JP4594276B2 - Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor - Google Patents

Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor Download PDF

Info

Publication number
JP4594276B2
JP4594276B2 JP2006146659A JP2006146659A JP4594276B2 JP 4594276 B2 JP4594276 B2 JP 4594276B2 JP 2006146659 A JP2006146659 A JP 2006146659A JP 2006146659 A JP2006146659 A JP 2006146659A JP 4594276 B2 JP4594276 B2 JP 4594276B2
Authority
JP
Japan
Prior art keywords
cold
hot water
hot
heat source
source machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006146659A
Other languages
Japanese (ja)
Other versions
JP2007315695A (en
Inventor
達 村澤
敏明 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonets Corp
Original Assignee
Tonets Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonets Corp filed Critical Tonets Corp
Priority to JP2006146659A priority Critical patent/JP4594276B2/en
Publication of JP2007315695A publication Critical patent/JP2007315695A/en
Application granted granted Critical
Publication of JP4594276B2 publication Critical patent/JP4594276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、冷温熱源機の冷温水制御方法及びこれに用いる空調システムに関するものである。   The present invention relates to a cold / hot water control method for a cold / hot heat source machine and an air conditioning system used therefor.

従来から、冷温熱源機単体のCOPを向上させる努力は行われている。すなわち、冷熱源機単体のCOPは、製造・送水温度は極力高いほうが冷熱源機のCOPが高く省エネルギーとなり、温熱源機単体のCOPは、製造・送水温度は極力低いほうが温熱源機のCOPが高く省エネルギーとなる。ところが、二次側の負荷の大小に応じて設定温度を変更することは困難であり、冷水は低い温度設定のまま、温水は高い温度設定のまま(例えば冷水は7℃、温水は42℃)というように製造・供給温度は常時一定となっていることが多く、省エネルギー運転・制御とはいえない。   Conventionally, efforts have been made to improve the COP of a single cold / heat source unit. In other words, the COP of a single cold heat source unit has a higher COP of the cold heat source unit and energy saving when the production / water supply temperature is as high as possible. High energy saving. However, it is difficult to change the set temperature according to the magnitude of the load on the secondary side. Cold water remains at a low temperature setting and hot water remains at a high temperature setting (for example, cold water is 7 ° C., hot water is 42 ° C.) Thus, the manufacturing and supply temperatures are often constant at all times, which is not an energy-saving operation / control.

冷温熱源機(ヒートポンプ式の冷凍機や冷凍サイクルのみの冷凍機を含む)を用いた空調システムとして、冷温熱源機に冷却水配管系及び冷温水配管系を接続し、冷却水配管系に冷却水ポンプ及び冷却塔を接続して冷却水を循環させ、冷温水配管系に冷温水ポンプ及び複数の空調機等の二次側設備を並列して接続して各二次側設備に負荷に応じた冷温水を供給する空調システムが一般に使用されている。   As an air conditioning system using a cold / hot heat source machine (including a heat pump type refrigerator or a refrigeration machine with only a refrigeration cycle), a cooling water piping system and a cold / hot water piping system are connected to the cooling / heating heat source machine, and cooling water is connected to the cooling water piping system. Connect the pump and the cooling tower to circulate the cooling water, and connect the secondary side equipment such as the cold / hot water pump and multiple air conditioners in parallel to the cold / hot water piping system according to the load on each secondary side equipment An air conditioning system that supplies cold / hot water is generally used.

このような空調システムにおいて、消費電力を小さくして運転コスト低減を図り、ひいては資源節約や環境問題の改善に寄与するために、空調システムの運転効率を向上させて省エネルギーを図ることが求められている。この場合、冷温水配管系では、冷温熱源機とともに冷温水ポンプの消費電力を減らす必要がある。冷温水ポンプは、流量・揚程が小さいほど消費電力は小さくなる。   In such an air conditioning system, in order to reduce power consumption and reduce operating costs, and to contribute to resource saving and improvement of environmental problems, it is required to improve the operating efficiency of the air conditioning system and save energy. Yes. In this case, in the cold / hot water piping system, it is necessary to reduce the power consumption of the cold / hot water pump together with the cold / hot heat source machine. The cold / hot water pump consumes less power as the flow rate and head are smaller.

さらに省エネルギーを図るために、冷温熱源機の消費電力も減らす必要がある。冷温熱源機は、冷温水配管系に冷水を循環させる場合には、送水温度を上げることにより消費電力は小さくなり、温水を循環させる場合には、送水温度を下げることにより消費電力は小さくなる。ところが反面、冷水の送水温度を上げ(温水の送水温度を下げ)れば二次側設備の要求水量は増加し、冷温水ポンプの消費電力は大きくなる。   Furthermore, in order to save energy, it is necessary to reduce the power consumption of the cold / hot heat source machine. When the cold / hot heat source machine circulates cold water through the cold / hot water piping system, the power consumption is reduced by raising the water supply temperature, and when hot water is circulated, the power consumption is reduced by lowering the water supply temperature. On the other hand, if the water supply temperature of the cold water is raised (the water supply temperature is lowered), the amount of water required for the secondary equipment increases, and the power consumption of the cold / hot water pump increases.

したがって、省エネルギーのためには、二次側設備への流量と抵抗を減らし冷温水ポンプの流量・揚程を減らして消費電力を抑えた上で、冷温熱源機の消費電力を考慮する必要がある。しかしポンプについてみると、従来の制御方法では、二次側設備の流量調整弁に絞りによる抵抗を増加させることにより流量調整をしているので、この絞り動作は無駄であり、期待する消費電力の低減が図れない。   Therefore, in order to save energy, it is necessary to consider the power consumption of the cold / hot heat source machine after reducing the flow rate and resistance to the secondary equipment and reducing the flow rate / lift of the cold / hot water pump to reduce the power consumption. However, with regard to the pump, in the conventional control method, since the flow rate is adjusted by increasing the resistance of the flow rate adjusting valve of the secondary side equipment, this throttling operation is useless and the expected power consumption is reduced. Reduction cannot be achieved.

このような空調システムの省エネルギーについての技術的背景が特許文献1に記載されている。特許文献1に記載の冷温熱源機の冷温水制御方法は、二次側設備のどこで冷温水を要求しているかを判断し、常に送水圧力を小さくできるように二次側設備の流量調整弁(二方弁等)開度を100%近く(例えば95%)開くように二次側冷温水ポンプのインバータ制御を行う。ただし、冷温熱源機の必要最低流量以下では、最低流量一定を確保するため、バイパス流量調整弁を開いてその最低流量を確保しつつ必要最小供給圧力まで下げ、冷温水ポンプの省エネルギー運転を行う。二次側冷温水供給温度は、初め冷温水熱源機が供給できる上下限温度(例えば冷水時は15℃を上限、温水時は35度を下限)とし、冷温水上下限水量まで流し二次側設備の流量調整弁(二方弁等)開度を95%になるように冷温水温度を制御し始め、そのときの冷温熱源機と二次側冷温水ポンプのトータルシステムとしてのCOPが高くなる方向に冷温水設定値を変化させバルブ開度が95%になるように冷温水を変流量・変温度・変揚程制御する方法である。本発明は、特許文献1に比して、さらに簡単な構造で省エネルギーを実現するものである。   Patent Document 1 describes a technical background regarding energy saving of such an air conditioning system. The cold / hot water control method for the cold / hot heat source device described in Patent Document 1 determines where the cold / hot water is required in the secondary equipment, and the flow control valve (secondary equipment) so that the water supply pressure can always be reduced. The inverter control of the secondary side cold / hot water pump is performed so that the opening degree is close to 100% (for example, 95%). However, below the minimum required flow rate of the cold / hot heat source machine, in order to ensure a constant minimum flow rate, the bypass flow rate adjustment valve is opened to reduce the required minimum supply pressure while ensuring the minimum flow rate, and the energy saving operation of the cold / hot water pump is performed. The secondary side cold / hot water supply temperature is set to the upper and lower limit temperatures (for example, 15 ° C is the upper limit for cold water and 35 ° C is the lower limit for hot water). Starts controlling the temperature of the cold / hot water so that the flow rate adjustment valve (two-way valve, etc.) opening degree becomes 95%, and the COP as the total system of the cold / hot heat source machine and the secondary cold / hot water pump at that time becomes higher In this method, the cold / hot water is changed to a variable flow rate, variable temperature, and variable lift so that the valve opening degree is 95%. The present invention realizes energy saving with a simpler structure as compared with Patent Document 1.

特開2006−38379号公報JP 2006-38379 A

本発明は上記従来技術を考慮したものであって、空調機等の二次側設備への冷温水の流量調整弁の絞り抵抗の増加を抑えつつ、冷温水流量とポンプ揚程を低減させて冷温水ポンプの省エネルギーを図り、さらに二次側設備の流量調整弁開度に応じて送水温度も制御して冷温熱源機の消費電力を小さくして、簡単な構造で更なる省エネルギーを実現できる冷温熱源機の冷温水制御方法及びこれに用いる空調システムの提供を目的とするものである。   The present invention takes the above-mentioned prior art into consideration, and reduces the cold / hot water flow rate and the pump head while reducing the cold / hot water flow rate and the pump head while suppressing the increase in the throttle resistance of the flow adjustment valve of the cold / hot water to the secondary equipment such as an air conditioner. Cooling / heating source that can save energy with a simple structure by reducing the power consumption of the cooling / heating source by reducing the power consumption of the cooling / heating source by controlling the water supply temperature according to the opening of the flow control valve of the secondary side equipment. It aims at providing the cold / hot water control method of an apparatus, and the air conditioning system used for this.

前記目的を達成するため、請求項1の発明では、冷温水配管系と冷却水配管系が接続された冷温熱源機と、当該冷温熱源機で生成した冷温水を前記冷温水配管系内で循環させるためのインバータ制御可能な冷温水ポンプと、前記冷温水配管系に接続された複数の相互に並列な二次側設備と、負荷に応じて各二次側設備への冷温水流量を調整する流量調整弁とを備えた冷温熱源機の冷温水制御方法において、前記各二次側設備の流量調整弁開度を検出し、開度が最も大きい二次側設備の流量調整弁開度がほぼ全開となるように、前記冷温水ポンプの送水圧力をインバータ制御により減少させ、それでも最大開度の流量調整弁開度がほぼ全開にならない場合には、前記冷温熱源機の送水温度を冷水の場合は上げ、温水の場合は下げることを特徴とする冷温熱源機の冷温水制御方法を提供する。   In order to achieve the object, in the invention of claim 1, a cold / hot water source system in which a cold / hot water piping system and a cooling water piping system are connected, and cold / hot water generated by the cold / hot water source machine are circulated in the cold / hot water piping system. An inverter controllable chilled / hot water pump, a plurality of mutually parallel secondary equipment connected to the chilled / hot water piping system, and the flow of chilled / hot water to each secondary equipment according to the load In the cold / hot water control method for a cold / hot heat source apparatus provided with a flow rate adjustment valve, the flow rate adjustment valve opening degree of each secondary side equipment is detected, and the flow rate adjustment valve opening degree of the secondary side equipment having the largest opening degree is approximately If the water supply pressure of the cold / hot water pump is reduced by inverter control so that it is fully open, and the flow adjustment valve opening of the maximum opening is still not fully open, the water supply temperature of the cold / hot heat source machine is Is characterized by raising and lowering in the case of hot water Providing hot and cold water control method that cold heat source apparatus.

さらに、請求項2の発明では、冷温水配管系と冷却水配管系が接続された冷温熱源機と、当該冷温熱源機で生成した冷温水を前記冷温水配管系内で循環させるためのインバータ制御可能な冷温水ポンプと、前記冷温水配管系に接続された複数の相互に並列な二次側設備と、負荷に応じて各二次側設備への冷温水流量を調整する流量調整弁とを備えた空調システムにおいて、前記各二次側設備の流量調整弁開度を検出し、開度が最も大きい二次側設備の流量調整弁開度がほぼ全開となるように、前記冷温水ポンプの送水圧力をインバータ制御により減少させ、それでも最大開度の流量調整弁開度がほぼ全開にならない場合には、前記冷温熱源機の送水温度を冷水の場合は上げ、温水の場合は下げる制御装置を備えたことを特徴とする請求項1に記載の冷温熱源機の冷温水制御方法に用いる空調システムを提供する。   Furthermore, in the invention of claim 2, the cold / hot water source system to which the cold / hot water piping system and the cooling water piping system are connected, and inverter control for circulating the cold / hot water generated by the cold / hot water source device in the cold / hot water piping system A chilled / hot water pump, a plurality of parallel-side secondary equipment connected to the chilled / hot water piping system, and a flow rate adjusting valve that adjusts the flow of chilled / hot water to each secondary equipment according to the load. In the air conditioning system provided, the flow adjustment valve opening degree of each secondary side equipment is detected, and the flow rate adjustment valve opening degree of the secondary side equipment having the largest opening degree is almost fully opened. If the water supply pressure is reduced by inverter control and the maximum flow rate adjustment valve opening is still not fully open, a control device that raises the water supply temperature of the cold / hot heat source machine in the case of cold water and lowers it in the case of hot water. It was provided in Claim 1 characterized by the above-mentioned. Providing an air conditioning system for use in hot and cold water control method of the hot and cold heat source machine mounting.

請求項1の発明によれば、複数の二次側設備のそれぞれの冷温水流量調整弁(例えば二方弁)の開度を検出してそれぞれ必要とする冷温水流量を維持したまま、ポンプ送水圧力を減らすことにより、各流量調整弁開度を大きくさせ、最大開度であった流量調整弁開度を100%に近い所定開度(例えば95%)まで開き、他の流量調整弁はそれぞれ元の開度に応じて全体の開度のバランスを保ってポンプ送水圧力が減った分だけ開度を大きくすることができる。これにより、各二次側設備で要求する負荷熱量を満足したまま、ポンプから送られる配管系全体の冷温水送水圧力を減らすことができる。この場合、ポンプ送水量は、流量調整弁等を絞ることにより減らすのではなく、インバータ制御によりポンプ回転数を制御して流量・揚程を減らすため、省エネルギー運転となる。   According to the first aspect of the present invention, the pump water supply is performed while detecting the opening degree of each of the cold / hot water flow rate adjustment valves (for example, two-way valves) of the plurality of secondary-side facilities and maintaining the required cold / hot water flow rates. By reducing the pressure, each flow control valve opening is increased, and the flow control valve opening that was the maximum opening is opened to a predetermined opening (for example, 95%) close to 100%. According to the original opening, the opening can be increased by the amount that the pump water supply pressure is reduced while maintaining the balance of the entire opening. Thereby, the cold / hot water supply pressure of the whole piping system sent from a pump can be reduced, satisfying the load calorie | heat_amount requested | required by each secondary side installation. In this case, the pump water supply amount is not reduced by restricting the flow rate adjusting valve or the like, but the pump rotation speed is controlled by inverter control to reduce the flow rate / lift, so that energy saving operation is performed.

これに加え、さらに確実に流量調整弁を所定開度(例えば95%)にするために、冷温水配管系に冷水を循環させる場合には、冷温熱源機の送水温度を上げ、冷温水配管系に温水を循環させる場合には、冷温熱源機の送水温度を下げる。冷水の場合、冷水温度を高くしていくと二次側設備での要求水量が徐々に増加する。したがって、二次側設備の流量調整弁開度を大きくすることができ、各二次側設備で要求する負荷熱量を満足したまま、さらに熱源機自体の消費電力も小さくして最大限の省エネルギーを期待できる。この判断は供給する水が冷水か温水かの判断だけでいいため、他の流量等のパラメータを計測する必要がないので、そのための測定装置や、複雑な制御回路を組み込む必要がなく、簡単な構造で省エネルギーを実現できる。   In addition, in order to circulate cold water through the cold / hot water piping system in order to make the flow rate adjustment valve a predetermined opening (for example, 95%) more reliably, the water supply temperature of the cold / hot heat source machine is raised, When circulating hot water in the water, lower the water supply temperature of the cold / hot heat source machine. In the case of cold water, as the cold water temperature is raised, the required amount of water in the secondary equipment gradually increases. Therefore, the flow adjustment valve opening of the secondary equipment can be increased, and the maximum heat saving can be achieved by reducing the power consumption of the heat source machine itself while satisfying the load heat quantity required by each secondary equipment. I can expect. Since this determination only needs to determine whether the supplied water is cold water or hot water, there is no need to measure other parameters such as flow rate. Energy saving can be realized with the structure.

結果として、空調システム全体のシステムCOPが向上し、ランニングコストの低減、地球環境保全、CO2排出量の削減効果が期待できる。このとき、記録される運転データを用いて解析すれば、その時々の最適な各種制御係数(内部パラメータ)が分かるので、機器の経年劣化や配管等の圧力損失増加等で最適なシステムCOP点がずれたとしても簡単に変更ができ、常にシステムCOPが最大となる運転を継続できる。   As a result, the system COP of the entire air conditioning system is improved, and the reduction of running costs, global environmental conservation, and reduction of CO2 emissions can be expected. At this time, if the analysis is performed using the recorded operation data, the optimum various control coefficients (internal parameters) at that time can be known. Therefore, the optimum system COP point can be determined due to aging deterioration of the equipment, pressure loss of piping, etc. Even if it deviates, it can be easily changed and the operation at which the system COP is always maximum can be continued.

また、請求項2の発明によれば、請求項1で示した冷温熱源機の冷温水制御方法を実現する制御装置を空調システムに備えるため、簡単な構造で省エネルギーを実現できる。   According to the invention of claim 2, since the air conditioning system is provided with the control device that realizes the cold / hot water control method of the cold / hot heat source apparatus shown in claim 1, energy saving can be realized with a simple structure.

本発明は、冷温水配管系と冷却水配管系が接続された冷温熱源機と、当該冷温熱源機で生成した冷温水を前記冷温水配管系内で循環させるためのインバータ制御可能な冷温水ポンプと、前記冷温水配管系に接続された複数の相互に並列な二次側設備と、負荷に応じて各二次側設備への冷温水流量を調整する流量調整弁とを備えた冷温熱源機の冷温水制御方法において、前記各二次側設備の流量調整弁開度を検出し、開度が最も大きい二次側設備の流量調整弁開度がほぼ全開となるように、前記冷温水ポンプの送水圧力をインバータ制御により減少させ、それでも最大開度の流量調整弁開度がほぼ全開にならない場合には、前記冷温熱源機の送水温度を冷水の場合は上げ、温水の場合は下げることを特徴とする冷温熱源機の冷温水制御方法及びこれに用いる空調システムである。   The present invention relates to a cold / hot water source system in which a cold / hot water piping system and a cooling water piping system are connected, and an inverter-controlled cold / hot water pump for circulating cold / hot water generated by the cold / hot water source machine in the cold / hot water piping system And a plurality of mutually parallel secondary equipment connected to the cold / hot water piping system, and a flow control valve for adjusting the flow of cold / hot water to each secondary equipment according to the load In the chilled / hot water control method, the chilled / hot water pump detects the flow rate adjustment valve opening degree of each of the secondary side equipments, and the flow rate adjustment valve opening degree of the secondary side equipment having the largest opening degree is almost fully opened. If the water supply pressure is reduced by inverter control and the maximum flow rate adjustment valve opening is still not fully open, the water supply temperature of the cold / hot heat source machine should be increased in the case of cold water and decreased in the case of hot water. Chilled / warm water control method of a chilled / heat source machine characterized Is an air conditioning system to be used in Les.

図1は本発明に係る空調システムの概略構成図である。
この空調システム1は、冷温熱源機2に接続された冷温水配管系3と冷却水配管系4とにより構成される。冷却水配管系4には、送風ファン(図示省略)を備えた冷却塔5及び冷却水ポンプ6が備わる。冷温水配管系3には、冷温水ポンプ7及び複数の並列配置された二次側設備(例えば空調機)8が備わる。各二次側設備8には、冷温水流量を調整するための例えば二方弁からなる流量調整弁9が備わる。冷温水ポンプ7からの送水圧力は、圧力センサー16で測定される。
FIG. 1 is a schematic configuration diagram of an air conditioning system according to the present invention.
The air conditioning system 1 includes a cold / hot water piping system 3 and a cooling water piping system 4 connected to a cold / hot heat source device 2. The cooling water piping system 4 is provided with a cooling tower 5 and a cooling water pump 6 provided with a blower fan (not shown). The cold / hot water piping system 3 is provided with a cold / hot water pump 7 and a plurality of secondary equipment (for example, air conditioners) 8 arranged in parallel. Each secondary-side equipment 8 is provided with a flow rate adjusting valve 9 composed of, for example, a two-way valve for adjusting the cold / hot water flow rate. The water supply pressure from the cold / hot water pump 7 is measured by the pressure sensor 16.

冷温熱源機2には、生成する冷温水の温度を設定する温度設定手段12が備わる。冷温熱源機2の冷温水出口側の冷温水配管には温度センサー15が備わる。冷温水ポンプ7には、送水圧力を制御するインバータ17が備わる。   The cold / hot heat source device 2 is provided with temperature setting means 12 for setting the temperature of the produced cold / hot water. A temperature sensor 15 is provided in the cold / hot water pipe on the cold / hot water outlet side of the cold / hot heat source machine 2. The cold / hot water pump 7 is provided with an inverter 17 for controlling the water supply pressure.

複数の二次側設備8の各流量調整弁9、冷温熱源機2の温度設定手段12、圧力センサー16、冷温水の出口温度センサー15及び冷温水ポンプ7のインバータ17は、制御装置19に接続され、後述のように冷温水配管系3の冷温水の圧力及び温度を制御する。   Each flow control valve 9 of the secondary side equipment 8, the temperature setting means 12 of the cold / hot heat source machine 2, the pressure sensor 16, the cold / hot water outlet temperature sensor 15, and the inverter 17 of the cold / hot water pump 7 are connected to the control device 19. As described later, the pressure and temperature of the cold / hot water in the cold / hot water piping system 3 are controlled.

図2は本発明に係る冷温熱源機の冷温水制御方法のフローチャート図である。なお、説明の便宜のため、図1における符号を用いて説明する。
ステップS1:
各二次側設備8の流量調整弁9の開度を検出する。
FIG. 2 is a flowchart of the cold / hot water control method for the cold / hot heat source apparatus according to the present invention. For convenience of explanation, description will be made using reference numerals in FIG.
Step S1:
The opening degree of the flow rate adjustment valve 9 of each secondary side equipment 8 is detected.

ステップS2:
検出した流量調整弁9のうち、開度が最大の流量調整弁9の開度が最大開度の100%に近い95%であるかを判別する。95%である場合、ステップS1に戻る。
Step S2:
It is determined whether the opening degree of the flow rate adjusting valve 9 having the maximum opening degree is 95% which is close to 100% of the maximum opening degree among the detected flow rate adjusting valves 9. If it is 95%, the process returns to step S1.

ステップS3:
開度95%の流量調整弁9がないときは、開度95%とするためにインバータ17の制御により冷温水ポンプ7の送水圧力を減少させる。ポンプ7の送水圧力が減少すると、各二次側設備8では熱負荷に対処するために流量調整弁(二方弁等)9の開度を大きくするように動作する。これにより、各二次側設備の流量調整弁9は、それぞれの熱負荷に応じた開度のバランスを保ったまま、最大開度の流量調整弁9の開度が95%になるように他の流量調整弁9とともに開度が大きくなる。したがって、ポンプ7の送水圧力を減少して消費電力を低減させるとともに、流路抵抗を下げてポンプ揚程を低くすることができ、消費電力を低減できる。
Step S3:
When there is no flow rate adjustment valve 9 with an opening degree of 95%, the water supply pressure of the cold / hot water pump 7 is reduced by controlling the inverter 17 to make the opening degree 95%. When the water supply pressure of the pump 7 decreases, each secondary side equipment 8 operates so as to increase the opening degree of the flow rate adjusting valve (two-way valve or the like) 9 in order to cope with the heat load. As a result, the flow rate adjustment valve 9 of each secondary-side facility can be adjusted so that the opening degree of the flow rate adjustment valve 9 having the maximum opening degree is 95% while maintaining the balance of the opening degree according to the respective heat loads. As the flow rate adjustment valve 9 increases, the opening degree increases. Therefore, while reducing the water supply pressure of the pump 7 and reducing power consumption, flow path resistance can be lowered | hung and a pump head can be made low, and power consumption can be reduced.

ステップS4:
ステップS3におけるポンプ7をインバータ制御した状態で、各二次側設備8のいずれかの流量調整弁9の開度が95%であるかを判別する。95%である場合、ステップS1に戻る。
Step S4:
In a state where the pump 7 in step S3 is inverter-controlled, it is determined whether the opening degree of the flow rate adjusting valve 9 of each secondary side equipment 8 is 95%. If it is 95%, the process returns to step S1.

ステップS5:
ステップS4においても開度95%の流量調整弁9がないときは、さらに、冷温熱源機2から冷温水配管系3に、冷水を供給するのか、温水を供給するのかを判別する。
Step S5:
Even in step S4, when there is no flow rate adjusting valve 9 with an opening degree of 95%, it is further determined whether cold water or hot water is supplied from the cold / hot heat source unit 2 to the cold / hot water piping system 3.

ステップS6:
冷水を供給して冷温水配管系3に循環させている場合は、冷温熱源機2からの送水温度を上げる。これにより、二次側設備8での要求水量が徐々に増加していくため、二次側設備8の流量調整弁9の開度を大きくすることができ、各二次側設備で要求する負荷熱量を満足したまま、さらに冷温熱源機2自体の消費電力も小さくして最大限の省エネルギーを期待できる。
Step S6:
When cold water is supplied and circulated through the cold / hot water piping system 3, the water supply temperature from the cold / hot heat source unit 2 is increased. As a result, the required amount of water in the secondary side equipment 8 gradually increases, so the opening degree of the flow rate adjusting valve 9 of the secondary side equipment 8 can be increased, and the load required by each secondary side equipment. While satisfying the amount of heat, the power consumption of the cold / hot heat source device 2 itself can be reduced to maximize energy saving.

ステップS7:
温水を供給して冷温水配管系3に循環させている場合は、冷温熱源機2からの送水温度を下げる。これにより、ステップS6の場合と同様に、二次側設備8での要求水量が徐々に増加していくため、二次側設備8の流量調整弁9の開度を大きくすることができ、各二次側設備8で要求する負荷熱量を満足したまま、さらに冷温熱源機2自体の消費電力も小さくして最大限の省エネルギーを期待できる。
Step S7:
When hot water is supplied and circulated through the cold / hot water piping system 3, the water supply temperature from the cold / hot heat source unit 2 is lowered. Thereby, since the request | requirement water amount in the secondary side equipment 8 increases gradually similarly to the case of step S6, the opening degree of the flow regulating valve 9 of the secondary side equipment 8 can be enlarged, While satisfying the load calorie demanded by the secondary side equipment 8, the power consumption of the cold / hot heat source machine 2 itself can be reduced and the maximum energy saving can be expected.

なお、ステップS6、S7での送水温度の変更は、急な変化とならないように、単位時間当たりの設定変更値を固定し、徐々に行う。例えば、3分当たり0.1℃程度が好ましい。   In addition, the change of the water supply temperature in steps S6 and S7 is performed gradually by fixing the setting change value per unit time so as not to cause a sudden change. For example, about 0.1 ° C. per 3 minutes is preferable.

図3は冷温水送水圧力・送水温度制御方法の説明図である。
図1の制御装置19(図1)にて流量調整弁9の最大開度が設定(図のA)されると、制御装置19により、送水圧力と送水温度が設定される。
送水圧力が設定されると(図のB)、ポンプのインバータ17が調整され、冷温水ポンプ7により所定の送水圧力に制御される。この送水圧力制御に対しては、ポンプ台数変化・機器の性能劣化等が外乱(図のC)として作用し、この送水圧力は圧力センサー16で検出され設定送水圧力になるようにフィードバック制御される。さらにこの送水圧力に対して、二次側負荷変動・機器の性能劣化等が外乱(図のD)として作用し、また後述する送水温度の変化を考慮して、各二次側設備8の各流量調整弁9(図1)の最大開度を検出(図のE)し、送水圧力設定をカスケード制御される。
FIG. 3 is an explanatory diagram of the cold / hot water supply pressure / water supply temperature control method.
When the maximum opening degree of the flow rate adjusting valve 9 is set (A in the figure) by the control device 19 (FIG. 1) in FIG. 1, the control device 19 sets the water supply pressure and the water supply temperature.
When the water supply pressure is set (B in the figure), the inverter 17 of the pump is adjusted and controlled by the cold / hot water pump 7 to a predetermined water supply pressure. For this water supply pressure control, changes in the number of pumps, device performance deterioration, etc. act as disturbances (C in the figure), and this water supply pressure is detected by the pressure sensor 16 and feedback controlled so as to become the set water supply pressure. . Furthermore, secondary load fluctuations, equipment performance degradation, etc. act as disturbances (D in the figure) against this water supply pressure, and each secondary side equipment 8 is considered in consideration of changes in the water supply temperature described later. The maximum opening of the flow rate adjusting valve 9 (FIG. 1) is detected (E in the figure), and the water supply pressure setting is cascade controlled.

同時に送水温度が設定されると(図のF)、これに応じて冷温熱源機2(図1)の冷温水温度設定手段12(図1)により送水温度が設定され、冷温熱源機内部のコントローラ12により、冷温熱能力が調整され、所定の送水温度に制御される。この送水温度制御に対しては、冷温水還り温度変化・冷温水流量変化・冷却水温度変化・冷却水流量変化・機器の性能劣化等が外乱(図のG)として作用し、この送水温度は温度センサー15で検出され設定送水温度になるようにフィードバック制御される。さらにこの送水温度に対して、二次側負荷変動・機器の性能劣化等が外乱(図のD)として作用し、各二次側設備8の各流量調整弁9の開度で最大開度を検出(図のE)し、送水温度設定をカスケード制御される。 At the same time, when the water supply temperature is set (F in the figure), the water supply temperature is set by the cold / hot water temperature setting means 12 (FIG. 1) of the cold / hot heat source machine 2 (FIG. 1), and the controller inside the cold / heat source machine 12, the cooling / heating capacity is adjusted and controlled to a predetermined water supply temperature. For this water supply temperature control, cold water return temperature change, cold water flow rate change, cooling water temperature change, cooling water flow rate change, equipment performance deterioration, etc. act as disturbances (G in the figure). Feedback control is performed so that the temperature is detected by the temperature sensor 15 and reaches the set water supply temperature. Furthermore, the secondary side load fluctuation, equipment performance deterioration, etc. act as disturbances (D in the figure) against this water supply temperature, and the maximum opening degree is set by the opening degree of each flow regulating valve 9 of each secondary side equipment 8 Detection (E in the figure) and cascade control of water supply temperature setting.

このような冷温熱源機の冷温水制御方法を行うことにより、空調システム全体のシステムCOPが向上し、ランニングコストの低減、地球環境保全、CO2排出量の削減効果が期待できる。このとき、記録される運転データを用いて解析すれば、その時々の最適な各種制御係数(内部パラメータ)が分かるので、機器の経年劣化や配管等の圧力損失増加等で最適なシステムCOP点がずれたとしても簡単に変更ができ、常にシステムCOPが最大となる運転を継続できる。   By performing the cold / hot water control method of such a cold / hot heat source machine, the system COP of the whole air conditioning system can be improved, and it can be expected that the running cost is reduced, the global environment is preserved, and the CO2 emission is reduced. At this time, if the analysis is performed using the recorded operation data, the optimum various control coefficients (internal parameters) at that time can be known. Therefore, the optimum system COP point can be determined due to aging deterioration of the equipment, pressure loss of piping, etc. Even if it deviates, it can be easily changed and the operation at which the system COP is always maximum can be continued.

また、本発明の方法によれば、省エネルギーのために一定周期ごとに流量計等の計測結果等を元にCOPを算出する必要がなく、二次側設備の流量調整弁開度データのみで省エネルギーを達成できるため、複雑な制御回路が不要であり、そのための計測装置等も不要となるため簡単な構造で最大限の省エネルギーを期待できる。   Further, according to the method of the present invention, it is not necessary to calculate the COP based on the measurement result of the flow meter or the like at regular intervals for energy saving, and the energy saving can be achieved only by the flow rate adjustment valve opening data of the secondary equipment. Therefore, a complicated control circuit is unnecessary, and a measuring device for that purpose is also unnecessary, so that the maximum energy saving can be expected with a simple structure.

図1で示した制御装置19には、図2、図3で示したフロー及び説明に基づき冷温水ポンプの送水圧力と送水温度を変更するための制御回路が備わる。   The control device 19 shown in FIG. 1 is provided with a control circuit for changing the water supply pressure and the water supply temperature of the cold / hot water pump based on the flow and description shown in FIGS.

図4は冷水を循環させる場合における冷温熱源機の冷温水制御方法を示すグラフ図である。
二次側設備の流量調整弁開度を検出し、いずれかの開度が95%の場合はそのままの開度を維持するために送水圧力、送水温度の変更は行わない。すなわち、このときの送水圧力、送水温度(図のP点)が基準となる。95%に満たない場合、例えばa以上95%未満の場合、ポンプによる送水圧力をP点の送水圧力より減少させる。すると流量調整弁開度は95%に近くなるように開く。開度がb以上a未満の場合、ポンプを最低送水圧力とする。そうすると時間の経過とともに、又は二次側設備の負荷に応じて流量調整弁開度が変化するため、所定時間経過後、再び流量調整弁開度を検出する。開度がc以上b未満の場合、ポンプを最低送水圧力とした状態で冷温熱源機からの送水温度をP点の送水温度より上げる。すると二次側設備からの要求水量が増加するため、流量調整弁開度が大きくなる。このようにして、流量調整弁開度を検出し、その時々の流量調整弁開度に応じた送水圧力、送水温度を設定し制御することで流量調整弁開度を全開に近くなるように保つことができ、各二次側設備で要求する負荷熱量を満足したまま、さらにポンプと冷温熱源機の消費電力を小さくして省エネルギーを図ることができる。
FIG. 4 is a graph showing a cold / hot water control method of the cold / hot heat source machine in the case of circulating cold water.
The flow rate adjustment valve opening degree of the secondary side equipment is detected, and when any opening degree is 95%, in order to maintain the opening degree as it is, the water supply pressure and the water supply temperature are not changed. That is, the water supply pressure and water supply temperature (point P in the figure) at this time are used as a reference. When it is less than 95%, for example, when it is a or more and less than 95%, the water supply pressure by the pump is decreased from the water supply pressure at point P. Then, the flow rate adjustment valve opening degree is opened to be close to 95%. When the opening is not less than b and less than a, the pump is set to the minimum water supply pressure. Then, since the flow rate adjustment valve opening changes with time or according to the load on the secondary side equipment, the flow rate adjustment valve opening is detected again after a predetermined time has elapsed. When the opening degree is c or more and less than b, the water supply temperature from the cold / hot heat source machine is raised from the water supply temperature at point P with the pump at the minimum water supply pressure. Then, since the required water amount from the secondary side equipment increases, the flow rate adjustment valve opening increases. In this way, the flow rate adjustment valve opening is detected, and the flow rate adjustment valve opening is kept close to full open by setting and controlling the water supply pressure and water supply temperature according to the flow rate adjustment valve opening at that time. In addition, energy consumption can be reduced by reducing the power consumption of the pump and the cooling / heating source while satisfying the amount of load heat required by each secondary facility.

図5は温水を循環させる場合における冷温熱源機の冷温水制御方法を示すグラフ図である。
温水の場合は送水温度の設定が図4の冷水の場合と逆になる。すなわち、二次側設備の流量調整弁開度がc以上b未満の場合の制御が異なる。この場合、ポンプを最低送水圧力とした状態で冷温熱源機からの送水温度を下げる。すなわち、開度95%のときの送水温度より下げる。すると二次側設備からの要求水量が増加するため、流量調整弁開度が大きくなる。その他の作用、効果は図4で示した場合と同様である。
FIG. 5 is a graph showing a cold / hot water control method of the cold / hot heat source machine in the case of circulating hot water.
In the case of hot water, the setting of the water supply temperature is reversed from that in the case of cold water in FIG. That is, the control is different when the flow rate adjustment valve opening degree of the secondary side equipment is c or more and less than b. In this case, the water supply temperature from the cold / hot heat source machine is lowered with the pump at the minimum water supply pressure. That is, it is lower than the water supply temperature when the opening degree is 95%. Then, since the required water amount from the secondary side equipment increases, the flow rate adjustment valve opening increases. Other actions and effects are the same as those shown in FIG.

本発明は、種々の冷温水を供給する冷温熱源機の冷温水制御方法及びこれに用いるあらゆるシステムに適用でき、システム全体の運転効率を最大にして省エネルギーを有効に達成できる。   INDUSTRIAL APPLICABILITY The present invention can be applied to a cold / hot water control method of a cold / hot heat source apparatus that supplies various cold / hot water and any system used therefor, and can effectively achieve energy saving by maximizing the operation efficiency of the entire system.

本発明に係る空調システムの概略構成図である。1 is a schematic configuration diagram of an air conditioning system according to the present invention. 本発明に係る冷温熱源機の冷温水制御方法のフローチャート図である。It is a flowchart figure of the cold / hot water control method of the cold / hot heat source machine which concerns on this invention. 本発明に係る冷温水の送水圧力・送水温度設定制御の説明図である。It is explanatory drawing of the water supply pressure and water supply temperature setting control of the cold / hot water which concerns on this invention. 冷水を循環させる場合における冷温熱源機の冷温水制御方法を示すグラフ図である。It is a graph which shows the cold / hot water control method of the cold / hot heat source machine in the case of circulating cold water. 温水を循環させる場合における冷温熱源機の冷温水制御方法を示すグラフ図である。It is a graph which shows the cold / hot water control method of the cold / hot heat source machine in the case of circulating hot water.

符号の説明Explanation of symbols

1:空調システム、2:冷温熱源機、3、冷温水配管系、4:冷却水配管系、5:冷却塔、6:冷却水ポンプ、7:冷温水ポンプ、8:二次側設備、9:流量調整弁、12:温度設定手段、15:温度センサー、16:圧力センサー、17:インバータ、19:制御装置 1: air conditioning system, 2: cold / hot heat source machine, 3, cold / hot water piping system, 4: cooling water piping system, 5: cooling tower, 6: cooling water pump, 7: cold / hot water pump, 8: secondary equipment, 9 : Flow control valve, 12: Temperature setting means, 15: Temperature sensor, 16: Pressure sensor, 17: Inverter, 19: Control device

Claims (2)

冷温水配管系と冷却水配管系が接続された冷温熱源機と、
当該冷温熱源機で生成した冷温水を前記冷温水配管系内で循環させるためのインバータ制御可能な冷温水ポンプと、
前記冷温水配管系に接続された複数の相互に並列な二次側設備と、
負荷に応じて各二次側設備への冷温水流量を調整する流量調整弁とを備えた冷温熱源機の冷温水制御方法において、
前記各二次側設備の流量調整弁開度を検出し、開度が最も大きい二次側設備の流量調整弁開度がほぼ全開となるように、前記冷温水ポンプの送水圧力をインバータ制御により減少させ、それでも最大開度の流量調整弁開度がほぼ全開にならない場合には、前記冷温熱源機の送水温度を冷水の場合は上げ、温水の場合は下げることを特徴とする冷温熱源機の冷温水制御方法。
A cold / hot heat source machine connected to the cold / hot water piping system and the cooling water piping system;
A cold / hot water pump capable of inverter control for circulating the cold / hot water generated by the cold / hot heat source machine in the cold / hot water piping system;
A plurality of mutually parallel secondary equipment connected to the cold / hot water piping system,
In the cold / hot water control method of the cold / hot heat source machine provided with a flow rate adjustment valve that adjusts the flow of cold / hot water to each secondary side equipment according to the load,
The flow control valve opening of each secondary equipment is detected, and the water supply pressure of the cold / hot water pump is controlled by inverter control so that the flow control valve opening of the secondary equipment with the largest opening is almost fully open. If the flow adjustment valve opening of the maximum opening is not fully opened, the water supply temperature of the cold / hot heat source machine is raised in the case of cold water and lowered in the case of hot water. Cold / hot water control method.
冷温水配管系と冷却水配管系が接続された冷温熱源機と、
当該冷温熱源機で生成した冷温水を前記冷温水配管系内で循環させるためのインバータ制御可能な冷温水ポンプと、
前記冷温水配管系に接続された複数の相互に並列な二次側設備と、
負荷に応じて各二次側設備への冷温水流量を調整する流量調整弁とを備えた空調システムにおいて、
前記各二次側設備の流量調整弁開度を検出し、開度が最も大きい二次側設備の流量調整弁開度がほぼ全開となるように、前記冷温水ポンプの送水圧力をインバータ制御により減少させ、それでも最大開度の流量調整弁開度がほぼ全開にならない場合には、前記冷温熱源機の送水温度を冷水の場合は上げ、温水の場合は下げる制御装置を備えたことを特徴とする請求項1に記載の冷温熱源機の冷温水制御方法に用いる空調システム。
A cold / hot heat source machine connected to the cold / hot water piping system and the cooling water piping system;
A cold / hot water pump capable of inverter control for circulating the cold / hot water generated by the cold / hot heat source machine in the cold / hot water piping system;
A plurality of mutually parallel secondary equipment connected to the cold / hot water piping system,
In an air conditioning system equipped with a flow rate adjustment valve that adjusts the flow rate of cold and hot water to each secondary facility according to the load,
The flow control valve opening of each secondary equipment is detected, and the water supply pressure of the cold / hot water pump is controlled by inverter control so that the flow control valve opening of the secondary equipment with the largest opening is almost fully open. In the case where the flow rate adjustment valve opening of the maximum opening is not fully opened, a control device is provided that increases the water supply temperature of the cold / hot heat source machine in the case of cold water and decreases it in the case of hot water. The air-conditioning system used for the cold / hot water control method of the cold / hot heat source machine of Claim 1.
JP2006146659A 2006-05-26 2006-05-26 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor Active JP4594276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146659A JP4594276B2 (en) 2006-05-26 2006-05-26 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146659A JP4594276B2 (en) 2006-05-26 2006-05-26 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor

Publications (2)

Publication Number Publication Date
JP2007315695A JP2007315695A (en) 2007-12-06
JP4594276B2 true JP4594276B2 (en) 2010-12-08

Family

ID=38849711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146659A Active JP4594276B2 (en) 2006-05-26 2006-05-26 Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor

Country Status (1)

Country Link
JP (1) JP4594276B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010025466A (en) * 2008-07-22 2010-02-04 Hitachi Plant Technologies Ltd Heat source system
JP4920654B2 (en) * 2008-09-29 2012-04-18 三菱電機株式会社 Air conditioner
JP5404132B2 (en) 2009-03-30 2014-01-29 三菱重工業株式会社 Heat source system and control method thereof
US9903601B2 (en) 2009-10-27 2018-02-27 Mitsubishi Electric Corporation Air-conditioning apparatus
JP5422366B2 (en) * 2009-12-21 2014-02-19 株式会社日立製作所 Coordinated control device and coordinated control method for heat source system
JP5492712B2 (en) * 2010-09-09 2014-05-14 アズビル株式会社 Water supply temperature control apparatus and method
JP5932419B2 (en) * 2012-03-21 2016-06-08 株式会社東芝 Heat recovery plant system, heat recovery plant control device, and heat recovery plant control method
US9454160B2 (en) 2012-03-21 2016-09-27 Kabushiki Kaisha Toshiba Thermal recycling plant system, apparatus for controlling a thermal recycling plant and method of controlling a thermal recycling plant
JP5905077B2 (en) * 2012-03-29 2016-04-20 三菱電機株式会社 Air conditioning system
JP6125836B2 (en) * 2012-12-28 2017-05-10 株式会社Nttファシリティーズ Cold water circulation system
JP6100523B2 (en) * 2012-12-28 2017-03-22 株式会社Nttファシリティーズ Cold water circulation system
CN105588303B (en) * 2014-11-11 2018-06-05 海信(山东)空调有限公司 A kind of cold recovery air conditioner energy-saving system and method
CN106705490B (en) * 2017-03-08 2019-04-26 美的集团股份有限公司 The control method and device and heat pump unit water system of heat pump unit water system
JP6994218B2 (en) * 2018-01-24 2022-01-14 株式会社久米設計 Load-responsive air conditioning control system and method
JP6925455B2 (en) 2018-02-07 2021-08-25 三菱電機株式会社 Air conditioning system and air conditioning control method
CN112049802A (en) * 2020-07-22 2020-12-08 安徽三环水泵有限责任公司 Water pump energy-saving control system
CN114110933B (en) * 2021-10-29 2023-08-01 珠海格力电器股份有限公司 Control method of air source heat pump unit system and air source heat pump unit system
CN114623570B (en) * 2022-02-11 2023-07-21 武汉中电节能有限公司 Method for calculating instantaneous refrigeration power of air conditioner refrigeration host
CN115183435A (en) * 2022-06-13 2022-10-14 西安华为数字能源技术有限公司 Control method and device of air conditioning system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811341A (en) * 1981-07-14 1983-01-22 Osaka Gas Co Ltd Air-conditioning apparatus
JPH03152334A (en) * 1989-11-08 1991-06-28 Nec Corp Variable amount type air conditioning system
JPH1163631A (en) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd Equipment for controlling temperature of supply water
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2003262384A (en) * 2002-03-08 2003-09-19 Yamatake Corp Air conditioning heat source system and controlling method of the air conditioning heat source system
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5811341A (en) * 1981-07-14 1983-01-22 Osaka Gas Co Ltd Air-conditioning apparatus
JPH03152334A (en) * 1989-11-08 1991-06-28 Nec Corp Variable amount type air conditioning system
JPH1163631A (en) * 1997-08-28 1999-03-05 Yamatake Honeywell Co Ltd Equipment for controlling temperature of supply water
JP2003207190A (en) * 2002-01-16 2003-07-25 Hitachi Plant Eng & Constr Co Ltd Air conditioning system
JP2003262384A (en) * 2002-03-08 2003-09-19 Yamatake Corp Air conditioning heat source system and controlling method of the air conditioning heat source system
JP2006038379A (en) * 2004-07-29 2006-02-09 Toyo Netsu Kogyo Kk Cold and hot water control method of cold and hot heat source machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136071A (en) * 2017-02-21 2018-08-30 高砂熱学工業株式会社 Cooling water transfer control system and cooling water transfer control method

Also Published As

Publication number Publication date
JP2007315695A (en) 2007-12-06

Similar Documents

Publication Publication Date Title
JP4594276B2 (en) Cold / hot water control method for cold / hot heat source machine and air conditioning system used therefor
JP4422572B2 (en) Cold / hot water control method for cold / hot heat source machine
KR102216367B1 (en) A method for improving the working efficiency of a cooling system through retrofitting a building with a master controller
JP4301238B2 (en) Cold water circulation system
CN110671777B (en) Control method and device of air conditioner and air conditioner
JP2007240131A (en) Optimization control of heat source unit and accessory
WO2015037434A1 (en) Air-conditioning apparatus
JP4333818B2 (en) Cold water circulation system
JP2010255985A (en) Method of operating heat source system and heat source system
JP5227247B2 (en) Heat source system operating method and heat source system
JP3652974B2 (en) Primary pump heat source variable flow rate system
JP4693645B2 (en) Air conditioning system
CN114459133A (en) Energy-saving control method and energy-saving control system for central air-conditioning system
JP4406778B2 (en) Cold water circulation system
JP2009115452A5 (en)
JP2010025466A (en) Heat source system
JP4440147B2 (en) Operation control method for two-pump heat source equipment
JP4748175B2 (en) Cold water circulation system
JP4569661B2 (en) Cold water circulation system
JP2011226680A (en) Cooling water producing facility
JP5595975B2 (en) Air conditioning piping system
JP5318446B2 (en) Outside air intake system
JP5062555B2 (en) Energy saving air conditioning control system
JPH038453B2 (en)
JP2021173518A (en) Air conditioning system and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4594276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150