JP4600160B2 - Group III nitride crystal growth method - Google Patents

Group III nitride crystal growth method Download PDF

Info

Publication number
JP4600160B2
JP4600160B2 JP2005162654A JP2005162654A JP4600160B2 JP 4600160 B2 JP4600160 B2 JP 4600160B2 JP 2005162654 A JP2005162654 A JP 2005162654A JP 2005162654 A JP2005162654 A JP 2005162654A JP 4600160 B2 JP4600160 B2 JP 4600160B2
Authority
JP
Japan
Prior art keywords
crystal
group iii
crystal growth
iii nitride
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005162654A
Other languages
Japanese (ja)
Other versions
JP2006335608A (en
Inventor
伸介 藤原
倫正 宮永
奈保 水原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005162654A priority Critical patent/JP4600160B2/en
Publication of JP2006335608A publication Critical patent/JP2006335608A/en
Application granted granted Critical
Publication of JP4600160B2 publication Critical patent/JP4600160B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、各種半導体デバイスを形成するための材料となる大型のIII族窒化物結晶の成長方法に関する。 The present invention relates to materials and large method of a group III nitride sintered crystallization growth composed for forming various semiconductor devices.

Al、Ga、InなどのIII族元素と窒素とから形成されるIII族窒化物結晶は、発光素子、電子素子、半導体センサなどの各種半導体デバイスを形成するための材料として非常に有用なものであり、大型のIII族窒化物結晶の成長方法の開発が求められている。   Group III nitride crystals formed from Group III elements such as Al, Ga and In and nitrogen are very useful as materials for forming various semiconductor devices such as light emitting elements, electronic elements, and semiconductor sensors. There is a need to develop a method for growing a large group III nitride crystal.

III族窒化物結晶の成長方法としては、昇華法、HVPE(ハイドライド気相エピタキシ)法、MBE(分子線エピタキシ)法、MOCVD(有機金属化学気相体積)法などの各種気相成長法が提案されている。これらの気相成長法において、昇華法は、結晶性のよい結晶(たとえば、X線回折の半値幅が小さい結晶)が得られる点から、昇華法によるIII族窒化物結晶の成長方法が提案されている(たとえば、非特許文献1および非特許文献2を参照)。   Various growth methods such as sublimation method, HVPE (hydride vapor phase epitaxy) method, MBE (molecular beam epitaxy) method, MOCVD (metal organic chemical vapor volume) method are proposed as growth methods for group III nitride crystals. Has been. Among these vapor phase growth methods, the sublimation method has been proposed a method for growing a group III nitride crystal by the sublimation method from the viewpoint of obtaining a crystal with good crystallinity (for example, a crystal having a small half width of X-ray diffraction). (For example, see Non-Patent Document 1 and Non-Patent Document 2).

しかし、昇華法で種結晶を使用せずにAlN結晶の成長を行なうと針状のAlN結晶が得られ(非特許文献1の図5などを参照)、SiC種結晶を用いてAlN結晶の成長を行なうと表面に凹凸があるAlN結晶が得られる(非特許文献2の図3などを参照)に過ぎず、各種半導体デバイスを形成するための材料となる大型のIII族窒化物結晶を得ることが困難であった。
B. Liu,他8名,“The Durability of Various Crucible Materials for Aluminum Nitride Crystal Growth by Sublimation”,MRS Internet J. Nitride Semicond. Res. 9,6 (2004) V. Noveski, 他4名,“Growth of AlN crystals on AlN/SiC seeds by AlN powder sublimation in nitrogen atmosphere”,MRS Internet J. Nitride Semicond. Res. 9,2 (2004)
However, when an AlN crystal is grown without using a seed crystal in the sublimation method, a needle-like AlN crystal is obtained (see FIG. 5 of Non-Patent Document 1), and the growth of the AlN crystal using the SiC seed crystal If only, an AlN crystal having irregularities on the surface is obtained (see FIG. 3 of Non-Patent Document 2, etc.), and a large group III nitride crystal serving as a material for forming various semiconductor devices is obtained. It was difficult.
B. Liu and 8 others, “The Durability of Various Crucible Materials for Aluminum Nitride Crystal Growth by Sublimation”, MRS Internet J. Nitride Semicond. Res. 9, 6 (2004) V. Noveski, 4 others, “Growth of AlN crystals on AlN / SiC seeds by AlN powder sublimation in nitrogen atmosphere”, MRS Internet J. Nitride Semicond. Res. 9, 2 (2004)

本発明は、各種半導体デバイスを形成するための材料となる大型のIII族窒化物結晶の成長方法を提供することを目的とする。 The present invention aims at providing a material with large III-nitride crystal growth method comprising for forming various semiconductor devices.

本発明は、昇華法によるIII族窒化物結晶の成長方法であって、開口部を有する結晶成長容器の内部に設けられた開口部を有する結晶成長室の内部にIII族窒化物原料を配置し、結晶成長容器の外部に窒素ガスと不活性ガスとの混合ガスを供給して、結晶成長容器の外部と結晶成長室の内部とのガス交換を行ないながら、結晶成長室の内部でIII族窒化物結晶を成長させる工程を含むIII族窒化物結晶の成長方法である。 The present invention is a method for growing a group III nitride crystal by a sublimation method, wherein a group III nitride raw material is disposed inside a crystal growth chamber having an opening provided inside a crystal growth vessel having an opening. And supplying a mixed gas of nitrogen gas and inert gas to the outside of the crystal growth vessel, and performing gas exchange between the outside of the crystal growth vessel and the inside of the crystal growth chamber , and the group III nitridation inside the crystal growth chamber A method for growing a group III nitride crystal including a step of growing a physical crystal.

本発明にかかるIII族窒化物結晶において、上記混合ガスは窒素ガス分圧に対する不活性ガス分圧の比を0.1以上とすることができる。さらに、結晶成長温度を2000℃以上とすることができる。   In the group III nitride crystal according to the present invention, the mixed gas may have a ratio of an inert gas partial pressure to a nitrogen gas partial pressure of 0.1 or more. Furthermore, the crystal growth temperature can be 2000 ° C. or higher.

本発明によれば、各種半導体デバイスを形成するための材料となる大型のIII族窒化物結晶の成長方法を提供することができる。 According to the present invention, a large group III-nitride crystal method growth as a material for forming various semiconductor devices can be provided.

本発明にかかるIII族窒化物結晶の成長方法は、図1〜図3を参照して、昇華法によるIII族窒化物結晶の成長方法であって、開口部12hを有する結晶成長容器12の内部にIII族窒化物原料1を配置し、結晶成長容器12の外部に窒素ガスと不活性ガスとの混合ガスを供給して、結晶成長容器12の外部と内部とのガス交換を行ないながら、結晶成長容器12の内部でIII族窒化物結晶3を成長させる工程を含む。   A method for growing a group III nitride crystal according to the present invention is a method for growing a group III nitride crystal by a sublimation method with reference to FIGS. 1 to 3, and includes an inside of a crystal growth vessel 12 having an opening 12 h. The group III nitride raw material 1 is disposed on the crystal growth vessel 12, a mixed gas of nitrogen gas and inert gas is supplied to the outside of the crystal growth vessel 12, and the crystal is exchanged between the outside and the inside of the crystal growth vessel 12. A step of growing the group III nitride crystal 3 inside the growth vessel 12 is included.

III族窒化物原料1が収納された開口部12hを有する結晶成長容器12の外部に、上記条件を満たすように混合ガスを供給することにより、III族元素ガス分圧に対する窒素ガス分圧の比を従来よりも低い条件として、大型の結晶成長を行うことが可能となる。この点について、以下詳細に説明する。   The ratio of the nitrogen gas partial pressure to the group III element gas partial pressure by supplying a mixed gas so as to satisfy the above condition to the outside of the crystal growth vessel 12 having the opening 12h in which the group III nitride raw material 1 is accommodated. It is possible to carry out large-scale crystal growth under the conditions lower than in the prior art. This point will be described in detail below.

本発明における昇華法とは、図1〜図3を参照して、III族窒化物原料1を昇華させた後、再度固化させてIII族窒化物結晶3を得る方法をいう。昇華法による結晶成長においては、たとえば、図1〜図3に示すような高周波加熱方式の縦型の昇華炉10,20,30を用いる。これらの昇華炉10,20,30における反応容器11の中央部には、開口部12hを有する結晶成長容器12が設けられ、結晶成長容器12の周りには結晶成長容器12の内部と外部との通気を確保するように断熱材15が設けられている。   The sublimation method in the present invention refers to a method of obtaining a group III nitride crystal 3 by sublimating the group III nitride raw material 1 and then solidifying it again with reference to FIGS. In crystal growth by the sublimation method, for example, high-frequency heating type vertical sublimation furnaces 10, 20, and 30 as shown in FIGS. A crystal growth vessel 12 having an opening 12 h is provided at the center of the reaction vessel 11 in these sublimation furnaces 10, 20, and 30. Around the crystal growth vessel 12, the inside and outside of the crystal growth vessel 12 are provided. A heat insulating material 15 is provided so as to ensure ventilation.

また、反応容器11の外側中央部には結晶成長容器12を加熱するための高周波加熱コイル16が設けられている。さらに、反応容器11の端部には、反応容器11内の結晶成長容器12の外部に窒素ガスと不活性ガスとの混合ガスまたは窒素ガスを供給するためのガス導入口11aおよびガス排気口11bと、結晶成長容器12の下面および上面の温度を測定するための放射温度計17が設けられている。   In addition, a high-frequency heating coil 16 for heating the crystal growth vessel 12 is provided at the outer central portion of the reaction vessel 11. Further, at the end of the reaction vessel 11, a gas introduction port 11 a and a gas exhaust port 11 b for supplying a mixed gas of nitrogen gas and inert gas or nitrogen gas to the outside of the crystal growth vessel 12 in the reaction vessel 11. A radiation thermometer 17 for measuring the temperature of the lower surface and the upper surface of the crystal growth vessel 12 is provided.

ここで、図1の結晶成長容器12の内部には、原料配置分室13aと結晶成長分室13bとに仕切られた結晶成長室13が設けられており、原料配置分室13aに開口部13jが設けられ、原料配置分室13aと結晶成長分室13bとの間にも開口部13kが設けられている。また、図2および図3の結晶成長容器12の内部には、開口部13hを有する結晶成長室13が設けられている。なお、図3の結晶成長室13は、上部空間が錘状に狭くなるように設計されている。結晶成長容器12の材質は、高周波加熱を用いる場合には高周波加熱されやすくかつ結晶成長時の高温雰囲気に耐えるグラファイトや高融点金属であるWやTaが用いられる。結晶成長室13を構成する材質は、III族窒化物結晶の成長温度に対して耐熱性および機械的強度を有する材料であれば特に制限はないが、W、Taなどの高融点金属、WC、TaCなどの炭化物、Y23、ZrO2などの酸化物、BNなどの窒化物などが好ましく用いられる。 Here, inside the crystal growth vessel 12 of FIG. 1, there is provided a crystal growth chamber 13 partitioned into a raw material arrangement chamber 13a and a crystal growth chamber 13b, and an opening 13j is provided in the raw material arrangement chamber 13a. An opening 13k is also provided between the raw material arrangement compartment 13a and the crystal growth compartment 13b. Further, a crystal growth chamber 13 having an opening 13h is provided inside the crystal growth vessel 12 of FIGS. Note that the crystal growth chamber 13 in FIG. 3 is designed such that the upper space is narrowed in a spindle shape. As the material for the crystal growth vessel 12, when using high-frequency heating, graphite or refractory metal such as W or Ta that is easy to be high-frequency heated and can withstand a high-temperature atmosphere during crystal growth is used. The material constituting the crystal growth chamber 13 is not particularly limited as long as it is a material having heat resistance and mechanical strength with respect to the growth temperature of the group III nitride crystal, but a refractory metal such as W or Ta, WC, Carbides such as TaC, oxides such as Y 2 O 3 and ZrO 2, and nitrides such as BN are preferably used.

図1〜図3の結晶成長室13は、上記のような構造上の相違点はあるが、いずれも、開口部13h,13j,13k,12hのみを介して結晶成長室13の内部と結晶長容器12の外部との通気が確保されている準閉室となっている。   The crystal growth chamber 13 of FIGS. 1 to 3 has the above-described structural differences, but in any case, the inside of the crystal growth chamber 13 and the crystal length only through the openings 13h, 13j, 13k, and 12h. It is a semi-closed room in which ventilation with the outside of the container 12 is ensured.

図1〜図3を参照して、開口部12hを有する結晶成長容器12内部の開口部13j,13k,13hを有する結晶成長室13内にIII族窒化物結晶原料1を配置して、結晶成長容器12の外部に窒素ガスと不活性ガスとの混合ガスを供給して、結晶成長容器12の外部と結晶成長室13の内部とのガス交換を行ないながら、結晶成長室13の内部でIII族窒化物結晶3を成長させる。   Referring to FIGS. 1 to 3, group III nitride crystal raw material 1 is arranged in crystal growth chamber 13 having openings 13j, 13k, 13h inside crystal growth vessel 12 having opening 12h, and crystal growth is performed. A mixed gas of nitrogen gas and inert gas is supplied to the outside of the vessel 12 to exchange gases between the outside of the crystal growth vessel 12 and the inside of the crystal growth chamber 13, and the group III inside the crystal growth chamber 13. A nitride crystal 3 is grown.

通常の昇華法においては、窒素ガスを結晶成長容器12の外部から結晶成長室13の内部に導入する。窒素圧が高すぎると結晶が成長しなくなり、逆に低すぎると成長速度は速いが多結晶化してしまう。そのため適当な窒素圧下で成長する必要がある。   In a normal sublimation method, nitrogen gas is introduced into the crystal growth chamber 13 from the outside of the crystal growth vessel 12. If the nitrogen pressure is too high, the crystal will not grow. Conversely, if the nitrogen pressure is too low, the crystal will be crystallized although the growth rate is high. Therefore, it is necessary to grow under an appropriate nitrogen pressure.

それに対して、本発明者らは、結晶成長容器12の外部に供給するガスを窒素ガスではなく、不活性ガスと窒素ガスとの混合ガスを供給することによって、通常の成長条件より低窒素ガス分圧で成長させても、多結晶化しないことを見いだした。さらに好ましいことには、低窒素ガス分圧で成長させると良好な大型結晶を容易に成長できることを見いだした。ここで好ましい窒素圧の範囲であるが、以下の式(1)
(V/III比)=pN2/pIII=(pN21.5/(K(T))0.5 (1)
K(T)=exp{54.11−(151576/T)}
(式(1)において、Tは絶対温度(単位:K)を示す)
(出典:Journal of Crystal Growth 220 (2000) 243)
で定義されるV/III比を100以下にすることが大型で良好な結晶性を有するIII族窒化物結晶成長に好ましい。具体的には、針状ではなく塊状のAlN単結晶成長が可能になる。ただし、V/III比を5未満にすると、多結晶化しやすくなるのであまり好ましくない。
On the other hand, the present inventors supply a mixed gas of an inert gas and a nitrogen gas instead of a nitrogen gas as a gas supplied to the outside of the crystal growth vessel 12, thereby reducing the nitrogen gas lower than the normal growth conditions. It was found that even when grown at partial pressure, it does not crystallize. More preferably, it has been found that good large crystals can be easily grown when grown at a low nitrogen gas partial pressure. Here, it is a preferable range of nitrogen pressure, but the following formula (1)
(V / III ratio) = p N2 / p III = (p N2 ) 1.5 / (K (T)) 0.5 (1)
K (T) = exp {54.11- (151576 / T)}
(In formula (1), T represents an absolute temperature (unit: K))
(Source: Journal of Crystal Growth 220 (2000) 243)
It is preferable for the growth of a group III nitride crystal having a large size and good crystallinity to have a V / III ratio defined by ≦ 100. Specifically, a bulk AlN single crystal can be grown instead of needles. However, if the V / III ratio is less than 5, polycrystallization tends to occur, which is not preferable.

ここで、不活性ガスは、III族元素ガスおよび窒素ガスと反応しない意味で不活性なガスをいい、たとえば、アルゴン(Ar)ガス、ヘリウム(He)ガスなどが挙げられる。   Here, the inert gas means an inert gas in the sense that it does not react with the group III element gas and the nitrogen gas, and examples thereof include argon (Ar) gas and helium (He) gas.

本発明にかかるIII族窒化物結晶の成長方法において、供給する混合ガスは、窒素ガスの分圧に対する不活性ガスの分圧の比が0.1以上であることが好ましい。この不活性ガスの分圧の比が0.1未満であると、多結晶化の抑制効果が低減する。かかる観点から、窒素ガスの分圧に対する不活性ガスの分圧の比が1以上であることがより好ましい。また、供給する混合ガスの全圧は、昇華炉の機械的強度から1013kPa(10気圧)以下であることが好ましい。これらのことから、窒素ガスの分圧に対する不活性ガスの分圧の比は、1000以下であることが好ましく、100以下であることがより好ましい。この不活性ガスの分圧の比が1000を超えると、結晶成長室13の内部に導入される窒素ガスが低減して、V/III比が極度に低減するためIII族窒化物結晶の成長が阻害される。   In the group III nitride crystal growth method according to the present invention, it is preferable that the ratio of the partial pressure of the inert gas to the partial pressure of the nitrogen gas is 0.1 or more. When the ratio of the partial pressure of the inert gas is less than 0.1, the effect of suppressing polycrystallization is reduced. From this viewpoint, it is more preferable that the ratio of the partial pressure of the inert gas to the partial pressure of the nitrogen gas is 1 or more. Further, the total pressure of the supplied mixed gas is preferably 1013 kPa (10 atm) or less from the mechanical strength of the sublimation furnace. From these, the ratio of the partial pressure of the inert gas to the partial pressure of the nitrogen gas is preferably 1000 or less, and more preferably 100 or less. If the ratio of the partial pressure of the inert gas exceeds 1000, the nitrogen gas introduced into the crystal growth chamber 13 is reduced, and the V / III ratio is extremely reduced. Be inhibited.

本発明にかかるIII族窒化物結晶の成長方法において、V/III比が5以上100以下であることが好ましい。V/III比が、5未満であるとIII族窒化物結晶の成長が阻害され、100を超えるとIII族窒化物結晶のc軸方向の結晶成長が優先的に起こり大型のIII族窒化物結晶を得ることが困難となる。   In the group III nitride crystal growth method according to the present invention, the V / III ratio is preferably 5 or more and 100 or less. When the V / III ratio is less than 5, growth of the group III nitride crystal is inhibited, and when it exceeds 100, crystal growth in the c-axis direction of the group III nitride crystal occurs preferentially and a large group III nitride crystal. It becomes difficult to obtain.

本発明にかかるIII族窒化物結晶の成長方法において、上記条件を満たすことにより、III族窒化物結晶のc軸方向に加えて、c軸に垂直な方向にも結晶を成長させることが好ましい。   In the group III nitride crystal growth method according to the present invention, it is preferable to grow the crystal in the direction perpendicular to the c-axis in addition to the c-axis direction of the group III nitride crystal by satisfying the above conditions.

本発明にかかるIII族窒化物結晶の成長方法において、結晶成長温度を2000℃以上とすることが好ましい。結晶成長温度が2000℃未満であると、原因は不明であるが、c軸に垂直な方向への結晶成長が起こりにくくなる。   In the group III nitride crystal growth method according to the present invention, the crystal growth temperature is preferably set to 2000 ° C. or higher. If the crystal growth temperature is less than 2000 ° C., the cause is unknown, but crystal growth in the direction perpendicular to the c-axis is difficult to occur.

本発明にかかるIII族窒化物結晶の成長方法において用いられるIII族窒化物原料には特に制限はないが、原料の入手または作成の容易さの観点から、III族窒化物非結晶体、III族窒化物多結晶体などが好ましく用いられる。具体的には、III族窒化物粉末、III族窒化物焼結体、III族金属を高温で直接窒化させた多結晶体、昇華・再結晶多結晶体などが好ましく用いられる。また、本発明にかかるIII族窒化物結晶の成長方法において用いられる種結晶には特に制限はないが、成長させる結晶の結晶性がよい観点から、SiC種結晶、III族窒化物種結晶などが好ましく用いられる。   The group III nitride raw material used in the method for growing a group III nitride crystal according to the present invention is not particularly limited, but from the viewpoint of easy acquisition or production of the raw material, a group III nitride amorphous material, group III A nitride polycrystal is preferably used. Specifically, a group III nitride powder, a group III nitride sintered body, a polycrystal obtained by directly nitriding a group III metal at a high temperature, a sublimation / recrystallized polycrystal, and the like are preferably used. The seed crystal used in the method for growing a group III nitride crystal according to the present invention is not particularly limited, but from the viewpoint of good crystallinity of the crystal to be grown, a SiC seed crystal, a group III nitride seed crystal, etc. are preferable. Used.

本発明にかかるIII族窒化物結晶は、上記の成長方法により得られた結晶である。得られたIII族窒化物結晶をc軸に垂直な面(C面)に平行にスライスし、その表面を研磨し、加工変質層をエッチングにより除去してIII族窒化物結晶基板が得られる。ここで、III族窒化物結晶のスライス面は、C面に方向な面のみならず、A面、R面、M面またはS面に平行な面、またはこれらの面に対して任意の傾きを有する面とすることができる。   The group III nitride crystal according to the present invention is a crystal obtained by the above growth method. The obtained group III nitride crystal is sliced parallel to a plane (C plane) perpendicular to the c-axis, the surface is polished, and the work-affected layer is removed by etching to obtain a group III nitride crystal substrate. Here, the slice plane of the group III nitride crystal is not only a plane oriented in the C plane, but also a plane parallel to the A plane, R plane, M plane or S plane, or an arbitrary inclination with respect to these planes. It can be a surface having.

上記のようにして得られたIII族窒化物結晶基板は、発光ダイオード、レーザダイオードなどの発光素子、整流器、バイポーラトランジスタ、電界効果トランジスタ、HEMT(高電子移動度トランジスタ)などの電子素子、温度センサ、圧力センサ、加速度センサ、放射線センサ、可視−紫外光検出基などの半導体トランジスタ、SAWデバイス(表面弾性波素子)、MEMS(微小電気機械システム)部品、圧電振動子、共振器、圧電アクチュエータなどに用いることができる。   The group III nitride crystal substrate obtained as described above includes light-emitting elements such as light-emitting diodes and laser diodes, electronic elements such as rectifiers, bipolar transistors, field-effect transistors, and HEMTs (high electron mobility transistors), and temperature sensors. , Pressure sensors, acceleration sensors, radiation sensors, semiconductor transistors such as visible-ultraviolet light detection groups, SAW devices (surface acoustic wave elements), MEMS (microelectromechanical system) parts, piezoelectric vibrators, resonators, piezoelectric actuators, etc. Can be used.

本発明にかかるIII族窒化物結晶およびその成長方法について、以下の比較例および実施例により、さらに具体的に説明する。   The group III nitride crystal and its growth method according to the present invention will be described more specifically with reference to the following comparative examples and examples.

(比較例1,2、実施例1)
比較例1,2および実施例1は、昇華法により種結晶を用いることなくIII族窒化物結晶であるAlN結晶を成長させた例である。
(Comparative Examples 1 and 2 and Example 1)
Comparative Examples 1 and 2 and Example 1 are examples in which an AlN crystal which is a group III nitride crystal was grown without using a seed crystal by a sublimation method.

上記例においては、図1を参照して、結晶成長容器12であるC製の坩堝の内部にBN製の仕切り材により原料配置分室13aと結晶成長分室13bとに仕切られた結晶成長室13を有する昇華炉10を用いた。ここで、原料配置分室13aの内径は50mm、高さは50mmとし、結晶成長分室13bの内径は50mm、高さは20mmとした。また、開口部13j,13k,12hの直径は、それぞれ3mm、3mm、5mmとした。   In the above example, referring to FIG. 1, a crystal growth chamber 13 partitioned into a raw material placement chamber 13a and a crystal growth chamber 13b by a partition material made of BN is provided inside a C crucible which is a crystal growth vessel 12. The sublimation furnace 10 having was used. Here, the inner diameter of the raw material arrangement compartment 13a was 50 mm and the height was 50 mm, and the inner diameter of the crystal growth compartment 13b was 50 mm and the height was 20 mm. The diameters of the openings 13j, 13k, and 12h were 3 mm, 3 mm, and 5 mm, respectively.

種結晶を用いないで昇華法によりIII族窒化物結晶を成長させる場合、急激にかつ無秩序に多数のIII族窒化物結晶が生成する傾向があるため、結晶成長室13をIII族窒化物原料1を配置する原料配置分室13aとIII族窒化物結晶3を成長させる結晶成長分室13bとに分ける開口部13kを有する仕切りを設けることにより、結晶成長分室13b内へのIII族窒化物原料1のガスの供給速度を低減することにより、III族窒化物結晶3の結晶成長速度を低減して、品質の良いIII族窒化物結晶を成長させやすくした。   When a group III nitride crystal is grown by a sublimation method without using a seed crystal, a large number of group III nitride crystals tend to be generated rapidly and disorderly. Is provided with a partition having an opening 13k that is divided into a raw material arrangement compartment 13a and a crystal growth compartment 13b for growing a group III nitride crystal 3, whereby the gas of the group III nitride raw material 1 into the crystal growth compartment 13b is provided. By reducing the supply rate, the crystal growth rate of the group III nitride crystal 3 was reduced to facilitate the growth of a group III nitride crystal of good quality.

上記例においては、以下のようにして、AlN結晶を成長させた。まず、原料配置分室13aにIII族窒化物原料として酸素濃度が500ppmのAlN焼結体を100g収納した。比較例1,2および実施例1のそれぞれについて表1に示す条件になるように、反応容器11の内部であって結晶成長容器12の外部に、窒素ガスまたは混合ガス(窒素ガスおよびアルゴンガス)を流しながら、高周波加熱コイル16を用いて結晶成長容器12の内部の結晶成長室13を昇温させて、結晶成長容器12の下面の温度(AlN焼結体(III族窒化物原料2)の加熱温度に相当)を2120℃、上面の温度(AlN結晶(III族窒化物結晶3)の成長温度に相当)を2100℃として、AlN結晶(III族窒化物結晶3)を成長させた。結晶成長時間は50時間とした。結晶成長条件とその結果を表1にまとめた。   In the above example, an AlN crystal was grown as follows. First, 100 g of an AlN sintered body having an oxygen concentration of 500 ppm as the group III nitride material was stored in the material arrangement compartment 13a. Nitrogen gas or mixed gas (nitrogen gas and argon gas) inside the reaction vessel 11 and outside the crystal growth vessel 12 so as to satisfy the conditions shown in Table 1 for each of Comparative Examples 1 and 2 and Example 1. The temperature of the crystal growth chamber 13 inside the crystal growth vessel 12 is raised using the high-frequency heating coil 16, and the temperature of the lower surface of the crystal growth vessel 12 (AlN sintered body (group III nitride raw material 2)) is increased. An AlN crystal (Group III nitride crystal 3) was grown at a heating temperature of 2120 ° C. and an upper surface temperature (corresponding to the growth temperature of the AlN crystal (Group III nitride crystal 3)) of 2100 ° C. The crystal growth time was 50 hours. The crystal growth conditions and the results are summarized in Table 1.

Figure 0004600160
Figure 0004600160

表1を参照して、101.3kPa(1気圧)の窒素ガスのみを供給してV/III比を132とした比較例1においては針状のAlN結晶となったが、20.26kPa(0.2気圧)の窒素ガスのみを供給してV/III比を11.8とした比較例2においては気孔を多数含んだ多孔質のAlN結晶が得られた。これらに対して、20.26kPa(0.2気圧)の窒素ガスと81.04hPa(0.8気圧)のアルゴンガスとの混合ガスを供給してV/III比を11.8とした実施例1においては塊状のAlN結晶が数個得られた。また、実施例1において得られた最大のAlN結晶は、c軸方向の最大長さが20mm、a軸方向の最大長さが15mm、重さ5.2gの単結晶であった。ここで、得られた結晶が単結晶か否かは、X線回折パターンを測定することにより確認した。   Referring to Table 1, in the comparative example 1 in which only the nitrogen gas of 101.3 kPa (1 atm) was supplied and the V / III ratio was 132, the needle-like AlN crystal was formed, but it was 20.26 kPa (0 In Comparative Example 2 in which only the nitrogen gas of .2 atm) was supplied and the V / III ratio was 11.8, a porous AlN crystal containing many pores was obtained. In contrast, a mixed gas of 20.26 kPa (0.2 atm) nitrogen gas and 81.04 hPa (0.8 atm) argon gas was supplied to set the V / III ratio to 11.8. In No. 1, several massive AlN crystals were obtained. The maximum AlN crystal obtained in Example 1 was a single crystal having a maximum length in the c-axis direction of 20 mm, a maximum length in the a-axis direction of 15 mm, and a weight of 5.2 g. Here, whether or not the obtained crystal was a single crystal was confirmed by measuring an X-ray diffraction pattern.

比較例1においては窒素ガスを供給しV/III比を100より大きくしたため針状結晶しか得られず、比較例2においては窒素ガスを供給しV/III比を5以上100以下としてもアルゴンガス(不活性ガス)がないため、Alガスの輸送が速くなりすぎ、多孔質の多結晶化した結晶しか得られなかったものと考えられる。これに対して、窒素ガスとアルゴンガスとの混合ガスを供給しV/III比を5以上100以下とした実施例1においては、塊状の単結晶が得られた。   In Comparative Example 1, nitrogen gas was supplied and the V / III ratio was made larger than 100, so that only acicular crystals were obtained. In Comparative Example 2, even if nitrogen gas was supplied and the V / III ratio was 5 or more and 100 or less, argon gas was obtained. Since there is no (inert gas), it is considered that Al gas was transported too quickly and only porous polycrystallized crystals were obtained. On the other hand, in Example 1 in which a mixed gas of nitrogen gas and argon gas was supplied and the V / III ratio was 5 or more and 100 or less, a massive single crystal was obtained.

(比較例3、実施例2)
比較例3および実施例2は、昇華法により種結晶を用いてIII族窒化物結晶であるAlN結晶を成長させた例である。
(Comparative Example 3, Example 2)
Comparative Example 3 and Example 2 are examples in which an AlN crystal that is a group III nitride crystal was grown using a seed crystal by a sublimation method.

上記例においては、図2を参照して、結晶成長容器12であるC製の坩堝の内部にBN製の仕切り材により形成された結晶成長室13を有する昇華炉20を用いた。ここで、結晶成長室13の内径は50mm、高さは70mmとした。また、開口部13h,12hの直径は、それぞれ3mm、5mmとした。   In the above example, referring to FIG. 2, a sublimation furnace 20 having a crystal growth chamber 13 formed of a partition material made of BN inside a C crucible which is a crystal growth vessel 12 was used. Here, the inner diameter of the crystal growth chamber 13 was 50 mm, and the height was 70 mm. The diameters of the openings 13h and 12h were 3 mm and 5 mm, respectively.

上記例においては、種結晶を用いるため、種結晶を用いない場合に比べて、品質の良い結晶が得られやすいため、結晶成長室13を原料配置分室と結晶成長分室とに分けなかった。   In the above example, since a seed crystal is used, a crystal with good quality is easily obtained as compared with the case where no seed crystal is used. Therefore, the crystal growth chamber 13 is not divided into a raw material arrangement chamber and a crystal growth chamber.

上記例においては、以下のようにして、AlN結晶を成長させた。まず、結晶成長室13の上部に種結晶2として直径50mm×厚さ0.3mmの6H−SiC種結晶を配置し、結晶成長室13の下部にIII族窒化物原料1として酸素濃度が500ppmのAlN焼結体を100g収納した。比較例3および実施例2のそれぞれについて表2に示す条件になるように、反応容器11の内部であって結晶成長容器12の外部に、窒素ガスまたは混合ガス(窒素ガスおよびアルゴンガス)を流しながら、高周波加熱コイル16を用いて結晶成長容器12の内部の結晶成長室13を昇温させて、結晶成長容器12の下面の温度(AlN焼結体(III族窒化物原料2)の加熱温度に相当)を2000℃、上面の温度(AlN結晶(III族窒化物結晶3)の成長温度に相当)を1900℃として、AlN結晶(III族窒化物結晶3)を成長させた。結晶成長時間は30時間とした。結晶成長条件とその結果を表2にまとめた。   In the above example, an AlN crystal was grown as follows. First, a 6H—SiC seed crystal having a diameter of 50 mm × thickness of 0.3 mm is disposed as a seed crystal 2 in the upper part of the crystal growth chamber 13, and an oxygen concentration of 500 ppm as a group III nitride material 1 is provided in the lower part of the crystal growth chamber 13 100 g of an AlN sintered body was stored. Nitrogen gas or mixed gas (nitrogen gas and argon gas) was allowed to flow inside the reaction vessel 11 and outside the crystal growth vessel 12 so that the conditions shown in Table 2 were satisfied for each of Comparative Example 3 and Example 2. However, the temperature of the crystal growth chamber 13 inside the crystal growth vessel 12 is raised using the high-frequency heating coil 16, and the temperature of the lower surface of the crystal growth vessel 12 (heating temperature of the AlN sintered body (group III nitride raw material 2)) is increased. And an upper surface temperature (corresponding to the growth temperature of the AlN crystal (Group III nitride crystal 3)) of 1900 ° C. to grow an AlN crystal (Group III nitride crystal 3). The crystal growth time was 30 hours. The crystal growth conditions and the results are summarized in Table 2.

Figure 0004600160
Figure 0004600160

表2を参照して、50.65kPa(0.5気圧)の窒素ガスのみを供給してV/III比を882とした比較例3においては、種結晶上にAlN結晶が成長しない領域があり、成長したAlN結晶の表面にも凹凸が見られた。これに対して、10.13kPa(0.1気圧)の窒素ガスと91.17kPa(0.9気圧)のアルゴンガスとの混合ガスを供給してV/III比を79とした実施例2においては、表面が平滑な直径50mm×厚さ2.5mmのAlN単結晶が得られた。   Referring to Table 2, in Comparative Example 3 in which only the nitrogen gas of 50.65 kPa (0.5 atm) was supplied and the V / III ratio was 882, there was a region where no AlN crystal grew on the seed crystal. Unevenness was also observed on the surface of the grown AlN crystal. On the other hand, in Example 2 in which a mixed gas of nitrogen gas of 10.13 kPa (0.1 atm) and argon gas of 91.17 kPa (0.9 atm) was supplied and the V / III ratio was 79. Obtained an AlN single crystal having a smooth surface and a diameter of 50 mm and a thickness of 2.5 mm.

昇華法により種結晶を用いてAlN結晶を成長させる場合に、比較例3においては窒素ガスを供給してV/III比を100より大きくしたため表面に凹凸のあるAlN結晶しか得られないのに対し、実施例2においては窒素ガスとアルゴンガスとの混合ガスを供給してV/III比を5以上100以下としたため表面が平滑なAlN単結晶が得られた。   In the case of growing an AlN crystal using a seed crystal by the sublimation method, in Comparative Example 3, since the V / III ratio was made larger than 100 by supplying nitrogen gas, only an AlN crystal having irregularities on the surface was obtained. In Example 2, since a mixed gas of nitrogen gas and argon gas was supplied to make the V / III ratio 5 or more and 100 or less, an AlN single crystal having a smooth surface was obtained.

(比較例4、実施例3)
比較例4および実施例3は、昇華法により種結晶を用いてIII族窒化物結晶であるAlN結晶を成長させた例であって、AlN結晶のc軸に垂直な方向への結晶成長の有無について比較検討した例である。
(Comparative Example 4, Example 3)
Comparative Example 4 and Example 3 are examples in which an AlN crystal that is a group III nitride crystal was grown using a seed crystal by a sublimation method, and whether or not crystal growth occurred in a direction perpendicular to the c-axis of the AlN crystal This is an example of a comparative study.

上記例においては、図3を参照して、結晶成長容器12であるC製の坩堝の内部にBN製の仕切り材により形成された結晶成長室13を有する昇華炉30を用いた。図3の結晶成長質3の上部は、AlN結晶のc軸に垂直な方向への結晶成長の有無を確認するため、錘状に形成されている。ここで、結晶成長室13は、上面内径30mm、高さ20mm、下面50mmの円錐台形空間と、内径50mm、高さ50mmの円筒形空間とから形成されている。また、開口部13h,12hの直径は、それぞれ3mm、5mmとした。   In the above example, with reference to FIG. 3, a sublimation furnace 30 having a crystal growth chamber 13 formed of a partition material made of BN inside a C crucible which is a crystal growth vessel 12 was used. The upper portion of the crystal growth material 3 in FIG. 3 is formed in a weight shape in order to confirm the presence or absence of crystal growth in the direction perpendicular to the c-axis of the AlN crystal. Here, the crystal growth chamber 13 is formed of a frustoconical space having an upper surface inner diameter of 30 mm, a height of 20 mm, and a lower surface of 50 mm, and a cylindrical space having an inner diameter of 50 mm and a height of 50 mm. The diameters of the openings 13h and 12h were 3 mm and 5 mm, respectively.

上記例においては、種結晶を用いるため、種結晶を用いない場合に比べて、品質の良い結晶が得られやすいため、結晶成長室13を原料配置分室と結晶成長分室とに分けなかった。   In the above example, since a seed crystal is used, a crystal with good quality is easily obtained as compared with the case where no seed crystal is used. Therefore, the crystal growth chamber 13 is not divided into a raw material arrangement chamber and a crystal growth chamber.

上記例においては、以下のようにして、AlN結晶を成長させた。まず、結晶成長室13の上部に種結晶2として直径30mm×厚さ0.3mmのAlN種結晶(結晶成長面は(0001)面であるAl面)を配置し、結晶成長質3の下部にIII族窒化物原料1として酸素濃度が500ppmのAlN焼結体を100g収納した。比較例4および実施例3のそれぞれについて表3に示す条件になるように、反応容器11の内部であって結晶成長容器12の外部に、窒素ガスまたは混合ガス(窒素ガスおよびアルゴンガス)を流しながら、高周波加熱コイル16を用いて結晶成長容器12の内部の結晶成長室13を昇温させて、結晶成長容器12の下面の温度(AlN焼結体(III族窒化物原料2)の加熱温度に相当)を2200℃、上面の温度(AlN結晶(III族窒化物結晶3)の成長温度に相当)を2100℃として、AlN結晶(III族窒化物結晶3)を成長させた。結晶成長時間は30時間とした。結晶成長条件とその結果を表3にまとめた。   In the above example, an AlN crystal was grown as follows. First, an AlN seed crystal having a diameter of 30 mm and a thickness of 0.3 mm is disposed as the seed crystal 2 in the upper part of the crystal growth chamber 13 (the crystal growth surface is an Al plane that is a (0001) plane), As Group III nitride raw material 1, 100 g of an AlN sintered body having an oxygen concentration of 500 ppm was stored. Nitrogen gas or mixed gas (nitrogen gas and argon gas) was allowed to flow inside the reaction vessel 11 and outside the crystal growth vessel 12 so that the conditions shown in Table 3 were satisfied for each of Comparative Example 4 and Example 3. However, the temperature of the crystal growth chamber 13 inside the crystal growth vessel 12 is raised using the high-frequency heating coil 16, and the temperature of the lower surface of the crystal growth vessel 12 (heating temperature of the AlN sintered body (group III nitride raw material 2)) is increased. And an upper surface temperature (corresponding to the growth temperature of the AlN crystal (Group III nitride crystal 3)) of 2100 ° C. to grow an AlN crystal (Group III nitride crystal 3). The crystal growth time was 30 hours. The crystal growth conditions and the results are summarized in Table 3.

Figure 0004600160
Figure 0004600160

表3を参照して、101.3kPa(1気圧)の窒素ガスを供給してV/III比を132とした比較例4においては、種結晶からAlN結晶がc軸方向に柱状に成長し、c軸に垂直な方向には結晶成長が認められなかった。また、成長したAlN結晶は、原料であるAlN焼結体と接触し、多結晶化してしまい、成長質量の測定ができなかった。これに対し、20.26kPa(0.2気圧)の窒素ガスと81.04kPa(0.8気圧)のアルゴンガスとの混合ガスを供給してV/III比を11.8とした実施例3においては、種結晶からAlN単結晶がc軸方向およびc軸に垂直な面方向に成長して、結晶成長質3の内壁に沿って円錐台状に広がって成長した。こうして、上面直径30mm、下面直径50mm、高さ16mmの円錐台形状のAlN単結晶が得られた。   Referring to Table 3, in Comparative Example 4 in which a nitrogen gas of 101.3 kPa (1 atm) was supplied and the V / III ratio was 132, an AlN crystal grew from the seed crystal in a columnar shape in the c-axis direction, Crystal growth was not observed in the direction perpendicular to the c-axis. Further, the grown AlN crystal was brought into contact with the AlN sintered body as a raw material to be polycrystallized, and the growth mass could not be measured. On the other hand, Example 3 in which a mixed gas of 20.26 kPa (0.2 atm) nitrogen gas and 81.04 kPa (0.8 atm) argon gas was supplied to set the V / III ratio to 11.8. In FIG. 5, an AlN single crystal grew from the seed crystal in the c-axis direction and the plane direction perpendicular to the c-axis, and grew in a truncated cone shape along the inner wall of the crystal growth material 3. Thus, a truncated cone-shaped AlN single crystal having an upper surface diameter of 30 mm, a lower surface diameter of 50 mm, and a height of 16 mm was obtained.

比較例4においては窒素ガスを供給してV/III比を100より大きくしたためc軸方向にのみ成長した円柱状のAlN結晶しか得られないのに対し、実施例3においては窒素ガスとアルゴンガスとの混合ガスを供給してV/III比を5以上100以下としたためc軸方向およびc軸方向に垂直な方向に成長した円錐台形状のAlN単結晶が得られた。   In Comparative Example 4, nitrogen gas was supplied to increase the V / III ratio from 100, so that only a cylindrical AlN crystal grown only in the c-axis direction was obtained, whereas in Example 3, nitrogen gas and argon gas were obtained. And a V / III ratio of 5 or more and 100 or less was obtained, and a frustoconical AlN single crystal grown in the c-axis direction and the direction perpendicular to the c-axis direction was obtained.

また、上記の実施例3で得られたAlN結晶(単結晶)を(0001)面(C面)に平行にスライスして、表面を研磨し、さらに加工変質層をエッチングして、直径30mm×厚さ1mmのAlN単結晶基板を得た。このAlN単結晶基板の10μm角の範囲内におけるAFM(原子間力顕微鏡)により観察したRMS(Root Mean Square:平均線から測定曲線までの偏差の二乗を平均した値の平方根)鏡面粗さは50nm(500Å)以下であり、各種半導体デバイスに適用できるものであった。   Further, the AlN crystal (single crystal) obtained in the above Example 3 was sliced parallel to the (0001) plane (C plane), the surface was polished, and the work-affected layer was etched to obtain a diameter of 30 mm × An AlN single crystal substrate having a thickness of 1 mm was obtained. This AlN single crystal substrate has an RMS (Root Mean Square: square root of a value obtained by averaging the squares of deviations from the average line to the measurement curve) observed by an AFM (atomic force microscope) within a 10 μm square mirror surface roughness of 50 nm. (500cm) or less, which can be applied to various semiconductor devices.

今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した説明でなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内のすべての変更が含まれることが意図される。   It should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

昇華法によるIII族窒化物結晶の成長方法の1つの具体例を示す模式である。It is a model which shows one specific example of the growth method of the group III nitride crystal by a sublimation method. 昇華法によるIII族窒化物結晶の成長方法の他の具体例を示す模式である。It is a model which shows the other specific example of the growth method of the group III nitride crystal by the sublimation method. 昇華法によるIII族窒化物結晶の成長方法のさらに他の具体例を示す模式である。It is a model which shows the other specific example of the growth method of the group III nitride crystal by a sublimation method.

符号の説明Explanation of symbols

1 III族窒化物原料、2 種結晶、3 III族窒化物結晶、10,20,30 昇華炉、11 反応容器、11a ガス導入口、11b ガス排気口、12 結晶成長容器、12h,13j,13k,13h 開口部、13 結晶成長室、13a 原料配置分室、13b 結晶成長分室、15 断熱材、16 高周波加熱コイル、17 放射温度計。   1 Group III nitride raw material, 2 seed crystal, 3 Group III nitride crystal, 10, 20, 30 sublimation furnace, 11 reaction vessel, 11a gas introduction port, 11b gas exhaust port, 12 crystal growth vessel, 12h, 13j, 13k , 13h opening, 13 crystal growth chamber, 13a raw material placement compartment, 13b crystal growth compartment, 15 heat insulating material, 16 high-frequency heating coil, 17 radiation thermometer.

Claims (3)

昇華法によるIII族窒化物結晶の成長方法であって、
開口部を有する結晶成長容器の内部に設けられた開口部を有する結晶成長室の内部にIII族窒化物原料を配置し、前記結晶成長容器の外部に窒素ガスと不活性ガスとの混合ガスを供給して、前記結晶成長容器の外部と前記結晶成長室の内部とのガス交換を行ないながら、前記結晶成長室の内部でIII族窒化物結晶を成長させる工程を含むIII族窒化物結晶の成長方法。
A method for growing a group III nitride crystal by a sublimation method,
A group III nitride raw material is disposed inside a crystal growth chamber having an opening provided inside a crystal growth vessel having an opening, and a mixed gas of nitrogen gas and inert gas is placed outside the crystal growth vessel. And a step of growing a group III nitride crystal inside the crystal growth chamber while performing gas exchange between the outside of the crystal growth vessel and the inside of the crystal growth chamber. Method.
前記混合ガスは、前記窒素ガスの分圧に対する前記不活性ガスの分圧の比が0.1以上であることを特徴とする請求項1に記載のIII族窒化物結晶の成長方法。   2. The method for growing a group III nitride crystal according to claim 1, wherein the mixed gas has a ratio of a partial pressure of the inert gas to a partial pressure of the nitrogen gas of 0.1 or more. 結晶成長温度を2000℃以上とすることを特徴とする請求項1または請求項2に記載のIII族窒化物結晶の成長方法。   The method for growing a group III nitride crystal according to claim 1 or 2, wherein the crystal growth temperature is 2000 ° C or higher.
JP2005162654A 2005-06-02 2005-06-02 Group III nitride crystal growth method Expired - Fee Related JP4600160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162654A JP4600160B2 (en) 2005-06-02 2005-06-02 Group III nitride crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162654A JP4600160B2 (en) 2005-06-02 2005-06-02 Group III nitride crystal growth method

Publications (2)

Publication Number Publication Date
JP2006335608A JP2006335608A (en) 2006-12-14
JP4600160B2 true JP4600160B2 (en) 2010-12-15

Family

ID=37556471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162654A Expired - Fee Related JP4600160B2 (en) 2005-06-02 2005-06-02 Group III nitride crystal growth method

Country Status (1)

Country Link
JP (1) JP4600160B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8545629B2 (en) 2001-12-24 2013-10-01 Crystal Is, Inc. Method and apparatus for producing large, single-crystals of aluminum nitride
US9034103B2 (en) 2006-03-30 2015-05-19 Crystal Is, Inc. Aluminum nitride bulk crystals having high transparency to ultraviolet light and methods of forming them
US9771666B2 (en) 2007-01-17 2017-09-26 Crystal Is, Inc. Defect reduction in seeded aluminum nitride crystal growth
JP4992703B2 (en) 2007-12-25 2012-08-08 住友電気工業株式会社 Group III nitride semiconductor crystal growth method
JP5303941B2 (en) * 2008-01-31 2013-10-02 住友電気工業株式会社 Method of growing AlxGa1-xN single crystal
EP2588651B1 (en) 2010-06-30 2020-01-08 Crystal Is, Inc. Growth of large aluminum nitride single crystals with thermal-gradient control
US8962359B2 (en) 2011-07-19 2015-02-24 Crystal Is, Inc. Photon extraction from nitride ultraviolet light-emitting devices
JP5527344B2 (en) * 2012-03-21 2014-06-18 住友電気工業株式会社 Group III nitride semiconductor crystal growth method and group III nitride semiconductor crystal growth apparatus
JP6275817B2 (en) 2013-03-15 2018-02-07 クリスタル アイエス, インコーポレーテッドCrystal Is, Inc. Planar contacts to pseudomorphic and optoelectronic devices

Also Published As

Publication number Publication date
JP2006335608A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4600160B2 (en) Group III nitride crystal growth method
JP6830658B2 (en) Nitride semiconductor substrate manufacturing method and manufacturing equipment
EP1866464B1 (en) Seeded growth process for preparing aluminum nitride single crystals
US9580833B2 (en) Growth of large aluminum nitride single crystals with thermal-gradient control
JP5186733B2 (en) AlN crystal growth method
JP2010515661A (en) Induced diameter SiC sublimation growth using multilayer growth guide
JP2007308364A (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP2006016294A (en) Method for growing group iii nitride crystal, group iii nitride crystal substrate, and semiconductor device
JP4604728B2 (en) Method for producing silicon carbide single crystal
JP2005343722A (en) METHOD FOR GROWING AlN CRYSTAL, AlN CRYSTAL SUBSTRATE AND SEMICONDUCTOR DEVICE
JP2018140903A (en) Method for manufacturing silicon carbide single crystal ingot
JP4850807B2 (en) Crucible for growing silicon carbide single crystal and method for producing silicon carbide single crystal using the same
JP6885205B2 (en) Metal steam supply equipment, metal / metal compound production equipment, metal nitride single crystal production method, and nanoparticles production method
JP4595592B2 (en) Single crystal growth method
JP4774959B2 (en) Method for growing AlN single crystal
JP2007145679A (en) Apparatus for and method of producing aluminum nitride single crystal
JP2008230868A (en) Method for growing gallium nitride crystal and gallium nitride crystal substrate
JP5252495B2 (en) Method for producing aluminum nitride single crystal
JP2010100449A (en) Method for growing group iii nitride crystal
JP2009137777A (en) AlN CRYSTAL AND METHOD FOR GROWING THE SAME
JP4678212B2 (en) Group III nitride single crystal growth method
JP2014024705A (en) Method for producing silicon carbide substrate
JP2006069814A (en) Substrate having stacked aluminum nitride layer
JP4552516B2 (en) Method for producing AlN single crystal
JP2011057468A (en) Crucible, method for producing aluminum nitride single crystal, and aluminum nitride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4600160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees