JP4598371B2 - Hairpin bending copper tube and hairpin bending method for copper tube - Google Patents

Hairpin bending copper tube and hairpin bending method for copper tube Download PDF

Info

Publication number
JP4598371B2
JP4598371B2 JP2003119412A JP2003119412A JP4598371B2 JP 4598371 B2 JP4598371 B2 JP 4598371B2 JP 2003119412 A JP2003119412 A JP 2003119412A JP 2003119412 A JP2003119412 A JP 2003119412A JP 4598371 B2 JP4598371 B2 JP 4598371B2
Authority
JP
Japan
Prior art keywords
bending
hairpin
copper tube
copper
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003119412A
Other languages
Japanese (ja)
Other versions
JP2004322141A (en
Inventor
正敏 吉田
正樹 小林
哲夫 内田
Original Assignee
株式会社コベルコ マテリアル銅管
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社コベルコ マテリアル銅管 filed Critical 株式会社コベルコ マテリアル銅管
Priority to JP2003119412A priority Critical patent/JP4598371B2/en
Publication of JP2004322141A publication Critical patent/JP2004322141A/en
Application granted granted Critical
Publication of JP4598371B2 publication Critical patent/JP4598371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、小径で、かつ略平行な銅管同士の軸心間距離が小さいヘアピン曲げ銅管および銅管のヘアピン曲げ加工方法に関するものである。
【0002】
【従来の技術】
近年、地球温暖化防止など環境への負荷低減を目的として、エアコン等において、小型化、軽量化および伝熱性能向上に対する要求が高まり、これに用いる銅管に対しても、薄肉化、小型化、熱交換能の向上が要求されている。銅管の熱交換能向上の代表例は内面溝付管であり、内面が平滑な管に対して、内面に螺旋状の複数の平行溝を形成し、熱交換能を向上している。
【0003】
この他、銅管熱交換能の向上の手段としては、熱交換フィンを貫通している伝熱管としての銅管同士の間隔を狭めて、小ピッチ化する方法がある。これは、銅管同士の間隔を小ピッチ化することで、伝熱管の密度を高くし、熱交換フィンの熱交換能を増大させるものである。
【0004】
図6 に、これら銅管熱交換器の一例を斜視図で示す通り、熱交換器10の伝熱管として用いられる銅管は、略平行な銅管1 同士を、ヘアピン曲げ(U字曲げ) と呼ばれる半円形の円弧状曲げ部分2 で一体につなぐ、ヘアピン曲げ銅管から構成される。
【0005】
このようなヘアピン曲げ銅管は、直線状の銅管をヘアピン曲げ加工して製作されることが公知である (例えば特許文献1参照) 。このヘアピン曲げは、例えば後述する図4 (a) に示すような回転引き曲げ法によって、銅管1 内に球頭の首振り式心金5 を設けた中子4 を挿入した上で、曲げ中心半径R を一定とした180 °の曲げ加工によって行なわれる。
【0006】
【特許文献1】
特開2002-224756 号公報、(第1 〜2 頁、図6 )
【0007】
しかし、前記小ピッチ化の際、ヘアピン曲げ銅管の略平行な銅管直線部同士の軸心間距離t (以下曲げピッチとも言う)を小さくすると、上記ヘアピン曲げ加工の際に、ヘアピン曲げ部分( 曲げ内側部分) に、破断やしわ、あるいは断面変形などの形状不良が発生しやすくなる。この傾向は、銅管を薄肉化した場合にも大きくなることも知られている(例えば非特許文献1参照)。また、同じ曲げ加工度R/D (曲げ中心半径R /管肉厚中心直径D )、同じ径厚比(管肉厚中心直径D/管肉厚t)で比較すると、外径D が小さい方がしわが大きく発生しやすいことが知られている。
【0008】
【非特許文献1】
銅と銅合金、vol.41(2002)(第54〜58頁)
【0009】
上記しわなどの形状不良は、外見上の問題とともに、フィンの組み立て不良の原因となる。すなわち、ヘアピン曲げ銅管は、銅管の直線部分を熱交換フィン上に開けられた穴に挿入して、伝熱管として組み立てられる。しかし、銅管のヘアピン曲げ部分 (曲げ内側部分) にしわや断面変形のある場合、銅管のヘアピン曲げ加工部近傍まで熱交換フィンを挿入することが不可能となる。また、しわが大きい場合、銅管の内径が変化し、内部を通過する冷媒や熱媒の流通に影響して、エアコン等における小型化、軽量化および伝熱性能向上へ悪影響を与える。
【0010】
一般に、曲げ加工時の破断については、曲げ中心半径R と管径D の比(ε=D /2R)でおおむね定まることが知られている。また、上記しわなどの形状不良の1つの原因は、銅管素材に加わる圧縮応力σが増大した場合に起きると言われている。この圧縮応力σは、曲げ中心半径R と管径D の比(ε=D /2R)で定まり、この圧縮応力σに対するしわの発生しやすさは、管の径厚比D/t に依存することが知られている。
【0011】
したがって、しわや断面変形を防ぐ方法として、このD とR およびtを最適化して、この圧縮応力σを抑制することが、これまでの実際のヘアピン曲げ加工で行われて来た。また、曲げ加工の際、管軸方向に張力を加えることでしわを抑制する方法も一般に知られているが、この際、破断が生じやすくなり、また断面が変形するなどの問題がある。
【0012】
【発明が解決しようとする課題】
しかし、前記D 、R 、t などの調整で破断やしわを抑制する方法は、結果的に製品形状を制限することになる。つまり、断面形状が同じで小ピッチの製品(製品の小型化)や、逆により薄肉の素管を用いて外観は同じ製品(製品の軽量化)を得ること等は不可能といえる。このため、より小ピッチ、薄肉の製品を得るための加工方法の開発が望まれていた。
【0013】
特に小径管の場合には、同一曲げ加工度R/D 、径厚比条件D/t で比較して、しわが発生しやすく、このような加工方法の開発が急務であった。また、製品薄肉化達成のために銅管素材の高強度化も検討されているが、この際、加工性が劣化し、このような破断、しわなどの形状不良が生じやすいことが問題になる。これを補うという面でも、破断しわの生じにくい加工方法が望まれている。
【0014】
本発明は、この様な事情に着目してなされたものであって、その目的は、特に銅管の外径がΦ10mm以下であり、曲げピッチが40mm以下であっても、ヘアピン曲げ部のしわが抑制された小径ヘアピン曲げ銅管と、その銅管のヘアピン曲げ加工方法を提供しようとするものである。
【0015】
【課題を解決するための手段】
この目的を達成するために、本発明ヘアピン曲げ銅管の要旨は、最内側形状における曲げ開始側の曲げ半径Riと曲げ終了側の曲げ半径RoとをRo>Riとしたベンディングダイを用いてヘアピン曲げ加工された銅管であって、銅管1 のヘアピン曲げ部分2 において銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側である曲げ部分2bの前記曲げ半径Roが、ヘアピン曲げ加工が開始される側である他方の曲げ部分2aの前記曲げ半径Riよりも大きいことである。
【0016】
また、上記目的を達成するために、本発明銅管のヘアピン曲げ加工方法の要旨は、銅管をベンディングダイを用いてヘアピン曲げ加工する方法であって、このベンディングダイの最内側形状における曲げ開始側の曲げ半径Riと曲げ終了側の曲げ半径RoとをRo>Riとし、銅管1 のヘアピン曲げ部分2 において、銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側の曲げ部分2bの前記曲げ半径Roを、ヘアピン曲げ加工が開始される側の曲げ部分2aの前記曲げ半径Riよりも大きくして、ヘアピン曲げ加工を行なうことである。
【0017】
【発明の実施の形態】
本発明では、図1 に正面図で示すようなヘアピン曲げ銅管において、銅管1 のヘアピン曲げ部分2 において銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側である曲げ部分2bの曲げ半径Roを、ヘアピン曲げ加工が開始される側である他方の曲げ部分2aの曲げ半径Riよりも大きくする。
【0018】
なお、図1 において、t はヘアピン曲げ銅管の略平行な銅管直線部同士の軸心間距離(曲げピッチ)、D は銅管外径である。そして、図1 に記載した矢印方向に、銅管は曲げ加工される( 以下の図2 でも同様) 。
【0019】
先ず、銅管のヘアピン曲げ部分 (曲げ内側部分) にしわが発生する機構について、以下に具体的に説明する。図4(a)に断面図で示した回転引き曲げ法など、銅管をヘアピン曲げ加工する場合には、ヘアピン曲げ部において、銅管の曲げ角度の小さい部分と、曲げ角度が大きい部分とが必然的に生じる。
【0020】
このヘアピン曲げ部における、銅管の曲げ角度の小さい部分と、曲げ角度が大きい部分とを、図2 (a) 、(b) に示す。図2 (a) 、(b) では、銅管1 のヘアピン曲げ部分2 において、銅管直線部1a、1bから各々円弧状に立ち上がる、この二つの曲げ部分を、ヘアピン曲げの経過に応じて示している。
【0021】
先ず、図2 (a) のように、ヘアピン曲げの初期乃至前半には、ヘアピン曲げ加工が開始される側の曲げ部分2aが生じる。この曲げ部分2aの曲げ角度θは、直管状の0 °( 曲げ前の角度) から直角状の90°程度までの曲げ角度となり、曲げ角度θは比較的小さい条件となる。
【0022】
これに対して、図2 (b) のように、ヘアピン曲げの終わり乃至後期には、上記曲げ部分2aに次いで、ヘアピン曲げ加工が終了される側の曲げ部分2bが生じる。この曲げ部分2bの曲げ角度θは、前記直角状の90°程度からヘアピン曲げの180 °( 曲げ終了の角度) までの曲げ角度となり、曲げ角度θは比較的大きくなる。即ち、ヘアピン曲げ部において、曲げの初期乃至前半から曲げの終わり乃至後期に行くに従い、曲げ角度は大きくなる。
【0023】
この銅管の曲げ角度の違いによる、銅管の曲げ内側部分3 に与えるひずみ量への影響を図3 に示す。図3 は、ヘアピン曲げ加工終了後のヘアピン曲げ銅管について、曲げ最外側表面に生じる管軸方向のひずみ量 (縦軸: 最大主ひずみ量ε) とヘアピン曲げの特定部分の位置φ (横軸:DEG) との関係をFEM 解析によって求めたものである。図3 の横軸において、曲げ終了側端部位置を0DEG. 、曲げ開始側端部位置を180DEG. としている。図3 において、3 種類の曲線は、R(銅管ヘアピン曲げ中心半径) とD(銅管外径) との比R/D が、丸印の曲線は1.2 、三角印の曲線は1.5 、四角印の曲線は2.0 のものである。
【0024】
図3 によれば、各曲線とも、位置φの小さい領域 (曲げ角度θが大きい、ヘアピン曲げ加工が終了される側の曲げ部分2b) ほど、銅管に生じるひずみ量が大きくなる。一方、ヘアピン曲げ加工が開始される側 (位置φの大きい領域、曲げ角度θが小さいヘアピン曲げ加工が開始される側の曲げ部分2a) では、銅管の曲げ内側部分3 に生じるひずみ量は小さい。
【0025】
このことから、位置φの小さい領域、即ち、曲げ角度θが大きい、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、銅管 (曲げ内側部分3 を含めて) に生じるひずみ量が大きくなる。したがって、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、曲げ内側部分3 に、破断やしわA が生じやすい。これに対して位置φの大きい領域、即ち、ヘアピン曲げ加工が開始される側の曲げ部分2aでは曲げ角度θが小さく、せん断変形の影響で銅管に加わるひずみ量が低減できる。即ち、曲げ角度が大きくなるにつれて、このひずみ量低減効果が小さくなり、ヘアピン曲げ加工が終了される側の曲げ部分2bほど、曲げ内側部分3 に、破断やしわが生じやすいことに起因している。また、解析結果からも分かるように、銅管の曲げ角度の違いによる、せん断変形の影響は、比較的曲げ加工度R/D が小さいほど顕著になる。
【0026】
前記した従来のヘアピン曲げ加工方法では、曲げ中心半径R を一定として、このR が一定な半円状のヘアピン曲げ部を形成する。このため、上記したしわの発生機構からして、このような銅管の曲げ角度の違いによる、せん断変形の影響を解消できない。すなわち、ヘアピン曲げ加工時に、破断、しわなどの成形不良が発生する条件であっても、曲げ開始側領域に発生するひずみ量(および応力)は小さく、成形不良の発生に対して常に余裕がある状態で成形されていることになる。
【0027】
これに対し、本発明のように、前記図1 に示す、ヘアピン曲げの終わり乃至後期である、銅管の曲げ角度θが大きい銅管曲げ部分2bの曲げ半径Roを大きくすることで、曲げ加工の際に、銅管に加わるひずみ量を曲げ周方向に平均化できる。すなわち、破断、しわなどの成形不良の発生しやすい曲げ終了側の曲げ半径を大きくすることで、成形不良を回避できる。そして、成形余裕度のある曲げ開始側の曲げ半径を小さくすることで、曲げピッチを減少させることが可能になる。
【0028】
この銅管曲げ部分2bの曲げ半径Roを大きくする目安として、曲げ加工部全体の平均曲げ半径Raveに対して、ヘアピン曲げ加工が開始される側(φの大きい領域)の曲げ半径Riと曲げ加工終了側(φの小さい領域)の曲げ半径Roの和が同等以下であり(Rave.≧Ro+Ri) 、かつ、Ri<Roのように選定する。これによって、後述する通り、媒体の流通や熱交換能などに影響を与えることなく、ヘアピン曲げ加工の際の、破断、しわなどの形状不良を発生しにくくすること、また、しわや断面変形が発生した場合に、その程度を軽くすることが可能である。特にしわが発生しやすい銅管の外径D がΦ10mm以下で、曲げピッチt が40mm以下の条件や、加工性に劣る高強度銅管、内面溝付管でその効果は顕著である。
【0029】
以下に、本発明の具体的な実施態様について説明する。
先ず、前提として、本発明では、例えば後述する図5(b)に示す、曲げ中心半径R を一定としてヘアピン曲げ加工された従来の銅管のように、ヘアピン曲げ部は曲げ中心半径R が一定な半円状 (円弧状) とはならない。即ち、前記図1 に示すように、本発明銅管のヘアピン曲げ部2 は、ヘアピン曲げの終わり乃至後期である銅管曲げ部分2bの曲げ半径Roが大きく、ヘアピン曲げ加工が開始される側である銅管曲げ部分2aの曲げ半径Riが小さい、言わば歪な半円状 (円弧状) となる。
【0030】
このように、本発明銅管のように、曲げ半径が異なるヘアピン曲げ部を有していても、急激な形状変化はなく、内部を通過する冷媒や熱媒の流通には何ら影響はなく、エアコン等において、小型化、軽量化および伝熱性能向上への悪影響は一切ない。そして、却って、しわの発生の抑制による、銅管内部を通過する冷媒や熱媒の流通への悪影響が無くなる効果により、エアコン等において小型化、軽量化および伝熱性能の向上が図れる利点が大きい。また、従来曲げ加工方法に比べて破断、しわが生じにくいことから、より小ピッチでの曲げ加工が可能となり、これによって製品の小型化、軽量化が図れる。
【0031】
この点、従来の曲げ中心半径R を一定とした銅管のヘアピン曲げ部でしわが発生した場合、このしわによる銅管の内径変化によって、却って、内部を通過する冷媒や熱媒の流通に影響がある。この影響は、内面が平滑な管でも大きいが、内面に螺旋状の複数の平行溝を設けた内面溝付管などではより大きくなり、エアコン等としての、薄肉化、小型化、熱交換能の向上への悪影響が不可避である。
【0032】
本発明において、前記図1 に示す、銅管曲げ部分2bの曲げ半径Roを、銅管曲げ部分2aの曲げ半径Riよりも大きくする程度は、ヘアピン曲げ部分の設計形状からの従来の曲げ中心半径R を土台とし、その下限は、曲げ加工の際に、銅管曲げ部分2bの曲げ内側部分3 に発生する破断やしわを抑えることができる最小限の値から選択する。
【0033】
但し、銅管曲げ部分2bの曲げ半径Roを、銅管曲げ部分2aの曲げ半径Riよりもあまり大きくしすぎると、フィンを曲げ加工部近傍まで挿入することが困難になるという問題が生じる。このことから、Roの上限は、これに影響しない範囲で選択することが望ましい。
【0034】
一方、銅管曲げ部分2aの曲げ半径Riは、ヘアピン曲げ部分の設計されるスパンなどの大きさや形状からくる、従来の均一な曲げ中心半径Rave. を土台とし、上記銅管曲げ部分2bの曲げ半径Roとの関係で定まる。
【0035】
銅管曲げ部分2aの曲げ半径Riや、銅管曲げ部分2bの曲げ半径Roは、各々の曲げ部分の円弧方向の各部分に渡って一定の値とならずとも良い。即ち、各々の曲げ部分の円弧方向の各部分に渡って、RiやRoは、曲げ加工や形状設計の都合で、上記RiやRoの本発明効果を発揮する許容範囲内で、適宜変化しても良い。
【0036】
なお、以上の説明は、主として、銅管の外径がΦ10mm以下である銅管を、略平行な銅管同士の軸心間距離が40mm以下とするヘアピン曲げ銅管を対象にしたが、これより、銅管の外径や略平行な銅管同士の軸心間距離が大きい銅管に対しても、本発明は同様の効果を発揮でき、適用できる。ただ、このような銅管では、製品に要求される軽量化、小型化要求が小さく、前記した従来技術(D 、R 、tの調整)で十分対応できることが多く、本発明を適用する意味は少ない。
【0037】
本発明が対象とする銅管は、冷凍機、空調機の配管などに汎用されている、直通管、内面溝付き管、外面溝付き管、内外面溝付き管などが主たる対象となる。
このため、本発明では、銅管自体の製造工程は、これら銅管の通常の製造方法と同じである。即ち、先ず、主としてりん脱酸銅などの純銅を溶解、鋳造後、熱間押出によって素管とする。この押出素管を、前記中間焼鈍を含む、レデューサ等の冷間圧延、抽伸、引き抜き、延伸、などを適宜組み合わせた冷間加工を行なって、銅管となし、仕上げ焼鈍して製品銅管とする。なお、内面や外面に溝が付いた銅管の場合には、上記冷間加工後、あるいは冷間加工途中に、必要により再度中間焼鈍 (部分焼鈍を含む) が施された上で内面や外面に溝が加工され、その後仕上げ焼鈍して製品銅管とする。製品銅管の形態はコイル状であっても、管状であっても良い。
【0038】
本発明ヘアピン曲げ銅管に用いられる銅管材料は、耐力、加工性が高く、熱伝導も大きい、従来からこの種用途に汎用されているような、規格純銅又は銅合金、調質材が適用される。言い換えると、本発明では特殊な銅合金を適用する必要は無い。例えば、純銅としては、無酸素銅、タフピッチ銅、脱酸銅などが例示される。ただ、この中でも、冷凍機、空調機の配管などに汎用されているりん脱酸銅が銅管材料として好ましい。りん脱酸銅としては、伸銅品のJIS 規格に化学成分が規定される、C1201 のりん脱酸銅1A種 (P:0.004 〜0.015 質量% 、Cu:99.90質量% 以上) 、1220のりん脱酸銅1B種(P:0.015〜0.040 質量% 、Cu:99.90質量% 以上) 、1221のりん脱酸銅2 種(P:0.004〜0.040 質量% 、Cu:99.75質量% 以上) などが例示される。これらのりん脱酸銅を小径製品銅管のグレードに合わせて、適宜選択して用いる。
【0039】
次に、本発明銅管のヘアピン曲げ加工方法について、以下に説明する。前提となる曲げ加工機としては、図4(a)に銅管の曲げ加工初期の状態を模式的に示すように、この種用途に汎用されるドローベンダーを用い、合わせて、任意の形状を持つ心金を用いることが好ましい。このドローベンダーによる曲げ加工方法は、通常、回転引き曲げ法と呼ばれる。そして、管の断面形状を維持するために、管内に砲弾型あるいは首振り型、ナイフ形などの心金を挿入し、曲げ加工 (ベンディング) ダイ6 、把持 (クランプ) ダイ7 、供給 (フィーディング) ダイ8 との共動で、銅管1 を曲げ加工する。この際、管材は、曲げ加工に追従して図中矢印方向に移動する。
【0040】
具体的には、図4(a)に示す通り、銅管1 内に、球頭の首振り式心金5 を設けた中子 (マンドレル)4を挿入した上で、クランプダイ7 で銅管1 をクランプした後、ベンディングダイ6 を回転させ、この回転に沿って銅管1 の曲げ加工がされる。図4(a)において、θは曲げ角度、Rは曲げ中心半径 (曲げ内側半径) 、Dは銅管1 の外径、2 は銅管1 のヘアピン曲げ部分、1a、1bは銅管直線部、を各々示している。
【0041】
ここで、本発明銅管のヘアピン曲げ部のように、ヘアピン曲げの終わり乃至後期である銅管曲げ部分2bの曲げ半径Roを大きく、ヘアピン曲げ加工が開始される側である銅管曲げ部分2aの曲げ半径Riを小さくするためには、図4(b)に示すようなベンディングダイを用いる。すなわち、図4(b)に示すように、ベンディングダイ6 の最内側形状を、円弧状のインボリュート曲線で示すように、曲げ開始側の曲げ半径であるRiと、曲げ終了側の曲げ半径であるRoとを、Ro>Riとして設定 (設計) する。ベンディングダイの最内側形状曲げ半径は、図4(b)に示すように、各々一定値のRoとRiとせずとも、上記したRoとRiとの許容範囲内で、曲げ中心からの角度に応じて連続的に曲げ半径を変化させても良いし、違う曲げ半径を段階的に形成しても良い。
【0042】
本発明の曲げ加工方法では、このようなベンディングダイを用いて、従来の曲げ中心半径Rを一定とした曲げ加工方法と同様、図4(a)に示したように、クランプダイ7 で銅管1 をクランプした後、ベンディングダイ6 を回転させて行う。この際、上記最内側形状のRiとR0とを変えたベンディングダイ6 と、銅管1 との接触状態を一定に保つためは、図4(b)に示すように、ベンディングダイ6 の回転中心を、送りダイの位置を変えるなどして、偏心乃至移動させる必要がある。
【0043】
この際、ベンディングダイ6 の回転中心の移動は、ベンディングダイに設定したRiとR0との変化に応じて、機械的に移動させても良いし、ベンディングダイに加わる圧力あるいは感覚を検出し、これらを一定に制御しても良い。逆にベンディングダイ6 の回転中心は固定したまま、管を保持している送りダイおよび心金位置を動かしても良い。これらについては装置やスペースの制約などにより、適した方法を選択する。
【0044】
また、このようなベンディングダイに異なるRiとRoとを設定せずとも、上記曲げ終了側の曲げ半径であるRoを有するベンディングダイで一定角度曲げ加工後、曲げ開始側の曲げ半径であるRi(Ro >Ri) を有する別のベンディングダイでヘアピン曲げ加工して、本発明の曲げ半径が異なるヘアピン曲げ銅管としても良い。
【0045】
なお、心金(中子)4の大きさ、心金4と銅管1とのクリアランスC、心金位置も、曲げ加工後のしわ、断面変形の発生に影響するので、本発明においても、従来技術と同様に、しわ、断面変形が起こらない心金の条件を設定する。
【0046】
【実施例】
以下に、FEM 解析によって、本発明例と、ヘアピン曲げ部を同一曲げ半径R とした従来例とで、ヘアピン曲げ部の曲げ内側でのしわ発生状態を比較した結果を、図5 を用いて説明する。図5 は、FEM 解析による曲げ加工された銅管ヘアピン曲げ部を示し。図5(a)が本発明例のヘアピン曲げ部、図5(b)が従来例のヘアピン曲げ部を示す。なお、図5(a)、(b) は、銅管の上下 (ヘアピン曲げ加工が終了される側である曲げ部分2b、ヘアピン曲げ加工が開始される側である他方の曲げ部分2a) が、前記図1 と逆になっている。
【0047】
この図5(a)と図5(b)とのFEM 解析結果の対比から明らかな通り、図5(a)の本発明例のヘアピン曲げ部では、しわA の発生が大きく抑制されており、銅管の曲げ内側( 表面) にしわA は殆ど発生していない。これに対し、図5(b)の従来例のヘアピン曲げ部では、銅管の曲げ内側 (表面) に、大きく多数のしわA が発生している。
【0048】
このFEM 解析の条件としては、図4(a)に示したドローベンダーによる曲げ加工方法を用い、本発明例は、図4(b)に示したように、ベンディングダイ6 の最内側形状を、曲げ開始側の曲げ半径であるRiを一定の8.5mm 、曲げ終了側の曲げ半径Roを一定の10.0mmとし、Ro>Riとして設定した。一方、従来例の同一曲げ半径R は一定の9.25mmとした。また、前提となる銅管条件は、前記C1201 のりん脱酸銅1A種からなる銅管であって、肉厚0.2mm 、外径D がΦ10mm以下のΦ7mm 、曲げピッチt が40mm以下の32.5mm、心金4と銅管1とのクリアランスCを0.1mm、とした。
【0049】
したがって、このこのFEM 解析の結果からは、銅管の外径D がΦ10mm以下であり、曲げピッチt が40mm以下であっても、本発明は、銅管のヘアピン曲げ部分の曲げ内側に発生するしわ発生を抑制し、かつ銅管を破断させることなく曲げ加工可能であることが分かる。
【0050】
【発明の効果】
本発明によれば、銅管の外径がΦ10mm以下であり、曲げピッチが40mm以下であっても、ヘアピン曲げ部のしわが抑制された小径ヘアピン曲げ銅管と、その銅管のヘアピン曲げ加工方法を提供できる。また、本発明ヘアピン曲げ銅管では、平均曲げ半径が異なるヘアピン曲げ部となるものの、銅管の内径には変化が無く、内部を通過する冷媒や熱媒の流通には何ら影響はなく、エアコン等において、小型化、軽量化および伝熱性能向上への悪影響は一切ない。そして、却って、ヘアピン曲げ部のしわの発生の抑制による、銅管内部を通過する冷媒や熱媒の流通への悪影響が無くなり、エアコン等において、小型化、軽量化および伝熱性能の向上が図れる利点が大きい。
【図面の簡単な説明】
【図1】本発明ヘアピン曲げ銅管の一例を示す正面図である。
【図2】銅管のヘアピン曲げ加工の際の曲げ部分の状況を示し、図2 (a) は曲げの初期、図2 (b) は曲げの終わりを各々示す、正面図である。
【図3】ヘアピン曲げ加工の際の銅管の曲げ角度と、銅管の曲げ内側部分に与えるひずみ量との関係を示す、説明図である。
【図4】本発明におけるドローベンダーによる銅管の曲げ加工を模式的に示し、図4(a)は曲げ加工の初期の状態、図4(b)は、ベンディングダイ形状を各々示す断面図である。
【図5】 FEM 解析したヘアピン曲げ銅管を示し、図5(a)は本発明例、図5(b)は従来例を各々示す説明図である。
【図6】ヘアピン曲げ銅管が用いられる一般的な熱交換器を示す斜視図である。
【符号の説明】
1:銅管、2:ヘアピン曲げ部、1a、1b: 銅管直線部、
2a:ヘアピン曲げ加工が開始される側である曲げ部分、
2b:ヘアピン曲げ加工が終了される側である曲げ部分、
Ro:曲げ部分2bの曲げ半径、Ri: 曲げ部分2a曲げ半径、
3:曲げ内側、
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hairpin bending copper tube having a small diameter and having a small distance between axial centers of substantially parallel copper tubes and a hairpin bending method of the copper tube.
[0002]
[Prior art]
In recent years, with the aim of reducing environmental impacts such as preventing global warming, there is an increasing demand for downsizing, weight reduction and improved heat transfer performance in air conditioners, etc., and the copper pipes used for this are also made thinner and smaller. There is a demand for improved heat exchange capacity. A typical example of improving the heat exchange capability of a copper tube is an internally grooved tube, and a plurality of spiral parallel grooves are formed on the inside surface of a tube having a smooth inner surface to improve the heat exchange capability.
[0003]
In addition, as a means for improving the heat exchange capacity of the copper tube, there is a method of reducing the pitch by narrowing the interval between the copper tubes as the heat transfer tubes penetrating the heat exchange fins. This is to increase the density of the heat transfer tubes and increase the heat exchange capability of the heat exchange fins by reducing the pitch between the copper tubes.
[0004]
As shown in the perspective view of FIG. 6 as an example of these copper tube heat exchangers, the copper tube used as the heat transfer tube of the heat exchanger 10 is formed by connecting substantially parallel copper tubes 1 to each other by hairpin bending (U-bending). It is composed of a hairpin bent copper tube that is connected together by a semicircular arc-shaped bent portion 2 called.
[0005]
Such a hairpin bent copper tube is known to be manufactured by bending a straight copper tube into a hairpin (see, for example, Patent Document 1). This hairpin bending is performed, for example, by inserting a core 4 provided with a ball-head swinging mandrel 5 into a copper tube 1 by a rotational pulling method as shown in FIG. This is done by bending 180 ° with a constant central radius R 1.
[0006]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-224756, (pages 1 and 2, FIG. 6)
[0007]
However, when the pitch is reduced, if the distance t (hereinafter also referred to as a bending pitch) between the straight portions of the copper pipes that are substantially parallel to the hairpin bent copper tube is reduced, Form defects such as fractures, wrinkles, or cross-sectional deformations are likely to occur in the (bent inner portion). This tendency is also known to increase when the copper tube is thinned (see, for example, Non-Patent Document 1). Also, the smaller outer diameter D compared with the same bending degree R / D (bending center radius R / tube thickness center diameter D) and the same diameter thickness ratio (tube thickness center diameter D / tube thickness t) It is known that wrinkles are likely to occur greatly.
[0008]
[Non-Patent Document 1]
Copper and copper alloys, vol.41 (2002) (pp. 54-58)
[0009]
The shape defects such as the wrinkles cause problems in the assembly of the fins as well as problems in appearance. That is, the hairpin bent copper tube is assembled as a heat transfer tube by inserting a straight portion of the copper tube into a hole formed on the heat exchange fin. However, when there is a wrinkle or a cross-sectional deformation at the hairpin bending portion (bending inner portion) of the copper tube, it becomes impossible to insert the heat exchange fins up to the vicinity of the hairpin bending portion of the copper tube. In addition, when wrinkles are large, the inner diameter of the copper tube changes, affecting the circulation of the refrigerant and heat medium passing through the inside, and adversely affecting the downsizing, weight reduction, and heat transfer performance improvement in air conditioners and the like.
[0010]
In general, it is known that the fracture at the time of bending is generally determined by the ratio of the bending center radius R to the tube diameter D (ε = D / 2R). Moreover, it is said that one cause of shape defects such as wrinkles occurs when the compressive stress σ applied to the copper tube material increases. The compressive stress σ is determined by the ratio of the bending center radius R to the tube diameter D (ε = D / 2R). The ease of wrinkling with respect to the compressive stress σ depends on the diameter / thickness ratio D / t of the tube. It is known.
[0011]
Therefore, as a method for preventing wrinkles and cross-sectional deformation, optimizing these D 1, R 2, and t to suppress this compressive stress σ has been performed in actual hairpin bending so far. In addition, a method of suppressing wrinkles by applying tension in the tube axis direction during bending is generally known, but at this time, there are problems such that breakage tends to occur and the cross section is deformed.
[0012]
[Problems to be solved by the invention]
However, the method of suppressing breakage and wrinkles by adjusting the D 1, R 2, t 3 and the like as a result limits the product shape. That is, it can be said that it is impossible to obtain a product with the same cross-sectional shape and a small pitch (product size reduction), or a product with the same appearance (light weight product) using a thin-walled tube. For this reason, development of the processing method for obtaining a product with smaller pitch and a thin wall has been desired.
[0013]
In particular, in the case of small-diameter pipes, wrinkles are likely to occur as compared with the same bending degree R / D and diameter-thickness ratio condition D / t, and the development of such a processing method was urgently required. In addition, to increase the strength of the copper tube material in order to achieve a thinner product, workability deteriorates, and it is a problem that shape defects such as breakage and wrinkles are likely to occur. . In view of compensating for this, a processing method that is less prone to breakage and wrinkle is desired.
[0014]
The present invention has been made by paying attention to such circumstances, and the purpose of the present invention is to reduce the length of the hairpin bending portion even when the outer diameter of the copper tube is Φ10 mm or less and the bending pitch is 40 mm or less. It is an object of the present invention to provide a small-diameter hairpin bending copper tube in which self is suppressed and a hairpin bending method for the copper tube.
[0015]
[Means for Solving the Problems]
To this end, the gist of the present invention hairpin bend copper tubes, with a bending die and a bending radius Ro end side bending bending radius Ri of the start-side bending in the innermost shape and Ro> Ri The hairpin bending process is completed in the two bent parts 2a and 2b, each of which rises in an arc from the straight part 1a and 1b of the copper pipe in the hairpin bent part 2 of the copper pipe 1. that before Symbol bending radius Ro of the which the bent portion 2b side is, is greater than the previous SL bending radius Ri of the hairpin bend is the side that initiated the other bent portion 2a.
[0016]
In order to achieve the above object, the gist of the copper tube hairpin bending method of the present invention is a method of bending a copper tube using a bending die, wherein the bending start of the innermost shape of the bending die is started. the bending radius Ro of bend radius Ri and bending ends side of the side and Ro> Ri, in tube bending portion 2 of copper pipe 1, the two rises each arcuate copper tube straight section 1a, 1b bent portion 2a of the 2b, the pre-Symbol bending radius Ro of the side of the bending portion 2b to the hairpin bend is completed, to be larger than the previous SL bending radius Ri of the side of the bending portion 2a of the hairpin bend is initiated It is to perform a hairpin bending process.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in the hairpin bending copper tube as shown in the front view of FIG. 1, in the hairpin bending portion 2 of the copper tube 1, the two bending portions 2a and 2b rising from the copper tube straight portions 1a and 1b in an arc shape respectively. the bending radius Ro of the bent portion 2b is the side of the hairpin bend is completed, to be larger than the bending radius Ri of the other bending portion 2a is the side of the hairpin bend is initiated.
[0018]
In FIG. 1, t is the distance (bending pitch) between the axial centers of the substantially parallel copper tube straight portions of the hairpin bent copper tube, and D is the outer diameter of the copper tube. Then, the copper tube is bent in the direction of the arrow described in FIG. 1 (the same applies to FIG. 2 below).
[0019]
First, the mechanism in which wrinkles occur at the hairpin bending portion (bending inner portion) of the copper tube will be specifically described below. When a copper tube is subjected to hairpin bending, such as the rotary pulling method shown in the cross-sectional view of FIG. 4 (a), a portion where the bending angle of the copper tube is small and a portion where the bending angle is large are included in the hairpin bending portion. Inevitable.
[0020]
2 (a) and 2 (b) show a portion where the bending angle of the copper tube is small and a portion where the bending angle is large in the hairpin bending portion. In Fig. 2 (a) and (b), the two bent parts rising from the copper pipe straight parts 1a and 1b in an arc shape in the hairpin bent part 2 of the copper pipe 1 are shown as the hairpin bending progresses. ing.
[0021]
First, as shown in FIG. 2 (a), a bent portion 2a on the side where the hairpin bending process is started occurs in the initial to first half of the hairpin bending. The bending angle θ of the bending portion 2a is a bending angle from 0 ° (angle before bending) of a straight tube to about 90 ° of a right angle, and the bending angle θ is a relatively small condition.
[0022]
On the other hand, as shown in FIG. 2 (b), at the end or later of the hairpin bending, a bent portion 2b on the side where the hairpin bending process is finished is generated after the bent portion 2a. The bending angle θ of the bent portion 2b is a bending angle from about 90 ° of the right angle to 180 ° of hairpin bending (end angle of bending), and the bending angle θ is relatively large. That is, in the hairpin bending portion, the bending angle increases from the initial to the first half of bending to the end to the latter of bending.
[0023]
FIG. 3 shows the influence of the difference in the bending angle of the copper tube on the amount of strain on the bending inner portion 3 of the copper tube. Figure 3 shows the amount of strain in the tube axis direction (vertical axis: maximum principal strain amount ε) generated on the outermost surface of the bend and the position φ of the specific part of the hairpin bend (horizontal axis) : DEG) is obtained by FEM analysis. In the horizontal axis of FIG. 3, the end position on the bending end side is 0 DEG, and the end position on the bending start side is 180 DEG. In Fig. 3, the three types of curves are the ratio R / D of R (copper tube hairpin bending center radius) and D (copper tube outer diameter), the circle curve is 1.2, the triangle curve is 1.5, the square The curve with the mark is 2.0.
[0024]
According to FIG. 3, in each curve, the smaller the position φ (the bent portion 2b on the side where the bending angle θ is larger and the hairpin bending process is finished), the greater the amount of strain generated in the copper tube. On the other hand, on the side where the hairpin bending process is started (the region where the position φ is large, the bending part 2a where the bending angle θ is small), the amount of strain generated in the bending inner part 3 of the copper tube is small. .
[0025]
From this, the amount of strain generated in the copper tube (including the bent inner portion 3) becomes larger in the region where the position φ is small, that is, the bent portion 2b on the side where the hairpin bending process is finished, where the bending angle θ is large. . Therefore, the bending portion 2b on the side where the hairpin bending process is finished tends to cause breakage or wrinkles A in the bending inner portion 3. On the other hand, the bending angle θ is small in the region where the position φ is large, that is, the bent portion 2a on the side where the hairpin bending process is started, and the amount of strain applied to the copper tube can be reduced due to the influence of shear deformation. That is, as the bending angle increases, the effect of reducing the amount of strain decreases, and the bending portion 2b on the side where the hairpin bending process is finished is likely to cause breakage and wrinkles in the bending inner portion 3. . As can be seen from the analysis results, the effect of shear deformation due to the difference in the bending angle of the copper tube becomes more significant as the bending degree R / D is relatively small.
[0026]
In the conventional hairpin bending method described above, a bending center radius R is constant, and a semicircular hairpin bending portion where R is constant is formed. For this reason, from the above-mentioned wrinkle generation mechanism, the effect of shear deformation due to such a difference in the bending angle of the copper tube cannot be eliminated. That is, even under conditions that cause molding defects such as breakage and wrinkles during hairpin bending, the amount of strain (and stress) generated in the bending start side region is small, and there is always room for the occurrence of molding defects. It will be molded in the state.
[0027]
In contrast, as in the present invention, shown in FIG. 1 is a end to late hairpin bend, by increasing the bending radius Ro of the bending angle θ is larger copper tube bent portion 2b of the copper tube, bent During processing, the strain applied to the copper tube can be averaged in the bending circumferential direction. That is, molding defects can be avoided by increasing the bending radius on the bending end side at which molding defects such as breakage and wrinkles are likely to occur. And it, by reducing the starting side of the bend radius bending of forming allowance, it is possible to reduce the bending pitch.
[0028]
As greatly guideline bending radius Ro of the copper tube bent portion 2b, relative to the bent portion overall average bending radius Rave, a bending radius Ri of the side of the hairpin bend is started (large area of phi) the sum of the bending radius Ro bending finishing side (region of small phi) is equivalent or low (Rave. ≧ Ro + Ri) , and selected as Ri <Ro. As described later, this makes it difficult to cause breakage, wrinkles and other shape defects during the hairpin bending process without affecting the distribution and heat exchange capacity of the medium, and wrinkles and cross-sectional deformation. If that occurred, it is Ru allowed Nodea to lighten the degree. In particular, the effect is remarkable in the condition that the outer diameter D of the copper tube, which is likely to be wrinkled, is Φ10 mm or less and the bending pitch t is 40 mm or less, the high-strength copper tube having poor workability, or the internally grooved tube.
[0029]
Hereinafter, specific embodiments of the present invention will be described.
First, as a premise, in the present invention, for example, as shown in FIG. 5 (b) to be described later, the hairpin bending portion has a constant bending center radius R 1, as in a conventional copper tube bent with a bending center radius R 1. It does not have a semicircular shape (arc shape). That is, as shown in FIG. 1, the hairpin bend 2 of the present invention the copper tube, tube bending end to large bending radius Ro of copper pipe bending portion 2b is late, the side of the hairpin bend is initiated bending radius Ri of copper pipe bending portion 2a is small, a sort distorted semicircular (arc-shaped).
[0030]
Thus, as in the present invention copper tube, even if bending radius have different hairpin bend, rather than abrupt change in shape, rather than any effect on the flow of the refrigerant and the heat medium passing through the inside In air conditioners, etc., there is no adverse effect on miniaturization, weight reduction and heat transfer performance improvement. On the other hand, the effect of suppressing the generation of wrinkles and eliminating the adverse effects on the circulation of the refrigerant and the heat medium passing through the copper tube is greatly advantageous in that the air conditioner and the like can be reduced in size, weight, and heat transfer performance. . In addition, since fracture and wrinkle are less likely to occur as compared with the conventional bending method, it is possible to perform bending at a smaller pitch, thereby reducing the size and weight of the product.
[0031]
In this regard, when wrinkles occur in a copper tube hairpin bend with a constant bending center radius R, the inner diameter of the copper tube due to the wrinkles will adversely affect the flow of refrigerant and heat medium passing through the inside. There is. This effect is great even with a tube with a smooth inner surface, but it becomes more significant with an internally grooved tube with a plurality of spiral parallel grooves on the inner surface. The negative impact on improvement is inevitable.
[0032]
In the present invention, the shown in Figure 1, the bending radius Ro of the copper tube bent portion 2b, the extent of greater than bending radius Ri of copper pipe bending portion 2a is bent in a conventional from the design shape of the tube bending portion The lower limit of the center radius R is selected from the minimum value that can suppress breakage and wrinkles that occur in the bending inner portion 3 of the copper tube bending portion 2b during bending.
[0033]
However, the bending radius Ro of the copper tube bent portion 2b, too much greater than the bending radius Ri of the copper tube bent portions 2a, occurs a problem that it is difficult to insert to the machining vicinity bent fins . For this reason, it is desirable to select the upper limit of Ro within a range that does not affect this.
[0034]
On the other hand, bending radius Ri of copper pipe bending portion 2a is a hairpin bend coming from the size and shape of such designed as span portion, the conventional uniform bending center radius Rave. To build on, the copper tube bent portion 2b determined in relation to the bending radius Ro.
[0035]
Bending and the radius Ri of the copper tube bent portion 2a, the bending radius Ro of copper pipe bending portion 2b is not good not even with a constant value across the section of the arc direction of the bending portion of each. In other words, Ri and Ro vary appropriately within the allowable range in which the above-described effects of the present invention of Ri and Ro are exhibited for the convenience of bending and shape design over the respective portions in the arc direction of the respective bent portions. also not good.
[0036]
Note that the above explanation is mainly directed to a hairpin bent copper tube in which the copper tube has an outer diameter of Φ10 mm or less and the distance between the axes of substantially parallel copper tubes is 40 mm or less. In addition, the present invention can exert the same effect and can be applied to a copper tube having a large outer diameter of the copper tube and a large distance between the axial centers of the substantially parallel copper tubes. However, with such a copper tube, the requirements for weight reduction and miniaturization required for the product are small, and the conventional technology (adjustment of D 1, R 2, t) is often sufficient, and the meaning of applying the present invention is Few.
[0037]
The copper pipe targeted by the present invention is mainly a direct pipe, an inner grooved pipe, an outer grooved pipe, an inner / outer grooved pipe, etc., which are widely used in refrigerators and air conditioner pipes.
For this reason, in this invention, the manufacturing process of copper pipe itself is the same as the normal manufacturing method of these copper pipes. That is, first, pure copper such as phosphorous deoxidized copper is melted and cast, and then a raw tube is formed by hot extrusion. The extruded element tube is subjected to cold working appropriately combined with cold rolling such as reducer, drawing, drawing, drawing, etc., including the intermediate annealing. To do. In the case of copper pipes with grooves on the inner and outer surfaces, the inner and outer surfaces may be subjected to intermediate annealing (including partial annealing) again after the cold working or during the cold working, if necessary. Grooves are machined, and then finished annealing to make a product copper pipe. The form of the product copper tube may be coiled or tubular.
[0038]
The copper tube material used for the hairpin bent copper tube of the present invention has high yield strength, workability, large heat conduction, and is applied to standard pure copper or copper alloy, tempered material, which has been widely used for this kind of applications. Is done. In other words, it is not necessary to apply a special copper alloy in the present invention. For example, examples of pure copper include oxygen-free copper, tough pitch copper, and deoxidized copper. However, among these, phosphorous deoxidized copper widely used for piping of refrigerators and air conditioners is preferred as a copper tube material. Phosphorus deoxidized copper is a C1201 phosphorous deoxidized copper type 1A (P: 0.004 to 0.015% by mass, Cu: 99.90% by mass or more), 1220 Examples include 1B copper oxide (P: 0.015-0.040 mass%, Cu: 99.90 mass% or more), 2121 phosphorous deoxidized copper (P: 0.004-0.040 mass%, Cu: 99.75 mass% or more), etc. . These phosphorous deoxidized coppers are appropriately selected and used according to the grade of the small diameter product copper pipe.
[0039]
Next, the hairpin bending method for the copper pipe of the present invention will be described below. As a prerequisite bending machine, as shown schematically in Fig. 4 (a), the initial state of copper pipe bending, a draw bender that is widely used for this kind of application is used, and any shape can be combined. It is preferable to use a mandrel. This bending method using a draw bender is usually called a rotary drawing bending method. Then, in order to maintain the cross-sectional shape of the tube, a mandrel such as a cannonball type, swing type or knife shape is inserted into the tube, bending (bending) die 6, gripping (clamping) die 7, supply (feeding) ) Bending copper tube 1 in cooperation with die 8. At this time, the pipe material follows the bending process and moves in the arrow direction in the figure.
[0040]
Specifically, as shown in FIG. 4 (a), after inserting a core (mandrel) 4 provided with a ball head swinging mandrel 5 into the copper tube 1, the clamp die 7 is used to insert the copper tube. After clamping 1, the bending die 6 is rotated, and the copper tube 1 is bent along this rotation. In Fig. 4 (a), θ is the bending angle, R is the bending center radius (bending inner radius), D is the outer diameter of the copper tube 1, 2 is the hairpin bent portion of the copper tube 1, and 1a and 1b are the straight portions of the copper tube. , Respectively.
[0041]
Here, as a hairpin bend of the present invention the copper tube, tube bending end to increase the bending radius Ro of copper pipe bending portion 2b is late, bending the copper pipe which is the side of the hairpin bend is beginning in order to reduce the bending radius Ri of 2a uses a bending die as shown in Figure 4 (b). That is, as shown in FIG. 4 (b), the innermost shape bending die 6, as shown by the arc-shaped involute curve, and Ri is a bend radius of the bend initiator, bending ends side bending radius Ro is set (designed) as Ro> Ri. As shown in Fig. 4 (b), the bending radius of the innermost shape of the bending die depends on the angle from the bending center within the allowable range of Ro and Ri described above, even if each of Ro and Ri is not constant. The bending radius may be changed continuously, or different bending radii may be formed in stages.
[0042]
In the bending method of the present invention, as shown in FIG. 4 (a), a copper tube is used with a clamp die 7 as in the conventional bending method in which such a bending die is used and the bending center radius R is constant. After clamping 1, rotate the bending die 6. At this time, in order to keep the contact state between the bending die 6 in which the innermost shape Ri and R 0 are changed and the copper tube 1 constant, as shown in FIG. It is necessary to decenter or move the center by changing the position of the feed die.
[0043]
At this time, the rotational center of the bending die 6 may be moved mechanically according to the change between Ri and R 0 set on the bending die, or the pressure or sensation applied to the bending die is detected, These may be controlled to be constant. Conversely, the feed die holding the tube and the position of the mandrel may be moved while the center of rotation of the bending die 6 is fixed. For these, a suitable method is selected depending on the constraints of the apparatus and space.
[0044]
Furthermore, without setting a different Ri and Ro in such a bending die, in the above-mentioned bending after a certain angle bending in a bending die having an Ro is a bend radius of the termination side, the bending start side bend radius and hairpin bend in a different bending die having an Ri (Ro> Ri), bend radius of the present invention may be different from the hairpin bend copper tube.
[0045]
In addition, since the size of the core (core) 4, the clearance C between the core 4 and the copper tube 1, and the position of the core also affect wrinkles after bending and cross-sectional deformation, As with the prior art, the condition of the mandrel that does not cause wrinkles or cross-sectional deformation is set.
[0046]
【Example】
The results of comparison of the state of wrinkle generation inside the bend of the hairpin bend section between the example of the present invention and the conventional example with the same bend radius R of the hairpin bend section by FEM analysis are described below with reference to FIG. To do. Figure 5 shows a bent copper hairpin bent by FEM analysis. FIG. 5 (a) shows the hairpin bending portion of the present invention example, and FIG. 5 (b) shows the hairpin bending portion of the conventional example. 5 (a) and 5 (b) show the upper and lower sides of the copper tube (the bent portion 2b on the side where the hairpin bending process is finished and the other bent portion 2a on the side where the hairpin bending process is started), This is the reverse of FIG.
[0047]
As is clear from the comparison of the FEM analysis results of FIG. 5 (a) and FIG. 5 (b), the generation of wrinkles A is greatly suppressed in the hairpin bending portion of the example of the present invention of FIG. Almost no wrinkle A is generated on the inner side (surface) of the copper tube. On the other hand, in the hairpin bending portion of the conventional example of FIG. 5 (b), a large number of wrinkles A are generated on the bending inner side (surface) of the copper tube.
[0048]
As a condition for this FEM analysis, the bending method using a draw bender shown in FIG. 4 (a) is used, and in the example of the present invention, as shown in FIG. 4 (b), the innermost shape of the bending die 6 is bending initiator of bend radius at which Ri constant 8.5 mm, the bending radius Ro bending finishing side was controlled to a constant 10.0 mm, was set as Ro> Ri. On the other hand, the same bending radius R of the conventional example was set to a constant 9.25 mm. The precondition of the copper tube is a copper tube made of the C1201 phosphorous deoxidized copper 1A type, with a wall thickness of 0.2 mm, an outer diameter D of φ10 mm or less, φ7 mm, and a bending pitch t of 32.5 mm of 40 mm or less. The clearance C between the mandrel 4 and the copper tube 1 was 0.1 mm.
[0049]
Therefore, from the result of this FEM analysis, even if the outer diameter D of the copper tube is Φ10 mm or less and the bending pitch t is 40 mm or less, the present invention occurs inside the bending portion of the hairpin bending portion of the copper tube. It can be seen that wrinkling can be suppressed and bending can be performed without breaking the copper tube.
[0050]
【The invention's effect】
According to the present invention, the outer diameter of the copper tube is Φ10 mm or less, and even when the bending pitch is 40 mm or less, the small-diameter hairpin bending copper tube in which wrinkles of the hairpin bending portion are suppressed, and the hairpin bending process of the copper tube Can provide a method. The hairpin bent copper tube of the present invention is a hairpin bent portion with a different average bend radius, but there is no change in the inner diameter of the copper tube, and there is no effect on the flow of refrigerant or heat medium passing through the inside. Etc., there is no adverse effect on miniaturization, weight reduction and heat transfer performance improvement. On the other hand, by suppressing the generation of wrinkles in the hairpin bending portion, there is no adverse effect on the flow of the refrigerant and heat medium passing through the copper tube, and in air conditioners and the like, it is possible to reduce the size and weight and improve the heat transfer performance. The advantage is great.
[Brief description of the drawings]
FIG. 1 is a front view showing an example of a hairpin bent copper tube of the present invention.
FIG. 2 is a front view showing a state of a bent portion in a hairpin bending process of a copper tube, FIG. 2 (a) is an initial view of bending, and FIG. 2 (b) is an end view of bending.
FIG. 3 is an explanatory diagram showing the relationship between the bending angle of a copper tube during hairpin bending and the amount of strain applied to the inner bending portion of the copper tube.
4A and 4B schematically show bending of a copper tube by a drawbender according to the present invention, FIG. 4A is an initial state of bending, and FIG. 4B is a cross-sectional view showing a bending die shape. is there.
FIGS. 5A and 5B show a hairpin bent copper tube obtained by FEM analysis. FIG. 5A is an explanatory view showing an example of the present invention, and FIG.
FIG. 6 is a perspective view showing a general heat exchanger in which a hairpin bending copper tube is used.
[Explanation of symbols]
1: Copper tube, 2: Hairpin bending part, 1a, 1b: Copper tube straight part,
2a: the bent part on the side where the hairpin bending process is started,
2b: the bent part on the side where the hairpin bending process is finished,
Ro: bending radius of the bending portion 2b, Ri: the bent portion 2a bending radius,
3: Bending inside,

Claims (4)

最内側形状における曲げ開始側の曲げ半径Riと曲げ終了側の曲げ半径RoとをRo>Riとしたベンディングダイを用いてヘアピン曲げ加工された銅管であって、銅管1 のヘアピン曲げ部分2 において銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側である曲げ部分2bの前記曲げ半径Roが、ヘアピン曲げ加工が開始される側である他方の曲げ部分2aの前記曲げ半径Riよりも大きいことを特徴とするヘアピン曲げ銅管。A hairpin bent copper tube with a bending die and a bending radius Ro end side bending bending radius Ri of the start-side bending in the innermost shape and Ro> Ri, the copper pipe 1 hairpin bend copper tube straight portion 1a in the portion 2, two bent portions 2a, each rising in an arc shape from 1b, among 2b, the previous SL bending radius Ro of the hairpin bend bending is the side that is terminated portion 2b, the hairpin bend hairpin bend copper tube and greater than prior Symbol bending radius Ri of processing which is the side that starts the other bent portion 2a. 前記銅管直線部1a、1b同士の軸心間距離が40mm以下で、銅管の外径がΦ10mm以下である請求項1に記載のヘアピン曲げ銅管。  The hairpin bending copper tube according to claim 1, wherein the distance between the axes of the copper tube straight portions 1a and 1b is 40 mm or less and the outer diameter of the copper tube is Φ10 mm or less. 銅管をベンディングダイを用いてヘアピン曲げ加工する方法であって、このベンディングダイの最内側形状における曲げ開始側の曲げ半径Riと曲げ終了側の曲げ半径RoとをRo>Riとし、銅管1 のヘアピン曲げ部分2 において、銅管直線部1a、1bから各々円弧状に立ち上がる二つの曲げ部分2a、2bの内、ヘアピン曲げ加工が終了される側の曲げ部分2bの前記曲げ半径Roを、ヘアピン曲げ加工が開始される側の曲げ部分2aの前記曲げ半径Riよりも大きくして、ヘアピン曲げ加工を行なうことを特徴とする銅管のヘアピン曲げ加工方法。The copper tube a hairpin bending methods using a bending die and a bending radius Ro end side bending bending radius Ri of the start-side bending in the innermost shape of the bending die and Ro> Ri, copper in tube bending portion 2 of the tube 1, two bent portions 2a rises each arcuate copper pipe straight portions 1a, 1b, among 2b, prior Symbol bending radius side of the bent portion 2b of the hairpin bend ends Ro and made larger than the previous SL bending radius Ri of the side of the bending portion 2a of the hairpin bend is initiated, hairpin bending method of a copper pipe and performing a hairpin bend. 前記銅管直線部1a、1b同士の軸心間距離が40mm以下で、銅管の外径がΦ10mm以下である請求項3に記載の銅管のヘアピン曲げ加工方法。  The copper pin hairpin bending method according to claim 3, wherein the distance between the axes of the copper tube straight portions 1a and 1b is 40 mm or less and the outer diameter of the copper tube is Φ10 mm or less.
JP2003119412A 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube Expired - Lifetime JP4598371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003119412A JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003119412A JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Publications (2)

Publication Number Publication Date
JP2004322141A JP2004322141A (en) 2004-11-18
JP4598371B2 true JP4598371B2 (en) 2010-12-15

Family

ID=33498636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003119412A Expired - Lifetime JP4598371B2 (en) 2003-04-24 2003-04-24 Hairpin bending copper tube and hairpin bending method for copper tube

Country Status (1)

Country Link
JP (1) JP4598371B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009016946A1 (en) * 2007-07-27 2009-02-05 Mani, Inc. Bending method of medical suture needle
JP2012042125A (en) * 2010-08-19 2012-03-01 Corona Corp Heat exchanger for hot water supply
CN103153499B (en) * 2011-06-24 2015-02-11 株式会社太洋 Non-lubricated hairpin pipe bender
CN109277440B (en) * 2018-09-04 2023-05-16 浙江和良智能装备有限公司 Production line for manufacturing D connecting pipe
CN113231511B (en) * 2021-06-03 2023-03-28 四川航天长征装备制造有限公司 Rapid forming method for manual outer pulling edges at four corners of box-shaped sheet metal part
CN116274589B (en) * 2022-07-22 2023-11-03 广东思豪流体技术有限公司 Preparation method of ultra-small caliber ultra-thin copper pipe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756514U (en) * 1980-09-17 1982-04-02
JPS5994722U (en) * 1982-12-15 1984-06-27 京葉ベンド鋼管株式会社 Pipe bender deformation mold
JPS62176616A (en) * 1986-01-29 1987-08-03 Dai Ichi High Frequency Co Ltd Bending method for metal tube
JPH01309732A (en) * 1988-06-06 1989-12-14 Furukawa Electric Co Ltd:The U-shaped bending formed metallic tube and its manufacture
JPH03204120A (en) * 1989-12-28 1991-09-05 Suzuki Motor Corp Pipe bending device
JP2002146454A (en) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd Heat transfer tube for antifreezing solution and refrigerator

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756514U (en) * 1980-09-17 1982-04-02
JPS5994722U (en) * 1982-12-15 1984-06-27 京葉ベンド鋼管株式会社 Pipe bender deformation mold
JPS62176616A (en) * 1986-01-29 1987-08-03 Dai Ichi High Frequency Co Ltd Bending method for metal tube
JPH01309732A (en) * 1988-06-06 1989-12-14 Furukawa Electric Co Ltd:The U-shaped bending formed metallic tube and its manufacture
JPH03204120A (en) * 1989-12-28 1991-09-05 Suzuki Motor Corp Pipe bending device
JP2002146454A (en) * 2000-11-08 2002-05-22 Mitsubishi Shindoh Co Ltd Heat transfer tube for antifreezing solution and refrigerator

Also Published As

Publication number Publication date
JP2004322141A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP2003185386A (en) Heat-exchanger tube structured on both sides and method for its manufacture
WO2014104371A1 (en) Pipe with spirally grooved inner surface, method for manufacturing same, and heat exchanger
WO2012043492A1 (en) Aluminum-alloy-made heat-transfer pipe with inner-surface grooves
JP4598371B2 (en) Hairpin bending copper tube and hairpin bending method for copper tube
JP2005076915A (en) Composite heat exchanger tube
JP4999468B2 (en) Spiral tube manufacturing method and spiral tube manufacturing apparatus
JP2016022505A (en) Manufacturing method and manufacturing apparatus of pipe with spiral grooved inner surface
WO2012096295A1 (en) Internally grooved pipe, manufacturing method therefor, and manufacturing device therefor
JP6584027B2 (en) Twisted tube with internal spiral groove and heat exchanger
JP2019086180A (en) Double pipe and manufacturing method thereof
CN109791029B (en) Method for manufacturing tube with built-in fin and method for manufacturing double-layer tube
JP4511797B2 (en) Internal grooved tube, manufacturing apparatus thereof, and manufacturing method thereof
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP6355039B2 (en) Internal spiral groove manufacturing equipment
CN103415643B (en) Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP6537755B1 (en) Method of manufacturing double pipe
JP6502912B2 (en) Method and apparatus for manufacturing fin-incorporated tube
JP6502913B2 (en) Fin built-in tube
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof
JP6502914B2 (en) Method and apparatus for manufacturing double pipe
CN103765152A (en) Seamless pipe, level wound coil, cross fin tube-type heat exchanger, and method for producing cross fin tube-type heat exchanger
JP6391138B2 (en) Manufacturing method of internally spiral grooved tube
JP3908974B2 (en) Internal grooved tube and manufacturing method thereof
JP4036044B2 (en) Internal grooved tube processing method
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100924

R150 Certificate of patent or registration of utility model

Ref document number: 4598371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term