JP4605076B2 - RF device and RF data transmission method - Google Patents

RF device and RF data transmission method Download PDF

Info

Publication number
JP4605076B2
JP4605076B2 JP2006104158A JP2006104158A JP4605076B2 JP 4605076 B2 JP4605076 B2 JP 4605076B2 JP 2006104158 A JP2006104158 A JP 2006104158A JP 2006104158 A JP2006104158 A JP 2006104158A JP 4605076 B2 JP4605076 B2 JP 4605076B2
Authority
JP
Japan
Prior art keywords
signal
circuit
voltage
power supply
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006104158A
Other languages
Japanese (ja)
Other versions
JP2007281768A (en
Inventor
雄也 道海
登 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006104158A priority Critical patent/JP4605076B2/en
Publication of JP2007281768A publication Critical patent/JP2007281768A/en
Application granted granted Critical
Publication of JP4605076B2 publication Critical patent/JP4605076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Near-Field Transmission Systems (AREA)

Description

この発明は、無線周波数信号の送受信により非接触でデータ伝送を行うRFデバイスおよびそれを用いたRFデータ伝送方法に関するものである。   The present invention relates to an RF device that performs non-contact data transmission by transmitting and receiving radio frequency signals and an RF data transmission method using the same.

従来、RFID(RadioFrequency Identification)において、質問器(リーダ,基地局等)と応答器(カード,荷札,ラベル,センサユニット等)との間で無線周波数信号を用いてデータ伝送が行われている。   Conventionally, in RFID (Radio Frequency Identification), data transmission is performed between radio interrogators (interrogators (readers, base stations, etc.)) and responders (cards, tags, labels, sensor units, etc.).

従来の一般的なRFIDにおいて、無線タグ側の動作モードには、送信モード、受信モード、および起動信号(ウェクアップ信号)受信モードがある。無線タグは無線周波数信号を一定時間以上受信しない時に起動信号受信モードとなって起動信号を待ち、この起動信号を受信した後は一定時間だけ受信モードで待機する。この受信モードでリーダ等から何らかのコマンドがあれば、無線タグは送信モードとなって所定の応答信号を送信することになる。   In the conventional general RFID, the operation mode on the wireless tag side includes a transmission mode, a reception mode, and an activation signal (wake-up signal) reception mode. When the radio tag does not receive a radio frequency signal for a certain period of time, it enters an activation signal reception mode and waits for the activation signal. After receiving this activation signal, it waits in the reception mode for a certain period of time. If there is any command from the reader or the like in this reception mode, the wireless tag enters the transmission mode and transmits a predetermined response signal.

また特に無線タグに電池を内蔵しない無線タグを用いるRFIDにおいては、無線タグはリーダ等から送信される搬送波を利用して整流回路にて直流電力として取り出し、内部回路の動作電源としている。(特許文献1参照)
ここで、特許文献1に示されている無線タグに内蔵される半導体チップの回路構成を、図1を基に説明する。
In particular, in an RFID using a wireless tag that does not incorporate a battery in the wireless tag, the wireless tag uses a carrier wave transmitted from a reader or the like as a direct current power by a rectifier circuit and serves as an operating power source for the internal circuit. (See Patent Document 1)
Here, a circuit configuration of a semiconductor chip built in the wireless tag disclosed in Patent Document 1 will be described with reference to FIG.

図1はタグ7に内蔵される半導体チップの回路ブロック図である。タグ受信アンテナコイル8はリーダより送出される第1および第2のリーダ搬送波を受信する。整流回路9は上記タグ受信アンテナコイルより得られる信号を整流し、タグに内蔵される不揮発性メモリを含む全ての回路部に直流電力を供給する。フィルタ10はタグ受信アンテナコイル8より得られる信号から第2のリーダ搬送波を取り出すためのハイパスフィルタである。増幅・整形回路11はフィルタ10の出力信号を増幅・整形する。第1分周回路12は増幅・整形回路11の出力信号を受け、周波数を分周するものであり、第2のリーダ搬送波からタグ搬送波17を作り出す。第2分周回路13は上記第1分周回路の出力信号を受けメモリ読出クロック16を作り出す。不揮発性メモリ14はEPROM,EEPROMなどで実現され、第2分周回路13より得られるメモリ読出クロックによりあらかじめ記録されている識別符号が読み出される。変調回路15は例えば排他的OR回路などで構成され、第1分周回路12で作り出されたタグ搬送波17を不揮発性メモリ読出信号で位相変調する。タグ送信アンテナコイル18は変調回路15の出力信号をリーダに伝送する。   FIG. 1 is a circuit block diagram of a semiconductor chip built in the tag 7. The tag receiving antenna coil 8 receives the first and second reader carrier waves transmitted from the reader. The rectifier circuit 9 rectifies a signal obtained from the tag receiving antenna coil, and supplies DC power to all circuit units including a nonvolatile memory built in the tag. The filter 10 is a high-pass filter for taking out the second reader carrier wave from the signal obtained from the tag receiving antenna coil 8. The amplification / shaping circuit 11 amplifies and shapes the output signal of the filter 10. The first frequency dividing circuit 12 receives the output signal of the amplification / shaping circuit 11, divides the frequency, and creates a tag carrier wave 17 from the second reader carrier wave. The second frequency dividing circuit 13 receives the output signal of the first frequency dividing circuit and generates a memory read clock 16. The nonvolatile memory 14 is realized by EPROM, EEPROM or the like, and an identification code recorded in advance is read by a memory read clock obtained from the second frequency dividing circuit 13. The modulation circuit 15 is configured by, for example, an exclusive OR circuit, etc., and phase-modulates the tag carrier wave 17 generated by the first frequency divider circuit 12 with a nonvolatile memory read signal. The tag transmission antenna coil 18 transmits the output signal of the modulation circuit 15 to the reader.

このようにして周波数の異なる2つの搬送波を受信し、一方の搬送波を半導体回路の直流電源を作りだすために使用し、他方の搬送波を半導体不揮発性メモリの読み出しのために用いるように構成されている。
特開平7−154312号公報
In this way, two carrier waves having different frequencies are received, one of the carrier waves is used for creating a DC power source of the semiconductor circuit, and the other carrier wave is used for reading the semiconductor nonvolatile memory. .
JP-A-7-155431

従来のRFIDでは、そもそも一定時間内の信号待ち受け時に受信モードにして制御回路を起動させておく必要があるため電池の消耗が大きい。また、アンテナを含む起動信号の受信回路が必要になる。また、例えば自動車のキーレスエントリーシステムでは、起動信号用に125kHzのLF帯信号が使用されているが、LF帯信号の受信アンテナはそれ自体が大きく、モジュールの小型化の弊害となっていた。   In the conventional RFID, since it is necessary to activate the control circuit in the reception mode when waiting for a signal within a certain period of time, battery consumption is large. In addition, an activation signal receiving circuit including an antenna is required. For example, in a keyless entry system of an automobile, an LF band signal of 125 kHz is used for a start signal. However, the reception antenna for the LF band signal is large in itself, which is a problem of downsizing the module.

また、特許文献1の構成では、無線タグ内で送信アンテナと受信アンテナとの距離が近いと、自分が送信した信号を自分で受信してしまい、信号処理回路が飽和して正常に動作しないおそれがある。さらに、受信アンテナで送信を兼ねると、送信信号が電源回路側に流れてしまい、必要な送信電力が得られないという問題が生じる。   Further, in the configuration of Patent Document 1, if the distance between the transmission antenna and the reception antenna is close within the wireless tag, the signal transmitted by the user may be received by itself, and the signal processing circuit may be saturated and may not operate normally. There is. Furthermore, if the reception antenna also serves as a transmission, a transmission signal flows to the power supply circuit side, and a problem arises that necessary transmission power cannot be obtained.

また、無線タグの電源に用いる無線信号と、無線タグ−リーダ間でのデータのやりとりを行う無線信号とに異なる2つの周波数を用いると、その2つの周波数信号を分離するためにフィルタが必要になり、無線タグが構造的に大きくなるとともにコストが嵩むという問題がある。   In addition, if two different frequencies are used for the wireless signal used for the power supply of the wireless tag and the wireless signal for exchanging data between the wireless tag and the reader, a filter is required to separate the two frequency signals. Thus, there is a problem that the wireless tag becomes structurally large and costs increase.

また、送信用のアンテナと受信用のアンテナのアンテナコイルがそれぞれ必要であり、その分、小型化を阻害する要因となる。   In addition, antenna coils for the transmitting antenna and the receiving antenna are required, which is a factor that hinders downsizing.

また、電池を内蔵しない無線タグを用いるRFID等の無線周波数信号の送受信によるデータ伝送システムでは、リーダは無線タグが所定距離に近接した時にその無線タグとの間でデータ伝送を行えるように電力供給用の搬送波を送信しているが、データ伝送を行わない待機時にも常に搬送波が送信されるので低消費電力化の点で問題となる。   In addition, in a data transmission system that transmits and receives radio frequency signals such as RFID using a wireless tag that does not have a built-in battery, the reader supplies power so that data can be transmitted to and from the wireless tag when the wireless tag is close to a predetermined distance. However, since the carrier wave is always transmitted even during standby when data transmission is not performed, there is a problem in terms of reducing power consumption.

上述の問題は狭義のRFIDに限らず、非接触により無線周波数信号でデータを送受信するRFデバイスおよびRFデータ伝送方法一般に生じるものである。   The above-mentioned problems are not limited to RFID in a narrow sense, but generally occur in RF devices and RF data transmission methods that transmit and receive data using radio frequency signals without contact.

そこで、この発明の目的は、上述の問題を解消し、全体に小型化・低消費電力化が可能なRFデバイスおよびそれを用いたRFデータ伝送方法を提供することにある。   Accordingly, an object of the present invention is to provide an RF device that can solve the above-described problems and can be reduced in size and power consumption as a whole, and an RF data transmission method using the same.

この発明のRFデバイスは、無線周波数信号(電波)の送受信により非接触でデータ伝送を行うものであって、高周波信号を受信するアンテナと、このアンテナにより受信した高周波信号を電力分配する電力分配回路と、この電力分配回路で電力分配した一方の高周波信号を受信信号として処理する制御回路と、電池を備え、前記電池の起電圧と、前記電力分配回路で電力分配した他方の高周波信号を整流して変換した直流電源電圧と、の加算電圧を前記制御回路に対する電源電圧として出力する電源回路と、を備え、前記制御回路が前記電池の起電圧では動作せず、前記加算電圧で動作することを特徴としている。 An RF device according to the present invention performs non-contact data transmission by transmitting and receiving radio frequency signals (radio waves), and includes an antenna that receives a high-frequency signal and a power distribution circuit that distributes power of the high-frequency signal received by the antenna. And a control circuit for processing one high frequency signal distributed by the power distribution circuit as a received signal, and a battery, and rectifies the electromotive voltage of the battery and the other high frequency signal distributed by the power distribution circuit. And a power supply circuit that outputs an addition voltage of the converted DC power supply voltage as a power supply voltage for the control circuit, and the control circuit does not operate with the electromotive voltage of the battery but operates with the addition voltage. It is a feature.

また、前記高周波信号は、例えば周波数変調(FSK)信号、位相変調(PSK、QPSK)信号または振幅変調(QAM)信号を時間軸上で断続的に発生させたディジタル変調信号とする。   The high-frequency signal is a digital modulation signal in which, for example, a frequency modulation (FSK) signal, a phase modulation (PSK, QPSK) signal, or an amplitude modulation (QAM) signal is intermittently generated on the time axis.

また、電力分配回路としては例えばウィルキンソン型分配回路とする。   The power distribution circuit is, for example, a Wilkinson distribution circuit.

また、例えば前記電源回路は電池を備え、前記高周波信号の整流により変換された直流電源電圧と前記電池の起電圧との加算電圧を前記制御回路に対する電源電圧として出力するものとし、前記制御回路は前記電池の起電圧では動作せず、前記加算電圧で動作するものとする。   Further, for example, the power supply circuit includes a battery, and outputs a sum voltage of a DC power supply voltage converted by rectification of the high-frequency signal and an electromotive voltage of the battery as a power supply voltage for the control circuit. It does not operate with the electromotive voltage of the battery, but operates with the added voltage.

この発明のRFデータ伝送方法は、送信すべきデータを持つRFデバイスとリーダとの間で無線信号により非接触でデータ伝送を行うものにおいて、前記リーダによって、周波数変調(FSK)信号、位相変調(PSK、QPSK)信号または振幅変調(QAM)信号を時間軸上で断続的に発生させた無線信号を送信させ、前記RFデバイスによって、前記無線信号の前記時間軸上で存在する区間で、当該無線信号を電力に変換させて直流電源電圧を発生させ、当該RFデバイスの備える電池の起電圧と、前記無線信号からの変換による直流電源電圧との加算電圧を電源電圧として、前記無線信号を受信させるとともに前記データを送信する制御回路を起動させるようにし、前記制御回路を前記電池の起電圧では動作せず、前記加算電圧で動作するようにしたことを特徴としている。


The RF data transmission method according to the present invention performs non-contact data transmission by radio signal between an RF device having data to be transmitted and a reader, and the reader modulates a frequency modulation (FSK) signal and a phase modulation ( PSK, QPSK) signal or amplitude modulation (QAM) signal is intermittently generated on the time axis, and a radio signal is transmitted by the RF device in a section existing on the time axis of the radio signal. A signal is converted into electric power to generate a DC power supply voltage, and the radio signal is received using an addition voltage of an electromotive voltage of a battery included in the RF device and a DC power supply voltage converted from the radio signal as a power supply voltage. And a control circuit that transmits the data is activated, and the control circuit does not operate with the electromotive voltage of the battery but operates with the added voltage. Is characterized in that the the to.


(1)アンテナにより受信した高周波信号を電力分配し、その一方の高周波信号を受信信号として処理し、他方の高周波信号を整流して直流電源電圧に変換するので、アンテナには高周波用の小型アンテナのみを用いるだけでよく、小型且つ低コストのRFデバイスが構成できる。   (1) Since a high frequency signal received by an antenna is distributed, one of the high frequency signals is processed as a reception signal, and the other high frequency signal is rectified and converted into a DC power supply voltage. Therefore, a small and low-cost RF device can be configured.

(2)前記高周波信号をFSK等の周波数変調信号、PSK,QPSK等の位相変調信号、またはQAM等の振幅変調信号を時間軸上で断続的に発生するディジタル変調信号とすることにより、これらの搬送波が存在している時にのみ前記受信信号としての処理を行うので、RFデバイスに内蔵する電池で前記制御回路を動作させる場合に、全体に低消費電力化でき、電池寿命を延ばすことかできる。また、リーダ等の前記無線周波数信号を送信する側の装置についても、RFデバイスに対して質問コマンドを送信する時にのみ無線周波数信号を送信することになるので低消費電力化が図れる。   (2) By making the high frequency signal a frequency modulation signal such as FSK, a phase modulation signal such as PSK, QPSK, or an amplitude modulation signal such as QAM, a digital modulation signal that is generated intermittently on the time axis. Since the processing as the received signal is performed only when a carrier wave exists, when the control circuit is operated by a battery built in the RF device, the overall power consumption can be reduced and the battery life can be extended. Also, the apparatus on the side of transmitting the radio frequency signal, such as a reader, transmits the radio frequency signal only when transmitting the inquiry command to the RF device, so that the power consumption can be reduced.

(3)前記電力分配回路としてウィルキンソン型分配回路を用いることによって、受信信号として処理する制御回路から応答信号を返す場合(アクティブに送信する場合にもパッシブに送信する場合にも)、その送信信号が電源回路側へ回り込まない(戻らない)ので)、受信側と送信側を独立して動作させることができ、損失が無く必要な送信電力が得られる。また送受の切り替えを行うスイッチ回路が不要となる。   (3) By using a Wilkinson distribution circuit as the power distribution circuit, when a response signal is returned from the control circuit processed as a reception signal (whether active transmission or passive transmission), the transmission signal Does not wrap around (does not return) to the power supply circuit side), the reception side and the transmission side can be operated independently, and the necessary transmission power can be obtained without loss. In addition, a switch circuit for switching between transmission and reception is not necessary.

(4)また、電源回路に電池を備え、高周波信号の整流により変換された直流電源電圧と電池の起電圧との加算電圧を制御回路に対する電源電圧として出力するようにし、制御回路が電池の起電圧では動作せず、前記加算電圧で動作するように構成することによって、信号待ち受け時に受信モードにして制御回路を起動させておく必要が無く、電池を内蔵する場合に、その消費電力を抑えることができ、電池の長寿命化が図れる。   (4) A battery is provided in the power supply circuit, and an addition voltage of the DC power supply voltage converted by the rectification of the high-frequency signal and the electromotive voltage of the battery is output as the power supply voltage for the control circuit. It does not operate with voltage, but operates with the added voltage, so there is no need to activate the control circuit in reception mode when waiting for a signal, and to suppress power consumption when a battery is built in Battery life can be extended.

《第1の実施形態》
第1の実施形態に係るRFデバイスについて図2〜図5を参照して説明する。
図2は第1の実施形態に係るRFデバイスの構成を示すブロック図である。図2においてRFデバイス100とリーダ200とによってRFデータ伝送システムを構成している。RFデバイス100においてアンテナ21はリーダ200のアンテナ31との間で近接電磁界または放射電磁界で無線周波数信号の送受信を行う。信号送受信回路22はアンテナ21からの受信信号を電力分配回路23へ出力し、また送信回路28からの送信信号をアンテナ21へ出力する。
<< First Embodiment >>
The RF device according to the first embodiment will be described with reference to FIGS.
FIG. 2 is a block diagram showing the configuration of the RF device according to the first embodiment. In FIG. 2, the RF device 100 and the reader 200 constitute an RF data transmission system. In the RF device 100, the antenna 21 transmits and receives a radio frequency signal to and from the antenna 31 of the reader 200 using a near electromagnetic field or a radiated electromagnetic field. The signal transmission / reception circuit 22 outputs a reception signal from the antenna 21 to the power distribution circuit 23 and outputs a transmission signal from the transmission circuit 28 to the antenna 21.

電力分配回路23は受信信号を2つの高周波信号として電力分配し、一方を起動回路24へ出力し、他方を復調回路26へ出力する。起動回路24は電力分配回路23から出力された高周波信号を整流して直流電圧を生成し、これを電源25へ出力する。電源25は例えば電池を含む回路であり、起動回路24からの出力電圧と電池の起電圧との加算電圧を制御回路29へ電源電圧として供給する。この起動回路24の構成は後述する。   The power distribution circuit 23 distributes the received signal as two high-frequency signals, outputs one to the activation circuit 24, and outputs the other to the demodulation circuit 26. The startup circuit 24 rectifies the high-frequency signal output from the power distribution circuit 23 to generate a DC voltage, and outputs it to the power supply 25. The power supply 25 is, for example, a circuit including a battery, and supplies an addition voltage of the output voltage from the activation circuit 24 and the electromotive voltage of the battery to the control circuit 29 as a power supply voltage. The configuration of the activation circuit 24 will be described later.

制御回路29はC−MOS半導体チップによる回路であり、上記電池の起電圧では動作せず停止したままである。すなわち、このとき電力消費は殆ど無い。起動回路24からの出力電圧と電池の起電圧との加算電圧が制御回路29の起動に要する電圧に達したとき、制御回路は動作を開始する。   The control circuit 29 is a circuit using a C-MOS semiconductor chip and does not operate with the electromotive voltage of the battery and remains stopped. That is, there is almost no power consumption at this time. When the added voltage of the output voltage from the start circuit 24 and the electromotive voltage of the battery reaches the voltage required for starting the control circuit 29, the control circuit starts its operation.

復調回路26は電力分配回路23からの高周波信号を受信信号として入力し、ディジタルデータ列に変換する。受信回路27はそのディジタルデータ列を入力し、所定の処理を行う。例えばリーダ200からの所定の質問コマンドを解読し、それに応答するために送信回路28を起動する。これにより送信回路28は、予め設定されている識別符号等を送信する。   The demodulation circuit 26 receives the high frequency signal from the power distribution circuit 23 as a received signal and converts it into a digital data string. The receiving circuit 27 inputs the digital data string and performs a predetermined process. For example, a predetermined inquiry command from the reader 200 is decoded, and the transmission circuit 28 is activated to respond to the command. Thereby, the transmission circuit 28 transmits a preset identification code or the like.

図3は上記起動回路24の構成例を示す回路図である。この回路はいわゆる1段のコッククロフト・ウォルトン回路に電池を付加した回路である。このような構成によって、電力分配回路23からの出力電圧と電池の起電圧との加算電圧が起動回路24から出力される。   FIG. 3 is a circuit diagram showing a configuration example of the starting circuit 24. This circuit is a circuit in which a battery is added to a so-called one-stage Cockcroft-Walton circuit. With such a configuration, an addition voltage of the output voltage from the power distribution circuit 23 and the electromotive voltage of the battery is output from the activation circuit 24.

図4は図2の各部の波形図である。入力信号(a)は図2におけるアンテナ21が受ける入力信号である。この例ではFSK信号であり、且つ搬送波の存在する区間と存在しない区間がある。搬送波が存在すると前記制御回路29に印加される電源電圧が制御回路29の動作に要する電圧を超える。したがって、(b)に示すように搬送波が存在する期間だけ制御回路29が動作する。
また、(c)に示すように復調信号は上記FSK信号を復調し、受信回路27は(d)に示すようなディジタルデータを読み取る。
FIG. 4 is a waveform diagram of each part of FIG. The input signal (a) is an input signal received by the antenna 21 in FIG. In this example, it is an FSK signal, and there are a section in which a carrier wave exists and a section in which no carrier wave exists. When a carrier wave is present, the power supply voltage applied to the control circuit 29 exceeds the voltage required for the operation of the control circuit 29. Therefore, as shown in (b), the control circuit 29 operates only during the period in which the carrier wave exists.
As shown in (c), the demodulated signal demodulates the FSK signal, and the receiving circuit 27 reads digital data as shown in (d).

なお、この例では説明上、1つのバースト内でのビット数を敢えて少なくして表している。   In this example, the number of bits in one burst is deliberately reduced for the sake of explanation.

図5は特に送信タイミングと受信タイミングとについて示すタイミングチャートである。既に述べたとおり、(a)(b)に示すように、リーダから送信される無線周波数信号の搬送波が存在する期間t0−t5の期間にRFデバイス100の電源がオンする。   FIG. 5 is a timing chart specifically showing the transmission timing and the reception timing. As already described, as shown in (a) and (b), the power supply of the RF device 100 is turned on during the period t0 to t5 in which the carrier wave of the radio frequency signal transmitted from the reader exists.

無線タグは電源起動直後、リーダからの質問コマンドの受信待ち状態となる。(c)に示すようにRFデバイスの電源がオンした後、t1−t2の期間にリーダからの質問コマンドを受信する。質問コマンドを受信すれば、それに応じた処理を行い、(d)に示すようにt3−t4の期間に所定のデータを送信する。リーダはこのRFデバイスからのデータを受信すれば、一連の処理を終了してt5のタイミングで送信を終了する(搬送波を遮断する)。   Immediately after the power is turned on, the wireless tag waits to receive a question command from the reader. As shown in (c), after the power of the RF device is turned on, a question command is received from the reader during a period of t1-t2. If a question command is received, processing corresponding to that is performed, and predetermined data is transmitted during a period of t3-t4 as shown in (d). When the reader receives data from the RF device, the reader terminates the series of processes and terminates transmission at the timing t5 (cuts off the carrier wave).

この第1の実施形態によれば次のような効果を奏する。
アンテナにより受信した高周波信号を電力分配し、その一方の高周波信号を受信信号として処理し、他方の高周波信号を整流して直流電源電圧に変換するので、アンテナには高周波用の小型アンテナのみを用いるだけでよく、小型且つ低コストのRFデバイスが構成できる。
According to the first embodiment, the following effects are obtained.
Since the high-frequency signal received by the antenna is power-distributed, one of the high-frequency signals is processed as a received signal, and the other high-frequency signal is rectified and converted into a DC power supply voltage. Only a small and low-cost RF device can be configured.

また、搬送波が存在している時にのみ受信信号としての処理を行うので、全体に低消費電力化でき、RFデバイスに内蔵する電池の寿命を延ばすことかできる。また、リーダ等の前記無線周波数信号を送信する側の装置についても、RFデバイスに対して質問コマンドを送信する時にのみ無線周波数信号を送信することになるので低消費電力化が図れる。   In addition, since processing as a received signal is performed only when a carrier wave exists, overall power consumption can be reduced, and the life of the battery built in the RF device can be extended. Also, the apparatus on the side of transmitting the radio frequency signal, such as a reader, transmits the radio frequency signal only when transmitting the inquiry command to the RF device, so that the power consumption can be reduced.

なお、図4に示した例では周波数変調(FSK)によりデータの送受信を行うようにしたが、その他にPSK、QPSK等の位相変調やQAM等の振幅変調を利用してもよい。振幅変調を利用する場合、その振幅によって起動回路24の出力電圧が変化するが、QAM等においてデータ値が最も低い電圧レベルのときでも制御回路29が起動するように回路や使用条件を定めておけばよい。   In the example shown in FIG. 4, data transmission / reception is performed by frequency modulation (FSK). However, phase modulation such as PSK and QPSK, and amplitude modulation such as QAM may be used. When amplitude modulation is used, the output voltage of the startup circuit 24 changes depending on the amplitude, but the circuit and usage conditions can be determined so that the control circuit 29 is started even when the data value is the lowest in QAM or the like. That's fine.

《第2の実施形態》
次に、第2の実施形態に係るRFデバイスについて図6を参照して説明する。
この第2の実施形態では、図2に示した信号送受信回路22および電力分配回路23に相当する部分を具体的に示している。また、制御回路の構成は第1の実施形態として示したものと異なる。
<< Second Embodiment >>
Next, an RF device according to a second embodiment will be described with reference to FIG.
In the second embodiment, portions corresponding to the signal transmission / reception circuit 22 and the power distribution circuit 23 shown in FIG. 2 are specifically shown. Further, the configuration of the control circuit is different from that shown in the first embodiment.

図6においてRFデバイス101内のアンテナ41は、リーダ200のアンテナ31と近接電磁界結合するか、または放射電磁界の送受信を行う。フィルタ42はこのRFデータ伝送システムで用いる周波数帯以外の周波数帯域を遮断して、妨害波やスプリアスの影響を抑制する。電力分配回路43はインダクタL1,L2、抵抗R、コンデンサC1,C2,C0によってウィルキンソン型分配回路を構成している。   In FIG. 6, the antenna 41 in the RF device 101 is coupled to the antenna 31 of the reader 200 in the near electromagnetic field or transmits and receives a radiated electromagnetic field. The filter 42 cuts off a frequency band other than the frequency band used in the RF data transmission system, and suppresses the influence of interference waves and spurious. The power distribution circuit 43 constitutes a Wilkinson distribution circuit by inductors L1 and L2, a resistor R, and capacitors C1, C2 and C0.

整流回路・電圧増幅回路44は電力分配回路43で分配された一方の高周波信号を整流するとともに電圧増幅する。この整流回路・電圧増幅回路44は、図2における起動回路24に相当する回路であり、電源回路45に含まれる電池の起電圧に、上記電圧増幅された電圧を加算した電圧が所定値を上回ったときに制御回路50が起動するように電圧増幅する。   The rectifier circuit / voltage amplifier circuit 44 rectifies and amplifies the voltage of one high-frequency signal distributed by the power distribution circuit 43. This rectifier circuit / voltage amplifier circuit 44 is a circuit corresponding to the starting circuit 24 in FIG. 2, and the voltage obtained by adding the voltage amplified voltage to the electromotive voltage of the battery included in the power supply circuit 45 exceeds a predetermined value. Voltage is amplified so that the control circuit 50 is activated when the

制御回路50内の復調回路46は電力分配回路43で分配された他方の高周波信号を復調する。受信回路47はその復調信号から、リーダ200が送信した質問コマンドを解読し、送信回路48を起動する。   The demodulation circuit 46 in the control circuit 50 demodulates the other high frequency signal distributed by the power distribution circuit 43. The reception circuit 47 decodes the inquiry command transmitted from the reader 200 from the demodulated signal, and activates the transmission circuit 48.

制御回路50にはセンサ49を備えている。例えばこのRFデータ伝送システムをTPMS(Tire Pressure Monitoring System:直接式タイヤ空気圧警報システム)に用いる場合に、センサ49は自動車タイヤの空気圧、温度、角速度をそれぞれ検出する。送信回路48は受信回路47によって起動されるとセンサ49の検出信号をディジタルデータに変換するとともに送信する。   The control circuit 50 includes a sensor 49. For example, when this RF data transmission system is used in a TPMS (Tire Pressure Monitoring System), the sensor 49 detects the pressure, temperature, and angular velocity of the automobile tire. When the transmission circuit 48 is activated by the reception circuit 47, the detection signal of the sensor 49 is converted into digital data and transmitted.

この第2の実施形態によれば、電力分配回路43としてウィルキンソン型分配回路を用いたことによって、送信信号が電力分配回路43を介して整流回路・電圧増幅回路44および電源回路45側へ回り込まないので、受信側と送信側を独立して動作させることができ、損失が無く必要な送信電力が得られる。また、送受の切り替えを行うスイッチ回路が不要となる。   According to the second embodiment, since the Wilkinson distribution circuit is used as the power distribution circuit 43, the transmission signal does not pass through the power distribution circuit 43 to the rectifier circuit / voltage amplification circuit 44 and the power supply circuit 45 side. Therefore, the reception side and the transmission side can be operated independently, and necessary transmission power can be obtained without loss. In addition, a switch circuit for switching between transmission and reception is not necessary.

《第3の実施形態》
次に、第3の実施形態に係るRFデバイスについて図7を参照して説明する。
図7はこの第3の実施形態に係るRFデバイスの構成を示すブロック図である。図2に示したRFデバイスと異なるのは、RFデバイス102側に電池を内蔵していないことである。すなわち電力変換回路33は電力分配回路23で分配された一方の高周波信号を整流・平滑することによって、制御回路29に対する電源電圧を直接生成して与える。
<< Third Embodiment >>
Next, an RF device according to a third embodiment will be described with reference to FIG.
FIG. 7 is a block diagram showing the configuration of the RF device according to the third embodiment. The difference from the RF device shown in FIG. 2 is that no battery is built in the RF device 102 side. That is, the power conversion circuit 33 directly generates and gives a power supply voltage to the control circuit 29 by rectifying and smoothing one high-frequency signal distributed by the power distribution circuit 23.

この電力変換回路33に例えばコンデンサによる充電回路を備える場合には、リーダ200から送信される無線周波数信号の搬送波を電力として充電し、送信時にその電力を利用する。またコンデンサ等による充電回路を備えない場合には、リーダ200からの無線周波数信号の無変調搬送波を受信しつつ、リーダ200のアンテナ31から見た負荷を変調するいわゆるミラーサブキャリア方式で送信する。すなわち送信回路28はアンテナ21の終端/開放の状態切替によって、アンテナ21からの反射量や位相を変化させることによってデータ伝送を行う。   When the power conversion circuit 33 includes a charging circuit using a capacitor, for example, the carrier of the radio frequency signal transmitted from the reader 200 is charged as power, and the power is used at the time of transmission. In the case where a charging circuit using a capacitor or the like is not provided, a non-modulated carrier wave of a radio frequency signal from the reader 200 is received and transmitted using a so-called mirror subcarrier system that modulates a load viewed from the antenna 31 of the reader 200. That is, the transmission circuit 28 performs data transmission by changing the amount of reflection and the phase from the antenna 21 by switching the termination / open state of the antenna 21.

なお、以上に示した第1〜第3のいずれの実施形態においても、RFデバイスがリーダに対してアクティブに送信する場合、リーダとRFデバイスとの間で同じ周波数帯域を用いて送受信するが、その周波数帯域内で送信信号の帯域と受信信号の帯域とを分けてデータ伝送を行うようにしてもよい。この場合には例えば図2・図7に示した信号送受信回路22はデュプレクサで構成する。   In any of the first to third embodiments described above, when the RF device actively transmits to the reader, transmission and reception are performed using the same frequency band between the reader and the RF device. Data transmission may be performed by dividing the band of the transmission signal and the band of the reception signal within the frequency band. In this case, for example, the signal transmission / reception circuit 22 shown in FIGS. 2 and 7 is configured by a duplexer.

また、同一の周波数帯域を用いてリーダとRFデバイス間で送受を行う場合には、信号送受信回路22として送受切替スイッチを用い、送信と受信を時分割で行うようにしてもよい。   When transmission / reception is performed between the reader and the RF device using the same frequency band, a transmission / reception change-over switch may be used as the signal transmission / reception circuit 22 to perform transmission and reception in a time division manner.

特許文献1に示されている半導体チップのブロック図である。10 is a block diagram of a semiconductor chip disclosed in Patent Document 1. FIG. 第1の実施形態に係るRFデバイスの構成を示すブロック図である。It is a block diagram which shows the structure of RF device which concerns on 1st Embodiment. 図2中の起動回路の構成例を示すブロック図である。FIG. 3 is a block diagram illustrating a configuration example of a startup circuit in FIG. 2. 無線周波数信号の変復調の関係を示す波形図である。It is a wave form diagram which shows the relationship of modulation / demodulation of a radio frequency signal. 送受信タイミングの例を示すタイミングチャートである。It is a timing chart which shows the example of transmission / reception timing. 第2の実施形態に係るRFデバイスの構成を示すブロック図である。It is a block diagram which shows the structure of RF device which concerns on 2nd Embodiment. 第3の実施形態に係るRFデバイスの構成を示すブロック図である。It is a block diagram which shows the structure of RF device which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

21,31,41−アンテナ
29,50−制御回路
30−リーダ側送受信回路
43−電力分配回路
100〜102−RFデバイス
200−リーダ
21, 31, 41-antenna 29, 50-control circuit 30-reader side transmission / reception circuit 43-power distribution circuit 100-102-RF device 200-reader

Claims (4)

無線周波数信号の送受信により非接触でデータ伝送を行うRFデバイスであって、
高周波信号を受信するアンテナと、
前記アンテナにより受信した高周波信号を電力分配する電力分配回路と、
前記電力分配回路で電力分配した一方の高周波信号を受信信号として処理する制御回路と、
電池を備え、前記電池の起電圧と、前記電力分配回路で電力分配した他方の高周波信号を整流して変換した直流電源電圧と、の加算電圧を前記制御回路に対する電源電圧として出力する電源回路と、
を備え
前記制御回路が、前記電池の起電圧では動作せず、前記加算電圧で動作することを特徴とするRFデバイス。
An RF device that performs non-contact data transmission by transmitting and receiving radio frequency signals,
An antenna for receiving high-frequency signals;
A power distribution circuit that distributes power of a high-frequency signal received by the antenna;
A control circuit for processing, as a received signal, one high-frequency signal that is power-distributed by the power distribution circuit;
A power supply circuit comprising a battery, and outputting a sum voltage of the electromotive voltage of the battery and a DC power supply voltage obtained by rectifying and converting the other high-frequency signal distributed by the power distribution circuit as a power supply voltage for the control circuit; ,
Equipped with a,
The RF device is characterized in that the control circuit does not operate with the electromotive voltage of the battery but operates with the added voltage .
前記高周波信号は、周波数変調信号、位相変調信号または振幅変調信号を時間軸上で断続的に発生させたディジタル変調信号である請求項1に記載のRFデバイス。   The RF device according to claim 1, wherein the high-frequency signal is a digital modulation signal in which a frequency modulation signal, a phase modulation signal, or an amplitude modulation signal is intermittently generated on a time axis. 前記電力分配回路はウィルキンソン型分配回路である請求項1または2に記載のRFデバイス。   The RF device according to claim 1, wherein the power distribution circuit is a Wilkinson distribution circuit. 送信すべきデータを持つRFデバイスとリーダとの間で無線信号により非接触でデータ伝送を行うRFデータ伝送方法において、
前記リーダによって、周波数変調信号、位相変調信号または振幅変調信号を時間軸上で断続的に発生させた無線信号を送信させ、
前記RFデバイスによって、前記無線信号の前記時間軸上で存在する区間で、当該無線信号を電力に変換させて直流電源電圧を発生させ、当該RFデバイスの備える電池の起電圧と、前記無線信号からの変換による直流電源電圧との加算電圧を電源電圧として、前記無線信号を受信させるとともに前記データを送信する制御回路を起動させるようにし、前記制御回路を前記電池の起電圧では動作せず、前記加算電圧で動作するようにしたことを特徴とするRFデータ伝送方法。
In an RF data transmission method for performing non-contact data transmission with a wireless signal between an RF device having data to be transmitted and a reader,
By the reader, a radio signal in which a frequency modulation signal, a phase modulation signal or an amplitude modulation signal is intermittently generated on the time axis is transmitted,
From the RF device, the radio signal is converted into electric power in a section existing on the time axis of the radio signal to generate a DC power supply voltage, and an electromotive voltage of a battery included in the RF device and the radio signal The control circuit that activates the control circuit that transmits the data while receiving the wireless signal using the addition voltage with the DC power supply voltage by the conversion of the power supply voltage, and does not operate the control circuit with the electromotive voltage of the battery, An RF data transmission method characterized by operating with an addition voltage .
JP2006104158A 2006-04-05 2006-04-05 RF device and RF data transmission method Expired - Fee Related JP4605076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006104158A JP4605076B2 (en) 2006-04-05 2006-04-05 RF device and RF data transmission method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006104158A JP4605076B2 (en) 2006-04-05 2006-04-05 RF device and RF data transmission method

Publications (2)

Publication Number Publication Date
JP2007281768A JP2007281768A (en) 2007-10-25
JP4605076B2 true JP4605076B2 (en) 2011-01-05

Family

ID=38682777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006104158A Expired - Fee Related JP4605076B2 (en) 2006-04-05 2006-04-05 RF device and RF data transmission method

Country Status (1)

Country Link
JP (1) JP4605076B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101804254B1 (en) 2011-12-14 2017-12-04 한국전자통신연구원 Active power device and method thereof
JP6409255B2 (en) * 2013-07-31 2018-10-24 株式会社村田製作所 Duplexer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062557A (en) * 1996-08-13 1998-03-06 Oki Electric Ind Co Ltd Tag
JP2000223954A (en) * 1999-01-27 2000-08-11 Mitsubishi Electric Corp Even harmonic mixer, orthogonal mixer, even harmonic orthogonal mixer and direct conversion transmitter- receiver
JP2001209772A (en) * 2000-01-25 2001-08-03 Toppan Printing Co Ltd Ic card with non-contact transmitting mechanism
JP2001326526A (en) * 2000-05-16 2001-11-22 Mitsubishi Electric Corp Shield antenna coil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062557A (en) * 1996-08-13 1998-03-06 Oki Electric Ind Co Ltd Tag
JP2000223954A (en) * 1999-01-27 2000-08-11 Mitsubishi Electric Corp Even harmonic mixer, orthogonal mixer, even harmonic orthogonal mixer and direct conversion transmitter- receiver
JP2001209772A (en) * 2000-01-25 2001-08-03 Toppan Printing Co Ltd Ic card with non-contact transmitting mechanism
JP2001326526A (en) * 2000-05-16 2001-11-22 Mitsubishi Electric Corp Shield antenna coil

Also Published As

Publication number Publication date
JP2007281768A (en) 2007-10-25

Similar Documents

Publication Publication Date Title
JP4519142B2 (en) Information access system and method for accessing information in a contactless information storage device
US8063769B2 (en) Dual band antenna and methods for use therewith
JP4983017B2 (en) Information access system and method for accessing information in a contactless information storage device
US20110205026A1 (en) Radio frequency identification reader antenna having a dynamically adjustable q-factor
US9325430B2 (en) Communication system and communication apparatus
JP2012512463A (en) Compatible or exclusive RFID tag communication and query rounds
EP1851676A1 (en) Techniques to configure radio-frequency identification readers
US20060049916A1 (en) Communication device and portable electronic instrument providing this communication device
JP2006004015A (en) Battery-less type program controllable rfid transponder with logic circuit
JP2007088661A (en) Information processing apparatus and loop antenna
KR20060112976A (en) Rfid system and controlling method thereof
JP4605076B2 (en) RF device and RF data transmission method
JP4021718B2 (en) Mobile terminal device
WO2009082619A1 (en) Voice over rfid
JP2004206383A (en) Contactless ic card reader-writer
KR101584953B1 (en) Rfid uhf rf interrupt logic circuit
KR100807109B1 (en) Reader of rfid system and controlling methdo therefore
US20100013605A1 (en) Data carrier and data carrier system
JP2006072826A (en) Wireless tag system, reader/writer, wireless tag device and data writing/reading method
JP2007174130A (en) Hybrid-type soft id tag with multi-communication corresponding sensor function
JP2003018043A (en) Communication unit
KR100762826B1 (en) Reader for rfid system
JP2007110577A (en) Signal/power receiver
JP5585337B2 (en) Wireless communication terminal and wireless communication method
JPH07154312A (en) Radio frequency code identifying method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100816

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Ref document number: 4605076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees