JP4599113B2 - Impurity removal equipment - Google Patents

Impurity removal equipment Download PDF

Info

Publication number
JP4599113B2
JP4599113B2 JP2004227844A JP2004227844A JP4599113B2 JP 4599113 B2 JP4599113 B2 JP 4599113B2 JP 2004227844 A JP2004227844 A JP 2004227844A JP 2004227844 A JP2004227844 A JP 2004227844A JP 4599113 B2 JP4599113 B2 JP 4599113B2
Authority
JP
Japan
Prior art keywords
water
desalting
filtration
tank
impurity removing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004227844A
Other languages
Japanese (ja)
Other versions
JP2006043580A (en
JP2006043580A5 (en
Inventor
健二 藤畑
和矢 山田
正 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004227844A priority Critical patent/JP4599113B2/en
Publication of JP2006043580A publication Critical patent/JP2006043580A/en
Publication of JP2006043580A5 publication Critical patent/JP2006043580A5/ja
Application granted granted Critical
Publication of JP4599113B2 publication Critical patent/JP4599113B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Description

本発明は、原子力発電所の一次系統水等に含まれる溶解性不純物および不溶解性不純物を除去するようにした不純物除去装置に関する。 The present invention relates to an impurity removal apparatus that removes soluble impurities and insoluble impurities contained in primary system water or the like of a nuclear power plant.

原子力発電所の一次系統水、火力発電所の一次系統水あるいは燃料電池の系統水などには不純物が含まれている。この不純物には水に溶けることで溶液として挙動する溶解性のものと、水に溶けずに分散あるいは沈降の状態となる不溶解性のものとがある。このため、不純物を除去するシステムとしては、溶解性不純物および不溶解性不純物の双方を除去する能力を備えることが必要である。   Impurities are contained in the primary system water of a nuclear power plant, the primary system water of a thermal power plant, or the system water of a fuel cell. There are two types of impurities: a soluble one that behaves as a solution when dissolved in water, and an insoluble one that does not dissolve in water and becomes dispersed or settled. For this reason, it is necessary for a system for removing impurities to have the ability to remove both soluble and insoluble impurities.

従来、溶解性不純物を除去する代表的な技術として、イオン交換樹脂法(例えば、特許文献1参照)があり、そのほか逆浸透膜法、蒸留法、電気透析法などもある。また、不溶解性不純物を除去する主たる技術として、濾過法(例えば、特許文献2参照)、遠心分離法などがある。
特開2003−181303号公報 特開2003−145150号公報
Conventionally, as a representative technique for removing soluble impurities, there is an ion exchange resin method (see, for example, Patent Document 1), and there are a reverse osmosis membrane method, a distillation method, an electrodialysis method, and the like. Further, as a main technique for removing insoluble impurities, there are a filtration method (for example, see Patent Document 2), a centrifugal separation method, and the like.
JP 2003-181303 A JP 2003-145150 A

上述した溶解性不純物を除去する技術は不溶解性不純物を除去する技術に比べ、一般に耐熱性、耐久性、耐汚染性が劣っており、この耐熱性、耐久性および耐汚染性の良し悪しにより不純物除去装置の性能が決定されることになる。   The technology for removing soluble impurities described above is generally inferior in heat resistance, durability, and contamination resistance compared to the technology for removing insoluble impurities, and this heat resistance, durability, and contamination resistance are good or bad. The performance of the impurity removal apparatus will be determined.

以下、溶解性不純物を除去する技術の課題について述べる。
まず、イオン交換樹脂法は官能基を付加した有機材料であるイオン交換樹脂を使用するもので、熱に弱く、対象となる水は不溶解性不純物が除かれていなければならず、また、使用後は試薬洗浄あるいは交換が必要となる。
Hereinafter, the problem of the technique for removing soluble impurities will be described.
First, the ion exchange resin method uses an ion exchange resin, which is an organic material with a functional group added. It is sensitive to heat, and the target water must be free from insoluble impurities. After that, reagent cleaning or replacement is required.

次に、逆浸透膜法は溶解性不純物に対する篩(ふるい)が可能な微細孔を有する有機材料の膜を使用するもので、イオン交換樹脂と同様に熱に弱く、対象となる水は不溶解性不純物が除かれていなければならず、また、対象となる水が極微細孔の膜を透過するためには高圧が必要となる。   Next, the reverse osmosis membrane method uses a membrane made of an organic material having fine pores that can be sieved against soluble impurities. Like the ion exchange resin, it is vulnerable to heat and the target water is insoluble. In order for the target water to permeate the ultrafine pore membrane, high pressure is required.

さらに、蒸留法は対象となる水を加熱蒸発するもので、蒸発に要するエネルギーが膨大となる。またさらに、電気透析法は膜状のイオン交換樹脂と電気泳動を利用するもので、イオン交換樹脂と同様に熱に弱く、膜状に成形してあるだけイオン交換樹脂より耐久性に劣る。   Further, the distillation method heats and evaporates the target water, and the energy required for evaporation becomes enormous. Furthermore, the electrodialysis method uses a membrane-like ion exchange resin and electrophoresis, is weak to heat like the ion-exchange resin, and is less durable than the ion-exchange resin as long as it is molded into a membrane shape.

このような溶解性不純物を除去する技術の課題に鑑み、発明者らは溶解している帯電性不純物を含む被処理流体を電気泳動槽の処理室に流入させて両端から電場を与え、被処理流体中の帯電性不純物をその帯電の極性に従ってそれぞれ電位方向に電気泳動させることによって処理室の両側に配置された拡散層によって物理的な篩を行うようにした脱塩装置による溶解性不純物の除去技術を発明した(特願2003-328325号および特願2003-424778号)。
この脱塩装置による溶解性不純物除去技術は、耐熱性および耐久性に優れ、さらに耐汚染性にも強いという特徴を有している。
In view of the technical problem of removing such soluble impurities, the inventors flowed a treatment fluid containing dissolved chargeable impurities into the treatment chamber of the electrophoresis tank and applied an electric field from both ends to treat the treatment. Removal of soluble impurities by desalting equipment in which a physical sieve is carried out by diffusion layers arranged on both sides of the treatment chamber by causing electrified impurities in the fluid to be electrophoresed in the potential direction according to the polarity of the charge. Invented the technology (Japanese Patent Application Nos. 2003-328325 and 2003-424778).
The technique for removing soluble impurities by this desalting apparatus has the characteristics that it is excellent in heat resistance and durability and is also resistant to contamination.

本発明は、上記の課題に鑑みてなされたもので、不溶解性不純物を濾過する濾過装置と、脱塩装置による溶解性不純物除去技術とを組み合わせることにより、被処理水中の溶解性不純物および不溶解性不純物を除去することのできる不純物除去装置を得ることを目的とするものである。 The present invention has been made in view of the above problems. By combining a filtration device for filtering insoluble impurities with a technique for removing soluble impurities by a desalting device, soluble impurities and undissolved substances in the water to be treated can be obtained. An object of the present invention is to obtain an impurity removing apparatus capable of removing soluble impurities.

上記の目的を達成するため、本発明に係る不純物除去装置の発明は、濾過装置に被処理水である原液を取り入れて濾過処理し、この濾過処理した処理水を脱塩装置に取り入れて脱塩処理する不純物除去装置であって、前記濾過装置は、濾過処理槽と、この濾過処理槽に収容され、内部を入口水側区画と出口水側区画とに隔てるフィルターと、前記濾過処理槽の入口水側区画に連通するように設けられた被処理水である原液の入口配管と、前記濾過処理槽の出口水側区画に連通するように設けられた処理水の出口配管と、前記フィルターを逆流洗浄するための逆洗用流体の導入配管および排出配管を有する逆洗機構とを備えて構成され、前記脱塩装置は、茶筒状の脱塩処理槽と、この脱塩処理槽内に当該脱塩処理槽の一端面から他端面に向けて順次配置された円板状の陰電極用絶縁スペーサ、円板状の陰電極、円環状の陰電極液流通用絶縁スペーサ、円板状の陰電極側セパレータ、円環状の処理水流通用絶縁スペーサ、円板状の陽電極側セパレータ、円環状の陽電極液流通用絶縁スペーサ、円板状の陽電極、及び円板状の陽電極用絶縁スペーサと、前記処理水流通用絶縁スペーサによって形成した空間部に連通するように設けた処理水の口配管および脱塩処理水の出口配管と、前記陰電極及び陽電極液流通用絶縁スペーサによって形成した空間部に連通するように設けた溶解性不純物を含む水の排出配管と、前記陰電極側及び陽電極側セパレータを逆流洗浄するための逆洗用流体の導入配管および排出配管を有する逆洗機構とを備えて構成されることを特徴とする。 In order to achieve the above-mentioned object, the invention of the impurity removing apparatus according to the present invention includes a filtration apparatus in which a stock solution, which is water to be treated, is filtered, and the filtered treated water is taken in a desalting apparatus. An apparatus for removing impurities to be processed, wherein the filtration device includes a filtration treatment tank, a filter that is accommodated in the filtration treatment tank and that separates the inside into an inlet water side compartment and an outlet water side compartment, and an inlet of the filtration treatment tank A raw material inlet pipe which is treated water provided to communicate with the water-side compartment, a treated water outlet pipe provided to communicate with the outlet water-side compartment of the filtration treatment tank, and a reverse flow through the filter And a backwashing mechanism having a backwashing fluid introduction pipe and a discharge pipe for washing, and the desalting apparatus includes a tea tube-shaped desalting tank and the desalting tank. From one end of the salt treatment tank to the other end Disc-shaped negative electrode insulating spacers, disc-shaped negative electrodes, circular negative electrode liquid distribution insulating spacers, disk-shaped negative electrode side separators, circular processed water distribution insulating spacers, A space formed by a disk-shaped positive electrode side separator, an annular positive electrode liquid distribution insulating spacer, a disk-shaped positive electrode, a disk-shaped positive electrode insulating spacer, and the treated water distribution insulating spacer to the outlet pipe of the inlet mouth piping and desalted water treated water provided so as to communicate, the solubility impurities provided so as to communicate with the space portion formed by the negative electrode and the positive electrode liquid circulation insulating spacer It is characterized by comprising a backwashing mechanism having a drainage pipe for containing water, a backwashing fluid introduction pipe and a drainpipe for backwashing the negative electrode side and the positive electrode side separator.

本発明による不純物除去装置は、有機材料を使用する必要がないため、従来技術に比べて、耐熱性または耐久性あるいは耐汚染性を大きく向上させることが可能である。 Since the impurity removing apparatus according to the present invention does not require the use of an organic material, the heat resistance, durability, or contamination resistance can be greatly improved as compared with the prior art.

以下、本発明に係る不純物除去装置の実施の形態について、図面を参照して説明する。
(実施例1)
図1を参照して実施例1について説明する。
本実施例による不純物除去装置は、濾過装置100と脱塩装置200とをカスケード接続することにより、濾過装置100に被処理水である原液(例えば、原子力発電所の一次系統水、火力発電所の一次系統水あるいは燃料電池の系統水などの不溶解性不純物および溶解性不純物が含まれている水)を取り入れて濾過処理し、この濾過処理した処理水を脱塩装置200に取り入れて脱塩処理するように構成したものである。
Embodiments of an impurity removing apparatus according to the present invention will be described below with reference to the drawings.
(Example 1)
Embodiment 1 will be described with reference to FIG.
The impurity removal apparatus according to the present embodiment cascades the filtration apparatus 100 and the desalination apparatus 200, so that the raw solution (for example, primary system water of a nuclear power plant, Water containing insoluble impurities and soluble impurities such as primary water or fuel cell water) is filtered and the filtered treated water is taken into the desalinator 200 and desalted. It is comprised so that it may do.

まず、濾過装置100について、その構成、作用を説明する。
濾過装置100は、円筒状の濾過処理槽14と、この濾過処理槽14内に収容され、内部を入口水側区画と出口水側区画とに隔てる円筒状のフィルター16と、このフィルターを固定するための固定台15と、濾過処理槽14内に底部から被処理水すなわち不溶解性不純物および溶解性不純物を含む原液1を送り込むための入口配管10と、フィルター16により原液1から不溶解性不純物の除去された水2を濾過処理槽14の上部から送り出すための出口配管11と、濾過処理槽14の上部から逆洗用流体である不溶解性不純物の除去された水あるいはガス4を導入する導入配管12と、濾過処理槽14の底部から不溶解性不純物を含む水5を排出するための排出配管13とを備えている。
First, the configuration and operation of the filtration device 100 will be described.
Fixing the filtration apparatus 100 includes a cylindrical filtration tank 14, the filtration is accommodated in the processing tank 14, a cylindrical filter 16 Ru spaced interior inlet water side compartment and the outlet water side compartment, the filter Insoluble from stock solution 1 by filter 16, inlet pipe 10 for feeding raw water 1 containing water to be treated, that is, insoluble impurities and soluble impurities, from the bottom into filtration tank 14, and filter 16 The outlet pipe 11 for sending out the water 2 from which impurities have been removed from the upper part of the filtration tank 14 and the water or gas 4 from which the insoluble impurities have been removed from the upper part of the filtration tank 14 are introduced. And a discharge pipe 13 for discharging the water 5 containing insoluble impurities from the bottom of the filtration tank 14.

前記入口配管10〜排出配管13のうち、入口配管10および出口配管11は定常運転時に使用され、一方、導入配管12および排出配管13は逆洗運転時に使用されるものである。
なお、前記濾過処理槽14およびこれに収容するフィルター16はそれぞれ円筒状に形成されていると説明したが、円筒状に形成した理由は不純物を含む原液1を全方面から均一に濾過するためである。濾過処理槽14の材質としては、耐熱性、耐圧性および加工性が要求されるために金属材料を用いるのが妥当である。金属材料の中でもコスト面を考慮した場合はステンレスが妥当であるが、耐食性や操作性などを考慮した場合には、ハステロイ(登録商標)やインコネルあるいはチタン等の耐熱耐食性金属材料の中から選定する必要がある。
Of the inlet pipe 10 to the discharge pipe 13, the inlet pipe 10 and the outlet pipe 11 are used during steady operation, while the introduction pipe 12 and the discharge pipe 13 are used during backwashing operation.
The filtration tank 14 and the filter 16 accommodated in the filtration tank 14 have been described as being formed in a cylindrical shape. The reason why the filter tank 14 is formed in a cylindrical shape is to uniformly filter the stock solution 1 containing impurities from all sides. is there. As a material of the filtration tank 14, it is appropriate to use a metal material because heat resistance, pressure resistance and workability are required. Among the metal materials, stainless steel is appropriate when considering the cost aspect, but when considering corrosion resistance and operability, select from heat-resistant and corrosion-resistant metal materials such as Hastelloy (registered trademark), Inconel, or titanium. There is a need.

また、濾過処理槽14にさらに高い耐食性を考慮する場合は、これらの金属材料にアルミナなどのセラミック材料あるいはフッ化物系材料を内張りすることも可能であって、これらは溶出物等の装置要求を考慮した選定を行う必要がある。   Further, when considering higher corrosion resistance in the filtration tank 14, ceramic materials such as alumina or fluoride-based materials can be lined on these metal materials. It is necessary to make a selection with consideration.

ところで、フィルター16は微小コロイドの捕捉を考慮してその孔径を1μm以下にすることが望ましい。フィルター16の材質は耐熱性、加工性および緻密性が要求されるために金属材料を用いるのが妥当であり、金属材料の中でもコスト面を考慮するとステンレスが妥当である。しかし、耐食性や操作性などを考慮する場合にはハステロテイやインコネル、チタンなどの材質から溶出物等の装置要求を考慮した選定を行う必要がある。あるいは、特殊な溶出物等の装置要求に対応するためにアルミナなどのセラミック材料、あるいはフッ化物系材料を適用することも考えられる。   By the way, it is desirable that the filter 16 has a pore size of 1 μm or less in consideration of capture of microcolloids. As the material of the filter 16, it is appropriate to use a metal material because heat resistance, workability, and denseness are required, and stainless steel is appropriate among metal materials in consideration of cost. However, when considering corrosion resistance, operability, etc., it is necessary to make a selection taking into consideration the equipment requirements such as elution from materials such as hastely, inconel and titanium. Alternatively, it may be possible to apply a ceramic material such as alumina or a fluoride-based material in order to meet the equipment requirements for special eluate.

濾過処理槽14、フィルター16に適用可能なハステロイおよびインコネルの化学成分を表1に示す。   Table 1 shows the chemical components of Hastelloy and Inconel applicable to the filtration tank 14 and the filter 16.

Figure 0004599113
Figure 0004599113

次に、脱塩装置200について説明する。脱塩装置200の基本原理は、先願発明(特願2003-424778号「水処理装置および水処理方法、原子力プラント」)に記載の水処理装置と同様であるが、具体的な構成は若干異なる。すなわち、本発明で使用する脱塩装置200は、取り入れた被処理水2の流下方向に対して茶筒を横にした形状を採用している。   Next, the desalting apparatus 200 will be described. The basic principle of the desalination apparatus 200 is the same as that of the water treatment apparatus described in the prior invention (Japanese Patent Application No. 2003-424778 “Water Treatment Apparatus and Water Treatment Method, Nuclear Power Plant”), but the specific configuration is slightly different. Different. That is, the desalination apparatus 200 used in the present invention adopts a shape in which a tea cylinder is placed sideways with respect to the flow-down direction of the water 2 to be treated.

この脱塩装置200の最も基本的な概念構成について図5を参照して説明する。
脱塩装置200は、図5示すように、被処理水2の流下方向に対して直交する方向に向いた茶筒状に形成された脱塩処理槽26の内部に、電極用絶縁スペーサを介して一対の電極を対向配置し、この一対の電極間に形成された空間部に環状の電極液流通用絶縁スペーサをそれぞれ介して一対の板状のセパレータを配置し、さらにこの一対のセパレータ相互間に環状の原液流通用絶縁スペーサを介挿するように構成したものである。
The most basic conceptual configuration of the desalting apparatus 200 will be described with reference to FIG.
As shown in FIG. 5, the desalting apparatus 200 is disposed inside a desalting treatment tank 26 formed in a tea cylinder shape oriented in a direction orthogonal to the flow-down direction of the water to be treated 2 with an insulating spacer for electrodes interposed therebetween. A pair of electrodes are arranged opposite to each other, and a pair of plate-like separators are arranged in a space formed between the pair of electrodes via annular electrode liquid circulation insulating spacers, respectively. It is configured so as to insert an annular insulating solution circulation spacer.

すなわち、脱塩処理槽26の内部に、図示左側端面から円板状の陰電極用絶縁スペーサ29a、円板状の陰電極27a、円環状の陰電極液流通用絶縁スペーサ29b、円板状の陰電極側セパレータ28a、円環状の原液流通用絶縁スペーサ29c、円板状の陽電極側セパレータ28b、円環状の陽電極液流通用絶縁スペーサ29d、円板状の陽電極27b、陽電極用絶縁スペーサ29eを順次配置した構成になっている。そして、円板状に形成された陰電極27a、陰電極側セパレータ28a、陽電極側セパレータ28bおよび陽電極27bは両側に配置された絶縁スペーサ29a〜29eによってそれぞれ周縁部を液密状態で挟持されるようになっている。   That is, inside the desalting treatment tank 26, from the left end face in the figure, a disk-shaped negative electrode insulating spacer 29a, a disk-shaped negative electrode 27a, an annular negative electrode liquid circulation insulating spacer 29b, a disk-shaped insulating spacer 29b Cathode-side separator 28a, annular-shaped stock solution distribution insulating spacer 29c, disk-shaped positive electrode-side separator 28b, annular-shaped positive electrode solution distribution insulating spacer 29d, disk-shaped positive electrode 27b, positive electrode insulation The spacer 29e is sequentially arranged. The negative electrode 27a, the negative electrode side separator 28a, the positive electrode side separator 28b, and the positive electrode 27b formed in a disk shape are each sandwiched in a liquid-tight state by insulating spacers 29a to 29e arranged on both sides. It has become so.

そして、このように構成された茶筒状の脱塩装置200の上部には、前記濾過装置100により不溶解性不純物が除去された処理水2を取り入れる入口配管20、逆洗用流体である不純物を除去した水あるいはガス6を導入する導入配管22が接続され、一方、脱塩処理槽26の最下部の中央部には、不溶解性不純物および溶解性不純物の全てが除去された処理水3の出口配管21を設け、この出口配管21から少し隔てた部位に溶解性不純物を含む水7、8の出口配管23、24とを接続している。なお、25は出口配管21から分岐して設けられた逆洗時に使用する排出配管であり、セパレータ28aおよび28bにおいて不溶解性形態となった不純物含む水9を逆洗時に排出するものである。   And in the upper part of the tea tube-shaped desalting apparatus 200 configured in this way, an inlet pipe 20 for taking in the treated water 2 from which insoluble impurities have been removed by the filtration apparatus 100, impurities as a backwashing fluid are contained. Introductory piping 22 for introducing the removed water or gas 6 is connected. On the other hand, in the lowermost central portion of the desalting treatment tank 26, the treated water 3 from which all insoluble impurities and soluble impurities have been removed is provided. An outlet pipe 21 is provided, and outlet pipes 23 and 24 for water 7 and 8 containing soluble impurities are connected to a portion slightly separated from the outlet pipe 21. Reference numeral 25 denotes a discharge pipe used at the time of back washing provided by branching from the outlet pipe 21, and discharges the water 9 containing impurities in an insoluble form in the separators 28a and 28b at the time of back washing.

次に、脱塩装置200の各構成部品の材料等についてさらに説明する。
脱塩装置200は、処理性能を向上させるために反応面積を大きく、かつ、電極間の距離を小さくすることが必要であることからその形状は、前述のとおり被処理水2の流下方向に対して縦長横短の茶筒状であることが基本的である。このため、脱塩処理槽26についても縦長横短の茶筒状に形成され、その材質としては前記濾過処理槽14と同様に耐熱性耐圧性および加工性などが要求されるため金属材料される。脱塩処理槽26の場合もコストを重要視するのであればステンレスを選定するのが妥当であるが、ステンレスよりも優れた耐食性や操作性などを考慮する場合にはハステロイ、インコネル、チタン等の材質から選定すればよい。またさらに、耐食性や絶縁性等の向上を図るためには、これらの金属材料の外表面にアルミナなどのセラミック材料あるいはフッ化物系材料を内張りすればよい。これらは溶出物等の装置要求を考慮したうえで選定を行う必要がある。
Next, the material of each component of the desalinator 200 will be further described.
Since the desalination apparatus 200 needs to have a large reaction area and a small distance between the electrodes in order to improve the treatment performance, the shape of the desalination apparatus 200 corresponds to the flow direction of the treated water 2 as described above. Basically, it is in the shape of a long and short tea cylinder. For this reason, the desalination treatment tank 26 is also formed into a vertically and horizontally short tea tube shape, and the material thereof is a metal material because heat resistance and pressure resistance and workability are required in the same manner as the filtration treatment tank 14. In the case of the desalination tank 26, it is appropriate to select stainless steel if cost is important. However, when considering corrosion resistance and operability superior to stainless steel, there are Hastelloy, Inconel, titanium, etc. Select from materials. Furthermore, in order to improve corrosion resistance, insulation, etc., a ceramic material such as alumina or a fluoride material may be lined on the outer surface of these metal materials. These need to be selected in consideration of equipment requirements such as eluate.

次に、前記セパレータ28a、28bについては、その孔径を1μm以下にすることが望ましいが、1μmよりも大きい孔径であっても差し支えない。セパレータ28a、28bの材質は耐熱性、耐食性、緻密性、加工性あるいは展延性等からハステロイやステンレス、インコネル、チタンなどの金属材料、あるいはアルミナなどのセラミック材料、フッ化物系材料などを絶縁性や溶出物等の装置要求を考慮した選定を行う必要がある。なお、処理槽26およびセパレータ28に使用するハステロテイやインコネルの化学成分は、上記表1で示したものと同じである。   Next, the separators 28a and 28b preferably have a hole diameter of 1 μm or less, but may have a hole diameter larger than 1 μm. The separators 28a and 28b are made of insulating material such as hastelloy, stainless steel, inconel and titanium, ceramic materials such as alumina, fluoride materials, etc. due to heat resistance, corrosion resistance, denseness, workability and spreadability. It is necessary to make selections that take into account equipment requirements such as eluate. It should be noted that the chemical components of hasteroty and inconel used for the treatment tank 26 and the separator 28 are the same as those shown in Table 1 above.

絶縁スペーサ29a〜29eのうち円板状に形成された電極用絶縁スペーサ29aおよび29eについてはその中心点に電極27a、27bのリード線に対応した穴をあけた形状にする必要がある。電極液流通用絶縁スペーサ29b、29dおよび原液流通用絶縁スペーサ29cは中央に反応面があって上下方向に電極液あるいは原液が流通する穴を有している。   Of the insulating spacers 29a to 29e, the electrode insulating spacers 29a and 29e formed in a disk shape need to have a shape in which a hole corresponding to the lead wire of the electrodes 27a and 27b is formed at the center point. The electrode solution distribution insulating spacers 29b and 29d and the undiluted solution distribution insulating spacer 29c have a reaction surface in the center and a hole through which the electrode solution or undiluted solution flows in the vertical direction.

なお、各絶縁スペーサ29a〜29eの材質は耐熱性、耐食性、加工性、展延性、絶縁性等からアルミナなどのセラミック材料、フッ化物系材料などの材質から溶出物等の装置要求を考慮した選定を行う必要がある。   In addition, the material of each insulating spacer 29a to 29e is selected in consideration of equipment requirements such as ceramic materials such as alumina, fluoride-based materials, etc. due to heat resistance, corrosion resistance, workability, spreadability, insulation, etc. Need to do.

一方、電極27a、27bについては、その材質を耐熱性、腐食性、加工性、展延性、不溶性等から白金族元素材料あるいは白金族元素を鍍金した金属材料の適用が考えられ、これらから溶出性等の装置要求を考慮した選定を行う必要がある。   On the other hand, for the electrodes 27a and 27b, platinum group element materials or metal materials plated with platinum group elements can be considered because of their heat resistance, corrosion resistance, workability, spreadability, insolubility, etc. It is necessary to make a selection in consideration of the equipment requirements.

次に、図1乃至図3を参照して本装置の動作について説明する。
本実施例の場合、本装置に送り込まれた被処理水である不溶解性および溶解性不純物を含む原液1は、まず濾過装置100において不溶解性不純物をフィルター16で濾過によって除去し、次いで、脱塩装置200において脱塩処理することで溶解性不純物を除去するのであるが、以下、濾過装置100の定常運転から逆洗運転へと説明し、その後脱塩装置200の定常運転から逆洗運転へと説明を続ける。
Next, the operation of this apparatus will be described with reference to FIGS.
In the case of the present embodiment, the stock solution 1 containing insoluble and soluble impurities, which is the water to be treated fed into the apparatus, is first removed by filtration with the filter 16 in the filtration apparatus 100, and then Soluble impurities are removed by desalting in the desalinator 200. Hereinafter, the steady operation of the filtration device 100 will be described as being backwashed, and then the steady operation of the desalter 200 will be backwashed. Continue to explain.

濾過装置100の定常運転では、図1で示すように、逆洗用流体である不溶解性不純物を除いた水あるいは空気4の導入配管12のバルブ12Vはおよび不溶解性不純物を含む水5の排出配管13のバルブ13Vは閉じられており、不純物を含む原液1は入口水配管10から濾過処理槽14内部に送り込まれ、フィルター16の外表面でのふるい効果により不溶解性不純物が除去された後に、フィルター16内部の微細孔を介してその内側へと透過し、出口水配管11から不溶解性不純が除去された処理水2となって濾過処理槽14外に送り出される。   In the steady operation of the filtration apparatus 100, as shown in FIG. 1, the valve 12V of the introduction pipe 12 for water or air 4 excluding the insoluble impurities as the backwash fluid and the water 5 containing insoluble impurities The valve 13V of the discharge pipe 13 is closed, and the stock solution 1 containing impurities is sent into the filtration tank 14 from the inlet water pipe 10, and insoluble impurities are removed by the sieving effect on the outer surface of the filter 16. After that, it passes through the fine holes inside the filter 16 to the inside thereof, and becomes treated water 2 from which insoluble impurities are removed from the outlet water pipe 11 and is sent out of the filtration treatment tank 14.

このような定常運転において、フィルター16の外表面には除去した不溶解性不純物が蓄積されたために、フィルター16の圧損失が大きくなった場合は、図示しない圧力センサーが動作して、定常運転を停止し、逆洗運転を行う。   In such steady operation, when the pressure loss of the filter 16 increases due to accumulation of insoluble impurities removed on the outer surface of the filter 16, a pressure sensor (not shown) operates to perform steady operation. Stop and perform backwash operation.

濾過装置100の逆洗運転は例えば、次のようにして行う。
図2において、まず、不純物を含む原液1の入口配管10のバルブ10Vおよび不溶解性不純物を除去した処理水2の出口配管11のバルブ11Vを閉め、逆に、濾過処理槽14の上部中央に設置された逆洗用流体4を導入する導入配管12のバルブ12Vと、不溶解性不純物を含む水5の排出配管13のバルブ13Vとを開に切り替える。
The backwashing operation of the filtration device 100 is performed as follows, for example.
In FIG. 2, first, the valve 10V of the inlet pipe 10 of the stock solution 1 containing impurities and the valve 11V of the outlet pipe 11 of the treated water 2 from which insoluble impurities have been removed are closed, and conversely, in the upper center of the filtration tank 14 The valve 12V of the introduction pipe 12 for introducing the installed backwash fluid 4 and the valve 13V of the discharge pipe 13 for the water 5 containing insoluble impurities are switched to open.

この状態において、逆洗用流体の導入配管12から逆洗用流体4を流入させてフィルター16の内側から外側へ透過させることによって、フィルター16外表面に蓄積した不溶解性不純物を押し剥がす。剥がされた不溶解性不純物は、重力沈降により濾過処理槽14の底部に集められ、不溶解性不純物を含む水5として排出配管13から排出される。   In this state, the backwashing fluid 4 is introduced from the backwashing fluid introduction pipe 12 and permeated from the inside to the outside of the filter 16 to push away insoluble impurities accumulated on the outer surface of the filter 16. The peeled insoluble impurities are collected at the bottom of the filtration tank 14 by gravity sedimentation, and are discharged from the discharge pipe 13 as water 5 containing insoluble impurities.

次に、脱塩装置200の定常運転について説明する。脱塩装置200の定常運転の場合、図1で示すように、逆洗用流体である不純物を除いた水あるいはガス6の導入配管22のバルブ22V、不溶解性不純物を含む水9の排出配管25のバルブ25Vを閉じておく。   Next, steady operation of the desalting apparatus 200 will be described. In the case of steady operation of the desalting apparatus 200, as shown in FIG. 1, the valve 22V of the introduction pipe 22 for water or gas 6 excluding impurities as a backwash fluid, and the discharge pipe for water 9 containing insoluble impurities Keep 25 valves 25V closed.

この状態において、既に濾過装置100で不溶解性不純物が取り除かれた処理水2を図5に示す入口配管20から円環状の原液流通用絶縁スペーサ29cと円板状セパレータ28a、28bとで形成された処理空間部に流入させる。すると、処理水2に含まれる溶解性不純物は、電極27a、27bでかけた電界によって陽極側セパレータ28b、陰極側セパレータ28aを介して極性方向に移動し、この過程において陽極側セパレータ28bおよび陰極側セパレータ28aそれぞれの表面に不溶解性形態の不純物として蓄積する。この結果、処理水2に含まれる溶解性不純物は取り除かれた、水3として出口配管21から排出される。
なお、極性方向に移動した溶解性不純物は、電極液用絶縁スペーサ29bおよび29dに接続した排出配管23、24から溶解性不純物を含む水7あるいは8として外部に排出される。
In this state, the treated water 2 from which insoluble impurities have been removed by the filtration device 100 is formed from the inlet pipe 20 shown in FIG. 5 by the annular stock solution insulating spacer 29c and the disk separators 28a and 28b. Flow into the treated space. Then, the soluble impurities contained in the treated water 2 move in the polarity direction via the anode side separator 28b and the cathode side separator 28a by the electric field applied to the electrodes 27a and 27b. In this process, the anode side separator 28b and the cathode side separator 28a accumulates on each surface as an insoluble form of impurities. As a result, the soluble impurities contained in the treated water 2 are removed and discharged from the outlet pipe 21 as water 3.
The soluble impurities moved in the polar direction are discharged to the outside as water 7 or 8 containing soluble impurities from the discharge pipes 23 and 24 connected to the electrode liquid insulating spacers 29b and 29d.

以上のような脱塩装置200の定常運転によって円板状セパレータ28a、28bの表面に不溶解性形態となった溶解性不純物が蓄積したことによって脱塩処理槽26の電圧が上昇した場合には図示しない電圧センサーの動作により定常運転を停止し、逆洗運転を行う。   In the case where the voltage of the desalting tank 26 is increased due to accumulation of soluble impurities in an insoluble form on the surfaces of the disk separators 28a and 28b by the steady operation of the desalting apparatus 200 as described above. The steady operation is stopped by the operation of a voltage sensor (not shown), and the backwash operation is performed.

脱塩装置200の逆洗運転は例えば、次のように行う。
図3において、まず、不溶解性不純物を除いた水2の入口配管20のバルブ20V、不純物を除いた水3の出口配管21のバルブ21V、溶解性不純物を含む水7あるいは8の出口配管23、24の各バルブ23V、24Vを閉じる。逆に、不純物を除いた水あるいはガス6の導入配管22のバルブ22V、不溶解性不純物を含む水9の排出配管25のバルブ25Vを開く。
The backwashing operation of the desalting apparatus 200 is performed as follows, for example.
In FIG. 3, first, the valve 20V of the inlet pipe 20 for water 2 excluding insoluble impurities, the valve 21V of the outlet pipe 21 for water 3 excluding impurities, and the outlet pipe 23 for water 7 or 8 containing soluble impurities. , Close each valve 23V, 24V. On the contrary, the valve 22V of the introduction pipe 22 of the water or gas 6 from which impurities are removed and the valve 25V of the discharge pipe 25 of the water 9 containing insoluble impurities are opened.

この状態で電極液用絶縁スペーサ29の上部にある不純物を除いた水あるいはガス6を導入配管22から流入させる。不純物を除いた水あるいはガス6は、電極液流通用絶縁スペーサ29b、29dからセパレータ28a、28bを介して原液流通絶縁スペーサ29cの方向へ透過し、セパレータ28a、28bの原液流通絶縁スペーサ29c側表面に蓄積した不溶解性形態の不純物を押し剥がす。この押し剥がされた不溶解性形態の不純物は重力沈降により底部に集められ、排出配管25から不溶解性不純物を含む水9として外部に排出される。   In this state, water or gas 6 excluding impurities at the upper part of the electrode solution insulating spacer 29 is introduced from the introduction pipe 22. The water or gas 6 from which impurities are removed permeates through the electrode solution circulation insulating spacers 29b and 29d through the separators 28a and 28b in the direction of the stock solution circulation insulation spacer 29c. The insoluble form of impurities accumulated in the material is pushed away. The impurities in the insoluble form thus peeled off are collected at the bottom by gravity sedimentation, and discharged from the discharge pipe 25 as water 9 containing insoluble impurities.

以上述べたように、本実施例による不純物除去装置およびその方法によれば、有機材料を使用する必要がないため、従来技術に比べて耐熱性または耐久性あるいは耐汚染性を大きく向上させることが可能となる。この結果、高温の圧縮水であっても処理に問題はなく、例えば、原子力発電所の一次系統水、火力発電所の一次系統水、燃料電池の系統水等に含まれる不純物の除去に適用することができる。   As described above, according to the impurity removing apparatus and method according to the present embodiment, since it is not necessary to use an organic material, heat resistance, durability, or contamination resistance can be greatly improved as compared with the prior art. It becomes possible. As a result, there is no problem in treatment even with high-temperature compressed water. For example, it is applied to the removal of impurities contained in the primary system water of a nuclear power plant, the primary system water of a thermal power plant, the system water of a fuel cell, etc. be able to.

(実施例2)
図4を用いて実施例2を説明する。
本実施例2による不純物除去装置は、濾過装置100と脱塩装置200との接続関係を逆にして、原液1を取り入れる脱塩装置200と、この脱塩装置200で処理された処理水を取り入れる濾過装置100とから構成したものである。
(Example 2)
Example 2 will be described with reference to FIG.
The impurity removal apparatus according to the second embodiment reverses the connection relationship between the filtration apparatus 100 and the desalting apparatus 200, and takes in the desalinating apparatus 200 that takes in the stock solution 1 and the treated water that has been treated by the desalting apparatus 200. The filter device 100 is configured.

本実施例2の場合、脱塩装置200および濾過装置100それぞれの構成は図1の場合とほとんど変わるところはないが、唯一変わるところは、逆洗時に図5に示すセパレータ28a、28bの表面に蓄積され不溶解性形態となった不純物を排出する配管25およびバルブ25Vを省略できることである。なお、30は不溶解性不純物が除かれた処理水である。   In the case of the second embodiment, the configurations of the desalting apparatus 200 and the filtering apparatus 100 are almost the same as those in FIG. The pipe 25 and the valve 25V for discharging the accumulated impurities in an insoluble form can be omitted. Reference numeral 30 denotes treated water from which insoluble impurities have been removed.

本実施例2では、脱塩装置200において、セパレータ28a、28bの表面に蓄積され不溶解性形態となった不純物を、後段に接続した濾過装置100で除去できるため、システムの効率を高くすることが可能となる。   In the second embodiment, in the desalination apparatus 200, impurities accumulated on the surfaces of the separators 28a and 28b and in an insoluble form can be removed by the filtration apparatus 100 connected to the subsequent stage, so that the efficiency of the system is increased. Is possible.

なお、以上の説明では、1台の濾過装置に対して1台の脱塩装置を組み合わせた例を説明したが、原子力発電所等に設置される場合、原液1を複数台の不純物除去装置に並列に入力するようにしてもよいし、また、1台の濾過装置100に対して脱塩装置200を複数台並置するようにしてもよい。いずれにしても、原液1に対する不純物除去装置としての処理能力とか、濾過装置100、脱塩装置200相互間の処理能力の関係から自ずと設置台数が決まるものである。   In addition, in the above description, the example which combined one desalination apparatus with respect to one filtration apparatus was demonstrated, However, When installing in a nuclear power station etc., undiluted | stock solution 1 is made into several impurity removal apparatus. Input may be performed in parallel, or a plurality of desalting apparatuses 200 may be juxtaposed with respect to one filtration apparatus 100. In any case, the number of installed units is naturally determined from the relationship between the processing capability of the stock solution 1 as an impurity removing device and the processing capability between the filtration device 100 and the desalting device 200.

本発明の実施例1を示す不純物除去装置の概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram of the impurity removal apparatus which shows Example 1 of this invention. 図1に示した濾過装置の逆洗運転時の状態図。The state figure at the time of the backwashing operation | movement of the filtration apparatus shown in FIG. 図1に示した脱塩装置の逆洗運転時の状態図。The state figure at the time of the backwashing operation | movement of the desalination apparatus shown in FIG. 本発明の実施例2を示す不純物除去装置の概略構成図。The schematic block diagram of the impurity removal apparatus which shows Example 2 of this invention. 図1に示した脱塩装置の拡大断面図。The expanded sectional view of the desalination apparatus shown in FIG.

符号の説明Explanation of symbols

1…不純物を含む水(原液)、2…不溶解性不純物を除いた処理水、3…不純物を除いた処理水、4…逆洗用流体(不溶解性不純物を除いた水あるいはガス)、5…不溶解性不純物を含む水、6…逆洗用流体(不純物を除いた水あるいはガス)、7…正あるいは負極性の溶解性不純物を含む水、8…負あるいは正極性の溶解性不純物を含む水、9…逆洗時の不溶解性不純物を含む水、10…不純物を含む水の入口配管、10V…入口配管のバルブ、11…不溶解性不純物を除いた水の出口配管、11V…出口配管11のバルブ、12…逆洗用流体4の導入配管、12V…導入配管12のバルブ、13…不溶解性不純物を含む水の排出配管、13V…排出配管13のバルブ、14…濾過処理槽、15…フィルターの固定台、16…フィルター、20…不溶解性不純物を除いた水の入口配管、20V…入口配管20のバルブ、21…不純物を除いた水の出口配管、21V…出口配管21のバルブ、22…逆洗用流体6の導入配管、22V…導入配管22のバルブ、23…正あるいは負極性の溶解性不純物を含む水の出口配管、23V…出口配管23のバルブ、24…負あるいは正極性の溶解性不純物を含む水の出口配管、24V…出口配管24のバルブ、25…逆洗時の不溶解性不純物を含む水の排出配管、25V…排出配管25のバルブ、26…脱塩処理槽、27…電極、28…セパレータ、29…絶縁スペーサ、30…不溶解性不純物を除いた水、100…濾過装置、200…脱塩装置。

1 ... water containing impurities (stock solution), 2 ... treated water from which insoluble impurities have been removed, 3 ... treated water from which impurities have been removed, 4 ... backwash fluid (water or gas from which insoluble impurities have been removed), 5 ... Water containing insoluble impurities, 6 ... Backwash fluid (water or gas excluding impurities), 7 ... Water containing positive or negative soluble impurities, 8 ... Negative or positive soluble impurities 9 ... Water containing insoluble impurities during backwashing, 10 ... Water inlet piping containing impurities, 10V ... Valve of inlet piping, 11 ... Water outlet piping excluding insoluble impurities, 11V ... Valve of outlet pipe 11, 12 ... Introduction pipe of backwashing fluid 4, 12V ... Valve of introduction pipe 12, 13 ... Drain pipe of water containing insoluble impurities, 13V ... Valve of drain pipe 13, 14 ... Filtration Treatment tank, 15 ... Fixing base for filter, 16 ... Filter, 20 ... Water inlet pipe excluding insoluble impurities, 20V ... Inlet pipe 20 valve, 21 ... Exit water outlet pipe, 21V ... Outlet pipe 21 valve, 22 ... Backwash fluid 6 introduction pipe, 22V ... Introduction pipe 22 valve, 23 ... Positive or negative polarity 24V outlet valve, 24V outlet pipe 24 valve, 25 ... backwashing water outlet pipe, 23V ... outlet pipe 23 valve, 24 ... negative or positive solubility water outlet pipe, 24V ... outlet pipe 24 valve Discharge pipe for water containing insoluble impurities, 25V ... Valve for discharge pipe 25, 26 ... Desalination tank, 27 ... Electrode, 28 ... Separator, 29 ... Insulating spacer, 30 ... Water excluding insoluble impurities, 100 ... Filtration device, 200 ... Desalination device.

Claims (12)

濾過装置に被処理水である原液を取り入れて濾過処理し、この濾過処理した処理水を脱塩装置に取り入れて脱塩処理する不純物除去装置であって、
前記濾過装置は、濾過処理槽と、この濾過処理槽に収容され、内部を入口水側区画と出口水側区画とに隔てるフィルターと、前記濾過処理槽の入口水側区画に連通するように設けられた被処理水である原液の入口配管と、前記濾過処理槽の出口水側区画に連通するように設けられた処理水の出口配管と、前記フィルターを逆流洗浄するための逆洗用流体の導入配管および排出配管を有する逆洗機構とを備えて構成され、
前記脱塩装置は、茶筒状の脱塩処理槽と、この脱塩処理槽内に当該脱塩処理槽の一端面から他端面に向けて順次配置された円板状の陰電極用絶縁スペーサ、円板状の陰電極、円環状の陰電極液流通用絶縁スペーサ、円板状の陰電極側セパレータ、円環状の処理水流通用絶縁スペーサ、円板状の陽電極側セパレータ、円環状の陽電極液流通用絶縁スペーサ、円板状の陽電極、及び円板状の陽電極用絶縁スペーサと、
前記処理水流通用絶縁スペーサによって形成した空間部に連通するように設けた処理水の入口配管および脱塩処理水の出口配管と、前記陰電極及び陽電極液流通用絶縁スペーサによって形成した空間部に連通するように設けた溶解性不純物を含む水の排出配管と、前記陰電極側及び陽電極側セパレータを逆流洗浄するための逆洗用流体の導入配管および排出配管を有する逆洗機構とを備えて構成されることを特徴とする不純物除去装置。
An impurity removing device that takes a stock solution as water to be treated into a filtration device and performs filtration, and takes this filtered treated water into a desalting device and performs desalting treatment,
The filtration device is provided so as to communicate with a filtration treatment tank, a filter accommodated in the filtration treatment tank and separating the inside into an inlet water side compartment and an outlet water side compartment, and an inlet water side compartment of the filtration treatment tank. An inlet pipe for a raw solution that is treated water, an outlet pipe for treated water provided to communicate with an outlet water-side section of the filtration tank, and a backwash fluid for backwashing the filter A backwashing mechanism having an introduction pipe and a discharge pipe,
The desalting apparatus includes a tea-tubular desalting tank, and a disc-shaped insulating spacer for a negative electrode that is sequentially disposed in the desalting tank from one end surface to the other end surface of the desalting tank, Disc-shaped negative electrode, annular negative electrode liquid distribution insulating spacer, disk-shaped negative electrode side separator, circular processed water distribution insulating spacer, disc-shaped positive electrode side separator, annular positive electrode Insulating spacer for liquid flow, disc-shaped positive electrode, and disc-shaped positive electrode insulating spacer,
In the space part formed by the inlet pipe of the treated water and the outlet pipe of the desalted treated water provided so as to communicate with the space part formed by the insulating spacer for circulating the treated water, and the insulating electrode for circulating the negative electrode and the positive electrode liquid A discharge pipe for water containing soluble impurities provided so as to communicate, and a backwashing mechanism having a backwashing fluid introduction pipe and a discharge pipe for backwashing the negative electrode side and positive electrode side separators An impurity removal apparatus comprising:
前記濾過装置を構成する前記濾過処理槽および前記フィルターの少なくともいずれか一つを耐熱耐食性の金属材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein at least one of the filtration tank and the filter constituting the filtration device is formed of a heat-resistant and corrosion-resistant metal material. 前記濾過装置を構成する前記フィルターをセラミック材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing device according to claim 1, wherein the filter constituting the filtering device is formed of a ceramic material. 前記濾過装置を構成する前記フィルターをフッ化物系材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing device according to claim 1, wherein the filter constituting the filtering device is made of a fluoride-based material. 前記脱塩処理槽を被処理水の流下方向に対して直交する方向に向いた茶筒状に形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein the desalting tank is formed in a tea tube shape oriented in a direction orthogonal to the flow-down direction of the water to be treated. 前記脱塩装置を構成する前記脱塩処理槽、前記セパレータおよび前記絶縁スペーサの少なくともいずれか一つを耐熱耐食性の金属材料で構成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein at least one of the desalting tank, the separator, and the insulating spacer constituting the desalting apparatus is made of a heat-resistant and corrosion-resistant metal material. 前記耐熱耐食性の金属材料がハステロイ、ステンレス、インコネル、チタンのいずれか
であることを特徴とする請求項2または6のいずれか1項に記載の不純物除去装置。
7. The impurity removing apparatus according to claim 2, wherein the heat-resistant and corrosion-resistant metal material is any of Hastelloy, stainless steel, Inconel, and titanium.
前記脱塩装置を構成する前記脱塩処理槽をセラミック材料で内張りしたことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein the desalting treatment tank constituting the desalting apparatus is lined with a ceramic material. 前記脱塩装置を構成する前記脱塩処理槽をフッ化物系材料で内張りしたことを特徴とする請求項1記載の不純物除去装置。   The impurity removal apparatus according to claim 1, wherein the desalination treatment tank constituting the desalination apparatus is lined with a fluoride-based material. 前記脱塩装置を構成する前記セパレータおよび前記絶縁スペーサの少なくともいずれか一つをセラミック材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein at least one of the separator and the insulating spacer constituting the desalting apparatus is formed of a ceramic material. 前記脱塩装置を構成する前記セパレータおよび前記絶縁スペーサの少なくともいずれか一つをフッ化物系材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein at least one of the separator and the insulating spacer constituting the desalting apparatus is formed of a fluoride material. 前記脱塩装置を構成する前記電極を白金あるいは白金鍍金した材料で形成したことを特徴とする請求項1記載の不純物除去装置。   2. The impurity removing apparatus according to claim 1, wherein the electrode constituting the desalting apparatus is formed of platinum or a material plated with platinum.
JP2004227844A 2004-08-04 2004-08-04 Impurity removal equipment Expired - Fee Related JP4599113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004227844A JP4599113B2 (en) 2004-08-04 2004-08-04 Impurity removal equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004227844A JP4599113B2 (en) 2004-08-04 2004-08-04 Impurity removal equipment

Publications (3)

Publication Number Publication Date
JP2006043580A JP2006043580A (en) 2006-02-16
JP2006043580A5 JP2006043580A5 (en) 2007-03-15
JP4599113B2 true JP4599113B2 (en) 2010-12-15

Family

ID=36022747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004227844A Expired - Fee Related JP4599113B2 (en) 2004-08-04 2004-08-04 Impurity removal equipment

Country Status (1)

Country Link
JP (1) JP4599113B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673808B2 (en) * 2006-08-08 2011-04-20 株式会社東芝 Reactor coolant purification equipment
JP4970064B2 (en) * 2007-01-25 2012-07-04 株式会社東芝 Water treatment equipment
JP4724194B2 (en) * 2008-03-10 2011-07-13 株式会社東芝 Water treatment apparatus and water treatment method
JP4982425B2 (en) * 2008-05-09 2012-07-25 株式会社東芝 Water treatment method and water treatment apparatus
KR101976590B1 (en) * 2016-08-11 2019-05-10 주식회사 아모그린텍 Complex Electrode for Desalination having Ion Exchange Membrane, Manufacturing Method thereof and Deionization Equipment using the Same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPH07275896A (en) * 1994-04-07 1995-10-24 Toshiba Eng & Constr Co Ltd Treatment for condensed, desalted and reproduced water
JPH1190428A (en) * 1997-09-18 1999-04-06 Japan Organo Co Ltd Method for operating electric desalting apparatus and electric desalting apparatus used for implementing method
JP2001113275A (en) * 1999-10-14 2001-04-24 Kaneko Agricult Mach Co Ltd Ion water and oxidation-reduction water making apparatus
JP2005087961A (en) * 2003-09-19 2005-04-07 Toshiba Corp Method and apparatus for separating charged impurity in fluid
JP2005181190A (en) * 2003-12-22 2005-07-07 Toshiba Corp Water treatment system and water treatment method, and nuclear power plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61107906A (en) * 1984-07-09 1986-05-26 ミリポア・コ−ポレイシヨン Electric deionizing method and device
JPH07275896A (en) * 1994-04-07 1995-10-24 Toshiba Eng & Constr Co Ltd Treatment for condensed, desalted and reproduced water
JPH1190428A (en) * 1997-09-18 1999-04-06 Japan Organo Co Ltd Method for operating electric desalting apparatus and electric desalting apparatus used for implementing method
JP2001113275A (en) * 1999-10-14 2001-04-24 Kaneko Agricult Mach Co Ltd Ion water and oxidation-reduction water making apparatus
JP2005087961A (en) * 2003-09-19 2005-04-07 Toshiba Corp Method and apparatus for separating charged impurity in fluid
JP2005181190A (en) * 2003-12-22 2005-07-07 Toshiba Corp Water treatment system and water treatment method, and nuclear power plant

Also Published As

Publication number Publication date
JP2006043580A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US9833748B2 (en) Perforated graphene deionization or desalination
US5425858A (en) Method and apparatus for capacitive deionization, electrochemical purification, and regeneration of electrodes
US5779891A (en) Non-fouling flow through capacitor system
JP5816622B2 (en) Desalination system and method
US4293400A (en) Electrolytic treatment of water
US20130056366A1 (en) Apparatus and method for removal of ions from a porous electrode that is part of a deionization system
US20090008269A1 (en) Electrocoagulation reactor and water treatment system and method
US20110042219A1 (en) Non-faraday based systems, devices and methods for removing ionic species from liquid
US4378276A (en) Electrolytic treatment of water
WO2009009465A1 (en) Electrocoagulation reactor and water treatment system and method
CN108430934B (en) Water treatment device and water treatment method
CN103130363B (en) Desalination system and desalination method
KR20210089637A (en) electrochemical flow reactor
US20110240472A1 (en) Capacitive deionization cell with through-flow
JP4599113B2 (en) Impurity removal equipment
JP2005254118A (en) Device and method for collecting microorganism
KR20120030834A (en) Apparatus for treating water using capacitive deionization
JP4383845B2 (en) Water treatment apparatus, water treatment method, and nuclear power plant
KR20170034953A (en) CDI Module and method for preparing the same
CN110550698B (en) Membrane method water treatment process based on micro-flow field-micro-electric field coupling
JP4874831B2 (en) Cylindrical desalter
JP2007130548A (en) Desalinating apparatus
JPH081165A (en) Electrolytic cell
JP2006043580A5 (en)
JP4673808B2 (en) Reactor coolant purification equipment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees