JP4590293B2 - 超音波観測装置 - Google Patents

超音波観測装置 Download PDF

Info

Publication number
JP4590293B2
JP4590293B2 JP2005112984A JP2005112984A JP4590293B2 JP 4590293 B2 JP4590293 B2 JP 4590293B2 JP 2005112984 A JP2005112984 A JP 2005112984A JP 2005112984 A JP2005112984 A JP 2005112984A JP 4590293 B2 JP4590293 B2 JP 4590293B2
Authority
JP
Japan
Prior art keywords
ultrasonic
transmission
image
frequency
reception
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005112984A
Other languages
English (en)
Other versions
JP2006288679A5 (ja
JP2006288679A (ja
Inventor
弘行 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005112984A priority Critical patent/JP4590293B2/ja
Priority to US11/400,377 priority patent/US7717851B2/en
Publication of JP2006288679A publication Critical patent/JP2006288679A/ja
Publication of JP2006288679A5 publication Critical patent/JP2006288679A5/ja
Application granted granted Critical
Publication of JP4590293B2 publication Critical patent/JP4590293B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • A61B8/4488Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer the transducer being a phased array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4483Constructional features of the ultrasonic, sonic or infrasonic diagnostic device characterised by features of the ultrasound transducer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52085Details related to the ultrasound signal acquisition, e.g. scan sequences
    • G01S7/5209Details related to the ultrasound signal acquisition, e.g. scan sequences using multibeam transmission

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Remote Sensing (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Gynecology & Obstetrics (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、医療診断のために患者の体内に挿入して超音波断層像を撮影することが可能な超音波内視鏡を備えた超音波観測装置に関する。
近年、患者の体腔内周辺の超音波断層像に基づいて医療診断を行うために、患者の体腔内に挿入して使用される超音波内視鏡が開発されている。一般に、超音波内視鏡においては、超音波を送受信する複数の超音波トランスデユーサ(超音波振動子)を含むアレイを機械的に回転させることにより視野角360°の走査を行うメカニカルラジアル走査方式が採用されている。
また、電子的な走査により視野角360°の走査を行う電子ラジアル走査方式も提案されている。例えば、非特許文献1には、各種消化器疾患に対する電子ラジアル型超音波内視鏡の使用経験に基づいて、電子ラジアル型超音波内視鏡の有用性及び問題点を検討した結果が記載されている。
さらに、ラジアル走査方式において、異なる複数の方向に、互いに周波数が異なる複数の超音波を同時に送信することにより、画質の良い超音波画像を取得することも提案されている。
関連する技術として、特許文献1には、超音波の周波数を変化させて超音波走査することで複数のエコーデータを得て観察を行うために、超音波診断装置が、超音波観察部と、各種画像処理を行う画像処理部と、超音波を送受信する超音波振動子を備えた超音波プローブと、超音波プローブを駆動する駆動部とで主に構成され、上記超音波振動子が駆動周波数を変化させられる広帯域振動子であることが開示されている。この超音波診断装置において、超音波観測部は、超音波振動子に対して異なる駆動周波数の超音波を送信するとともに超音波の反射波を受信する送受信部と、反射波をエコーデータとして取り込んで記憶するフレームメモリとを備えており、システムコントローラによって送受信部で発生させる各種駆動周波数の切り換えが制御されると共に、切り換えた駆動周波数とその駆動周波数のエコーデータとがフレームメモリに対応して記憶される。
特許文献2には、周波数特性の異なる複数の超音波画像を同一画像上で滑らかな画像として合成表示するために、互いに異なる周波数特性を有する超音波送受信手段と、該複数の超音波送受信手段を駆動する制御手段と、複数の超音波送受信手段から出力される受信信号に画面内における超音波送受信手段に対応した位置からの距離に応じた重み付けを行い一画面に合成して表示する表示手段とを具備する超音波画像処理装置が開示されている。
特許文献3には、高周波化にともなう超音波減衰に対処して周波数選択を容易に行うために、少なくとも2つ以上の中心周波数をもつ超音波パルスを送受波して受信信号を得る各中心周波数共用の超音波トランスデューサと、該超音波トランスデューサを用いて中心周波数毎に独立して受信信号を収集する手段とを具備する超音波診断装置が開示されている。
特許文献4には、測定対象によることなく、正確な診断をなし得るために、生体内で反射又は透過した超音波パルスを受信しで電気信号に変換し、この電気信号の持つ特徴量から生体の組織性状を診断する信号解析手段を備えた生体組織性状診断装置において、上記信号解析手段が、電気信号のパルス幅を設定するパルス幅設定手段と、該設定された信号パルス幅内から、少なくとも領域の一部が異なる複数の信号領域を抽出する領域抽出手段と、該抽出領域のそれぞれにおいて、所定の波形特徴値を計算する波形特徴値計算手段と、該計算された波形特徴値環の差異を演算する差異演算手段と、該差異演算の結果とその超音波パルスの受信時刻とを関連付けることで、差異演算の結果と受信超音波パルスを発生させた生体組織の位置を対応させる対応時刻決定手段とを含むことが開示されている。
特開2001−333902号公報(第1頁) 特開平8−173420号公報(第2頁) 特開平5−56980号公報(第1、2頁) 特開2001−170046号公報 竹田、他、「消化器疾患に対する電子ラジアル型超音波内視鏡検査の現状」、超音波医学(Jpn J Med Ultrasonics)、社団法人日本超音波医学会、2004年、第31巻補遺、77−C062
このように、メカニカル又は電子式のラジアル走査方式によれば、広い視野角を得ることができるという利点はある。しかしながら、例えば、コンベックス型超音波トランスデユーサアレイを用いて視野角90°の走査を行う走査方式に比較すると、音線密度や走査深度等の条件を同一にした場合に1フレームの画像を得るための走査時間(フレーム周期)が長くなるので、フレームレートが低下してしまうという問題がある。
また、特許文献1及び2に開示されているように、互いに周波数が異なる超音波を用いることによって得られた複数の超音波画像を合成することにより、浅部における高い分解能(解像度)と、深部に至る超音波のペネトレーション(焦点深度)とを両立できるという利点はある。しかしながら、上記特許文献1及び2に開示されている装置においては、メカニカルなラジアル走査方式が用いられており、電子ラジアル走査方式を用いることについては考慮されていない。
一方、特許文献3においては、異なる複数の方向に互いに周波数が異なる超音波をそれぞれ送信する際に電子ラジアル走査方式を用いることが示唆されているが(第3頁)、具体的な態様については明らかにされていない。ここで、電子ラジアル走査方式を採用する場合には、超音波トランスデューサへの接続線の本数が多くなることが考えられるが、それに関する対応についての記載はない。また、互いに周波数が異なる超音波に基づいて得られた複数の超音波画像を組み合わせて表示することや、ドップラー法等のBモード画像以外の超音波画像生成方式と組み合わせることについては記載されていない。
また、特許文献4には、周波数成分を抽出するために用いられる探触子の態様について、具体的には記載されていない。
そこで、上記の点に鑑み、本発明は、電子式のラジアル走査方式又はコンベックス走査方式を用いる超音波内視鏡を備えた超音波観測装置において、メカニカル走査方式又は従来の電子走査方式よりもフレームレートを向上させることを第1の目的とする。また、本発明は、そのような超音波観測装置において、互いに異なる周波数成分を有する超音波を送受信することによって得られた超音波画像情報に基づいて、医療診断に適した超音波画像を生成することを第2の目的とする。
上記課題を解決するため、本発明に係る超音波観測装置は、ラジアル走査方式又はコンベックス走査方式により被検体の体腔内を走査することによって被検体に関する超音波画像情報を取得し、該超音波画像情報に基づいて超音波画像を生成する超音波観測装置であって、各々が印加される駆動信号に従って超音波を発生すると共に、超音波を受信することにより受信信号を出力する複数の超音波トランスデューサであって、円周又は円弧上に配列された複数の超音波トランスデューサを含む超音波内視鏡と、複数の超音波トランスデューサの内で、互いに異なる複数の方向に複数の超音波ビームをそれぞれ送信するために用いられる複数の超音波トランスデューサ群を、複数の送信開口としてそれぞれ設定する送信開口設定手段と、複数の送信開口として設定された複数の超音波トランスデューサ群に供給される複数の駆動信号群のそれぞれの周波数を設定する送信周波数設定手段と、複数の送信開口にそれぞれ供給される複数の駆動信号群の周波数に応じて、複数の駆動信号群のパルス繰り返し数を変化させる送信タイミング設定手段と、送信周波数設定手段によって設定されたそれぞれの周波数を有する複数の駆動信号群を発生して、複数の送信開口として設定された複数の超音波トランスデューサ群に供給する駆動信号発生手段と、複数の送信開口に対応する受信開口として複数の超音波トランスデューサ群を設定する受信開口設定手段と、受信開口として設定された複数の超音波トランスデューサ群からそれぞれ出力された複数の受信信号群に信号処理を施す信号処理手段と、複数の送信開口としてそれぞれ設定される複数の超音波トランスデューサ群の領域を所定の時間間隔で順次変化させるように送信開口設定手段を制御する制御手段とを具備し、送信タイミング設定手段が、複数の駆動信号群の内で、周波数が高い方の駆動信号群のパルス繰り返し数よりも周波数が低い方の駆動信号群のパルス繰り返し数を小さくし、制御手段が、周波数が低い方の超音波ビームと周波数が高い方の超音波ビームとの角度間隔を所定の範囲内に保つために、周波数が低い方の超音波ビームの走査密度が、周波数が高い方の超音波ビームの走査密度よりも低くなるように、送信開口設定手段を制御する。
本発明によれば、ラジアル走査方式又はコンベックス走査方式の超音波内視鏡において、同時又はほぼ同時に複数の超音波ビームを送信することによりマルチビーム走査を行うので、従来の走査方式よりもフレームレートを向上させることができる。また、本発明によれば、超音波ビームを送信する送信開口ごとに駆動信号の周波数を設定することにより、互いに周波数が異なる複数の超音波ビームを同時に送信できるようになる。それにより、浅部における高分解能が維持された超音波画像情報と深部に関する超音波画像情報とを同時に取得することができる。従って、焦点深度の異なる複数のBモード画像が合成された画像や、ハーモニックス画像や、ドップラー画像や、組織性状が表された周波数差分画像のように、診断目的に応じて最適な超音波画像を表示することができるようになるので、医療診断の質及び効率を向上させることが可能となる。
以下、本発明を実施するための最良の形態について、図面を参照しながら詳しく説明する。なお、同一の構成要素には同一の参照番号を付して、説明を省略する。
図1は、本発明の第1の実施形態に係る超音波観測装置の構成を示すブロック図である。図1に示すように、本実施形態に係る超音波観測装置は、電子ラジアル型の超音波内視鏡10と、超音波内視鏡10を接続可能な超音波観測装置本体とを含んでいる。
図2は、図1に示す超音波内視鏡10の構成を示す模式図である。図2に示すように、超音波内視鏡10は、挿入部101と、操作部102と、接続コード103と、ユニバーサルコード104とを含んでいる。
超音波内視鏡10の挿入部101は、患者の体内に挿入することができる細長い可撓性の管である。操作部102は、挿入部101の基端に設けられており、接続コード103を介して超音波観測装置本体に接続されていると共に、ユニバーサルコード104を介して図示しない光源装置と接続されている。超音波内視鏡10の挿入部101の先端には、複数の超音波トランスデューサが円周上に配置された超音波トランスデューサ部110が設けられている。
図3は、図2に示す超音波内視鏡10の先端を示す拡大図である。
超音波内視鏡10の先端には、超音波トランスデューサ部110が設けられていると共に、照明窓121、観察窓123、処置具導出孔126、及び、ノズル穴127が形成されている。照明窓121には、光源装置からライトガイドを介して供給される照明光を出射させるための照明用レンズ122が装着されている。これらは、照明光学系を構成する。また、観察窓123には、対物レンズ124が装着されており、この対物レンズ124の結像位置に、イメージガイドの入力端又はCCDカメラ等の固体撮像素子125が配置されている。これらは、観察光学系を構成する。
処置具導出孔126は、操作部102に設けられた処置具挿入口105(図2)から挿入された処置具等を導出させる孔である。この孔から鉗子等の処置具を突出させ、操作部102においてこれを操作することにより、被検体の体腔内において種々の処置が行われる。さらに、ノズル孔127は、照明窓121及び観察窓123を洗浄するための液体を供給するために設けられている。
図4は、図3に示す超音波トランスデューサ部110を示す上面図である。図4に示すように、超音波トランスデューサ部110は、円周上に並べられた複数の超音波トランスデューサTR1、TR2、…を含んでいる。例えば、直径が約11.5mmの円の円周上に、約0.1mmピッチで360個の超音波トランスデューサTR1〜TR360が配列される。
各超音波トランスデューサTR1〜TR360は、4MHz〜20MHzの周波数帯域を含む広帯域な周波数特性を有する振動子である。各超音波トランスデューサTR1〜TR360は、圧電体111と、圧電体111の両端に配置された電極112及び113とを含んでいる。圧電体111は、PZT(チタン酸ジルコン酸鉛:Pb(lead) zirconate titanate)に代表される圧電セラミックや、PVDF(ポリフッ化ビニリデン:polyvinylidene difluoride)に代表される高分子圧電素子等によって形成されている。このような超音波トランスデューサTR1〜TR360は、駆動信号が印加されることにより伸縮して超音波を発生する。その際に、隣接する複数の超音波トランスデューサTR1〜TR360を、所定の遅延時間を設けて駆動することにより、所望の方向に送信される超音波ビームが形成される。また、超音波トランスデューサTR1〜TR360は、被検体において発生した超音波エコー信号を受信し、それを電気信号に変換して受信信号として出力する。
このような超音波トランスデューサ部110において、隣接する複数の超音波トランスデューサを含む超音波トランスデューサ群GR1、GR2、GR3、GR4を送信開口として設定し、各送信開口に含まれる複数の超音波トランスデューサに複数の駆動信号(駆動信号群)を所定の時間内に供給することにより、複数の超音波ビームTB1、TB2、TB3、TB4が同時又はほぼ同時に送信される(マルチビーム送信)。さらに、各送信開口の位置をずらしながら(例えば、GR1、GR1’、GR1’’、…)、駆動信号群を順次供給することにより、マルチビームにより被検体内をラジアル走査することができる。
再び、図1を参照すると、超音波観測装置本体は、操作卓11と、制御部12と、記録部13と、送信ビーム設定部14と、送信タイミング設定部15と、駆動信号設定部16と、受信制御部17と、駆動信号発生部18と、送受信切換部19と、受信信号処理部20と、音線データ処理部21と、Bモード画像データ生成部22と、画像合成部23と、画像メモリ24と、画像処理部25と、表示部26と、表示形式設定部27とを含んでいる。
操作卓11は、種々の命令や情報を入力するために、オペレータによって操作される入力装置である。操作卓11は、オペレータの操作に従って、超音波内視鏡10における超音波観測動作の開始/停止を制御するための制御信号等を制御部12に出力する。操作卓11は、キーボード、タッチパネル等の入力デバイスや、マウス等のポインティングデバイスや、調節ツマミや、入力ボタン等を含んでいる。
制御部12は、CPU(中央演算処理装置)とソフトウェアとによって構成されており、操作卓11から入力される制御信号に従って、超音波観測装置本体の各部を制御している。
記録部13は、超音波観測装置本体に含まれるCPUに動作を実行させるための基本プログラム及び種々の処理を行うために用いられるプログラム(ソフトウェア)や、それらの処理に用いられる情報等を記録するための記録媒体を制御する。なお、記録媒体としては、内蔵のハードディスクの他に、外付けハードディスク、フレキシブルディスク、MO、MT、RAM、CD−ROM、又は、DVD−ROM等を用いても良い。
送信ビーム設定部14は、制御部12の制御の下で、マルチビーム送信される超音波ビームの本数、送信位置、及び、周波数を設定する。また、図1に示すように、送信ビーム設定部14には、ビーム情報記憶部140が備えられている。このビーム情報記憶部140には、超音波ビームの周波数に対応する適切な開口幅、焦点距離、ビーム径、駆動信号の波形等の情報が格納されており、送信ビーム設定部14は、送信される超音波ビームの周波数に基づいてビーム情報記憶部140からそれらの情報を読み出す。さらに、送信ビーム設定部14は、超音波ビームの本数に応じて、送信位置の間隔(角度)を設定する。
送信タイミング設定部15は、制御部12の制御の下で、超音波ビームの送信タイミング、又は、パルス繰り返し数(PRF:pulse repetition frequency)を設定する。
駆動信号設定部16は、送信ビーム設定部14によってビーム情報記憶部140から読み出された情報に基づいて、駆動する超音波トランスデューサTR1、TR2、…(図4)、及び、それらの超音波トランスデューサTR1、TR2、…にそれぞれ与えられる駆動信号を設定する。具体的には、駆動信号設定部16の送信開口設定部161、送信フォーカス設定部162、及び、周波数設定部163が次の設定を行う。
送信開口設定部161は、超音波ビームの送信位置及び開口幅に基づいて、送信位置(図4に示す位置PT1〜PT4)を中心とする開口幅内に含まれる複数の超音波トランスデューサ群(図4に示す超音波トランスデューサ群GR1〜GR4)を送信開口として設定する。また、送信フォーカス設定部162は、各送信開口GR1〜GR4に含まれる複数の超音波トランスデューサTR1、TR2、…にそれぞれ与えられる複数の駆動信号の間に設けられる遅延時間(送信フォーカス設定)を、超音波ビームの焦点深度に応じて送信開口ごとに設定する。さらに送信周波数設定部163は、複数の超音波トランスデューサTR1、TR2、…にそれぞれ与えられる駆動信号の周波数を、送信開口ごとに設定する。
受信制御部17は、制御部12の制御の下で、超音波トランスデューサから出力された受信信号の処理及び画像データ生成処理を制御する。具体的には、受信制御部17の受信開口設定部171、受信フォーカス設定部172、受信周波数設定部173、及び、画像域設定部174が次の設定を行う。
受信開口設定部171は、駆動信号設定部16において設定された複数の送信開口に対応する複数の受信開口を設定する。受信開口として設定される超音波トランスデューサ群は、送信開口として設定された超音波トランスデューサ群と同じであっても良いし、送信開口として設定された超音波トランスデューサ群を含むそれより広い範囲の超音波トランスデューサ群であっても良い。
受信フォーカス設定部172は、各受信開口に含まれる複数の超音波トランスデューサからそれぞれ出力される複数の受信信号に与えられる遅延時間を、受信開口ごとに設定する。この遅延時間(受信フォーカス設定)は、後述する受信フォーカス処理において用いられる。
受信周波数設定部173は、複数の受信開口について、対応する送信開口に供給された駆動信号群の周波数に応じて(即ち、送信された超音波ビームの周波数に応じて)、受信周波数帯域を設定する。この受信周波数帯域は、後述する受信フィルタ処理において用いられる。
画像域設定部174は、受信フォーカス処理によって受信ビームに形成される焦点の深度に応じて、その受信ビームに基づいて生成される超音波画像の適切な表示範囲(画像域)を設定する。即ち、受信ビームによって表される画像においては、焦点を中心とする所定の深度範囲が最も明確に表示されるので、そのような範囲を切り出すために画像域が設定される。
駆動信号発生部18は、超音波トランスデューサ部110(図4)に含まれる複数の超音波トランスデューサTR1〜TR360に対応する複数のパルサを含んでいる。各パルサは、駆動信号設定部16において行われた設定に従って、所定の周波数を有する駆動信号を、送信タイミング設定部において設定された送信タイミング又はPRFに従って発生する。それにより、各送信開口に含まれる複数の超音波トランスデューサから、複数の超音波が所定の時間差を伴ってそれぞれ発生し、それらの超音波の重ね合わせにより、所定の深度に焦点を形成する超音波ビームが形成される。
送受信切換部19は、駆動信号発生部18において発生した駆動信号の超音波内視鏡10への力と、後述する受信信号処理部20への受信信号の入力とを、制御部12の制御に従って所定のタイミングで切り換える。このように受信信号の読み取り時間帯を限定することにより、所定のタイミングで送信された超音波ビームが、被検体の特定の深度において反射されたことにより生じた超音波エコー信号が検出される。
図5は、図1に示す受信信号処理部20及び音線データ処理部21の構成を示すブロック図である。
受信信号処理部20は、超音波内視鏡10に含まれる複数の超音波トランスデューサに対応する複数のチャネルCH1、CH2、…を有している。各チャネルにおいて、超音波トランスデューサから出力された受信信号は、前置増幅器(PREAMP)201において前置増幅され、A/D変換器202においてアナログ/ディジタル変換を施される。それにより、各超音波トランスデューサにおいて受信された超音波画像情報を表す受信データが得られる。これらの受信データは、音線データ処理部21の受信データ選択部200に入力される。
音線データ処理部21は、受信データ選択部200と、送信される超音波ビームの本数に応じて設けられた複数のデータ処理系統とを含んでいる。図5には、4本の超音波ビームに対応する4つのデータ処理系統211〜214、221〜224、231〜234、241〜244が示されている。
受信データ選択部200は、受信信号処理部20の複数のチャネルから出力される受信データの内で、受信開口設定部171において受信開口として設定された超音波トランスデューサ群から出力される受信信号群に基づく受信データを、受信開口ごとにいずれかのデータ処理系統に入力させる。
各データ処理系統は、受信フォーカス処理部211〜241と、受信フィルタ処理部212〜242と、メモリ(1次メモリ)213〜243と、ゲイン/階調処理部214〜244とを含んでいる。
受信フォーカス処理部211〜241は、入力される受信データに受信フォーカス設定部172において設定された遅延時間を設け、それらを加算することにより、所定の方向及び深度に焦点が絞り込まれた音線データを生成する。
受信フィルタ処理部212〜242は、受信フォーカス処理部211〜241において生成される音線データについて、受信周波数設定部173において設定された受信周波数帯域に従ってバンドパスフィルタ処理を施すことにより、所定の帯域に周波数が制限された音線データを生成する。さらに、受信フィルタ処理部212〜242は、生成される音線データに対して包絡線検波処理を施し、検波処理が施された音線データを出力する。
メモリ213〜243は、受信フィルタ処理部212〜242から出力される音線データを順次格納する。メモリ213〜243に1フレーム分の音線データ(フレームデータ)が蓄積されると、そのフレームデータは、ゲイン/階調処理部214〜244に出力される。
ゲイン/階調処理部214〜244は、受信制御部17の制御の下で、メモリ213〜243から出力されたフレームデータについて、距離による減衰の補正、及び、超音波ビームの送信周波数に応じた階調補正を行う。ここで、受信開口(即ち、対応する送信開口)ごとに階調補正を行うのは、超音波トランスデューサによる超音波エコー信号の受信感度が、超音波エコー信号の周波数、即ち、送信された超音波ビームの周波数によって変化するからである。
再び、図1を参照すると、Bモード画像データ生成部22は、音線データ処理部22の各データ処理系統211〜214、221〜224、231〜234、241〜244において生成されたフレームデータについて、走査フォーマットを変換するDSC(ディジタル・スキャン・コンバータ)処理を行う。それにより、超音波ビームの走査空間における音線方向の画像情報を表す音線データが、物理空間における表示用の画像データに変換される。即ち、Bモード画像データ生成部22は、超音波内視鏡10のラジアル走査方式に対応する座標変換処理及び補間処理を音線データに施すことにより、画像表示範囲に対応するリサンプリングを行う。それにより、音線データ処理部22の複数のデータ処理系統211〜214、221〜224、231〜234、241〜244に対応する、言い換えれば、受信開口又は送信開口に対応する複数種類の画像データが生成される。
画像合成部23は、画像域設定部174において設定された画像域と、Bモード画像データ生成部22において生成された複数種類のBモード画像データとに基づいて、焦点深度の異なる複数のBモード画像を合成する処理を行う。それにより、各超音波画像における焦点付近の領域がつなぎ合わせられた合成Bモード画像を表す画像データが生成される。
画像メモリ(2次メモリ)24は、Bモード画像データ生成部22において生成された複数種類のBモード画像データ、及び、画像合成部23において生成された合成画像データを格納する。
画像処理部25は、画像メモリ24に格納されている合成画像データについて、ゲイン調整及びコントラスト調整を含む線形の階調処理や、γ補正を含む非線形な階調処理等の必要な画像処理を施すと共に、ディジタルの画像データをアナログの画像信号に変換して出力する。
表示部26は、ラスタスキャン方式のCRTディスプレイ又はLCDディスプレイであり、画像処理部25から出力された画像信号に基づいて、表示形式設定部27において設定された表示形式に従って、超音波画像を表示する。
表示形式設定部27は、制御部12の制御の下で、複数種類のBモード画像データ及び合成画像データによって表される複数の超音波画像の内で、画面に表示させる1つ又は複数の画像や、それらの表示形式を設定する。表示させる画像の種類や表示形式は、オペレータが操作卓11を用いて命令を入力することにより選択することができる。具体的な表示形式については後で説明する。
次に、本発明の第1の実施形態に係る超音波観測方法について説明する。本実施形態に係る超音波観測方法は、互いに周波数が異なる4本の超音波ビームをマルチビーム送信することにより超音波画像情報を取得し、その超音波画像情報に基づいて超音波画像を生成する方法であり、図1〜図5に示す超音波観測装置において用いることができる。
まず、オペレータは、図1に示す操作卓11を用いて、周波数が異なるマルチビーム送信モードで超音波観測を開始する命令を入力する。これに応じて、制御部12は、送信ビーム設定部14、送信タイミング設定部15、及び、受信制御部17に、動作の開始を表す制御信号を出力する。なお、マルチビーム送信される超音波ビームの本数については、オペレータがモードを入力する際に選択することができる。本実施形態においては、4本の超音波ビームをマルチビーム送信する。
送信ビーム設定部14は、制御部12から出力された制御信号に従って、周波数が異なるマルチビーム送信モードに対応する次の情報を読み出す。
ビーム1(TB1):周波数4MHz、開口幅6.4mm、焦点距離8cm、
画像域6cm以上
ビーム2(TB2):周波数7.5MHz、開口幅4.8mm、焦点距離4cm、
画像域3cm〜6cm
ビーム3(TB3):周波数12MHz、開口幅3.2mm、焦点距離2cm、
画像域1cm〜3cm
ビーム4(TB4):周波数20MHz、開口幅2.4mm、焦点距離0.5cm、
画像域1cm
なお、超音波ビームの周波数は、本実施形態におけるように、超音波ビームの本数に応じて自動設定されるようにしても良いし、オペレータがマニュアルで入力するようにしても良い。また、自動設定された周波数をオペレータが修正できるようにしても良い。
さらに、送信ビーム設定部14は、隣接して送信される超音波ビームの角度間隔を90°(=360°/4本)に設定すると共に、この角度間隔に応じて、4本の超音波ビームの最初の送信位置PT0、PT90、PT180、及び、PT270を設定する。なお、この超音波ビームの角度間隔は、オペレータが命令を入力することにより変更することができるが、超音波ビーム間のクロストークを避けるためには、角度間隔をなるべく広くすることが望ましい。そのため、図1に示す超音波観測装置においては、角度間隔=(360°/超音波ビームの本数)となるように初期設定されている。
また、送信タイミング設定部15は、上記の4つの周波数の内で最も低い周波数(4MHz)に基づいて、PRFを設定する。ここで、PRFを設定する際に、最も低い周波数を基準とするのは、周波数が低い程、被検体の深部に関する情報を取得することができるので、その分超音波ビームの往復に時間を要するからである。
図6に示すように、駆動信号設定部16の送信開口設定部161は、4MHzの超音波ビームを送信する送信開口AP1として、位置PT0を中心とし、開口幅6.4mmの範囲に含まれる超音波トランスデューサTR328〜TR32を設定する。また、送信開口設定部161は、7.5MHzの超音波ビームを送信する送信開口AP2として、位置PT90を中心とし、開口幅4.8mmの範囲に含まれる超音波トランスデューサTR66〜TR144を設定する。さらに、送信開口設定部161は、12MHzの超音波ビームを送信する送信開口AP3として、位置PT180を中心とし、開口幅3.2mmの範囲に含まれる超音波トランスデューサTR164〜TR196を設定する。また、送信開口設定部161は、20MHzの超音波ビームを送信する送信開口AP4として、PT90を中心とし、開口幅2.4mmの範囲に含まれる超音波トランスデューサTR258〜TR282を設定する。
さらに、このように設定された送信開口に対して、送信フォーカス設定部162は、各送信開口に対して所定の深度に焦点を形成するように送信フォーカス設定を行い、送信周波数設定部163は、各送信開口に与えられる駆動信号群の周波数を設定する。
一方、受信制御部17の各部は、送信開口AP1〜AP4に基づいて、対応する複数の受信開口の設定、受信フォーカス設定、受信周波数帯域の設定、及び、画像域の設定を行う。
再び、図1及び図6を参照すると、駆動信号設定部16における設定に従って、駆動信号発生部18が駆動信号を発生すると、送信開口AP1〜AP4から、互いに異なる周波数を有する超音波ビームTB1〜TB4が送信される。送信された超音波ビームTB1〜TB4は、被検体の体腔内において反射され、それによって生じた超音波エコー信号は、超音波トランスデューサTR1〜TR360によって受信される。
このような超音波ビームを送受信する動作を、送信タイミング設定部15において設定されたPRFで、送信開口AP1〜AP4の位置をずらしながら繰り返す。例えば、図6において、送信開口AP1〜AP4の位置を超音波トランスデューサ1つ分ずらすことにより(例えば、超音波トランスデューサTR329〜TR33を送信開口AP1とする)、超音波ビームの送信方向が1°変化する。そのようにして、超音波トランスデューサ部110の周囲360°の範囲が各超音波ビームTB1〜TB4によって走査される。
図5に示すように、超音波トランスデューサTR1〜TR360(図6)は、超音波エコー信号を受信すると、受信信号処理部20の対応するチャネルに受信信号を出力する。各チャネルにおいて、受信信号は前置増幅され、ディジタルデータ(受信データ)に変換される。
これらの受信データの内で、送信開口AP1、AP2、AP3、AP4(図6)に対応する受信開口に含まれる超音波トランスデューサから出力された受信データは、受信データ選択部200により、受信フォーカス処理部211、212、213、214にそれぞれ入力される。即ち、信号処理系統211〜214には4MHzの超音波ビームに対応する受信データが入力され、信号処理系統221〜224には7.2MHzの超音波ビームに対応する受信データが入力され、信号処理系統231〜234には12MHzの超音波ビームに対応する受信データが入力され、信号処理系統241〜244には20MHzの超音波ビームに対応する受信データが入力される。
各信号処理系統においては、受信制御部17の制御の下で、受信データについて遅延加算処理、受信フィルタ処理、及び、ゲイン/階調処理が施される。それにより、音線データ処理部21から、周波数別の4種類のBモード画像データが取得される。これらのBモード画像データは、Bモード画像データ生成部22において走査フォーマットの変換処理を受けることにより、表示用のBモード画像データに変換される。
図7は、超音波トランスデューサ部110からの超音波ビームの焦点深度に応じて、画像域設定部174により設定された画像域を示している。図7に示すように、焦点深度が8cmの超音波ビーム(周波数4MHz)に対して、6cm以上の深度領域が画像域として設定されている。また、焦点深度が4cmの超音波ビーム(周波数7.5MHz)に対して、3cm〜6cmの深度領域が画像域として設定されている。さらに、焦点深度が2cmの超音波ビーム(周波数12MHz)に対して、1cm〜3cmの深度領域が画像域として設定されている。また、焦点深度が0.5cmの超音波ビーム(周波数20MHz)に対して、1cm以下の深度領域が画像域として設定されている。
図8に示すように、画像合成部23は、周波数別(4MHz、7.5MHz、12MHz、20MHz)の4種類のBモード画像データから画像域を抽出し、それらを合成する処理を行う。
このようにして生成された周波数別のBモード画像データ及び合成画像データは、表示形式設定部27における設定に従って処理され、さらに、画像処理部25において必要な画像処理を受けた後で、表示部26に出力される。それにより、表示部26にユーザの所望の形式で超音波画像が表示される。
表示形式設定部27において設定される表示形式としては、例えば、次に示す形式から選択することができる。
(1)合成画像のみを表示する表示形式(図8)
(2)周波数別の画像のみを表示する表示形式(図9)
この場合には、表示させるBモード画像の枚数(例えば、1〜4枚)、種類(4MHz、7.5MHz、12MHz、20MHz)、サイズ、及び、画面におけるレイアウトを選択することができる。
(3)合成画像及び周波数別の画像の両方を表示する表示形式(図10)
この場合には、表示させるBモード画像の枚数、種類、サイズ、及び、画面におけるレイアウトを選択することができる。
以上説明したように、本実施形態によれば、マルチビームによりラジアル走査を行うので、シングルビームを用いる場合に比較してフレームレートを低下させることなく、周波数が異なる複数種類の超音波画像を取得することができる。また、本実施形態においては、送信開口ごとに超音波ビームの周波数を設定し、送信開口に対応する受信開口において受信された信号について、送信周波数に対応するフィルタ処理を施すので、広帯域な超音波ビームを送信して受信時に周波数帯域を分離する方法と異なり、大きな送信パワーを得ることができるため、SN比を改善することが可能となる。
さらに、本実施形態においては、互いに周波数が異なる複数の超音波画像を、それぞれの焦点深度に基づいて合成することにより、浅部における高分解能と深部へのビームの深達度とを両立させることができるので、浅部から深部に渡る広い範囲を、良好な状態で画像化することが可能となる。そのような画像においては、画像域ごとに送信周波数に応じた階調補正処理が為されているので、異なる画像域の間において不自然さがなく、全体的に見やすい画像となる。従って、医療診断において、1つの画像に基づいて適切な判断を下せるようになる。
さらに、本実施形態によれば、互いに周波数が異なる複数種類の超音波画像を、探触子(内視鏡)を交換することなく取得することができ、それらをユーザの好みに応じて選択して表示させることができるので、医療診断の現場において、診断効率を上げることができる。
なお、図6においては、送信開口を、単に超音波ビームの周波数の大きさの順に配置しているが、周波数の大きさを考慮して送信開口の配置を決定することがより望ましい。例えば、7.5MHz及び4MHzの超音波ビームの開口及びビーム径は比較的広くなるので、それらの超音波ビームの送信開口を超音波トランスデューサ部110の円周上において向かい合うように設定すると良い。それにより、超音波ビーム間のクロストークを抑制することが可能となる。
以上説明した本発明の第1の実施形態においては、互いに周波数が異なる4本の超音波ビームをマルチビーム送信しているが、図1に示す超音波観測装置においては、オペレータの好みにより、超音波ビームの本数や周波数の大きさを様々な値に設定することができる。以下の第2〜第6の実施形態においては、超音波ビームの周波数や走査方法に関する具体例について説明する。
本発明の第2の実施形態に係る超音波観測方法について、図11〜図13を参照しながら説明する。本実施形態においては、同じ周波数を有し、互いに異なる焦点深度を有する4本の超音波ビームをマルチビーム送信する。
この場合に、隣接する超音波ビームの角度間隔は90°(=360°/4本)に設定され、送信開口、送信フォーカス、受信開口、受信フォーカス、及び、画像域は、ビーム情報記憶部140(図1)に記憶されている次の情報に基づいて設定される。
ビーム1(TB5):周波数4MHz、開口幅6.4mm、焦点距離10cm、
画像域9cm以上、ビーム径4.8mm
ビーム2(TB6):周波数4MHz、開口幅6.4mm、焦点距離8cm、
画像域7cm〜9cm、ビーム径1.7mm
ビーム3(TB7):周波数4MHz、開口幅6.4mm、焦点距離6cm、
画像域5cm〜7cm、ビーム径0.8mm
ビーム4(TB8):周波数4MHz、開口幅6.4mm、焦点距離4cm、
画像域5cm以下、ビーム径0.16mm
それにより、図11に示す送信開口AP5〜AP8からそれぞれ送信される超音波ビームTB5〜TB8により、超音波トランスデューサ部110の周囲360°の範囲が走査される。
送信開口AP5〜AP8に対応して設定された受信開口により受信された受信信号は、第1の実施形態において説明したのと同様の処理を受ける。それにより、焦点深度別の4種類のBモード画像データが生成される。
さらに、それらのBモード画像データに基づいて合成画像データが生成される。図12は、この合成画像データによって表される合成画像を示している。この合成画像は、複数のBモード画像から焦点深度に応じて設定された画像域を抽出して、それらを合成したものである。ここで、各Bモード画像に設定されている画像域は、送受信された超音波ビームの焦点付近(図11の焦点FC5〜FC8)、即ち、最もビーム径が細い領域を表しており、そのBモード画像の中で最も解像度が高く、被検体の様子が最も良く表された領域である。このような合成画像は、通常のダイナミックフォーカスにより得られる画像と同質のものである。
焦点深度別の4種類のBモード画像、及び、合成画像の表示形式としては、図8〜図10に示すのと同様に、合成画像のみの表示形式と、焦点深度別のBモード画像のみ(1〜4枚)の表示形式と、合成画像及び焦点深度別のBモード画像の両方を表示する表示形式との内から、オペレータが好みに応じて選択することができる。また、複数の画像を表示させる場合には、各画像のサイズやレイアウトをオペレータが好みに応じて選択することもできる。
以上説明したように、本実施形態によれば、焦点深度の異なる複数の超音波ビームを送受信することにより、通常のシングルビーム送信するのと同じ時間で、ダイナミックフォーカスされた超音波画像を得ることができる。従って、フレームレートを低下させることなく、超音波画像の画質を向上させることが可能となる。
次に、本発明の第3の実施形態に係る超音波観測方法について、図13を参照しながら説明する。本実施形態においては、同じ周波数を有し、互いに異なる焦点深度を有する4本の超音波ビームをマルチビーム送信する場合において、焦点位置におけるビーム径を揃えるように超音波ビームを設計する。
ここで、本発明の第2の実施形態においては、複数の超音波ビームを形成する際に、開口幅を変化させずに、送信フォーカス設定のみによって焦点距離を変化させている。そのため、焦点位置におけるビーム径は、焦点距離が短いほど小さく、焦点距離が長くなるにつれて(図12においては周縁付近)大きくなる。従って、図12に示す合成画像においては、中心付近の解像度が高く、外側に向かうにつれて解像度が次第に低くなる。それに対して、本実施形態においては、合成画像全体においてほぼ等しい解像度を得るために、ビーム径を揃えている。
この場合に、送信開口、送信フォーカス、受信開口、受信フォーカス、及び、画像域は、ビーム情報記憶部140(図1)に記憶されている次の情報に基づいて設定される。
ビーム1(TB9) :周波数4MHz、開口幅8mm、焦点距離10cm、
画像域9cm以上、ビーム径4.8mm
ビーム2(TB10):周波数4MHz:開口幅6.4mm、焦点距離8cm、
画像域7cm〜9cm、ビーム径1.7mm
ビーム3(TB11):周波数4MHz:開口幅6.4mm、焦点距離6cm、
画像域5cm〜7cm、ビーム径0.8mm
ビーム4(TB12):周波数4MHz:開口幅4.3mm、焦点距離4cm、
画像域5cm以下、ビーム径0.16mm
それにより、図13に示すように、焦点FC9〜FC12におけるビーム径がほぼ等しい4本の超音波ビームにより、超音波トランスデューサ部110の周囲360°の範囲が走査される。この後の受信信号に対する処理については、第3の実施形態におけるものと同様である。
このように、本実施形態によれば、合成画像における解像度を、深度(合成画像においては画像域)によらずほぼ一定にすることができる。
次に、本発明の第4の実施形態に係る超音波観測方法について、図14を参照しながら説明する。本実施形態においては、同じ周波数及び焦点深度を有する複数の超音波ビームをマルチビーム送信する。
例えば、図14の(a)に示すように、互いに90°ずつ離れた4本の超音波ビームTB13〜TB16の送信方向を90°ずつ回転させることにより、トータルで超音波トランスデューサ部110の周囲360°の範囲に関する超音波画像情報を取得することができる。一方、図14の(b)は、1本の超音波ビームの送信方向を360°回転させる従来例を示す。このように、本実施形態によれば、シングルビーム送信する場合と同程度の解像度を保ったまま、フレームレートを4倍にすることができる。
次に、本発明の第5の実施形態に係る超音波観測方法について、図15を参照しながら説明する。本実施形態においては、超音波トランスデューサ部110の周囲360°を複数の領域に分割し、それぞれの領域を互いに周波数が異なる複数の超音波ビームにより走査する。
4本の超音波ビームを送信する場合には、隣接する超音波ビームの角度間隔は90°(=360°/4本)に設定され、送信開口、送信フォーカス、受信開口、受信フォーカスは、ビーム情報記憶部140(図1)に記憶されている次の情報に基づいて設定される。
ビーム1(TB17):周波数20MHz、開口幅2.4mm、焦点距離0.5cm
走査範囲45°〜125°(領域A)
ビーム2(TB18):周波数12MHz、開口幅3.2mm、焦点距離2cm
走査範囲125°〜225°(領域B)
ビーム3(TB19):周波数7.5MHz、開口幅4.8mm、焦点距離4cm
走査領域225°〜315°(領域C)
ビーム4(TB20):周波数4MHz、開口幅6.4mm、焦点距離8cm
走査領域315°〜45°(領域D)
それにより、図15に示すように、互いに周波数が異なる超音波ビームTB17〜TB20により、領域A〜Dがそれぞれ走査される。その結果、領域ごとに周波数帯域や焦点距離が異なる超音波画像を取得することができる。
本実施形態によれば、シングルビームにより360°の範囲を走査する場合と同程度のフレームレート及び走査密度で、所望の範囲が高解像度で表された超音波画像を得ることができる。従って、このような超音波観察方法は、例えば、特定の領域において観察したい部位の深度がわかっている場合に有効である。
なお、本実施形態においては、各走査領域が均等になるように領域A〜Dの範囲を設定しているが、観察部位の範囲に応じて自動又はマニュアルで、各走査領域を変化させても良い。
次に、本発明の第6の実施形態に係る超音波観測方法について、図16及び図17を参照しながら説明する。
ここで、互いに周波数が異なる複数の超音波ビームをマルチビーム送信する場合には、周波数が低い方の超音波ビームは、周波数が高い方の超音波ビームに比較して被検体の深部まで到達できるため、1回の送受信に時間を要する。そこで、周波数が高い方の超音波ビームのPRFを大きくすれば、全体としての送受信効率を良くすることができる。しかしながら、単純に周波数ごとにPRFを設定すると、複数の超音波ビームの角度間隔が最初の設定(例えば、4本の場合には90°)から次第にずれて間隔が狭くなってしまうので、クロストークが生じる原因となってしまう。そこで、本実施形態においては、複数の超音波ビームのPRFを周波数ごとに設定すると共に、送受信方向の順序について工夫を加えている。
以下においては、簡単のために、図16に示すように、4MHzの超音波ビームTB21と、12MHzの超音波ビームTB22との2種類をマルチビーム送信する場合について説明する。また、図17は、超音波ビームTB21及び超音波ビームTB22を送信するためのパルス発生タイミングチャートである。本実施形態においては、1フレームの音線密度を360本(走査間隔1°)としており、図16及び図17におけるNo.1〜No.360は、超音波ビームの送受信方向(音線方向)を表している。
まず、図16に示すように、4MHzの超音波ビームTB21及び12MHzの超音波ビームTB22により、超音波トランスデューサ部110の周囲360°の範囲について第1回目の走査が行われる。その際には、図17の(a)に示すように、超音波ビームTB21は、走査角度間隔を2°、パルス繰り返し周期(PRFの逆数)を0.2msecとして音線方向No.1から走査を開始するように設定される。一方、12MHzの超音波ビームTB22は、走査角度間隔を1°、パルス繰り返し周期を0.1msecとして音線方向NO.180から走査を開始するように設定される。即ち、超音波ビームTB21が被検体内を1往復する間に、超音波ビームTB22を2往復させることになる。このように、超音波ビームTB22のPRF及び音線密度を、超音波ビームTB21のPRF及び音線密度の2倍とすることにより、2つの超音波ビームTB21及びTB22の角度間隔をほぼ180°に保つことができる。
次に、図17の(b)に示すように、4MHzの2本の超音波ビームにより、第2回目の走査が行われる。第2回目においては、第1回目の走査において間引かれた音線方向に対して超音波ビームが送受信される。即ち、2本の超音波ビームは、走査角度間隔を2°、PRFを0.2msecとして、一方の超音波ビームは音線方向NO.2から走査を開始し、他方の超音波ビームは音線方向NO.182から走査を開始するように設定される。
このような2回の走査を行うことにより、4MHz及び12MHzの超音波ビームに関する2種類の超音波画像情報が取得される。それらの超音波画像情報は、本発明の第1の実施形態において説明したのと同様に処理される。その結果、周波数別のBモード画像、及び、それらの合成画像が生成される。
ここで、4MHz及び12MHzの超音波ビームを、走査角度間隔1°でPRFを揃えて送受信する場合と比較すると、第1回目の走査に要する時間は1/2であり、第2回目の走査に要する時間は1/4であるので、全体としては3/4となる。
なお、第1回目の走査により、超音波トランスデューサ部110の周囲360°の範囲は一通り走査されているので、それによって超音波画像を生成することも可能である。4MHzの超音波ビームは間引き送信されているため音線密度は粗くなるが、周波数が低い超音波ビームはビーム径が太いので、走査領域はほぼカバーされているからである。
以上説明したように、本実施形態によれば、マルチビーム送信される超音波ビームの相対位置を維持することによりクロストークが生じるのを防ぎながら、解像度を低下させることなく、全体としてフレームレートを向上させることができる。
以上説明した第1〜第6の実施形態においては、図5に示す受信フィルタ処理部212〜242において、送信された超音波ビームの周波数に対応する周波数(基本周波数成分)を抽出している。しかしながら、基本周波数成分の整数倍(例えば、2倍)の周波数成分を有する高調波を抽出することにより、ハーモニックイメージングを行っても良い。
次に、本発明の第7の実施形態に係る超音波観測装置について、図18及び図19を参照しながら説明する。
図18に示すように、本実施形態に係る超音波観測装置は、図1に示す音線データ処理部21、画像合成部23、及び、表示形式設定部27の替わりに、図18に示す音線データ処理部71、画像合成部73、及び、表示形式設定部74を有しており、さらに、ドップラー処理部72を有している。その他の構成については、図1に示す超音波観測装置と同様である。
図19は、音線データ処理部71の構成を示すブロック図である。音線データ処理部71は、図5に示す音線データ処理部21と同様に、受信データ選択部200と、送信される超音波ビームの本数に応じて設けられた複数のデータ処理系統211〜214、221〜224、231〜234、241〜244とを含んでいる。受信フィルタ処理部212〜242において生成された音線データは、Bモード画像を生成するために一旦メモリ213〜243に格納されると共に、ドップラー画像を生成するために、ドップラー処理部72に入力される。
再び、図18を参照すると、ドップラー処理部72は、音線データ処理部71から出力された音線データに基づいて、受信フォーカス処理が施された受信信号から高周波成分を除去すると共に、その受信信号に対して直交位相検波処理を行う。さらに、ドップラー処理部72は、直交位相検波された受信信号から、血管壁や心臓壁等のスペキュラーエコーの変動によって生じる不要なクラッター成分を取り除く。このようにして、血流からの反射成分のみを抽出したドップラー画像データが生成される。このドップラー画像データは、画像メモリ24に格納される。
画像合成部73は、Bモード画像データ生成部22において生成された複数種類のBモード画像データに基づいて合成Bモード画像を表す合成Bモード画像データを生成すると共に、いずれかのBモード画像又は合成Bモード画像とドップラー画像との合成画像を表す合成画像データを生成する。合成画像においては、Bモード画像又は合成Bモード画像を輝度によって表し、ドップラー画像を色度によって表すようにしても良い。
表示形式設定部74は、画像メモリ24に格納されている複数種類の画像データによって表されるBモード画像や、合成Bモード画像や、Bモード画像とドップラー画像との合成画像を表示部26に表示する際に、画面における画像の表示形式を設定する。
本発明の第7の実施形態に係る超音波観測方法について、図18〜図22を参照しながら説明する。本実施形態に係る超音波観測方法は、Bモード画像とドップラー画像とを生成する方法であり、図18に示す超音波観測装置において用いることができる。
まず、図18に示す超音波内視鏡において、隣接する超音波ビームの角度間隔が90°(=360°/4本)に設定され、送信開口、送信フォーカス、受信開口、受信フォーカス、及び、画像域は、ビーム情報記憶部140(図1)に記憶されている次の情報に基づいて設定される。
ビーム1(TB23):周波数4MHz、開口幅6.4mm、焦点距離8cm
ビーム2(TB24):周波数4MHz、開口幅6.4mm、焦点距離8cm
ビーム3(TB25):周波数4MHz、開口幅6.4mm、焦点距離8cm
ビーム4(TB26):周波数7.5MHz、開口幅4.8mm、焦点距離4cm
上記超音波ビームTB23〜TB25は、ドップラー画像を生成するために用いられる。
それにより、図20に示すように、超音波ビームTB23〜TB26が送信され、超音波トランスデューサ部110の周囲360°の範囲が走査される。
超音波トランスデューサ部110から送信され、被検体から反射された超音波ビームTB1〜TB4は、所定の受信開口によって受信される。各受信開口から出力された受信信号は、第1の実施形態において説明したのと同様に、受信信号処理部20において信号処理を受ける。
音線データ処理部71において、4MHzの超音波ビームTB23〜TB25に対応する音線データは、ドップラー処理部72に出力されて所定の処理を施される。それによってドップラー画像データが生成されて、画像合成部23に出力される。一方、音線データ処理部71において、7.5MHzの超音波ビームTB26に対応する音線データは、Bモード画像データ生成部22に出力される。それにより、Bモード画像データが生成される。
表示形式設定部74によって設定される表示形式としては、図21に示すように、合成画像を単独で表示する形式であっても良いし、図22に示すように、合成画像と通常のBモード画像又は合成Bモード画像とを並べて表示する形式であっても良い。
なお、本実施形態においては、7.5MHzの超音波ビームTB26に対応する音線データのみを用いてBモード画像を生成しているが、4MHzの超音波ビームTB23〜TB25のいずれかに対応する音線データを用いてBモード画像を生成しても良いし、さらに、合成Bモード画像を生成しても良い。
このように、本実施形態によれば、マルチビーム送信される複数の超音波ビームについて、周波数や焦点深度等の条件をそれぞれ設定することができるので、最適な条件の下で取得された超音波画像情報に基づいて、通常のBモード画像及びドップラー画像を生成することができる。また、ドップラー画像生成のために複数の超音波ビームを確保できるので、フレームレートの低下を防止することができる。さらに、Bモード画像とドップラー画像との合成画像や通常のBモード画像の表示形式をユーザが好みに応じて選択できるので、医療診断の現場において診断効率を上げることができる。
次に本発明の第8の実施形態に係る超音波観測装置について、図23及び図24を参照しながら説明する。
図23に示すように、本実施形態に係る超音波観測装置は、図18に示す超音波観測装置本体に対して、周波数処理部81をさらに有しており、図18に示す画像合成部73及び表示形式設定部74の替わりに、画像合成部82及び表示形式設定部83を有している。その他の構成については、図18に示す超音波観測装置と同様である。
周波数処理部81は、互いに異なる周波数に基づいて取得された複数の超音波画像の差分(サブトラクション)画像を生成する。図24は、図23に示す周波数処理部81の構成を示している。周波数処理部81は、周波数解析部801と、注目周波数自動決定部802と、抽出周波数演算部803と、周波数画像データ生成部804とを含んでいる。
周波数解析部801は、音線データ処理部71の各データ処理系統から出力された音線データに含まれている複数の周波数成分をFFT(高速フーリエ変換)によって算出する。
注目周波数自動決定部802は、それらの周波数成分の中から、少なくとも1つの注目すべき周波数成分を自動的に決定する。例えば、注目周波数自動決定部802は、予め定められている周波数を有する成分を注目すべき周波数成分として決定しても良いし、強度の大きい周波数成分を注目すべき周波数成分として決定しても良いし、被検体の深度方向の全部又は一部の領域において大きなピーク又はディップを有する周波数成分を注目すべき周波数成分として決定しても良い。
ここで、超音波エコー強度の大きい部分における特定の組織の周波数特性に関する特徴に基づいて周波数成分を決定することにより、その特定の組織をより強調して表示することができる。一方、超音波エコー強度の小さい部分に着目して周波数成分を決定することにより、多数の弱いエコーが加算され干渉した結果として生じるスペックル成分を低減することも可能である。いずれにしても、SN比を改善することができる。また、複数の周波数成分の相対値を算出する場合には、その相対値に基づいて、特定の組織の2次元的な分布を正確に求めることができる。
抽出周波数演算部803は、注目周波数自動決定部802によって決定された少なくとも1つの注目すべき周波数成分を周波数解析部801から入力し、超音波トランスデューサの送受信における周波数特性の補正等を行う。ここで、超音波トランスデューサの送受信における周波数特性を記録部13に記録しておき、制御部12の制御の下で、抽出周波数演算部803が、周波数解析部801から入力された少なくとも1つの周波数成分の強度を補正するようにすれば、より正確な強度を求めることができる。
このような抽出周波数演算部803の処理は、音線データ処理部71の複数の信号処理系統から出力された受信データについてそれぞれ行われる。
さらに、抽出周波数演算部803は、音線データ処理部71の複数の信号処理系統から出力された受信データ(即ち、周波数が異なる超音波ビームにより取得されたデータ)の解析結果に基づいて、複数の周波数成分の強度の相対関係として、それらの差を算出する。或いは、相対関係として比を算出しても良い。また、受信信号の周波数成分のみならず、位相成分の抽出して超音波画像の生成に利用すれば、さらに多くの情報を得ることができる。
周波数画像データ生成部804は、抽出周波数演算部803から出力されたデータに基づいて、周波数画像データを生成する。この周波数画像データは、周波数差分画像を表しており、医療診断においては、組織性状を判別する際に用いることができる。この周波数画像データは、画像メモリ24に格納される。
図23に示す画像合成部82は、Bモード画像データ生成部22において生成された複数種類のBモード画像に基づいて合成Bモード画像を生成すると共に、いずれかのBモード画像又は合成Bモード画像と周波数差分画像との合成画像を生成する。合成画像においては、Bモード画像又は合成Bモード画像を輝度によって表し、周波数差分画像を色度によって表すようにしても良い。
表示形式設定部83は、画像メモリ24に格納されている複数種類の画像データによって表されるBモード画像や、合成Bモード画像や、周波数差分画像や、Bモード画像と周波数差分画像との合成画像を表示部26に表示する際に、画面における画像の表示形式を設定する。表示形式としては、合成画像を単独で表示する形式や、合成画像と合成Bモード画像を並べて表示する形式等、様々な形式が考えられる。
このように、本実施形態によれば、周波数別に取得された音線データに基づいて周波数画像を生成するので、一般的に行われる広帯域パルスに基づいて取得された音線データを用いる方法に比較して、SN比が良くなる。従って、例えば、周波数差分画像を用いて観察部位の組織性状を診断する場合に、診断の精度を上げることが可能となる。
なお、本実施形態においては、図18に示すドップラー処理部72の替わりに図23に示す周波数処理部81が設けられているが、ドップラー処理部を有する超音波観測装置本体に周波数処理部をさらに付加しても良い。
以上説明した第1〜第8の実施形態においては、円周上に配列された複数の超音波トランスデューサを含む超音波トランスデューサ部を用いることにより、電子ラジアル走査が行われている。しかしながら、複数の超音波トランスデューサを円弧上に配列することによりコンベックス型超音波トランスデューサアレイを作製し、これを用いて電子的にコンベックス走査を行うようにしても良い。
また、以上説明した第1〜第8の実施形態においては、主に、4本の超音波ビームをマルチビーム送信する場合について説明しているが、マルチビーム送信される超音波ビームの本数は、所望の本数に切り換えることができる。当然ながら、超音波ビームの本数を1本に設定することにより、シングルビーム送信しても良い。また、超音波ビームの上限については特に制限されないが、超音波ビームの本数が多くなるほど隣接する超音波ビームの角度間隔が狭くなるので、クロストークが生じ易くなる。そのため、超音波ビームの本数は1〜4本とすることが望ましい。4本であれば、隣接する超音波ビームの角度間隔は90°となるので、比較的クロストークが生じ難いからである。
さらに、以上説明した第1〜第8の実施形態においては、各超音波トランスデューサから出力された受信信号をディジタル信号に変換した後で、受信開口(又は送信開口)に応じて複数の信号処理系統(図5)に振り分けているが、アナログ信号の段階で受信開口に対応する信号処理系統に振り分けても良い。その場合には、図1に示す受信信号処理部に受信開口数に応じたチャネルを設けると共に、その前段に、受信開口設定に応じて動作するスイッチ手段を設ければ良い。
本発明は、医療診断のために体内に挿入して超音波断層像を撮影することが可能な超音波内視鏡を備えた超音波観測装置に利用することができる。
本発明の第1の実施形態に係る超音波観測装置の構成を示すブロック図である。 図1に示す超音波内視鏡の構成を示す模式図である。 図2に示す超音波内視鏡の先端を示す拡大図である。 図3に示す超音波トランスデューサ部を示す上面図である。 図1に示す受信信号処理部及び音線データ処理部の構成を示すブロック図である。 本発明の第1の実施形態に係る超音波観測方法を説明するための図である。 超音波ビームの焦点深度に応じた画像域を示す図である。 図1に示す画像合成部において生成された合成画像を示す模式図である。 図1に示す表示形式設定部において設定される画像表示形式を示す模式図である。 図1に示す表示形式設定部において設定される画像表示形式を示す模式図である。 本発明の第2の実施形態に係る超音波観測方法を説明するための図である。 本発明の第2の実施形態に係る超音波観測方法において生成される合成画像を示す模式図である。 本発明の第3の実施形態に係る超音波観測方法を説明するための図である。 本発明の第4の実施形態に係る超音波観測方法を説明するための図である。 本発明の第4の実施形態に係る超音波観測方法を説明するための図である。 本発明の第6の実施形態に係る超音波観測方法を説明するための図である。 本発明の第6の実施形態に係る超音波観測方法において用いられるパルス発生タイミングチャートである。 本発明の第7の実施形態に係る超音波観測装置の構成を示すブロック図である。 図18に示す音線データ処理部の構成を示すブロック図である。 本発明の第7の実施形態に係る超音波観測方法において超音波ビームが送受信される様子を示す模式図である。 図18に示す表示形式設定部において設定される画像表示形式を示す模式図である。 図18に示す表示形式設定部において設定される画像表示形式を示す模式図である。 本発明の第8の実施形態に係る超音波観測装置の構成を示すブロック図である。 図23に示す周波数処理部の構成を示すブロック図である。
符号の説明
10 超音波内視鏡
11 操作卓
12 制御部
13 記録部
14 送信ビーム設定部
15 送信タイミング設定部
16 駆動信号設定部
17 受信制御部
18 駆動信号発生部
19 送受信切換部
20 受信信号処理部
21、71 音線データ処理部
22 Bモード画像データ生成部
23、73、82 画像合成部
24 画像メモリ(2次メモリ)
25 画像処理部
26 表示部
27、74、83 表示形式設定部
72 ドップラー処理部
81 周波数処理部
101 挿入部
102 操作部
103 接続コード
104 ユニバーサルコード
105 処置部挿入口
110 超音波トランスデューサ部
111 圧電体
112、113 電極
121 照明窓
122 証明用レンズ
123 観察窓
124 対物レンズ
125 固体撮像措置
126 処置具導出孔
127 ノズル孔
140 ビーム情報記憶部
161 送信開口設定部
162 送信フォーカス設定部
163 送信周波数設定部
171 受信開口設定部
172 受信フォーカス設定部
173 受信周波数設定部
174 画像域設定部
201 前置増幅器(PREAMP)
202 A/D変換器
200 受信データ選択部
211〜241 受信フォーカス処理部
212〜242 受信フィルタ処理部
213〜243 メモリ(1次メモリ)
214〜244 ゲイン/階調処理部
801 周波数解析部
802 注目周波数自動決定部
803 抽出周波数演算部
804 周波数画像データ生成部

Claims (23)

  1. ラジアル走査方式又はコンベックス走査方式により被検体の体腔内を走査することによって被検体に関する超音波画像情報を取得し、該超音波画像情報に基づいて超音波画像を生成する超音波観測装置であって、
    各々が印加される駆動信号に従って超音波を発生すると共に、超音波を受信することにより受信信号を出力する複数の超音波トランスデューサであって、円周又は円弧上に配列された前記複数の超音波トランスデューサを含む超音波内視鏡と、
    前記複数の超音波トランスデューサの内で、互いに異なる複数の方向に複数の超音波ビームをそれぞれ送信するために用いられる複数の超音波トランスデューサ群を、複数の送信開口としてそれぞれ設定する送信開口設定手段と、
    前記複数の送信開口として設定された複数の超音波トランスデューサ群に供給される複数の駆動信号群のそれぞれの周波数を設定する送信周波数設定手段と、
    前記複数の送信開口にそれぞれ供給される複数の駆動信号群の周波数に応じて、前記複数の駆動信号群のパルス繰り返し数を変化させる送信タイミング設定手段と、
    前記送信周波数設定手段によって設定されたそれぞれの周波数を有する複数の駆動信号群を発生して、前記複数の送信開口として設定された複数の超音波トランスデューサ群に供給する駆動信号発生手段と、
    前記複数の送信開口に対応する受信開口として複数の超音波トランスデューサ群を設定する受信開口設定手段と、
    前記受信開口として設定された複数の超音波トランスデューサ群からそれぞれ出力された複数の受信信号群に信号処理を施す信号処理手段と、
    前記複数の送信開口としてそれぞれ設定される複数の超音波トランスデューサ群の領域を所定の時間間隔で順次変化させるように前記送信開口設定手段を制御する制御手段と、
    を具備し、
    前記送信タイミング設定手段が、前記複数の駆動信号群の内で、周波数が高い方の駆動信号群のパルス繰り返し数よりも周波数が低い方の駆動信号群のパルス繰り返し数を小さくし、前記制御手段が、周波数が低い方の超音波ビームと周波数が高い方の超音波ビームとの角度間隔を所定の範囲内に保つために、周波数が低い方の超音波ビームの走査密度が、周波数が高い方の超音波ビームの走査密度よりも低くなるように、前記送信開口設定手段を制御する、超音波観測装置。
  2. 波数が低い方の超音波ビーム走査密度が、周波数が高い方の超音波ビームの走査密度よりも低くなるように走査を行った後で、周波数が低い方の超音波ビームによって走査されなかった領域を、周波数が低い方の複数の超音波ビームにより走査するように、前記制御手段が、前記送信開口設定手段及び前記送信周波数設定手段を制御する請求項記載の超音波観測装置。
  3. 記受信開口として設定された複数の超音波トランスデューサ群からそれぞれ出力された複数の受信信号群に、前記複数の送信開口に設定された周波数に応じたバンドパスフィルタ処理を施すフィルタ処理手段をさらに具備する請求項1又は2記載の超音波観測装置。
  4. 前記受信開口設定手段が、前記複数の送信開口として設定された複数の超音波トランスデューサ群をそれぞれ含む複数の超音波トランスデューサ群を複数の受信開口として設定する、請求項1〜3のいずれか1項記載の超音波観測装置。
  5. 前記信号処理手段が、前記複数の受信信号群について受信フォーカス処理を施すことにより、受信開口ごとに設定された深度に焦点が形成された超音波ビームに関する超音波画像情報を表す複数の音線信号を生成する、請求項1〜のいずれか1項記載の超音波観測装置。
  6. 前記複数の送信開口からそれぞれ送信される超音波ビームが所定の深度に焦点を形成するように、前記駆動信号発生手段によって供給される複数の駆動信号群の各々に含まれる複数の駆動信号に設けられる遅延時間を送信開口ごとに設定する送信フォーカス処理手段をさらに具備する請求項1〜のいずれか1項記載の超音波観測装置。
  7. 前記送信開口設定手段が、送信開口ごとに異なる開口幅を設定する、請求項1〜のいずれか1項記載の超音波観測装置。
  8. 前記送信開口設定手段が、互いに異なる方向に送信される複数の超音波ビームの角度間隔が等間隔となるように、前記複数の送信開口の位置を設定する、請求項1〜のいずれか1項記載の超音波観測装置。
  9. 前記送信開口設定手段が、互いに90°を為す4本の超音波ビームが送信されるように、4つの送信開口の位置を設定する、請求項記載の超音波観測装置。
  10. 前記駆動信号発生手段が、4MHz〜20MHzの周波数を有する複数の駆動信号群を発生する、請求項1〜のいずれか1項記載の超音波観測装置。
  11. 前記複数の音線信号に対応する複数種類のBモード画像をそれぞれ表す複数種類のBモード画像データを生成するBモード画像生成手段をさらに具備する請求項記載の超音波観測装置。
  12. 前記複数の音線信号に対応する複数種類のBモード画像についてゲイン又は階調を補正する補正手段をさらに具備する請求項11記載の超音波観測装置。
  13. 前記補正手段が、前記複数種類のBモード画像において濃度範囲が共通となるようにゲイン又は階調を補正する、請求項12記載の超音波観測装置。
  14. 前記送信開口設定手段によって設定される送信開口の数を切換可能、又は、前記送信周波数設定手段によって送信開口ごとに設定される前記複数の駆動信号群の周波数を1種類以上の範囲で切換可能な請求項1〜13のいずれか1項記載の超音波観測装置。
  15. 前記Bモード画像生成手段によって生成された複数種類のBモード画像の内の1つ以上のBモード画像を画面に表示するための表示形式を設定する表示形式設定手段をさらに具備する請求項1114のいずれか1項記載の超音波観測装置。
  16. 前記Bモード画像生成手段によって生成された複数種類のBモード画像が合成された合成画像を表す合成Bモード画像データを生成する画像合成手段と、
    前記複数のBモード画像の各々について、前記合成画像を構成する画像域を設定する画像域設定手段と、
    をさらに具備する請求項1115のいずれか1項記載の超音波観測装置。
  17. 前記画像域が、前記複数のBモード画像の各々について、駆動信号群の周波数、若しくは、受信フォーカス手段によって設定された焦点深度に基づいて設定される、請求項16記載の超音波観測装置。
  18. 前記制御手段が、前記複数の送信開口としてそれぞれ設定される超音波トランスデューサ群の領域を、前記複数の送信開口の数に応じて定められた前記円周又は円弧上の範囲内において順次変化させる、請求項1〜17のいずれか1項記載の超音波観測装置。
  19. 前記信号処理手段によって生成された少なくとも1つの音線信号に基づいて、ドップラー画像を表すドップラー画像データを生成するドップラー画像生成手段をさらに具備する請求項18のいずれか1項記載の超音波観測装置。
  20. 前記信号処理手段によって生成された少なくとも1つの音線信号に基づいて、高調波画像を表す高調波画像データを生成するハーモニックイメージング手段をさらに具備する請求項19のいずれか1項記載の超音波観測装置。
  21. ドップラー画像を生成するために用いられる受信信号群を取得するための超音波ビームの送受信と、高調波画像を生成するために用いられる受信信号群を取得するための超音波ビームの送受信と、Bモード画像を生成するために用いられる受信信号群を取得するための超音波ビームの送受信との内の2つ以上が、所定の時間内に実行される、請求項19又は20記載の超音波観測装置。
  22. 前記送信周波数設定手段が、ドップラー画像を生成するために用いられる受信信号群に対応する駆動信号群と、高調波画像を生成するために用いられる受信信号群に対応する駆動信号群と、Bモード画像を生成するために用いられる受信信号群に対応する駆動信号群とに、互いに異なる周波数を設定する、請求項1921のいずれか1項記載の超音波観測装置。
  23. 前記複数の音線信号に基づいて、周波数差分画像を表す周波数差分画像データを生成するサブトラクション処理手段をさらに具備し、
    前記表示形式設定手段が、周波数差分画像とBモード画像との両方が前記表示手段に表示されるように設定を行う、
    請求項15記載の超音波観測装置。
JP2005112984A 2005-04-11 2005-04-11 超音波観測装置 Expired - Fee Related JP4590293B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005112984A JP4590293B2 (ja) 2005-04-11 2005-04-11 超音波観測装置
US11/400,377 US7717851B2 (en) 2005-04-11 2006-04-10 Ultrasonic observation apparatus having multi-beam scan function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005112984A JP4590293B2 (ja) 2005-04-11 2005-04-11 超音波観測装置

Publications (3)

Publication Number Publication Date
JP2006288679A JP2006288679A (ja) 2006-10-26
JP2006288679A5 JP2006288679A5 (ja) 2008-03-27
JP4590293B2 true JP4590293B2 (ja) 2010-12-01

Family

ID=37187910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005112984A Expired - Fee Related JP4590293B2 (ja) 2005-04-11 2005-04-11 超音波観測装置

Country Status (2)

Country Link
US (1) US7717851B2 (ja)
JP (1) JP4590293B2 (ja)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060253028A1 (en) * 2005-04-20 2006-11-09 Scimed Life Systems, Inc. Multiple transducer configurations for medical ultrasound imaging
JP5179963B2 (ja) * 2007-09-04 2013-04-10 富士フイルム株式会社 超音波診断装置及びその作動方法、並びに、画像処理プログラム
JP5002397B2 (ja) * 2007-09-28 2012-08-15 株式会社東芝 超音波診断装置及びプログラム
CN101396282B (zh) * 2007-09-29 2013-03-27 深圳迈瑞生物医疗电子股份有限公司 用于超声成像的圆弧宽波束发射方法与装置
JP5438985B2 (ja) * 2009-02-10 2014-03-12 株式会社東芝 超音波診断装置及び超音波診断装置の制御プログラム
JP2011000426A (ja) * 2009-05-19 2011-01-06 Toshiba Corp 超音波診断装置及び超音波プローブ
US20110160586A1 (en) * 2009-12-29 2011-06-30 Boston Scientific Scimed, Inc. Systems and methods for multi-frequency imaging of patient tissue using intravascular ultrasound imaging systems
EP2525717A1 (en) * 2010-01-19 2012-11-28 Koninklijke Philips Electronics N.V. Imaging apparatus
JP5542464B2 (ja) * 2010-02-03 2014-07-09 株式会社東芝 超音波診断装置
EP2765907B1 (en) 2011-10-14 2016-05-18 Acist Medical Systems, Inc. Device for measuring an anatomical structure
US9549679B2 (en) * 2012-05-14 2017-01-24 Acist Medical Systems, Inc. Multiple transducer delivery device and method
JP2017035300A (ja) * 2015-08-10 2017-02-16 オリンパス株式会社 超音波観測装置、超音波観測装置の作動方法、超音波観測装置の作動プログラム及び超音波観測システム
JP6138313B2 (ja) * 2016-04-14 2017-05-31 キヤノン株式会社 装置
WO2018035257A1 (en) 2016-08-17 2018-02-22 California Institute Of Technology Enhanced stethoscope devices and methods
JP6621728B2 (ja) * 2016-11-09 2019-12-18 オリンパス株式会社 超音波観測装置、超音波診断システム、超音波観測装置の作動方法、及び超音波観測装置の作動プログラム
JP7015640B2 (ja) * 2017-04-14 2022-02-03 フクダ電子株式会社 超音波診断装置およびその制御方法
JP7199415B2 (ja) * 2017-07-28 2023-01-05 コーニンクレッカ フィリップス エヌ ヴェ 複数の中心周波数を用いる腔内撮像装置
WO2019070812A1 (en) 2017-10-04 2019-04-11 Verathon Inc. MULTIPLAN AND MULTIMODE VISUALIZATION OF A ZONE OF INTEREST DURING THE SCREEN OF AN ULTRASONIC PROBE
CN114010222A (zh) * 2021-10-11 2022-02-08 之江实验室 一种双频阵列式超声内窥探头及其成像方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148167A (ja) * 1993-11-26 1995-06-13 Olympus Optical Co Ltd 超音波診断装置
WO2001085031A1 (fr) * 2000-05-09 2001-11-15 Hitachi Medical Corporation Appareil de diagnostic par ultrasons

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0556980A (ja) 1991-09-02 1993-03-09 Toshiba Corp 超音波診断装置
US5301674A (en) * 1992-03-27 1994-04-12 Diasonics, Inc. Method and apparatus for focusing transmission and reception of ultrasonic beams
JPH08173420A (ja) 1994-12-22 1996-07-09 Olympus Optical Co Ltd 超音波画像処理装置
US5980459A (en) * 1998-03-31 1999-11-09 General Electric Company Ultrasound imaging using coded excitation on transmit and selective filtering of fundamental and (sub)harmonic signals on receive
JP2001170046A (ja) 1999-12-17 2001-06-26 Olympus Optical Co Ltd 生体組織性状診断装置
JP2001333902A (ja) 2000-05-25 2001-12-04 Olympus Optical Co Ltd 超音波診断装置
US6540683B1 (en) * 2001-09-14 2003-04-01 Gregory Sharat Lin Dual-frequency ultrasonic array transducer and method of harmonic imaging
KR100406098B1 (ko) * 2001-12-26 2003-11-14 주식회사 메디슨 가중된 직교 쳐프 신호를 이용한 동시 다중 송신 집속기반의 초음파 영상 형성 장치 및 방법
US6629929B1 (en) * 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07148167A (ja) * 1993-11-26 1995-06-13 Olympus Optical Co Ltd 超音波診断装置
WO2001085031A1 (fr) * 2000-05-09 2001-11-15 Hitachi Medical Corporation Appareil de diagnostic par ultrasons

Also Published As

Publication number Publication date
JP2006288679A (ja) 2006-10-26
US7717851B2 (en) 2010-05-18
US20060241482A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
JP4590293B2 (ja) 超音波観測装置
JP2007229015A (ja) 超音波観測装置
JP5323445B2 (ja) 超音波診断装置
JP5719098B2 (ja) 超音波診断装置
US20070239005A1 (en) Ultrasonic diagnostic apparatus, ultrasonic diagnostic method, and imaging processing program for ultrasonic diagnostic apparatus
US20100312109A1 (en) Ultrasonic diagnostic apparatus and signal processing program
JP4694930B2 (ja) 超音波診断装置
EP2039297B9 (en) Ultrasound diagnostic apparatus
JP2005253827A (ja) 超音波撮像方法及び装置
JP2010082425A (ja) 超音波診断装置
JP5800324B2 (ja) 超音波診断装置、超音波画像生成方法およびプログラム
US7632233B2 (en) Ultrasonic endoscope and ultrasonic endoscopic apparatus
JP5475971B2 (ja) 超音波診断装置
JP2009078124A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP5346245B2 (ja) 超音波診断装置、並びに、超音波撮像方法及びプログラム
JP2009061086A (ja) 超音波診断装置、並びに、画像処理方法及びプログラム
JP2005046193A (ja) 超音波診断装置及び超音波画像データ生成方法
JP4266611B2 (ja) 超音波プローブ、超音波内視鏡、及び超音波診断装置
JP2013244159A (ja) 超音波診断装置及び音速推定方法
JP2009297346A (ja) 超音波観測装置、超音波内視鏡装置、画像処理方法及び画像処理プログラム
JP2005111258A (ja) 超音波診断装置
JP4530834B2 (ja) 超音波画像処理方法及び超音波画像処理装置、並びに、超音波画像処理プログラム
US11051789B2 (en) Ultrasound image diagnostic apparatus
JP4651379B2 (ja) 超音波画像処理装置及び超音波画像処理方法、並びに、超音波画像処理プログラム
JP2006175006A (ja) 超音波観測装置、超音波内視鏡装置、及び、画像処理方法

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees