、200℃に加熱して圧接する方法、接着剤を用いる方法等を代表例として挙げることができる。前述の複数の分割格子ブロック12sにおける溝51・52の形成に際しては、全く同一のマスクを用いてパターニングされることが好ましく、もっと言えば、全く同一の方法で製造されることが好ましい。   There are various methods for joining the plurality of divided lattice blocks 12s. For example, in addition to molecular bonding by performing OH group treatment on the material surface at the hydrogen terminal, a method of heating to 200 ° C. and pressure welding, an adhesive it can be cited as a typical example of the method using a. In forming the grooves 51 and 52 in the plurality of divided lattice blocks 12s described above, patterning is preferably performed using exactly the same mask, and more specifically, it is preferably manufactured by the completely same method.

〔成形型による振幅型回折格子の製造方法〕
更には、図8に示すような成形型43を用いて、多数の振幅型回折格子12又は分割格子ブロック12sを容易に製造することもできる。図8(p1)に示す成形型43は、図5に示す(p4)の段階の基板35付きの状態から、その基板35を取り去る代わりに樹脂部材122を溶剤等で溶解除去したものである。このように樹脂部材122が取り除かれた結果、前述のX線吸収部121が前記基板35から櫛歯状に突出する突出部42となり、成形型43を製造することができる。
[Method of manufacturing amplitude-type diffraction grating by molding die]
Furthermore, a large number of amplitude type diffraction gratings 12 or divided grating blocks 12s can be easily manufactured by using a molding die 43 as shown in FIG. The molding die 43 shown in FIG. 8 (p1) is obtained by dissolving and removing the resin member 122 with a solvent or the like instead of removing the substrate 35 from the state with the substrate 35 in the stage of (p4) shown in FIG. As a result of the resin member 122 being removed in this way, the aforementioned X-ray absorption part 121 becomes the protruding part 42 protruding in a comb-tooth shape from the substrate 35, and the mold 43 can be manufactured.

図8の(p1)の工程では、流動状を呈する適宜の合成樹脂(例えば、ポリメチルメタクリレート樹脂)45を適宜の容器44へ充填しておき、この樹脂45に対して前記の成形型43を、前記突出部42を下側にして上側から進入させる。そして(p2)に示すように、樹脂45が硬化する直前に成形型43を引き上げると、突出部42に相当する部分に溝51が形成された、溝形成体53を製造することができる。その後は図8(p3)に示すように溝51の部分に金メッキを施して(電鋳法)、樹脂部材122の間にX線吸収部121を形成する。こうして振幅型回折格子12ないし分割格子ブロック12sが形成される。   In the step (p1) of FIG. 8, an appropriate synthetic resin (for example, polymethylmethacrylate resin) 45 exhibiting a fluid state is filled in an appropriate container 44, and the molding die 43 is placed on the resin 45. , to enter from above the projecting portion 42 in the lower side. Then, as shown in (p2), when the molding die 43 is pulled up just before the resin 45 is cured, the groove forming body 53 in which the groove 51 is formed in the portion corresponding to the protruding portion 42 can be manufactured. After that, as shown in FIG. 8 (p <b> 3), the groove 51 is plated with gold (electroforming method) to form the X-ray absorbing portion 121 between the resin members 122. Thus the amplitude type diffraction grating 12 to divide the grid blocks 12s are formed.

この方法は、成形型43を一度作ってしまえば、互いに同一の形状の溝形成体53を容易に多数製造できるので、あとは溝形成体53の溝51にX線吸収部121を形成するだけで良く、大量生産によるコストダウンに好適である。また、成形型43を用いる図8の方法で分割格子ブロック12sを多数製造しておき、これらを図7のように厚み方向に接合する場合でも、各分割格子ブロック12sの寸法(各溝形成体53の寸法)を正確に同一とできるので、接合後の振幅型回折格子12の寸法精度も向上させることができる。   In this method, once the molding die 43 is made, a large number of groove forming bodies 53 having the same shape can be easily manufactured. Thereafter, only the X-ray absorbing portion 121 is formed in the groove 51 of the groove forming body 53. in well, it is suitable for cost reduction through mass production. Further, even when a large number of divided grid blocks 12s are manufactured by the method of FIG. 8 using the mold 43 and these are joined in the thickness direction as shown in FIG. 7, the dimensions of the divided grid blocks 12s (each groove forming body) 53) can be made exactly the same, so that the dimensional accuracy of the amplitude type diffraction grating 12 after bonding can also be improved.

〔変形例〕
以上に本発明の回折格子11・12の製造方法の好適な複数の例を説明したが、上記の実施形態は例えば以下のように変更することもできる。
[Modification]
The preferred examples of the method for manufacturing the diffraction gratings 11 and 12 of the present invention have been described above. However, the above embodiment can be modified as follows, for example.

本実施形態の回折格子11・12において、X線吸収部111・121は金で形成することとしたが、金に限定するものでもなく、任意の素材を用いて差し支えない。ただし、X線吸収能の優れたもの、例えば白金、金、銀、プラチナ等を用いると、厚みの小さい回折格子11・12でも同等の性能を実現できる点で好ましい。   In the diffraction gratings 11 and 12 of the present embodiment, the X-ray absorbers 111 and 121 are made of gold, but are not limited to gold, and any material may be used. However, it is preferable to use a material having an excellent X-ray absorption ability, such as platinum, gold, silver, platinum, etc., because the same performance can be realized even with the diffraction gratings 11 and 12 having a small thickness.

本実施形態の製造方法に係るX線回折格子11・12を用いたX線タルボ干渉計は、X線源としてシンクロトロン放射光を用いることに限らず、他の小型のX線源を用いることも可能である。また、X線タルボ干渉計の用途としては、医用画像診断装置に好適であることは前述したとおりであるが、これは例示であり、そのほかにも、工業用非破壊検査装置、食品検査装置、荷物検査装置、動物実験用撮像装置等、様々な用途に有用である。   The X-ray Talbot interferometer using the X-ray diffraction gratings 11 and 12 according to the manufacturing method of the present embodiment is not limited to using synchrotron radiation as the X-ray source, but uses other small X-ray sources. Is also possible. In addition, as described above, the X-ray Talbot interferometer is suitable for a medical image diagnostic apparatus. However, this is only an example. In addition, an industrial nondestructive inspection apparatus, a food inspection apparatus, It is useful for various applications such as luggage inspection devices and imaging devices for animal experiments.

本発明の製造方法に係る回折格子を利用するX線タルボ干渉計の概念図。The conceptual diagram of the X-ray Talbot interferometer using the diffraction grating which concerns on the manufacturing method of this invention. (a)はX線タルボ干渉計で得られるタルボ干渉像の例を示す図、(b)は縞走査法により得られる微分位相像を示す図、(c)はX線位相型CTの例を示す図。(A) is a diagram showing an example of a Talbot interference image obtained by an X-ray Talbot interferometer, (b) is a diagram showing a differential phase image obtained by a fringe scanning method, and (c) is an example of an X-ray phase type CT. FIG. 2枚のX線回折格子を示す模式斜視図。Schematic perspective view showing the two X-ray diffraction grating. 位相型回折格子の製造方法の例を順を追って示す説明図。Explanatory view showing step-by-step example of method of manufacturing a phase-type diffraction grating. 振幅型回折格子の製造方法の例を順を追って示す説明図。Explanatory view showing step-by-step example of the production method of the amplitude type diffraction grating. 振幅型回折格子の製造方法の他の例を順を追って示す説明図。Explanatory drawing which shows order for other examples of the manufacturing method of an amplitude type diffraction grating later on. 分割格子ブロックを厚み方向へ接合することで厚みの大きい振幅型回折格子を製造する例を示す説明図。Explanatory drawing which shows the example which manufactures an amplitude type diffraction grating with large thickness by joining a division | segmentation grating | lattice block to a thickness direction. 成形型を使用して振幅型回折格子を製造する例を順を追って示す説明図。Explanatory drawing which shows order for the example which manufactures an amplitude type | mold diffraction grating using a shaping | molding die later on.

符号の説明Explanation of symbols

10 試料
11 位相型回折格子
111 X線吸収部
w1 X線吸収部の幅
g1 X線吸収部の間隔
t1 位相型回折格子の厚み
12 振幅型回折格子
121 X線吸収部
w2 X線吸収部の幅
g2 X線吸収部の間隔
t2 振幅型回折格子の厚み
122 樹脂部材
123 保持部材
12s 分割格子ブロック
10 Sample 11 Phase-type diffraction grating 111 X-ray absorption part w1 Width of X-ray absorption part g1 Interval of X-ray absorption part t1 Thickness of phase-type diffraction grating 12 Amplitude-type diffraction grating 121 X-ray absorption part w2 Width of X-ray absorption part g2 X-ray absorption interval t2 Amplitude type diffraction grating thickness 122 Resin member 123 Holding member 12s Divided grating block

Claims (5)

X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法であって、
両回折格子とも、金属製の幅2μm以上10μm以下のX線吸収部を2μm以上10μm以下の等間隔で並べた構成とし、X線吸収部の幅及び間隔は、位相型回折格子と振幅型回折格子とで同一とし、
位相型回折格子の厚みを1μm以上5μm以下に構成し、
振幅型回折格子の厚みを25μm以上100μm以下に構成し、
振幅型回折格子は、
X線マスクによるX線リソグラフィー(LIGA方式)によって樹脂に深い溝を形成し、
この形成された溝に電鋳法によって前記X線吸収部を形成することにより製造されることを特徴とする、位相型回折格子と振幅型回折格子の製造方法。
A method of manufacturing a phase type diffraction grating and an amplitude type diffraction grating used in an X-ray Talbot interferometer,
Both diffraction gratings have a configuration in which X-ray absorption parts made of metal with a width of 2 μm or more and 10 μm or less are arranged at equal intervals of 2 μm or more and 10 μm or less. It is the same as the lattice,
The thickness of the phase type diffraction grating is 1 μm or more and 5 μm or less,
The thickness of the amplitude type diffraction grating is configured to be 25 μm to 100 μm ,
Amplitude diffraction grating
Deep grooves are formed in the resin by X-ray lithography (LIGA method) using an X-ray mask,
A method for producing a phase-type diffraction grating and an amplitude-type diffraction grating, which is produced by forming the X-ray absorption portion in the formed groove by electroforming .
X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法であって、
両回折格子とも、金属製の幅2μm以上10μm以下のX線吸収部を2μm以上10μm以下の等間隔で並べた構成とし、X線吸収部の幅及び間隔は、位相型回折格子と振幅型回折格子とで同一とし、
位相型回折格子の厚みを1μm以上5μm以下に構成し、
振幅型回折格子の厚みを25μm以上100μm以下に構成し、
振幅型回折格子は、
酸化ケイ素皮膜を施したシリコン層の表面に樹脂層を形成し、光学リソグラフィーマスクを用いて上記樹脂層に対しパターニングを行い、前記樹脂層及び前記酸化ケイ素皮膜を選択的に除去し、
上記により選択的に露出された前記シリコン層の表面に対してICPプラズマエッチングを施すことにより、当該シリコン層に溝を形成し、
この形成された溝に電鋳法によって前記X線吸収部を形成することにより製造されることを特徴とする、位相型回折格子と振幅型回折格子の製造方法。
A method of manufacturing a phase type diffraction grating and an amplitude type diffraction grating used in an X-ray Talbot interferometer,
Both diffraction gratings have a configuration in which X-ray absorption parts made of metal with a width of 2 μm or more and 10 μm or less are arranged at equal intervals of 2 μm or more and 10 μm or less. It is the same as the lattice,
The thickness of the phase type diffraction grating is configured to be 1 μm or more and 5 μm or less,
The thickness of the amplitude type diffraction grating is configured to be 25 μm or more and 100 μm or less,
Amplitude diffraction grating
The resin layer is formed on the surface of the silicon layer which has been subjected to silicon oxide film, patterning is performed with respect to the resin layer by using a light science lithography mask, selectively removing the resin layer and the silicon oxide film,
A trench is formed in the silicon layer by performing ICP plasma etching on the surface of the silicon layer selectively exposed as described above.
Characterized in that it is produced by a Turkey to form the X-ray absorbing portion to the groove formed by the electroforming method, method of manufacturing a phase type diffraction grating and the amplitude type diffraction grating.
X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法であって、
前記振幅型回折格子は、
請求項又は請求項に記載の振幅型回折格子の製造方法で形成されたX線吸収部の部分を突出部とする成形型を製造し、
この成形型を使用して溝形成体を成形し、
この溝形成体に形成された溝に電鋳法によって前記X線吸収部を形成させることで得ることを特徴とする、
位相型回折格子と振幅型回折格子の製造方法。
A method of manufacturing a phase type diffraction grating and an amplitude type diffraction grating used in an X-ray Talbot interferometer,
The amplitude type diffraction grating is:
A molding die having a projecting portion as an X-ray absorbing portion formed by the amplitude type diffraction grating manufacturing method according to claim 1 or 2 ,
Using this mold, the groove forming body is molded,
It is obtained by forming the X-ray absorption part in the groove formed in the groove forming body by electroforming,
Manufacturing method of phase type diffraction grating and amplitude type diffraction grating.
X線タルボ干渉計に用いられる位相型回折格子と振幅型回折格子の製造方法であって、A method of manufacturing a phase type diffraction grating and an amplitude type diffraction grating used in an X-ray Talbot interferometer,
前記振幅型回折格子は、The amplitude type diffraction grating is:
請求項1から請求項3までの何れか一項に記載の方法のうち振幅型回折格子を製造する方法により分割格子ブロックを製造し、A split grating block is manufactured by a method of manufacturing an amplitude type diffraction grating among the methods according to any one of claims 1 to 3.
この製造された複数の分割格子ブロックを厚み方向に接合することにより得ることを特徴とする、位相型回折格子と振幅型回折格子の製造方法。A method of manufacturing a phase type diffraction grating and an amplitude type diffraction grating, which is obtained by joining the plurality of manufactured divided grating blocks in the thickness direction.
請求項1から請求項までの何れか一項に記載の位相型回折格子と振幅型回折格子の製造方法であって、前記X線吸収部は、白金、金、銀、プラチナのうち選択された一つ又は二つ以上の組み合わせよりなることを特徴とする、位相型回折格子と振幅型回折格子の製造方法。 A method of manufacturing a phase type diffraction grating and the amplitude type diffraction grating according to any one of claims 1 to 4, wherein the X-ray absorbing portion, platinum, gold, silver, a selected one of platinum A manufacturing method of a phase type diffraction grating and an amplitude type diffraction grating, characterized by comprising one or a combination of two or more.
JP2005076921A 2005-03-17 2005-03-17 Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer Active JP4608679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005076921A JP4608679B2 (en) 2005-03-17 2005-03-17 Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005076921A JP4608679B2 (en) 2005-03-17 2005-03-17 Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer

Publications (2)

Publication Number Publication Date
JP2006259264A JP2006259264A (en) 2006-09-28
JP4608679B2 true JP4608679B2 (en) 2011-01-12

Family

ID=37098605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005076921A Active JP4608679B2 (en) 2005-03-17 2005-03-17 Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer

Country Status (1)

Country Link
JP (1) JP4608679B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989353B2 (en) 2010-03-30 2015-03-24 Fujifilm Corporation Grid for radiation imaging and method for producing the same

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008197593A (en) * 2007-02-16 2008-08-28 Konica Minolta Medical & Graphic Inc Transmission type diffraction grating for x-ray, x-ray talbot interferometer and x-ray imaging apparatus
DE102007024156B3 (en) * 2007-05-24 2008-12-11 Siemens Ag X-ray absorption grating
EP2073040A2 (en) 2007-10-31 2009-06-24 FUJIFILM Corporation Radiation image detector and phase contrast radiation imaging apparatus
US7924973B2 (en) * 2007-11-15 2011-04-12 Csem Centre Suisse D'electronique Et De Microtechnique Sa Interferometer device and method
JP5339975B2 (en) * 2008-03-13 2013-11-13 キヤノン株式会社 Phase grating used for X-ray phase imaging, X-ray phase contrast image imaging apparatus using the phase grating, X-ray computed tomography system
JP2010063646A (en) 2008-09-11 2010-03-25 Fujifilm Corp Radiation phase image radiographing apparatus
JP2010075620A (en) 2008-09-29 2010-04-08 Fujifilm Corp Radiation tomosynthesis photographing apparatus
JP5258504B2 (en) * 2008-10-24 2013-08-07 キヤノン株式会社 Phase grating used in X-ray phase imaging and manufacturing method thereof, X-ray phase contrast image imaging apparatus using the phase grating, and X-ray computed tomography system
JP5420923B2 (en) * 2009-02-10 2014-02-19 株式会社ナノクリエート Manufacturing method of X-ray Talbot diffraction grating
JP2010253194A (en) 2009-04-28 2010-11-11 Fujifilm Corp Radiation phase imaging apparatus
JP5586899B2 (en) * 2009-08-26 2014-09-10 キヤノン株式会社 X-ray phase grating and manufacturing method thereof
JP2015178683A (en) * 2010-01-08 2015-10-08 キヤノン株式会社 metal absorption grating and Talbot interferometer
JP5773624B2 (en) 2010-01-08 2015-09-02 キヤノン株式会社 Manufacturing method of fine structure
JP5649307B2 (en) * 2010-01-28 2015-01-07 キヤノン株式会社 Microstructure manufacturing method and radiation absorption grating
EP2585817B1 (en) * 2010-06-28 2020-01-22 Paul Scherrer Institut A method for x-ray phase contrast and dark-field imaging using an arrangement of gratings in planar geometry
WO2012008120A1 (en) * 2010-07-15 2012-01-19 コニカミノルタエムジー株式会社 Method for manufacturing metal grid, and metal grid
WO2012008119A1 (en) * 2010-07-15 2012-01-19 コニカミノルタエムジー株式会社 Manufacturing method for metal lattice, and metal lattice
WO2012008118A1 (en) * 2010-07-15 2012-01-19 コニカミノルタエムジー株式会社 Manufacturing method for metallic lattice, and metallic lattice
JP2012103237A (en) * 2010-10-14 2012-05-31 Canon Inc Imaging apparatus
CN102812164A (en) * 2010-11-29 2012-12-05 佳能株式会社 Method of manufacturing an x-ray diffraction grating microstructure for imaging apparatus
JP2012150144A (en) * 2011-01-17 2012-08-09 Fujifilm Corp Grid for photographing radiation image, radiation image detector, radiation image photographing system, and method for manufacturing grid for photographing radiation image
US10734128B2 (en) * 2011-02-01 2020-08-04 Koninklijke Philips N.V. Differential phase-contrast imaging with focussing deflection structure plates
JP2012225966A (en) 2011-04-15 2012-11-15 Seiko Instruments Inc Diffraction grating for x-ray talbot interferometer, method for manufacturing the same, and x-ray talbot interferometer
JP5656726B2 (en) * 2011-04-15 2015-01-21 株式会社日立ハイテクサイエンス Method for manufacturing phase diffraction grating for X-ray Talbot interferometer
JP5714968B2 (en) 2011-04-15 2015-05-07 株式会社日立ハイテクサイエンス Diffraction grating for X-ray Talbot interferometer, manufacturing method thereof, and X-ray Talbot interferometer
JP5695959B2 (en) * 2011-04-15 2015-04-08 株式会社日立ハイテクサイエンス Method for producing single crystal diamond cutting blade
JP5860613B2 (en) * 2011-05-26 2016-02-16 株式会社オプトニクス精密 Diffraction grating for X-ray interferometer and method of manufacturing the same
JP5871549B2 (en) * 2011-07-29 2016-03-01 キヤノン株式会社 X-ray shielding grid manufacturing method
JP6245794B2 (en) * 2011-07-29 2017-12-13 キヤノン株式会社 Manufacturing method of shielding grid
KR101292918B1 (en) 2011-08-12 2013-08-02 한국원자력연구원 Imaging detectors for grating interferometer
JP2014238265A (en) * 2011-09-30 2014-12-18 富士フイルム株式会社 Radiation image detector and manufacturing method of the same, and radiation photographing system using radiation image detector

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174546A (en) * 1985-01-29 1986-08-06 Shimadzu Corp Production of fine pattern having large aspect ratio
JPS62238516A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JPH0458070A (en) * 1990-06-27 1992-02-25 Hitachi Constr Mach Co Ltd Hydraulic pressure rotating machine
JP2001141918A (en) * 1999-09-03 2001-05-25 Canon Inc Diffraction optical device and its production method
JP2001194501A (en) * 2000-01-13 2001-07-19 Susumu Noda Method and device for manufacturing semiconductor device
JP2002028899A (en) * 2000-07-17 2002-01-29 Kansai Tlo Kk Micro-structural body, its manufacturing method, applied device of micro-structural body, and its manufacturing method
JP2003170581A (en) * 2001-12-04 2003-06-17 Ricoh Co Ltd Liquid drop ejecting head, ink cartridge, ink jet recorder, microactuator, micropump, optical device
JP2004133424A (en) * 2002-08-30 2004-04-30 Toyo Gosei Kogyo Kk Radiation sensitive negative resist composition for pattern formation and method for forming pattern
JP2006131954A (en) * 2004-11-05 2006-05-25 Konica Minolta Holdings Inc Plasma etching method, plasma etching system, molding die for optical element, and optical element
JP2007538275A (en) * 2004-05-21 2007-12-27 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Method for manufacturing a diffraction grating structure having a high aspect ratio

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6762880B2 (en) * 2001-02-21 2004-07-13 Ibsen Photonics A/S Grating structures and methods of making the grating structures

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174546A (en) * 1985-01-29 1986-08-06 Shimadzu Corp Production of fine pattern having large aspect ratio
JPS62238516A (en) * 1986-04-10 1987-10-19 Canon Inc Optical modulator
JPH0458070A (en) * 1990-06-27 1992-02-25 Hitachi Constr Mach Co Ltd Hydraulic pressure rotating machine
JP2001141918A (en) * 1999-09-03 2001-05-25 Canon Inc Diffraction optical device and its production method
JP2001194501A (en) * 2000-01-13 2001-07-19 Susumu Noda Method and device for manufacturing semiconductor device
JP2002028899A (en) * 2000-07-17 2002-01-29 Kansai Tlo Kk Micro-structural body, its manufacturing method, applied device of micro-structural body, and its manufacturing method
JP2003170581A (en) * 2001-12-04 2003-06-17 Ricoh Co Ltd Liquid drop ejecting head, ink cartridge, ink jet recorder, microactuator, micropump, optical device
JP2004133424A (en) * 2002-08-30 2004-04-30 Toyo Gosei Kogyo Kk Radiation sensitive negative resist composition for pattern formation and method for forming pattern
JP2007538275A (en) * 2004-05-21 2007-12-27 ピレリ・アンド・チ・ソチエタ・ペル・アツィオーニ Method for manufacturing a diffraction grating structure having a high aspect ratio
JP2006131954A (en) * 2004-11-05 2006-05-25 Konica Minolta Holdings Inc Plasma etching method, plasma etching system, molding die for optical element, and optical element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8989353B2 (en) 2010-03-30 2015-03-24 Fujifilm Corporation Grid for radiation imaging and method for producing the same

Also Published As

Publication number Publication date
JP2006259264A (en) 2006-09-28

Similar Documents

Publication Publication Date Title
JP4608679B2 (en) Manufacturing method of phase type diffraction grating and amplitude type diffraction grating used in X-ray Talbot interferometer
JP4642818B2 (en) Manufacturing method of diffraction grating
JP5420923B2 (en) Manufacturing method of X-ray Talbot diffraction grating
JP4445397B2 (en) X-ray imaging apparatus and imaging method
JP4663742B2 (en) Manufacturing method of diffraction grating
JP5459659B2 (en) Phase grating used for imaging X-ray phase contrast image, imaging apparatus using the phase grating, and X-ray computed tomography system
CN102047344B (en) Source grating for x-rays, imaging apparatus for x-ray phase contrast image and x-ray computed tomography system
US9036773B2 (en) Method for X-ray phase contrast and dark-field imaging using an arrangement of gratings in planar geometry
US9046466B2 (en) X-ray imaging apparatus
JP2012187341A (en) X-ray imaging apparatus
JP5601909B2 (en) X-ray imaging apparatus and X-ray imaging method using the same
JP2013063099A (en) X-ray imaging device
CA2751442A1 (en) Low dose single step grating based x-ray phase contrast imaging
JP2009042528A (en) Method of manufacturing diffraction grating
US9123451B2 (en) Imaging apparatus and imaging method
JP2011153969A (en) X-ray imaging apparatus and wavefront measuring apparatus
JP2011174715A (en) X-ray imaging device
KR20080041671A (en) Device and method for the interferometric measurement of phase masks
CN114002190B (en) Three-dimensional optical diffraction tomography method and device
US10117629B2 (en) High energy grating techniques
JP2016032573A (en) Talbot interferometer, talbot interference system and fringe scanning method
Momose et al. Phase Tomography Using X‐ray Talbot Interferometer
US20150179292A1 (en) X-ray shield grading and method for fabricating the same
JP2012122840A (en) Grid for photographing radiation image, method for manufacturing the same, and radiation image photographing system
WO2012053342A1 (en) Grid for radiation imaging, method for manufacturing same, and radiation imaging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100921

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4608679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250