JP4602941B2 - Capacitance sensor circuit - Google Patents

Capacitance sensor circuit Download PDF

Info

Publication number
JP4602941B2
JP4602941B2 JP2006166586A JP2006166586A JP4602941B2 JP 4602941 B2 JP4602941 B2 JP 4602941B2 JP 2006166586 A JP2006166586 A JP 2006166586A JP 2006166586 A JP2006166586 A JP 2006166586A JP 4602941 B2 JP4602941 B2 JP 4602941B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
capacitance
detection
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006166586A
Other languages
Japanese (ja)
Other versions
JP2007334690A (en
Inventor
誠也 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Rika Co Ltd
Original Assignee
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Rika Co Ltd filed Critical Tokai Rika Co Ltd
Priority to JP2006166586A priority Critical patent/JP4602941B2/en
Publication of JP2007334690A publication Critical patent/JP2007334690A/en
Application granted granted Critical
Publication of JP4602941B2 publication Critical patent/JP4602941B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Input From Keyboards Or The Like (AREA)
  • Electronic Switches (AREA)

Description

本発明は、静電容量センサ回路に関する。   The present invention relates to a capacitance sensor circuit.

従来、機器の操作用スイッチ等として、機械構造を持たず、操作者が操作面に触れた事を検出するセンサ回路が用いられている。前記センサ回路は機械構造によるスイッチと比べて設置スペースが少なくて済む等の利点があり、様々な形態の前記センサ回路が提案されている。それらセンサ回路のひとつとして広く用いられている回路に、操作者が操作面等に指等で触れることで、操作面等に生じる静電容量の変化に基づいて前記静電容量の変化を検出する静電容量センサがある。   2. Description of the Related Art Conventionally, a sensor circuit that does not have a mechanical structure and detects that an operator touches an operation surface is used as an operation switch for an apparatus. The sensor circuit is advantageous in that it requires less installation space than a switch having a mechanical structure, and various forms of the sensor circuit have been proposed. When the operator touches the operation surface or the like with a finger or the like on a circuit widely used as one of these sensor circuits, the change in the capacitance is detected based on the change in the capacitance generated on the operation surface or the like. There is a capacitance sensor.

静電容量センサ回路は、例えば特許文献1に示すように、パルス信号発生回路と抵抗、第1コンデンサ、第2コンデンサ、検出電極、差動増幅回路、交流−直流変換回路、比較回路を備える。そして、前記パルス信号発生回路の出力は差動増幅回路の反転(マイナス)入力端子に入力され、前記パルス信号発生回路の出力は抵抗を介して差動増幅回路の非反転(プラス)入力端子に入力される。又、差動増幅回路の非反転(プラス)入力端子には、第1コンデンサを介して検出電極が接続されると共に、第2コンデンサが接続されている。このように構成された静電容量センサ回路によれば、検出電極の静電容量が変化すると、差動増幅回路の反転(マイナス)入力端子と非反転(プラス)入力端子との間の電圧の位相差が変化し、前記位相差の変化に基づいて差動増幅回路の出力電圧に変化が生じる。そして、前記出力電圧を交流−直流変換回路にて直流にし、その直流電圧の変化を比較回路によって予め設定された閾値と比較することで、検出電極に操作者が接触したか否かを判断することのできる信号を出力する。   As shown in Patent Document 1, for example, the capacitance sensor circuit includes a pulse signal generation circuit, a resistor, a first capacitor, a second capacitor, a detection electrode, a differential amplifier circuit, an AC-DC conversion circuit, and a comparison circuit. The output of the pulse signal generating circuit is input to the inverting (minus) input terminal of the differential amplifier circuit, and the output of the pulse signal generating circuit is input to the non-inverting (plus) input terminal of the differential amplifier circuit via a resistor. Entered. A detection electrode is connected to the non-inverted (plus) input terminal of the differential amplifier circuit via a first capacitor, and a second capacitor is connected. According to the capacitance sensor circuit configured as described above, when the capacitance of the detection electrode changes, the voltage between the inverting (minus) input terminal and the non-inverting (plus) input terminal of the differential amplifier circuit is changed. The phase difference changes, and the output voltage of the differential amplifier circuit changes based on the change in the phase difference. Then, the output voltage is converted to a direct current by an AC-DC conversion circuit, and a change in the DC voltage is compared with a preset threshold value by a comparison circuit to determine whether an operator has touched the detection electrode. Outputs a signal that can

しかしながら、特許文献1に記載された静電容量センサ回路は、検出電極側からの信号とパルス信号発生回路からの信号との位相差から操作者が検出電極に接触しているか否かの判定をした。その為、操作者が検出電極に接触しているか否かの判定を行なうために比較回路で用いる閾値は、差動増幅回路の出力状態に合わせて調整が必要であった。そして、差動増幅回路の出力状態はパルス信号発生回路の周波数によって変化するので、前記閾値の設定には前記周波数の影響を考慮する必要があった。   However, the capacitance sensor circuit described in Patent Document 1 determines whether or not the operator is in contact with the detection electrode from the phase difference between the signal from the detection electrode side and the signal from the pulse signal generation circuit. did. Therefore, the threshold value used in the comparison circuit for determining whether or not the operator is in contact with the detection electrode needs to be adjusted according to the output state of the differential amplifier circuit. Since the output state of the differential amplifier circuit changes depending on the frequency of the pulse signal generation circuit, it is necessary to consider the influence of the frequency in setting the threshold value.

そこで、従来、図2に示すような静電容量センサ11が提案されている。
図2に示す静電容量センサ11は、静電容量検出回路12、操作面13を備え、操作面13には検出電極14が埋設されている。そして、検出電極14は電線で静電容量検出回路12の検出電圧端子12aと接続されている。
Therefore, conventionally, a capacitance sensor 11 as shown in FIG. 2 has been proposed.
A capacitance sensor 11 shown in FIG. 2 includes a capacitance detection circuit 12 and an operation surface 13, and a detection electrode 14 is embedded in the operation surface 13. The detection electrode 14 is connected to the detection voltage terminal 12a of the capacitance detection circuit 12 by an electric wire.

そして、この静電容量検出回路12は、図3に示すように、発信器V1c、出力抵抗R1o、整流回路21、フィルタ回路22、差動増幅回路23、基準電圧源Vref及び分圧抵抗R1、R2を備える。発信器V1cは、出力抵抗R1oと整流回路21、フィルタ回路22を介して差動増幅回路23の非反転(プラス)入力端子に接続されている。又、出力抵抗R1oと整流回路21との間には、検出電圧端子12aを介して検出電極14が接続されている。さらに、差動増幅回路23の反転(マイナス)入力端子は、分圧抵抗R2を介して差動増幅回路23の出力端子に接続されると共に、分圧抵抗R1を介して基準電圧源Vrefの陽極側に接続されている。   As shown in FIG. 3, the capacitance detection circuit 12 includes a transmitter V1c, an output resistor R1o, a rectifier circuit 21, a filter circuit 22, a differential amplifier circuit 23, a reference voltage source Vref, and a voltage dividing resistor R1, R2 is provided. The transmitter V1c is connected to the non-inverting (plus) input terminal of the differential amplifier circuit 23 via the output resistor R1o, the rectifier circuit 21, and the filter circuit 22. A detection electrode 14 is connected between the output resistor R1o and the rectifier circuit 21 via a detection voltage terminal 12a. Further, the inverting (minus) input terminal of the differential amplifier circuit 23 is connected to the output terminal of the differential amplifier circuit 23 via the voltage dividing resistor R2, and the anode of the reference voltage source Vref via the voltage dividing resistor R1. Connected to the side.

このように構成された静電容量検出回路12によれば、検出電極14に人体が接触すると、検出電極14の静電容量が人体と検出電極14との間にある静電容量C1の分だけ増
加し、検出電圧端子12aにかかる検出電圧Vdが下がる。その結果、差動増幅回路23の出力電圧V1oに変化が生じる。前記出力電圧V1oの変化を図示しない判定回路に入力することによって、判定回路が操作面13に操作者が接触したか否かを判定した信号を出力する。
特開2000−230983号公報
According to the capacitance detection circuit 12 configured as described above, when the human body comes into contact with the detection electrode 14, the capacitance of the detection electrode 14 is equal to the capacitance C <b> 1 between the human body and the detection electrode 14. The detection voltage Vd applied to the detection voltage terminal 12a decreases and decreases. As a result, a change occurs in the output voltage V1o of the differential amplifier circuit 23. By inputting the change of the output voltage V1o to a determination circuit (not shown), the determination circuit outputs a signal that determines whether or not the operator has touched the operation surface 13.
JP 2000-230983 A

しかしながら、静電容量センサ11の静電容量検出回路12は、差動増幅回路23の出力を効率よく増幅するために、差動増幅回路23の反転(マイナス)入力端子には、操作者が操作面13に接触していない場合に非反転(プラス)入力端子に入力される電圧に近い電圧を、基準電圧源Vrefを調整して供給しなければならなかった。又、操作者が操作面13に接触した場合に、検出電極14にかかる電圧Vdの変化を大きくするためには発信器V1cの周波数を高くする必要があった。そこで、静電容量検出回路12の周波数を高くすると回路に用いる素子が高価になる問題があった。さらに、発信器V1cの周波数を高くすると、放射が起こる問題もあった。   However, since the capacitance detection circuit 12 of the capacitance sensor 11 efficiently amplifies the output of the differential amplifier circuit 23, an operator operates the inverting (minus) input terminal of the differential amplifier circuit 23. When the surface 13 is not touched, a voltage close to the voltage input to the non-inverting (plus) input terminal must be supplied by adjusting the reference voltage source Vref. Further, when the operator touches the operation surface 13, in order to increase the change in the voltage Vd applied to the detection electrode 14, it is necessary to increase the frequency of the transmitter V1c. Therefore, when the frequency of the capacitance detection circuit 12 is increased, there is a problem that an element used in the circuit becomes expensive. Furthermore, there is a problem that radiation occurs when the frequency of the transmitter V1c is increased.

本発明の目的は、発信器の周波数の影響の少ない静電容量センサ回路を提供することにある。   An object of the present invention is to provide a capacitance sensor circuit that is less affected by the frequency of the transmitter.

請求項1に記載の静電容量センサ回路は、発信器から出力される発信信号を、抵抗を介して検出電極に印加し、その検出電極の静電容量の変化を検出する静電容量センサ回路において、前記抵抗と前記検出電極との間に接続したコンデンサと、前記コンデンサの前記抵抗側の電圧と前記コンデンサの前記検出電極側の電圧との差の電圧を増幅する増幅回路とを備えたことを要旨とする。   The capacitance sensor circuit according to claim 1, wherein a transmission signal output from a transmitter is applied to a detection electrode via a resistor, and a change in capacitance of the detection electrode is detected. And a capacitor connected between the resistor and the detection electrode, and an amplifier circuit for amplifying the difference voltage between the voltage on the resistance side of the capacitor and the voltage on the detection electrode side of the capacitor. Is the gist.

請求項2に記載の静電容量センサ回路は、請求項1に記載の静電容量センサ回路において、前記増幅器は、差動増幅回路であることを要旨とする。
請求項3に記載の静電容量センサ回路は、請求項1又は2に記載の静電容量センサ回路において、前記増幅回路の出力端子には整流回路が接続され、前記増幅回路からの検出信号を前記整流回路を介して出力させることを要旨とする。
The capacitance sensor circuit according to claim 2 is the capacitance sensor circuit according to claim 1, wherein the amplifier is a differential amplifier circuit.
A capacitance sensor circuit according to a third aspect is the capacitance sensor circuit according to the first or second aspect, wherein a rectifier circuit is connected to an output terminal of the amplifier circuit, and a detection signal from the amplifier circuit is received. The gist is to output via the rectifier circuit.

請求項4に記載の静電容量センサ回路は、請求項3に記載の静電容量センサ回路において、前記整流回路の出力端子にはフィルタ回路が接続され、前記整流回路からの検出信号を前記フィルタ回路を介して出力させることを要旨とする。   The capacitance sensor circuit according to claim 4 is the capacitance sensor circuit according to claim 3, wherein a filter circuit is connected to an output terminal of the rectifier circuit, and a detection signal from the rectifier circuit is transmitted to the filter. The gist of the output is through a circuit.

請求項5に記載の静電容量センサ回路は、請求項1〜4のいずれか1つに記載の静電容量センサ回路において、前記コンデンサの静電容量は、検出電極の静電容量よりも十分小さい静電容量を有することを要旨とする。   The capacitance sensor circuit according to claim 5 is the capacitance sensor circuit according to any one of claims 1 to 4, wherein the capacitance of the capacitor is sufficiently larger than the capacitance of the detection electrode. The gist is to have a small capacitance.

請求項1の発明によれば、増幅回路は、抵抗とコンデンサ間の電圧と、コンデンサと検出電極間の電圧との差分を増幅する。この時、抵抗とコンデンサ間の電圧と、コンデンサと検出電極間の電圧の関係は、コンデンサの静電容量と検出電極の静電容量との関係で求められ、発信器の周波数の影響を受けない。その結果、発信器の周波数の影響の少ない静電容量センサ回路を構成することができる。   According to the invention of claim 1, the amplifier circuit amplifies the difference between the voltage between the resistor and the capacitor and the voltage between the capacitor and the detection electrode. At this time, the relationship between the voltage between the resistor and the capacitor and the voltage between the capacitor and the detection electrode is determined by the relationship between the capacitance of the capacitor and the capacitance of the detection electrode, and is not affected by the frequency of the transmitter. . As a result, it is possible to configure a capacitance sensor circuit that is less affected by the frequency of the transmitter.

又、周波数の影響が少ないため、好適に検出電極の静電容量の変化を検出するために発信器の周波数を高くする必要がなく、発信器の周波数が低くても好適に検出電極の静電容
量の変化を検出できる。従って、周波数が高いと問題となる放射を抑制できると共に、回路の部品に高い精度を求められない。さらに、発信器の周波数の変更に伴う回路の調整も不要になる。その結果、低い周波数でも好適に検出電極の静電容量の変化が検出できて、調整の煩わしさの少ない静電容量センサ回路を提供することができる。
In addition, since the influence of the frequency is small, it is not necessary to increase the frequency of the transmitter in order to detect a change in the capacitance of the detection electrode, and the electrostatic capacitance of the detection electrode is preferably set even if the frequency of the transmitter is low. Capacitance change can be detected. Therefore, radiation that becomes a problem when the frequency is high can be suppressed, and high accuracy is not required for circuit components. Furthermore, it is not necessary to adjust the circuit according to the change in the frequency of the transmitter. As a result, it is possible to provide a capacitance sensor circuit that can detect a change in the capacitance of the detection electrode suitably even at a low frequency and has less troublesome adjustment.

請求項2の発明によれば、差動増幅回路は、非反転(プラス)入力端子に入力された抵抗とコンデンサ間の電圧から反転(マイナス)入力端子に入力されたコンデンサと検出電極間電圧を引いた差分の電圧を増幅する。その結果、増幅回路の構造を容易にすることができる。   According to the second aspect of the present invention, the differential amplifier circuit obtains the voltage between the capacitor and the detection electrode input to the inverting (minus) input terminal from the voltage between the resistor and the capacitor input to the non-inverting (plus) input terminal. Amplifies the difference voltage. As a result, the structure of the amplifier circuit can be facilitated.

請求項3の発明によれば、増幅回路からの検出信号は、整流回路にて整流される。検出信号は利用が容易な直流成分の信号として出力することができる。
請求項4の発明によれば、整流回路からの検出信号は、フィルタ回路にてノイズが除去される。従って、ノイズが混入した検出信号であってもフィルタ回路を通ることによって、信号に混入したノイズを好適に除去され、誤差の少ない検出結果信号をフィルタ回路から出力することができる。
According to the invention of claim 3, the detection signal from the amplifier circuit is rectified by the rectifier circuit. The detection signal can be output as a DC component signal that is easy to use.
According to the invention of claim 4, noise is removed from the detection signal from the rectifier circuit by the filter circuit. Therefore, even if the detection signal is mixed with noise, the noise mixed in the signal is suitably removed by passing through the filter circuit, and a detection result signal with few errors can be output from the filter circuit.

請求項5の発明によれば、コンデンサの静電容量が検出電極の静電容量より十分小さければ、増幅回路からの検出信号にコンデンサの静電容量がほとんど影響しなくなる。なぜなら、増幅回路が増幅する、抵抗とコンデンサ間の電圧と、コンデンサと検出電極間の電圧の差は、コンデンサの静電容量と検出電極の静電容量との和で検出電極の静電容量を除した値に比例する。その為、コンデンサの静電容量が検出電極の静電容量より十分小さければ、前記値に対するコンデンサの静電容量の影響が小さくなるからである。その結果、電気的にはコンデンサの静電容量をほとんど考慮する必要がなくなり、より調整に煩わされない静電容量センサ回路を提供することができる。   According to the invention of claim 5, if the capacitance of the capacitor is sufficiently smaller than the capacitance of the detection electrode, the capacitance of the capacitor hardly affects the detection signal from the amplifier circuit. This is because the difference between the voltage between the resistor and the capacitor amplified by the amplifier circuit and the voltage between the capacitor and the detection electrode is the sum of the capacitance of the capacitor and the capacitance of the detection electrode. It is proportional to the divided value. Therefore, if the capacitance of the capacitor is sufficiently smaller than the capacitance of the detection electrode, the influence of the capacitance of the capacitor on the value is reduced. As a result, it is not necessary to consider the capacitance of the capacitor electrically, and a capacitance sensor circuit that is not bothered by adjustment can be provided.

(実施形態)
以下、本発明を具体化した実施形態を図1に従って説明する。
図1に、静電容量センサ回路1の回路図を示す。
(Embodiment)
Hereinafter, an embodiment of the present invention will be described with reference to FIG.
FIG. 1 shows a circuit diagram of the capacitance sensor circuit 1.

静電容量センサ回路1は、発信器Vc、抵抗Ro、コンデンサCo、検出電極2、増幅回路としての差動増幅回路3、整流回路4、フィルタ回路5、外部出力端子6を備える。
発信器Vcは、交流信号発信回路(例えば正弦波発信回路)であって、抵抗RoとコンデンサCoを介して検出電極2に接続されている。
The capacitance sensor circuit 1 includes a transmitter Vc, a resistor Ro, a capacitor Co, a detection electrode 2, a differential amplifier circuit 3 as an amplifier circuit, a rectifier circuit 4, a filter circuit 5, and an external output terminal 6.
The transmitter Vc is an AC signal transmission circuit (for example, a sine wave transmission circuit), and is connected to the detection electrode 2 via a resistor Ro and a capacitor Co.

検出電極2は、人が指などで接触するため電極であり、導電性のある部材、例えば、金属などのような部材である。
差動増幅回路3の非反転(プラス)入力端子は、抵抗RoとコンデンサCoとの間の接続点Paに接続されると共に、その反転(マイナス)入力端子は、コンデンサCoと検出電極2との間の接続点Pbに接続されている。さらに、差動増幅回路3の出力端子は整流回路4とフィルタ回路5を介して外部出力端子6に接続されている。又、差動増幅回路3の電圧増幅率は、増幅率Gとする。
The detection electrode 2 is an electrode for a person to contact with a finger or the like, and is a conductive member such as a metal.
The non-inverting (plus) input terminal of the differential amplifier circuit 3 is connected to the connection point Pa between the resistor Ro and the capacitor Co, and the inverting (minus) input terminal is connected to the capacitor Co and the detection electrode 2. It is connected to the connection point Pb. Further, the output terminal of the differential amplifier circuit 3 is connected to the external output terminal 6 via the rectifier circuit 4 and the filter circuit 5. The voltage amplification factor of the differential amplifier circuit 3 is assumed to be amplification factor G.

整流回路4は、交流信号を直流信号に変換する回路、例えば、全波整流回路であって、フィルタ回路5は、信号に含まれるノイズを除去するための回路、例えば、ローパスフィルタである。又、整流回路4から出力される直流信号の電力と、整流回路4に入力される交流信号の電力の比を、整流効率Aとする。   The rectifier circuit 4 is a circuit that converts an AC signal into a DC signal, for example, a full-wave rectifier circuit, and the filter circuit 5 is a circuit for removing noise contained in the signal, for example, a low-pass filter. The ratio of the power of the DC signal output from the rectifier circuit 4 and the power of the AC signal input to the rectifier circuit 4 is defined as a rectification efficiency A.

本実施形態の静電容量センサ回路1の作用を説明する。尚、説明の便宜上、発信器Vc
は動作状態であるとする。
検出電極2に人体が触れていない通常の状態(非検出状態)では、検出電極2は開放状態である。従って、発信器Vcが抵抗RoとコンデンサCoに電力を供給しようとしても、検出電極2が開放状態なので、抵抗RoとコンデンサCoに電気は流れない。抵抗RoやコンデンサCoに電気が流れないことから、抵抗RoとコンデンサCoの間の接続点Paの電圧Vaも、コンデンサCoと検出電極2の間の接続点Pbの電圧Vbも発生しないため、前記電圧Va,Vbはともに0Vである。
The operation of the capacitance sensor circuit 1 of the present embodiment will be described. For convenience of explanation, the transmitter Vc
Is the operating state.
In a normal state where the human body is not touching the detection electrode 2 (non-detection state), the detection electrode 2 is in an open state. Therefore, even if the transmitter Vc tries to supply power to the resistor Ro and the capacitor Co, electricity does not flow through the resistor Ro and the capacitor Co because the detection electrode 2 is in an open state. Since electricity does not flow through the resistor Ro and the capacitor Co, the voltage Va at the connection point Pa between the resistor Ro and the capacitor Co and the voltage Vb at the connection point Pb between the capacitor Co and the detection electrode 2 are not generated. The voltages Va and Vb are both 0V.

一方、検出電極2に人体が触れた場合(検出状態)では、検出電極2は人体を通してグランドに接続される。人体は静電容量を持つコンデンサとして電気的に等価表現できるので人体を検出容量Cとすると、発信器Vcは、抵抗Ro、コンデンサCo、検出電極2を介し検出容量Cからグランドに接続されたことになる。この時、発信器Vcが抵抗RoとコンデンサCoに電力を供給すると、抵抗RoやコンデンサCoには電気が流れる。従って、抵抗RoとコンデンサCo間の接続点Pa及びコンデンサCoと検出電極2の間の接続点Pbに、それぞれ電圧Va、Vbが発生する。   On the other hand, when the human body touches the detection electrode 2 (detected state), the detection electrode 2 is connected to the ground through the human body. Since the human body can be electrically expressed as a capacitor having electrostatic capacity, if the human body is a detection capacitor C, the transmitter Vc is connected from the detection capacitor C to the ground via the resistor Ro, the capacitor Co, and the detection electrode 2. become. At this time, when the transmitter Vc supplies power to the resistor Ro and the capacitor Co, electricity flows through the resistor Ro and the capacitor Co. Accordingly, voltages Va and Vb are generated at the connection point Pa between the resistor Ro and the capacitor Co and the connection point Pb between the capacitor Co and the detection electrode 2, respectively.

この時、接続点Pbの電圧Vbは、接続点Paの電圧Vaと静電容量(コンデンサ)の合成・分圧の関係とから式(1)の様に表すことができる。尚、式(1)〜(4)では、便宜上、検出容量Cの静電容量をC、コンデンサCoの静電容量をCoと表現している。   At this time, the voltage Vb at the connection point Pb can be expressed as in Expression (1) from the relationship between the voltage Va at the connection point Pa and the combined / divided voltage of the capacitance (capacitor). In formulas (1) to (4), for the sake of convenience, the capacitance of the detection capacitor C is expressed as C, and the capacitance of the capacitor Co is expressed as Co.

一方、差動増幅回路3の非反転(プラス)入力端子には接続点Paの電圧Vaが入力されている。さらに、差動増幅回路3の反転(マイナス)入力端子には接続点Pbの電圧Vbが入力されている。 On the other hand, the voltage Va at the connection point Pa is input to the non-inverting (plus) input terminal of the differential amplifier circuit 3. Further, the voltage Vb at the connection point Pb is input to the inverting (minus) input terminal of the differential amplifier circuit 3.

差動増幅回路3の非反転(プラス)入力端子に前記電圧Vaが、反転(マイナス)入力端子に前記電圧Vbが入力されることから、差動増幅回路3は電圧Vaと電圧Vbの差分、(電圧Va−電圧Vb)を増幅することとなる。差動増幅回路3の増幅対象である(電圧Va−電圧Vb)は式(1)の結果を利用すると、式(2)の様に表すことができる。   Since the voltage Va is input to the non-inverting (plus) input terminal of the differential amplifier circuit 3 and the voltage Vb is input to the inverting (minus) input terminal, the differential amplifier circuit 3 has a difference between the voltage Va and the voltage Vb, (Voltage Va−Voltage Vb) will be amplified. (Voltage Va−Voltage Vb) to be amplified by the differential amplifier circuit 3 can be expressed as Equation (2) by using the result of Equation (1).

差動増幅回路3に入力された増幅対象(電圧Va−電圧Vb)の電圧は、差動増幅回路3の増幅率Gで増幅されて差動増幅回路3の出力端子に出力される。従って、差動増幅回路3の出力端子の出力電圧Vgは、電圧Vg=増幅率G×(電圧Va−電圧Vb)となり、式(2)の結果を用いると、差動増幅回路3の出力端子の出力電圧Vgは式(3)の様に表すことができる。 The voltage of the amplification target (voltage Va−voltage Vb) input to the differential amplifier circuit 3 is amplified by the amplification factor G of the differential amplifier circuit 3 and output to the output terminal of the differential amplifier circuit 3. Therefore, the output voltage Vg of the output terminal of the differential amplifier circuit 3 is voltage Vg = amplification factor G × (voltage Va−voltage Vb), and using the result of the expression (2), the output terminal of the differential amplifier circuit 3 The output voltage Vg of can be expressed as shown in Equation (3).

出力電圧Vg=G×(Va×C/(Co+C))・・・(3)
差動増幅回路3の出力端子の出力電圧Vgは、整流回路4とフィルタ回路5からなる信号調整回路を介して外部出力端子6に検出信号としての検出電圧Voとして出力される。
Output voltage Vg = G × (Va × C / (Co + C)) (3)
The output voltage Vg at the output terminal of the differential amplifier circuit 3 is output as a detection voltage Vo as a detection signal to the external output terminal 6 through a signal adjustment circuit including the rectifier circuit 4 and the filter circuit 5.

整流回路4は、例えば整流効率Aの全波整流回路であるから、出力電圧Vgは、おおよそ整流効率A×|出力電圧Vg|に変換される。又、フィルタ回路5は|出力電圧Vg|に含まれる不要なノイズ成分を除去することが目的であることから、|出力電圧Vg|の主成分には変化を与えない。従って、外部出力端子6に出力される検出電圧Voは、おおよそ検出電圧Vo∝整流効率A×|出力電圧Vg|となる。これに式(3)の結果を用いると検出電圧Voは式(4)の様に表すことができる。   Since the rectifier circuit 4 is, for example, a full-wave rectifier circuit with a rectification efficiency A, the output voltage Vg is approximately converted into a rectification efficiency A × | output voltage Vg |. Since the filter circuit 5 is intended to remove unnecessary noise components contained in the | output voltage Vg |, the main component of the | output voltage Vg | is not changed. Therefore, the detection voltage Vo output to the external output terminal 6 is approximately the detection voltage Vo∝rectification efficiency A × | output voltage Vg |. If the result of Formula (3) is used for this, detection voltage Vo can be expressed like Formula (4).

検出電圧Vo∝(A×G|Va|×C)/(Co+C)・・・(4)
上記作用により、検出電極2に人体が触れていない非検出状態の場合は、電圧Vaも検出容量Cも0であるので、検出電圧Voは0となる。一方、検出電極2に人体が触れている検出状態の場合は、検出容量Cがあり、電圧Vaも発生し、検出電圧Voに式(4)に基づいた電圧が出力される。
Detection voltage Vo∝ (A × G | Va | × C) / (Co + C) (4)
Due to the above action, in the non-detection state where the human body is not touching the detection electrode 2, the voltage Va and the detection capacitance C are 0, so the detection voltage Vo is 0. On the other hand, in the detection state where the detection electrode 2 is touched by a human body, there is a detection capacitor C, a voltage Va is also generated, and a voltage based on the expression (4) is output as the detection voltage Vo.

又、本実施形態の静電容量センサ回路1の外部出力端子6の検出電圧Voは、式(4)に示すように、検出容量Cの静電容量、コンデンサCoの静電容量、整流効率A、増幅率G、電圧Vaの影響を受けるが、周波数の影響は抑制されている。   In addition, the detection voltage Vo at the external output terminal 6 of the capacitance sensor circuit 1 of the present embodiment, as shown in the equation (4), is the capacitance of the detection capacitor C, the capacitance of the capacitor Co, and the rectification efficiency A. Although influenced by the amplification factor G and the voltage Va, the influence of the frequency is suppressed.

本実施形態によれば以下のような効果を得ることができる。
(1)本実施形態によれば、検出電圧Voは、抵抗RoとコンデンサCoとの間の電圧Vaと、コンデンサCoと検出電極2との間の電圧Vbの差分を差動増幅回路3で増幅して求めた。この時、電圧Vaと電圧Vbの差分である、(電圧Va−電圧Vb)は、式(2)に示すようにコンデンサCoと検出容量Cとの静電容量の関係だけで求められる。その結果、発信器Vcの周波数による影響が少ない静電容量センサ回路1を構成することができた。
According to this embodiment, the following effects can be obtained.
(1) According to the present embodiment, the detection voltage Vo amplifies the difference between the voltage Va between the resistor Ro and the capacitor Co and the voltage Vb between the capacitor Co and the detection electrode 2 by the differential amplifier circuit 3. And asked. At this time, (voltage Va−voltage Vb), which is the difference between the voltage Va and the voltage Vb, is obtained only by the relationship between the capacitance of the capacitor Co and the detection capacitor C as shown in the equation (2). As a result, it was possible to configure the capacitance sensor circuit 1 that is less affected by the frequency of the transmitter Vc.

(2)本実施形態によれば、静電容量センサ回路1は発信器Vcの周波数による影響が少ないことから、静電容量センサ回路1は、静電容量センサ回路1の構成条件に発信器V
cの周波数の影響を少なくすることができた。その結果、発信器Vcの周波数を低くすることが可能となり、周波数が高いほど問題となる放射の影響を抑制することができた。又、周波数の変更による回路調整が不要で、調整が非常に容易となる静電容量センサ回路1を提供することができた。
(2) According to the present embodiment, the capacitance sensor circuit 1 is less affected by the frequency of the transmitter Vc.
The influence of the frequency of c could be reduced. As a result, the frequency of the transmitter Vc can be lowered, and the influence of radiation that becomes a problem can be suppressed as the frequency becomes higher. In addition, it is possible to provide the capacitance sensor circuit 1 which does not require circuit adjustment by changing the frequency and can be adjusted very easily.

(3)本実施形態によれば、静電容量センサ回路1は発信器Vcの周波数による影響が少ないことから、発信器Vcの周波数が低くても検出状態を検出できることができた。その結果、低い周波数でも良好に検出状態を検出することができる、静電容量センサ回路1を提供することができた。   (3) According to the present embodiment, since the capacitance sensor circuit 1 is less affected by the frequency of the transmitter Vc, the detection state can be detected even when the frequency of the transmitter Vc is low. As a result, it was possible to provide the capacitance sensor circuit 1 that can detect the detection state satisfactorily even at a low frequency.

(4)本実施形態によれば、静電容量センサ回路1は発信器Vcの周波数による影響が少ないことから、発信器Vcの周波数を低くすることが可能となり、周波数特性の低い安価な部品を採用することができた。その結果、静電容量センサ回路1のコストを抑えることができた。   (4) According to the present embodiment, since the capacitance sensor circuit 1 is less affected by the frequency of the transmitter Vc, it is possible to lower the frequency of the transmitter Vc, and an inexpensive component with low frequency characteristics can be obtained. I was able to adopt it. As a result, the cost of the capacitance sensor circuit 1 could be suppressed.

(5)本実施形態によれば、静電容量センサ回路1の発信器Vcは、例えば、正弦波発信回路とした。従って、電圧Vaや電圧Vb、電圧Vgに混入したノイズをフィルタ回路5によって好適に取り除くことができた。その結果、誤差の少ない検出電圧Voを出力する静電容量センサ回路1を提供することができた。   (5) According to the present embodiment, the transmitter Vc of the capacitance sensor circuit 1 is, for example, a sine wave transmission circuit. Therefore, the noise mixed in the voltage Va, the voltage Vb, and the voltage Vg can be suitably removed by the filter circuit 5. As a result, it was possible to provide the capacitance sensor circuit 1 that outputs the detection voltage Vo with little error.

(6)本実施形態によれば、静電容量センサ回路1は整流回路4とフィルタ回路5を備えた。従って、ノイズを好適に除去できた検出電圧Voを出力できると共に、検出電圧Voをその後の利用が容易な直流成分として出力をすることができた。その結果、静電容量センサ回路1の検出電圧Voを誤差の少なく、利用を容易にすることができた。   (6) According to the present embodiment, the capacitance sensor circuit 1 includes the rectifier circuit 4 and the filter circuit 5. Therefore, it is possible to output the detection voltage Vo from which noise can be suitably removed, and to output the detection voltage Vo as a DC component that can be easily used thereafter. As a result, the detection voltage Vo of the capacitance sensor circuit 1 can be easily used with little error.

(7)本実施形態によれば、検出電極2が非検出状態の場合は、検出電圧Voは0Vであり、検出状態の場合に検出電圧Voに電圧が発生するようにした。従って、非検出状態と検出状態の区別を検出電圧Voの電圧から非常に容易にできる。その結果、検出状態、非検出状態の判断の誤りの少ない、かつ、判断のための回路の調整を非常に容易とすることができる静電容量センサ回路1を提供することができる。   (7) According to the present embodiment, when the detection electrode 2 is in the non-detection state, the detection voltage Vo is 0 V, and when the detection electrode 2 is in the detection state, a voltage is generated in the detection voltage Vo. Therefore, the non-detection state and the detection state can be distinguished very easily from the voltage of the detection voltage Vo. As a result, it is possible to provide the capacitance sensor circuit 1 in which the detection state / non-detection state determination error is small and the adjustment of the circuit for determination can be made very easy.

(8)本実施形態によれば、コンデンサCoの両端の電圧Vaと電圧Vbの差分を差動増幅回路3で増幅する。従って、気温や湿度による他の構成要素の影響を抑制することができた。又、比較のための基準電圧源なども省略することができた。その結果、気温や湿度の変化にも影響を受けづらく、構成部品の少ない静電容量センサ回路1を構成することができた。   (8) According to this embodiment, the differential amplifier 3 amplifies the difference between the voltage Va and the voltage Vb across the capacitor Co. Therefore, the influence of other components due to temperature and humidity could be suppressed. Also, a reference voltage source for comparison could be omitted. As a result, it was possible to configure the capacitance sensor circuit 1 that is not easily affected by changes in temperature and humidity and has few components.

(9)本実施形態によれば、電圧Vaと電圧Vbの差は式(2)のように求められるので、コンデンサCoと検出容量Cの比率を調整して、検出感度を調整することができた。例えば、コンデンサCoの静電容量が検出容量Cの静電容量と比べて十分に小さければ、感度はほぼ「1」であり、コンデンサCoが検出容量Cと同じであれば、感度は1/2となる。その結果、容易に感度調整が行える静電容量センサ回路1を構成することができた。   (9) According to the present embodiment, the difference between the voltage Va and the voltage Vb can be obtained as shown in Equation (2). Therefore, the detection sensitivity can be adjusted by adjusting the ratio of the capacitor Co and the detection capacitor C. It was. For example, if the capacitance of the capacitor Co is sufficiently smaller than the capacitance of the detection capacitor C, the sensitivity is almost “1”, and if the capacitor Co is the same as the detection capacitor C, the sensitivity is 1/2. It becomes. As a result, it was possible to configure the capacitance sensor circuit 1 that can easily adjust the sensitivity.

尚、実施の形態は以下のように変更してもよい。
・上記実施形態では、検出電極2には人体が直接触れることとしたが、検出電極2に静電容量の変化が生じるのであれば、検出電極2は、例えば、合成樹脂フィルムで覆われていてもよい。そうすれば、対気候性、対環境性のある検出電極2を提供することができる。
The embodiment may be changed as follows.
In the above embodiment, the human body directly touches the detection electrode 2. However, if the capacitance of the detection electrode 2 changes, the detection electrode 2 is covered with, for example, a synthetic resin film. Also good. By doing so, it is possible to provide the detection electrode 2 having climate resistance and environmental resistance.

・上記実施形態では、発信器Vcは交流信号発信器、例えば、正弦波発信器とした。しかしこれに限らず、他の波形の発信器、例えば、パルス発信器、三角波発信器でもよい。又、直流電源でもよい。そうすれば、回路特性や設置状況に応じた好適な発信器を静電容量センサ回路1に用いることができる。   In the above embodiment, the transmitter Vc is an AC signal transmitter, for example, a sine wave transmitter. However, the present invention is not limited to this, and other waveform transmitters such as a pulse transmitter and a triangular wave transmitter may be used. A DC power supply may also be used. Then, a suitable transmitter according to circuit characteristics and installation conditions can be used for the capacitance sensor circuit 1.

・上記実施形態では、整流回路4とフィルタ回路5からなる信号調整回路を設けた。しかしこれに限らず、信号整流回路は、その他の回路を含んでもよい。又、整流回路4とフィルタ回路5とその他の回路の少なくとも一つの構成であってもよい。そうすれば、差動増幅回路3の出力する電圧Vgを好適に調整する信号調整回路を設けることができる。   In the above embodiment, the signal adjustment circuit including the rectifier circuit 4 and the filter circuit 5 is provided. However, the present invention is not limited to this, and the signal rectifier circuit may include other circuits. Further, at least one configuration of the rectifier circuit 4, the filter circuit 5, and other circuits may be employed. Then, a signal adjustment circuit that suitably adjusts the voltage Vg output from the differential amplifier circuit 3 can be provided.

・上記実施形態では、信号調整回路を設けたが、これを省略しても良い。そうすれば、差動増幅回路3の出力する電圧Vgを自由に処理することができる。
・上記実施形態では、検出容量CとコンデンサCoの静電容量の関係はどのような関係でもよい。しかし、特に検出容量Cの静電容量に比べてコンデンサCoの静電容量を十分小さくすれば、外部出力端子6の検出電圧Voは式(5)のようにみなすことができる。そうすれば、より調整に煩わされない静電容量センサ回路1を提供することができる。
In the above embodiment, the signal adjustment circuit is provided, but this may be omitted. Then, the voltage Vg output from the differential amplifier circuit 3 can be freely processed.
In the above embodiment, the relationship between the detection capacitance C and the capacitance of the capacitor Co may be any relationship. However, if the capacitance of the capacitor Co is made sufficiently smaller than the capacitance of the detection capacitor C in particular, the detection voltage Vo at the external output terminal 6 can be regarded as shown in Expression (5). If it does so, the electrostatic capacitance sensor circuit 1 which is not bothered by adjustment can be provided.

検出電圧Vo∝(A×G|Va|)・・・(5)
・上記実施形態では、検出電極2に人体が触れることで生じる静電容量の変化により検出状態を検出することとした。しかし、静電容量センサ回路1は、検出電極2にどのような手段で静電容量の変化があっても、検出状態であるか否かを検出することができるように構成しても良い。
Detection voltage Vo∝ (A × G | Va |) (5)
In the embodiment described above, the detection state is detected by a change in capacitance that occurs when the human body touches the detection electrode 2. However, the capacitance sensor circuit 1 may be configured to detect whether or not the detection electrode 2 is in a detection state regardless of the change in the capacitance of the detection electrode 2.

例えば、オイルケース内に収容された液状の静電容量媒体と、前記静電容量媒体に浸漬された部分によりコンデンサを構成する差動電極及び共通電極を備える。さらに、前記オイルケースの傾きに応じて移動する静電容量媒体により変化するコンデンサの容量に基づいて傾きを検出するようにした静電容量式傾斜角センサにおいて、静電容量媒体により変化するコンデンサの容量を検出するために用いてもよい。そうすれば、静電容量傾斜センサにも周波数の影響が少ない静電容量センサ回路1を備えることができる。   For example, a liquid capacitive medium housed in an oil case, and a differential electrode and a common electrode constituting a capacitor by a portion immersed in the capacitive medium are provided. Furthermore, in the capacitance type inclination angle sensor that detects the inclination based on the capacitance of the capacitor that changes depending on the capacitance medium that moves according to the inclination of the oil case, the capacitance of the capacitor that changes depending on the capacitance medium It may be used to detect the capacity. By doing so, the capacitance inclination sensor can also be provided with the capacitance sensor circuit 1 that is less affected by the frequency.

本実施形態の静電容量センサ回路を示す回路図。The circuit diagram which shows the electrostatic capacitance sensor circuit of this embodiment. 従来技術の静電容量センサ回路を示す概念図。The conceptual diagram which shows the electrostatic capacitance sensor circuit of a prior art. 従来技術の静電容量センサ回路を示す回路図。The circuit diagram which shows the electrostatic capacitance sensor circuit of a prior art.

符号の説明Explanation of symbols

C…検出容量、Co…コンデンサ、Ro…抵抗、Va、Vb、Vg…電圧、Vc…発信器、Vo…検出電圧、1…静電容量センサ回路、2…検出電極、3…差動増幅回路、4…整流回路、5…フィルタ回路、6…外部出力端子。

C: Detection capacitance, Co: Capacitor, Ro: Resistance, Va, Vb, Vg ... Voltage, Vc ... Transmitter, Vo ... Detection voltage, 1 ... Capacitance sensor circuit, 2 ... Detection electrode, 3 ... Differential amplification circuit 4, rectifier circuit, 5 ... filter circuit, 6 ... external output terminal.

Claims (5)

発信器から出力される発信信号を、抵抗を介して検出電極に印加し、その検出電極の静電容量の変化を検出する静電容量センサ回路において、
前記抵抗と前記検出電極との間に接続したコンデンサと、
前記コンデンサの前記抵抗側の電圧と、前記コンデンサの前記検出電極側の電圧との差の電圧を増幅する増幅回路と
を備えたことを特徴とする静電容量センサ回路。
In a capacitance sensor circuit that applies a transmission signal output from a transmitter to a detection electrode via a resistor and detects a change in capacitance of the detection electrode.
A capacitor connected between the resistor and the detection electrode;
An electrostatic capacitance sensor circuit comprising: an amplifier circuit that amplifies a voltage difference between the voltage on the resistance side of the capacitor and the voltage on the detection electrode side of the capacitor.
請求項1に記載の静電容量センサ回路において、
前記増幅回路は、差動増幅回路であることを特徴とする静電容量センサ回路。
The capacitance sensor circuit according to claim 1,
The capacitance sensor circuit, wherein the amplification circuit is a differential amplification circuit.
請求項1又は2に記載の静電容量センサ回路において、
前記増幅回路の出力端子には整流回路が接続され、前記増幅回路からの検出信号を前記整流回路を介して出力させることを特徴とする静電容量センサ回路。
The capacitance sensor circuit according to claim 1 or 2,
A rectifier circuit is connected to an output terminal of the amplifier circuit, and a detection signal from the amplifier circuit is output via the rectifier circuit.
請求項3に記載の静電容量センサ回路において、
前記整流回路の出力端子にはフィルタ回路が接続され、前記整流回路からの検出信号を前記フィルタ回路を介して出力させることを特徴とする静電容量センサ回路。
The capacitance sensor circuit according to claim 3,
A filter circuit is connected to an output terminal of the rectifier circuit, and a detection signal from the rectifier circuit is output via the filter circuit.
請求項1〜4のいずれか1つに記載の静電容量センサ回路において、
前記コンデンサの静電容量は、検出電極の静電容量よりも十分小さい静電容量を有することを特徴とする静電容量センサ回路。


In the capacitance sensor circuit according to any one of claims 1 to 4,
The capacitance sensor circuit according to claim 1, wherein the capacitance of the capacitor is sufficiently smaller than the capacitance of the detection electrode.


JP2006166586A 2006-06-15 2006-06-15 Capacitance sensor circuit Expired - Fee Related JP4602941B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006166586A JP4602941B2 (en) 2006-06-15 2006-06-15 Capacitance sensor circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006166586A JP4602941B2 (en) 2006-06-15 2006-06-15 Capacitance sensor circuit

Publications (2)

Publication Number Publication Date
JP2007334690A JP2007334690A (en) 2007-12-27
JP4602941B2 true JP4602941B2 (en) 2010-12-22

Family

ID=38934106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006166586A Expired - Fee Related JP4602941B2 (en) 2006-06-15 2006-06-15 Capacitance sensor circuit

Country Status (1)

Country Link
JP (1) JP4602941B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363031B2 (en) 2008-09-24 2013-01-29 3M Innovative Properties Company Mutual capacitance measuring circuits and methods
KR101752015B1 (en) 2009-05-29 2017-06-28 쓰리엠 이노베이티브 프로퍼티즈 컴파니 High speed multi-touch touch device and controller therefor
JP5160502B2 (en) * 2009-06-05 2013-03-13 Smk株式会社 Capacitive touch panel
US9753586B2 (en) 2009-10-08 2017-09-05 3M Innovative Properties Company Multi-touch touch device with multiple drive frequencies and maximum likelihood estimation
US8773366B2 (en) 2009-11-16 2014-07-08 3M Innovative Properties Company Touch sensitive device using threshold voltage signal
US8411066B2 (en) * 2010-01-05 2013-04-02 3M Innovative Properties Company High speed noise tolerant multi-touch touch device and controller therefor
JP5719016B2 (en) * 2010-04-22 2015-05-13 コーニンクレッカ フィリップス エヌ ヴェ Skin contact detector
WO2011149750A2 (en) 2010-05-25 2011-12-01 3M Innovative Properties Company High speed low power multi-touch touch device and controller therefor
US9389724B2 (en) 2010-09-09 2016-07-12 3M Innovative Properties Company Touch sensitive device with stylus support
US9823785B2 (en) 2010-09-09 2017-11-21 3M Innovative Properties Company Touch sensitive device with stylus support
US10019119B2 (en) 2010-09-09 2018-07-10 3M Innovative Properties Company Touch sensitive device with stylus support
US8890841B2 (en) 2013-03-13 2014-11-18 3M Innovative Properties Company Capacitive-based touch apparatus and method therefor, with reduced interference
WO2020027026A1 (en) * 2018-07-30 2020-02-06 日本電産株式会社 Measurement device and measurement method
JP2021129262A (en) * 2020-02-17 2021-09-02 ソニーセミコンダクタソリューションズ株式会社 Touch sensor device and electronic device including the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175217A (en) * 1983-03-25 1984-10-04 Toshiba Corp Touch switch
JPH06140902A (en) * 1992-10-26 1994-05-20 Mitsubishi Electric Home Appliance Co Ltd Input device for equipment
JPH08316814A (en) * 1995-05-12 1996-11-29 Otis Elevator Co Capacitance sensing type touch button circuit
JPH09284118A (en) * 1996-04-12 1997-10-31 Tdk Corp Touch sensor
JP2000230983A (en) * 1999-02-08 2000-08-22 Ks Techno Kk Capacitance sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59175217A (en) * 1983-03-25 1984-10-04 Toshiba Corp Touch switch
JPH06140902A (en) * 1992-10-26 1994-05-20 Mitsubishi Electric Home Appliance Co Ltd Input device for equipment
JPH08316814A (en) * 1995-05-12 1996-11-29 Otis Elevator Co Capacitance sensing type touch button circuit
JPH09284118A (en) * 1996-04-12 1997-10-31 Tdk Corp Touch sensor
JP2000230983A (en) * 1999-02-08 2000-08-22 Ks Techno Kk Capacitance sensor

Also Published As

Publication number Publication date
JP2007334690A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP4602941B2 (en) Capacitance sensor circuit
US9658089B2 (en) Electromagnetic flowmeter with voltage-amplitude conductivity-sensing function for a liquid in a tube
CN108507632B (en) Electromagnetic flowmeter
CN107078738B (en) Input device
WO2015135318A1 (en) Fingerprint detection circuit and fingerprint detection apparatus
WO2005081385A1 (en) Current direction determining circuit, and switching regulator having the same
US20130141121A1 (en) &#34;Robust Capacitive Measurement System&#34;,
US20110199331A1 (en) Electrostatic capacity type touch sensor
JP2002022786A (en) Impedance detecting circuit and impedance detecting method
CN105455809B (en) Semiconductor device and AC resistance measurement system including the same
JP2013041576A (en) Control system and method for touch panel
JP5920088B2 (en) Current detection circuit and ultrasonic diagnostic apparatus using current detection circuit
JP6032243B2 (en) Current-voltage conversion circuit and self-excited oscillation circuit
JP4161873B2 (en) Capacitance type distance sensor
JP2017146267A (en) Non-contact type voltage detector
JP2017203732A (en) Voltage measurement device
JP2007089277A (en) Leak detector for electric car
JP7354432B2 (en) Capacitance detection device and input device
JP2015122635A (en) Amplification circuit
JP2020061878A (en) Dielectric elastomer actuator device
US7046016B2 (en) Potential fixing device, potential fixing method, and capacitance measuring instrument
JPH0352822B2 (en)
CN105527867B (en) Field device
JP2006078402A (en) Ultra-micro current/frequency converter
JP2017083331A (en) Capacitance detection device and sensor system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees