JP4585954B2 - Path control method - Google Patents

Path control method Download PDF

Info

Publication number
JP4585954B2
JP4585954B2 JP2005319487A JP2005319487A JP4585954B2 JP 4585954 B2 JP4585954 B2 JP 4585954B2 JP 2005319487 A JP2005319487 A JP 2005319487A JP 2005319487 A JP2005319487 A JP 2005319487A JP 4585954 B2 JP4585954 B2 JP 4585954B2
Authority
JP
Japan
Prior art keywords
processing
correlator
path
assignment
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005319487A
Other languages
Japanese (ja)
Other versions
JP2007129419A (en
Inventor
徳宏 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2005319487A priority Critical patent/JP4585954B2/en
Publication of JP2007129419A publication Critical patent/JP2007129419A/en
Application granted granted Critical
Publication of JP4585954B2 publication Critical patent/JP4585954B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、例えばDS−CDMA(Direct Sequence − Code Division Multiple Access:直接拡散−符号分割多元接続)方式等の受信機におけるパス制御方式に関する。   The present invention relates to a path control method in a receiver such as a DS-CDMA (Direct Sequence-Code Division Multiple Access) method.

DS−CDMA方式は拡散符号を用いて伝搬遅延波を分離し、分離した複数のパスを効率良く合成することで伝送品質の改善を図っている。
従来技術におけるパス制御方式のフローチャートの一実施例を図3に示す。パスアサイン制御は、受信機システムで規定する1チャネル当たりの相関器数分繰り返す(301〜307)。先ず新規パス数を判定し(302)、新規パスが無ければ(302でNo)パスアサイン制御を終了する。新規パスがあれば(302でYes)、相関器情報を判定する(303)。相関器情報は相関器毎にあり、相関器にパスが既にアサインされている時は有効とし、未アサイン時は無効とする。新規パスは未アサインの相関器にアサインするので、相関器が有効の時(303でNo)は、次の相関器の制御に移る(307)。相関器が無効の時(303でYes)は、ゼロ設定カウンタを判定する(304)。ゼロ設定カウンタは相関器毎にある。相関器は未アサインの状態であっても、過去に処理していたパスの影響を除去する為に、無相関処理(ゼロ設定)する期間が必要である。パスアサイン制御とは別処理にてこの期間をカウントしておき、この期間が終了すると当該相関器がアサイン可能状態になる。当該相関器がアサイン不可(304でNo)であれば、次の相関器の制御に移る(307)。相関器がアサイン可能な時(304でYes)は、アサイン処理(305)を行う。アサイン処理(305)では、新規パスを当該相関器にアサインし、その相関器情報を有効とする。アサイン処理(305)後、新規パス数をデクリメントし(306)、次の相関器の制御に移る(307)。従来では、上記一連の処理(301〜307)を相関器数分若しくは新規パスが無くなるまで繰り返す処理を行っていた。
In the DS-CDMA system, a propagation delay wave is separated using a spread code, and transmission quality is improved by efficiently combining a plurality of separated paths.
An example of a flowchart of a path control method in the prior art is shown in FIG. The path assignment control is repeated for the number of correlators per channel defined by the receiver system (301 to 307). First, the number of new paths is determined (302). If there is no new path (No in 302), the path assignment control is terminated. If there is a new path (Yes in 302), the correlator information is determined (303). Correlator information exists for each correlator, and is valid when a path is already assigned to the correlator, and invalid when the path is not assigned. Since the new path is assigned to an unassigned correlator, when the correlator is valid (No in 303), the control proceeds to the next correlator control (307). When the correlator is invalid (Yes in 303), the zero setting counter is determined (304). There is a zero setting counter for each correlator. Even if the correlator is in an unassigned state, a period for performing non-correlation processing (zero setting) is necessary in order to remove the influence of the path processed in the past. This period is counted in a process different from the path assignment control, and when the period ends, the correlator becomes in an assignable state. If the correlator is not assignable (No in 304), the control proceeds to the next correlator control (307). When the correlator can be assigned (Yes in 304), assignment processing (305) is performed. In the assignment process (305), a new path is assigned to the correlator, and the correlator information is validated. After the assignment process (305), the number of new paths is decremented (306), and the control of the next correlator is started (307). Conventionally, the above-described series of processing (301 to 307) is repeated until the number of correlators or new paths disappear.

しかしながら、常に新規パスやアサイン可能な相関器があるとは限らないため、パスアサイン処理の有無によりその処理量に差異が生じる。この差異は、受信機システムの相関器数やチャネル数によって増大し、処理破綻やタイミングズレなどの異常状態を引き起こし、受信機システムの安定性に影響を及ぼす場合がある。
例えば、1チャネル当たりの相関器数を4とし、総チャネル数を32とした受信機システムにおいて、上記で説明した処理302、303及び304がそれぞれ6サイクル掛かるとし、処理305が20サイクル、処理306が2サイクル掛かるとする。説明を簡潔にする為、ループ処理301及び307に掛かるサイクル数は省略する。全チャネルで新規パスが発生し、全ての新規パスがアサイン可能な時、パスアサイン処理サイクル数は、5120(=(6+6+6+20+2)×4×32)サイクルとなる(最大処理量)。一方、全チャネルで新規パスが発生しない時、パスアサイン処理サイクル数は768(=6×4×32)サイクルとなる(最小処理量)。ここで、図4の従来技術におけるパス制御方式のタイミングチャートの一実施例に示すように、定期的な割込みで必ず起動する割込み処理にパスアサイン処理が含まれていると仮定する。通常は割込みタイミング1(401)内で割込み処理が終了し、次の割込みタイミング2(402)を待つ。しかし割込みタイミング2(402)で新規パスアサインが集中した場合、処理破綻が発生して次の割込みタイミング3(403)にまで割込み処理が及んでしまうことがある。この時、割込みタイミング3(403)を認識できない為、当該タイミングでの割込み処理が抜け、受信機システムが異常状態になり、正常な受信ができなくなる場合がある。
However, since there are not always new paths and correlators that can be assigned, the amount of processing varies depending on the presence or absence of path assignment processing. This difference increases depending on the number of correlators and channels in the receiver system, and may cause abnormal states such as processing failure and timing shift, which may affect the stability of the receiver system.
For example, in a receiver system in which the number of correlators per channel is 4 and the total number of channels is 32, the processing 302, 303 and 304 described above takes 6 cycles, the processing 305 takes 20 cycles, and the processing 306 takes It takes 2 cycles. In order to simplify the description, the number of cycles required for the loop processing 301 and 307 is omitted. When new paths occur in all channels and all new paths can be assigned, the number of path assignment processing cycles is 5120 (= (6 + 6 + 6 + 20 + 2) × 4 × 32) cycles (maximum processing amount). On the other hand, when no new path occurs in all channels, the number of path assignment processing cycles is 768 (= 6 × 4 × 32) (minimum processing amount). Here, as shown in an example of the timing chart of the path control method in the prior art in FIG. 4, it is assumed that the path assignment process is included in the interrupt process that is always started by a periodic interrupt. Normally, the interrupt process ends within the interrupt timing 1 (401), and the next interrupt timing 2 (402) is awaited. However, if new path assignments are concentrated at interrupt timing 2 (402), processing failure may occur and interrupt processing may extend to the next interrupt timing 3 (403). At this time, since interrupt timing 3 (403) cannot be recognized, interrupt processing at that timing may be lost, the receiver system may be in an abnormal state, and normal reception may not be possible.

解決しようとする課題は、常に新規パスやアサイン可能な相関器があるとは限らないため、パスアサイン処理の有無によりその処理量に差異が生じ、この差異は、受信機システムの相関器数やチャネル数によって増大し、処理破綻やタイミングズレなどの異常状態を引き起こし、受信機システムの安定性に影響を及ぼすことを回避し、パスアサイン制御における処理量を安定させることである。   The problem to be solved is that there are not always new paths and correlators that can be assigned, so the amount of processing varies depending on the presence or absence of path assignment processing. This is to increase the number of channels, to avoid abnormal conditions such as processing failure and timing shift, to avoid affecting the stability of the receiver system, and to stabilize the processing amount in path assignment control.

上記課題を解決するためにこの発明は、受信機システムで規定される相関器数分を繰り返すパス制御方式であって、新たなパス数を判断するための新規パス数の値と相関器の有効無効を判断するための相関器情報の値とデクリメントカウンタからゼロ設定期間の終了を判断するためのゼロ設定カウンタの値とを乗算してアサインフラグの値を算出する処理と、算出したアサインフラグの値からアサイン可能か否かを判断する処理と、アサイン可能であった場合に相関器に新規パスをアサインして相関器情報を有効にするアサイン処理と、アサイン処理を行った後に新規パス数をデクリメントする処理と、アサイン不可であった場合に行うNop処理とを相関器数分繰り返すようにしたものである。   In order to solve the above-described problems, the present invention is a path control system that repeats the number of correlators specified by the receiver system, and the value of the number of new paths for determining a new number of paths and the validity of the correlator. Multiplying the value of the correlator information for determining invalidity and the value of the zero setting counter for determining the end of the zero setting period from the decrement counter, and calculating the value of the assignment flag, Processing to determine whether assignment is possible from the value, assignment processing that assigns a new path to the correlator and assigning the correlator information valid if assignment is possible, and the number of new paths after performing the assignment processing The decrementing process and the Nop process performed when assignment is impossible are repeated for the number of correlators.

本発明によれば、パスアサイン制御における処理量を安定させる、つまり、パスアサイン処理制御の処理量が一定になり、処理が集中する高負荷時でも受信機システムが安定動作するという効果がある。   According to the present invention, there is an effect that the processing amount in the path assignment control is stabilized, that is, the processing amount in the path assignment processing control is constant, and the receiver system operates stably even at a high load where processing is concentrated.

新たなパス数を判断するための新規パス数の値と相関器の有効無効を判断するための相関器情報の値とデクリメントカウンタからゼロ設定期間の終了を判断するためのゼロ設定カウンタの値とを乗算してアサインフラグの値を算出し、算出したアサインフラグの値からアサイン可能か否かを判断し、アサイン可能であった場合に相関器に新規パスをアサインして相関器情報を有効にするアサイン処理をし、アサイン処理を行った後に新規パス数をデクリメントする処理と、アサイン不可であった場合に行うNop(No operation)処理の処理量を同じ処理量とすることで実現した。   The value of the number of new paths for determining the number of new paths, the value of the correlator information for determining the validity / invalidity of the correlator, and the value of the zero setting counter for determining the end of the zero setting period from the decrement counter To calculate the value of the assign flag, determine whether the assign flag value can be assigned or not, and if it is assignable, assign a new path to the correlator and validate the correlator information This is realized by setting the processing amount of the assigning process to be performed and decrementing the number of new paths after performing the assigning process and the processing amount of the Nop (No operation) processing to be performed when the assignment is impossible.

この発明の第1の実施形態を、図1の本発明におけるパス制御方式のフローチャートの一実施例を用いて説明する。
パスアサイン制御は、受信機システムで規定する1チャネル当たりの相関器数分繰り返す(101〜107)。先ず、新たなパス数を判断するための新規パス数の値と相関器の有効無効を判断するための相関器情報の値とデクリメントカウンタからゼロ設定期間の終了を判断するためのゼロ設定カウンタの値とを乗算してアサインフラグの値を算出する(102)。相関器情報は、有効時を0、無効時を−1とする。ゼロ設定カウンタはデクリメントカウンタで、-1を最小値としてゼロ設定期間終了とする。相関器がゼロ設定期間中は周期的にゼロ設定カウンタをデクリメントする。例えばゼロ設定期間を20msとした場合、カウンタ初期値30でスロット周期(666.6μs)でデクリメントする。アサインフラグ算出パターンの一算出例を図2の表に示す。図2において、case1、2の様に、新規パスが存在し、無効な相関器が在り且つそのゼロ設定期間が終了している場合(アサインフラグが1以上の場合)のみ、アサイン可能となる。その他のcase3〜7ではアサイン可能条件を満たさず(アサインフラグが0以下)、アサイン不可となる。次にアサインフラグを判定し(103)、アサイン可能であれば(103でYes)、アサイン処理(104)を行い、新規パス数をデクリメント(105)する。一方、アサイン不可であれば(203でNo)、Nop処理(106)を行う。Nop処理はメモリアクセスや演算などを行わず純粋に処理量だけが発生する処理であり、その処理量はアサイン可能時の処理量(104、105)と同一とする。処理105又は処理106の後、次の相関器の制御に移る(107)。一連の処理(101〜107)を新規パス数に影響することなく相関器数分繰り返す。
例えば、1チャンネル当たりの相関器数を4とし、総チャネル数を32とした受信機システムにおいて、処理102が2サイクル、処理103が6サイクル、処理104が20サイクル、処理105が2サイクル掛かるとし、処理106を22サイクルとする。説明を簡潔にする為、ループ処理101、107に掛かるサイクル数は省略する。全チャネルで新規パスが発生し全ての新規パスがアサイン可能な時、パスアサイン処理サイクル数は、3840(=(2+6+20+2)×4×32)サイクルとなる(最大処理量)。一方、全チャネルで新規パスが発生しない時、パスアサイン処理サイクル数は、3840(=(2+6+22)×4×32)サイクルとなる(最小処理量)。つまり、負荷状態による処理量の増減が無く、常に一定の処理量とすることができる。
A first embodiment of the present invention will be described with reference to an example of a flowchart of a path control method in the present invention shown in FIG.
The path assignment control is repeated for the number of correlators per channel defined by the receiver system (101 to 107). First, the zero setting counter for determining the end of the zero setting period from the new path number value for determining the new path number, the correlator information value for determining the validity / invalidity of the correlator, and the decrement counter. The value of the assignment flag is calculated by multiplying the value (102). Correlator information is 0 when valid and -1 when invalid. The zero setting counter is a decrement counter, and the zero setting period ends with -1 as the minimum value. The correlator decrements the zero setting counter periodically during the zero setting period. For example, when the zero setting period is 20 ms, the counter initial value 30 is decremented at the slot period (666.6 μs). A calculation example of the assignment flag calculation pattern is shown in the table of FIG. In FIG. 2, as in cases 1 and 2, assignment is possible only when a new path exists, an invalid correlator exists, and the zero setting period ends (when the assignment flag is 1 or more). In other cases 3 to 7, the assignable condition is not satisfied (assignment flag is 0 or less), and assignment is impossible. Next, an assignment flag is determined (103). If assignment is possible (Yes in 103), assignment processing (104) is performed, and the number of new paths is decremented (105). On the other hand, if assignment is impossible (No in 203), Nop processing (106) is performed. The Nop process is a process in which only a processing amount is generated without performing memory access or calculation, and the processing amount is the same as the processing amount (104, 105) when assignable. After the process 105 or 106, the control proceeds to the next correlator control (107). A series of processing (101 to 107) is repeated for the number of correlators without affecting the number of new paths.
For example, in a receiver system in which the number of correlators per channel is 4 and the total number of channels is 32, processing 102 takes 2 cycles, processing 103 takes 6 cycles, processing 104 takes 20 cycles, and processing 105 takes 2 cycles. Process 106 is 22 cycles. For the sake of brevity, the number of cycles for the loop processing 101 and 107 is omitted. When new paths occur in all channels and all new paths can be assigned, the number of path assignment processing cycles is 3840 (= (2 + 6 + 20 + 2) × 4 × 32) cycles (maximum processing amount). On the other hand, when no new path occurs in all channels, the number of path assignment processing cycles is 3840 (= (2 + 6 + 22) × 4 × 32) cycles (minimum processing amount). That is, there is no increase or decrease in the processing amount due to the load state, and the processing amount can always be constant.

本発明におけるパス制御方式のフローチャートの一実施例An example of a flowchart of a path control method in the present invention 本発明におけるアサインフラグ算出パターンの一算出例An example of assign flag calculation pattern in the present invention 従来技術におけるパス制御方式のフローチャートの一実施例An example of a flowchart of a path control method in the prior art 従来技術におけるパス制御方式のタイミングチャートの一実施例Example of timing chart of path control method in the prior art

Claims (1)

受信機システムで規定される相関器数分を繰り返すパス制御方式であって、新たなパス数を判断するための新規パス数の値と相関器の有効無効を判断するための相関器情報の値とデクリメントカウンタからゼロ設定期間の終了を判断するためのゼロ設定カウンタの値とを乗算してアサインフラグの値を算出する処理と、算出したアサインフラグの値からアサイン可能か否かを判断する処理と、アサイン可能であった場合に相関器に新規パスをアサインして相関器情報を有効にするアサイン処理と、アサイン処理を行った後に新規パス数をデクリメントする処理と、アサイン不可であった場合に行うNop処理とを相関器数分繰り返すことを特徴とするパス制御方式。
A path control method that repeats the number of correlators specified by the receiver system, the value of the number of new paths for determining the number of new paths and the value of the correlator information for determining the validity of the correlator And the value of the zero setting counter for determining the end of the zero setting period from the decrement counter to calculate the value of the assign flag, and the process of determining whether the assignment is possible from the value of the calculated assign flag When assigning is possible, assigning a new path to the correlator and validating the correlator information, assigning processing and then decrementing the number of new paths after assigning, and assigning are not possible A path control method characterized by repeating the Nop processing to be performed for the number of correlators.
JP2005319487A 2005-11-02 2005-11-02 Path control method Active JP4585954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005319487A JP4585954B2 (en) 2005-11-02 2005-11-02 Path control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005319487A JP4585954B2 (en) 2005-11-02 2005-11-02 Path control method

Publications (2)

Publication Number Publication Date
JP2007129419A JP2007129419A (en) 2007-05-24
JP4585954B2 true JP4585954B2 (en) 2010-11-24

Family

ID=38151723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005319487A Active JP4585954B2 (en) 2005-11-02 2005-11-02 Path control method

Country Status (1)

Country Link
JP (1) JP4585954B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101504157B1 (en) 2008-10-28 2015-03-20 삼성디스플레이 주식회사 A back light assembly, a liquid crystal display comprising the same, and a method of manufacturing thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324016A (en) * 1999-05-10 2000-11-24 Nec Corp Cdma receiver
JP2002141835A (en) * 2000-08-23 2002-05-17 Nec Corp Device and method for cdma receiver
JP2002280932A (en) * 2001-01-09 2002-09-27 Mitsubishi Electric Corp Path detection circuit and path detection method for rake receiver
JP2002335190A (en) * 2001-05-08 2002-11-22 Nec Corp Dcma receiver and path capturing method
JP2003023671A (en) * 2001-07-09 2003-01-24 Toshiba Corp Mobile radio terminal
JP2004072593A (en) * 2002-08-08 2004-03-04 Hitachi Kokusai Electric Inc Path detecting method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000324016A (en) * 1999-05-10 2000-11-24 Nec Corp Cdma receiver
JP2002141835A (en) * 2000-08-23 2002-05-17 Nec Corp Device and method for cdma receiver
JP2002280932A (en) * 2001-01-09 2002-09-27 Mitsubishi Electric Corp Path detection circuit and path detection method for rake receiver
JP2002335190A (en) * 2001-05-08 2002-11-22 Nec Corp Dcma receiver and path capturing method
JP2003023671A (en) * 2001-07-09 2003-01-24 Toshiba Corp Mobile radio terminal
JP2004072593A (en) * 2002-08-08 2004-03-04 Hitachi Kokusai Electric Inc Path detecting method

Also Published As

Publication number Publication date
JP2007129419A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
RU2742208C1 (en) Specific hopping patterns for repeated transmission and reception of data and methods for generating thereof
JP4318510B2 (en) Communication apparatus and communication method
JP7216009B2 (en) Transmitter and receiver and how to deal with them
US20190238309A1 (en) Robust radio packet acquisition in the presence of continuous wave interference
JP4585954B2 (en) Path control method
EP1079537A2 (en) Portable terminal
CN108631903B (en) A kind of PRACH lead code sequence determines method and device
US20060176937A1 (en) Method for rake finger placement with reliable path detection
CN111177057B (en) Bus code transmitting circuit and method, bus transmission system
JP4770617B2 (en) Communication synchronization method and communication terminal
JP3588089B2 (en) CDMA receiving apparatus, mobile station apparatus and base station apparatus
JP3670131B2 (en) Contention control circuit
JP4081982B2 (en) CDMA mobile communication demodulation circuit and demodulation method
US7912165B2 (en) Digital receiver synchronization
KR100360004B1 (en) Pilot signal reception method and receiver
JP2006270189A (en) Base station equipment and radio communication method
JP4807527B2 (en) Path search processing circuit, path search method and control program
JP4619370B2 (en) Path control device and path control method
JP4293617B2 (en) Bidirectional serial communication method
JP2001203669A (en) Wireless base station device and wireless communication method
JP4146869B2 (en) CDMA communication system, CDMA communication apparatus and communication method
JP6379925B2 (en) Communication waveform generator
JP2000286753A (en) Receiver for spread spectrum communication
JP7042902B2 (en) Electronic control device
JP3885087B2 (en) Midamble pattern allocation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100906

R150 Certificate of patent or registration of utility model

Ref document number: 4585954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140910

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250