JP4581407B2 - Light source unit and projection-type image display device using the same - Google Patents

Light source unit and projection-type image display device using the same Download PDF

Info

Publication number
JP4581407B2
JP4581407B2 JP2004008620A JP2004008620A JP4581407B2 JP 4581407 B2 JP4581407 B2 JP 4581407B2 JP 2004008620 A JP2004008620 A JP 2004008620A JP 2004008620 A JP2004008620 A JP 2004008620A JP 4581407 B2 JP4581407 B2 JP 4581407B2
Authority
JP
Japan
Prior art keywords
light source
reflector
light
source unit
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004008620A
Other languages
Japanese (ja)
Other versions
JP2005202167A (en
Inventor
太志 山崎
雅彦 谷津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004008620A priority Critical patent/JP4581407B2/en
Priority to US11/035,709 priority patent/US7806566B2/en
Priority to CNB200510002194XA priority patent/CN1328612C/en
Publication of JP2005202167A publication Critical patent/JP2005202167A/en
Application granted granted Critical
Publication of JP4581407B2 publication Critical patent/JP4581407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

本発明は、LED等の光源を複数配列した光源ユニット、およびその光源ユニットからの光を透過型液晶や反射型液晶、あるいはDMD(微小ミラー)等の映像表示素子により光強度変調し、形成した光学像を投射する投射型映像表示装置に関する。   The present invention is formed by a light source unit in which a plurality of light sources such as LEDs are arranged, and light intensity modulation of light from the light source unit by a video display element such as a transmissive liquid crystal, a reflective liquid crystal, or a DMD (micromirror). The present invention relates to a projection-type image display device that projects an optical image.

液晶パネル等の映像表示素子に、光源からの光を当てて、液晶パネル上の画像を拡大投射する液晶プロジェクタ等の投射型映像表示装置が知られている。   2. Description of the Related Art Projection-type video display devices such as liquid crystal projectors that enlarge and project an image on a liquid crystal panel by applying light from a light source to a video display element such as a liquid crystal panel are known.

従来から、高輝度化を目的に、光源に大電力を供給できるランプ1個或いは複数個を適用した投射型映像表示装置が数多く製品化されているが、最近の動向としては、その色純度のよさ、長寿命であること、点灯性のよさを理由に、発光ダイオード、有機EL等の、いわゆるLED光源の適用が検討されている。この場合、輝度の不足を補うために、多数のLED光源を並べて用いることが多い。このようなLED光源ユニットおよびそれを用いた投射型映像表示装置としては、例えば特許文献1に開示されている。   Conventionally, for the purpose of increasing the brightness, a large number of projection-type image display devices using one or more lamps that can supply a large amount of power to a light source have been commercialized. Application of a so-called LED light source such as a light emitting diode or an organic EL is being studied because of its good life, long life, and good lighting performance. In this case, a large number of LED light sources are often used side by side to compensate for the lack of luminance. Such an LED light source unit and a projection-type image display device using the LED light source unit are disclosed in Patent Document 1, for example.

また最近、例えば特許文献2に開示されているように、LEDの光を凹状の反射鏡で反射させて前方へ出射させる反射型LEDが提案されている。また、この種の反射型LEDをマトリクス状に配設したLED光源ユニットおよびそれを用いた投射型映像表示装置として、例えば特許文献3に開示されている。   Recently, for example, as disclosed in Patent Document 2, a reflection type LED in which light of an LED is reflected by a concave reflecting mirror and emitted forward has been proposed. Further, for example, Patent Document 3 discloses an LED light source unit in which this type of reflective LED is arranged in a matrix and a projection-type image display device using the LED light source unit.

特開2002−374004号公報JP 2002-374004 A

特開2002−151746号公報JP 2002-151746 A 特開2003−329978号公報JP 2003-329978 A

LED等の光源を複数配列して光源ユニットとした投射型映像表示装置を実現するにあたっては、従来から用いられている高圧水銀ランプ等に比較して、光源1個あたりの出射光束量が非常に小さいため、投射映像の十分な輝度を得ることが困難である。そこで、複数の光源を配列して形成する案が公開されている。しかし、投射型映像表示装置の照明光学系における、光源からの光束を取り入れるための入射開口サイズはその大きさが限られており、光源を多数配列できたとしても、有効に入射開口に光束を導ける光源の数には限界がある。すなわち、限られた面積内に配置した光源から、いかに多くの光束を出射するかが重要になってくる。   In realizing a projection-type image display device in which a plurality of light sources such as LEDs are arranged to form a light source unit, the amount of emitted light flux per light source is much higher than that of a conventionally used high-pressure mercury lamp or the like. Since it is small, it is difficult to obtain sufficient brightness of the projected image. Therefore, a proposal for arranging a plurality of light sources in an array is disclosed. However, the size of the entrance aperture for taking in the light flux from the light source in the illumination optical system of the projection-type image display device is limited, and even if a large number of light sources can be arranged, the light flux is effectively applied to the entrance aperture. There is a limit to the number of light sources that can be guided. That is, it becomes important how many light beams are emitted from a light source arranged in a limited area.

そこで、上記特許文献3等に見られるようにLED光源を多数配列させることにより、また各々のLED光源に上記特許文献2等で開示されているような反射型LEDを用いて高輝度化を狙っているが、限られた面積内で最大の光束を出射するような構成については考慮されていない。   Therefore, aiming at high brightness by arranging a large number of LED light sources as seen in Patent Document 3 and the like, and using a reflective LED as disclosed in Patent Document 2 and the like for each LED light source. However, a configuration that emits the maximum luminous flux within a limited area is not considered.

本発明はこのような事情に鑑みてなされたもので、その目的は、所定面積内での光利用効率の低下を抑え高輝度化を実現させた光源ユニットおよびそれを用いた投射型映像表示装置を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a light source unit that realizes high luminance while suppressing a decrease in light use efficiency within a predetermined area, and a projection type video display apparatus using the same. Is to provide.

本発明は、上記課題を解決するため、特許請求の範囲に記載のとおりに構成したものである。すなわち、所定面積あたりの出射光束を最大にするために、各々の光源の効率を最大にするのではなく、各光源の面積あたりの出射光束を最大にすることに着目している。   In order to solve the above problems, the present invention is configured as described in the scope of claims. That is, in order to maximize the emitted light beam per predetermined area, attention is focused on maximizing the emitted light beam per area of each light source instead of maximizing the efficiency of each light source.

各光源の集光ミラーのサイズを請求項に記載した範囲とすることによって、各々の光源から出射する光束は最大の値にはなっていないが、その分、限られた面積内に光源を数多く配列することが可能となり、光源ユニットとしての出射光量を増加させることが可能になる。   By setting the size of the condensing mirror of each light source within the range described in the claims, the light flux emitted from each light source does not reach the maximum value, but there are many light sources within the limited area. It becomes possible to arrange, and it becomes possible to increase the emitted light quantity as a light source unit.

本発明によれば、投射型映像表示装置での高輝度表示が可能となる。   According to the present invention, it is possible to perform high-luminance display on a projection type video display device.

以下、本発明の実施の形態について、図を用いて詳細に説明する。なお、各図において、同一機能を有する構成要素には同一符号を付して示す。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In each figure, components having the same function are denoted by the same reference numerals.

本実施例では映像表示素子として透過型液晶パネルを適用した場合について説明するが、反射型液晶パネルや、DMDミラーデバイス等も本発明に適用可能であることは言うまでも無い。   In this embodiment, a case where a transmissive liquid crystal panel is applied as an image display element will be described. Needless to say, a reflective liquid crystal panel, a DMD mirror device, and the like are also applicable to the present invention.

図1は本発明による一実施例である投射型映像表示装置の概略構成図を示している。図1において、1は反射型LEDを複数配列した本発明による光源ユニットであり、光源ユニット1を構成する各反射型LEDには、それぞれ、LEDチップの発光部21からの光束を効率よく続く光学系に照射するように、回転放物面形状の反射鏡であるリフレクタ5が設けられている。2R,2G,2BはそれぞれRGBの3原色に対応する映像表示素子である透過型の液晶パネルで、図示しない映像信号駆動回路により光源ユニット1からの光束を映像信号に応じた光強度変調を行い光学像を形成する。3は投射レンズ、4はミラー、6と7は所謂インテグレータ光学系を構成する第1レンズアレイと第2レンズアレイ、8はインテグレータ光学系からの光束を所定の偏光方向に揃える偏光変換素子、9は集光レンズ、10R,10Gはコンデンサレンズ、11は合成プリズム、12,13は色分離のためのダイクロイックミラー、14はミラー、15は第1リレーレンズ、16は第2リレーレンズ、17は第3リレーレンズ、18はスクリーン、19、20はミラーを示している。また、これら以外に主な部品としては図示しない電源回路がある。   FIG. 1 shows a schematic configuration diagram of a projection type image display apparatus according to an embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a light source unit according to the present invention in which a plurality of reflective LEDs are arranged. Each reflective LED constituting the light source unit 1 is an optical system that efficiently continues the luminous flux from the light emitting portion 21 of the LED chip. A reflector 5 which is a rotary parabolic reflector is provided to irradiate the system. Reference numerals 2R, 2G, and 2B are transmission type liquid crystal panels that are image display elements corresponding to the three primary colors of RGB, and light intensity modulation of the light flux from the light source unit 1 according to the image signal is performed by an image signal drive circuit (not shown). An optical image is formed. 3 is a projection lens, 4 is a mirror, 6 and 7 are first and second lens arrays constituting a so-called integrator optical system, 8 is a polarization conversion element that aligns the light beam from the integrator optical system in a predetermined polarization direction, and 9 Is a condenser lens, 10R and 10G are condenser lenses, 11 is a synthesis prism, 12 and 13 are dichroic mirrors for color separation, 14 is a mirror, 15 is a first relay lens, 16 is a second relay lens, and 17 is a first lens. 3 relay lenses, 18 is a screen, and 19 and 20 are mirrors. In addition to these, there is a power supply circuit (not shown) as a main part.

図1で、光源ユニット1の各反射型LED光源のLEDチップの発光部21から出射した白色光束は回転方物面形状のリフレクタ5で反射し、インテグレータ光学系をなす第1レンズアレイ6へと入射する。マトリックス状に配列された複数のレンズセルからなる第1レンズアレイ6は入射した光束を複数の光束に分割して、効率よく第2レンズアレイ7、偏光変換素子8を通過させるように導く。第1レンズアレイ6と同様にマトリックス状に配列された複数のレンズセルからなる第2レンズアレイ7は、構成するレンズセルそれぞれが、対応する第1レンズアレイ6のレンズセルの形状を、透過型の液晶パネル2R,2G,2B側に投影する。この時、偏光変換素子8は第2レンズアレイ7からの光束を所定の偏光方向に揃える。そして、これら第1レンズアレイ6の各レンズセルの投影像を集光レンズ9、及びコンデンサレンズ10R,10G、第1リレーレンズ15、第2リレーレンズ16、第3リレーレンズ17により各液晶パネル2R,2G,2B上に重ね合わせる。   In FIG. 1, the white light beam emitted from the light emitting portion 21 of the LED chip of each reflection type LED light source of the light source unit 1 is reflected by the reflector 5 having the shape of the rotating solid surface, and goes to the first lens array 6 forming the integrator optical system. Incident. The first lens array 6 including a plurality of lens cells arranged in a matrix divides an incident light beam into a plurality of light beams, and guides the light through the second lens array 7 and the polarization conversion element 8 efficiently. Similar to the first lens array 6, the second lens array 7 composed of a plurality of lens cells arranged in a matrix form each of the lens cells constituting the shape of the lens cell of the corresponding first lens array 6 is a transmission type. Are projected on the liquid crystal panels 2R, 2G, and 2B side. At this time, the polarization conversion element 8 aligns the light flux from the second lens array 7 in a predetermined polarization direction. The projection image of each lens cell of the first lens array 6 is converted into each liquid crystal panel 2R by the condenser lens 9 and the condenser lenses 10R and 10G, the first relay lens 15, the second relay lens 16, and the third relay lens 17. , 2G, 2B.

その過程で、色分離手段を構成するダイクロイックミラー12と13により、光源1より出射された白色光は赤(R),緑(G),青(B)の3原色の色光に分離され、それぞれ対応する液晶パネル2R,2G,2Bに照射される。なお、ここでは、ダイクロイックミラー12は赤透過緑青反射特性であり、ダイクロイックミラー13は緑反射青透過特性である。   In the process, white light emitted from the light source 1 is separated into three primary colors of red (R), green (G), and blue (B) by the dichroic mirrors 12 and 13 constituting the color separation means, respectively. The corresponding liquid crystal panels 2R, 2G, 2B are irradiated. Here, the dichroic mirror 12 has a red transmission green-blue reflection characteristic, and the dichroic mirror 13 has a green reflection blue transmission characteristic.

各液晶パネル2R,2G,2Bは、図示しない入出射偏光板とともに図示しない映像信号駆動回路により液晶パネルを透過する光量を制御して画素ごとに濃淡を変える光強度変調を行い、光学像を形成する。   Each of the liquid crystal panels 2R, 2G, and 2B forms an optical image by controlling the amount of light transmitted through the liquid crystal panel by a video signal driving circuit (not shown) together with an input / output polarizing plate (not shown) and changing the intensity for each pixel. To do.

さらに、明るく照射された液晶パネル2R,2G,2B上の各光学像は、合成プリズム11によって色合成され、さらに、投射レンズ3によってスクリーン18上へと投射され、大画面映像を得ることができる。   Further, each of the optical images on the liquid crystal panels 2R, 2G, and 2B that are brightly illuminated is color-synthesized by the synthesis prism 11, and further projected onto the screen 18 by the projection lens 3, thereby obtaining a large screen image. .

また、第1リレーレンズ15、第2リレーレンズ16、第3リレーレンズ17は液晶パネル2R,2Gに対して液晶パネル2Bの光路長が長くなっていることを補うものである。   Further, the first relay lens 15, the second relay lens 16, and the third relay lens 17 compensate for the increase in the optical path length of the liquid crystal panel 2B with respect to the liquid crystal panels 2R and 2G.

次に、本発明の特徴である、光源ユニット1のリフレクタ形状について詳細に説明する。図2は図1の光源ユニット1を構成する単位部分である反射型LEDの詳細を説明するために、光源ユニットの内のひとつの反射型LEDを取り出して、その光学的な概略構造を示した図である。   Next, the reflector shape of the light source unit 1, which is a feature of the present invention, will be described in detail. FIG. 2 shows a schematic optical structure of one of the light-emitting units taken out of the light-emitting unit in order to explain the details of the reflective LED, which is a unit constituting the light source unit 1 of FIG. FIG.

図2において、21は反射型LEDのLEDチップの発光部、5はLEDチップの発光部21からの光を反射する例えば回転方物面形状のリフレクタである。Dはリフレクタ5の直径、rはその半径、θは発光部21の中心とリフレクタ21の頂点とを結ぶ軸(以下、「光軸」と称す)を含む平面で切断した断面における発光部21から出射した光束の光軸とのなす角度である。またfは回転放物面形状のリフレクタ5の焦点距離であり、一般的に発光部21はリフレクタ5の焦点位置に配置する。LED光源の発光部21からは、周知のランベルト分布に従って、リフレクタ5に向けておよそ半球状に光束が出射され、図中のθの値で表現するなら90度の広がりをもつ。角度θ方向の光の強度は、光軸上の光の強度をIとすると、Icosθで表される。 In FIG. 2, reference numeral 21 denotes a light emitting part of the LED chip of the reflective LED, and 5 denotes a reflector having, for example, a rotating surface, which reflects light from the light emitting part 21 of the LED chip. D is the diameter of the reflector 5, r is its radius, θ is from the light emitting part 21 in a cross section cut along a plane including an axis connecting the center of the light emitting part 21 and the apex of the reflector 21 (hereinafter referred to as “optical axis”). This is the angle formed by the optical axis of the emitted light beam. Further, f is a focal length of the reflector 5 having a paraboloid shape, and the light emitting unit 21 is generally arranged at a focal position of the reflector 5. From the light emitting unit 21 of the LED light source, a light beam is emitted approximately hemispherically toward the reflector 5 in accordance with a well-known Lambertian distribution, and has a spread of 90 degrees if expressed by the value of θ in the figure. The intensity of light in the angle θ direction is represented by I 0 cos θ, where I 0 is the intensity of light on the optical axis.

ここで、発光部21から出射した光束のうち、リフレクタ5で捕らえる光束の割合を開口効率と定義する。このとき、光束を可能な限りリフレクタ5で捕らえる、すなわち開口効率100%とする場合には、次の関係が成り立つ。   Here, the ratio of the luminous flux captured by the reflector 5 out of the luminous flux emitted from the light emitting unit 21 is defined as the aperture efficiency. At this time, when the light flux is captured by the reflector 5 as much as possible, that is, when the aperture efficiency is set to 100%, the following relationship is established.

D = 4×f … (数1)
また、リフレクタの開口形状を円形形状として、そのリフレクタ開口面積(以下、「リフレクタ面積」と省略する)をsとすると、
s = π×D×D/4 … (数2)
とあらわすことができる。
D = 4 × f (Equation 1)
In addition, when the reflector opening shape is a circular shape and the reflector opening area (hereinafter abbreviated as “reflector area”) is s,
s = π × D × D / 4 (Equation 2)
It can be expressed.

このとき、光源を配置するのに有効な面積をSとすると、光源最大数Nは
N ≒ S/s … (数3)
とあらわすことができる。実際には、リフレクタ5の外形の形状が円形の場合は光源ユニットとしたときの配置に隙間ができるために、このNは正確な値ではないが、この後の説明における相対的な比較には問題が無いため、単純化を目的としてこの値を用いることとする。
At this time, if the effective area for arranging the light source is S, the maximum number N of light sources is N≈S / s (Equation 3)
It can be expressed. Actually, when the outer shape of the reflector 5 is circular, there is a gap in the arrangement of the light source unit, so this N is not an accurate value. However, for the relative comparison in the following description, Since there is no problem, this value is used for the purpose of simplification.

図3はf=1としたときの図2に示したような光源単位における、リフレクタ半径に対する開口効率とリフレクタ面積の関係を示したものである。同図において、左側縦軸は光束の開口効率、右側縦軸はリフレクタ面積、横軸はリフレクタ半径である。D=4×fにて開口効率は100%を得ており、またリフレクタ面積も最大値になっている。ただし、リフレクタ面積と開口効率は必ずしも比例の関係には無く、面積あたりの開口効率という観点から見ると、リフレクタ面積が小さいほうが高い値を得ることができることは図4から明らかである。   FIG. 3 shows the relationship between the aperture efficiency with respect to the reflector radius and the reflector area in the light source unit as shown in FIG. 2 when f = 1. In the figure, the left vertical axis represents the aperture efficiency of the light beam, the right vertical axis represents the reflector area, and the horizontal axis represents the reflector radius. When D = 4 × f, the aperture efficiency is 100%, and the reflector area is also the maximum value. However, the reflector area and the aperture efficiency are not necessarily in a proportional relationship, and it is clear from FIG. 4 that a smaller value can be obtained when the reflector area is smaller from the viewpoint of aperture efficiency per area.

図4は図3からリフレクタ面積に対する開口効率を求めたもので、横軸をリフレクタ面積として、縦軸に開口効率の変化を示している。図4から、リフレクタ面積が大きいほど傾きが小さく、リフレクタ面積を開口効率100%の状態である最大値から小さくしていっても、そのわりには開口効率の低下が少ないことが分かる。すなわち、リフレクタ面積を小さくして、その分LEDの数を増加させ、密集させたほうが、総光束量の大きな光源ユニットを提供できるということである。   FIG. 4 shows the aperture efficiency relative to the reflector area from FIG. 3. The horizontal axis represents the reflector area, and the vertical axis represents the change in aperture efficiency. From FIG. 4, it can be seen that the larger the reflector area, the smaller the inclination, and even if the reflector area is reduced from the maximum value in the state where the aperture efficiency is 100%, the decrease in aperture efficiency is small. That is, it is possible to provide a light source unit having a large total luminous flux amount by reducing the reflector area, increasing the number of LEDs correspondingly, and concentrating them.

次に、これを確認するために、今度は複数の反射型LEDから成る光源ユニットの総光束量の変化を見てみる。   Next, in order to confirm this, a change in the total luminous flux of a light source unit composed of a plurality of reflective LEDs will be examined next.

ここで、光源ユニットの総光束量を下記のように定義する。   Here, the total luminous flux of the light source unit is defined as follows.

総光束量=LED光源発光部光束量×開口効率×LED光源数N…(数4)
また、全LED光源の発光部の光束量に対する、光源ユニットとして出射する光束量の割合(すなわち数4の総光束量の割合)を出射効率と定義する。さらに、以下では、説明を容易とするために、LED光源発光部からの総光束量を1として扱う。加えて、反射型LED光源の配置可能な面積Sを、リフレクタ半径を2(上述したようにf=1としている)としたときのリフレクタ面積と同面積として、反射型LED光源数を考慮して総光束量を求める。その際の反射型LED光源数Nは数3から次式にて求められる。
Total light flux = LED light source light emitting part light flux × aperture efficiency × LED light source number N (Equation 4)
Further, the ratio of the luminous flux emitted as the light source unit to the luminous flux of the light emitting units of all the LED light sources (that is, the ratio of the total luminous flux of Equation 4) is defined as the emission efficiency. Further, in the following, the total luminous flux from the LED light source light emitting unit is treated as 1 for easy explanation. In addition, the area S where the reflective LED light source can be arranged is the same as the reflector area when the reflector radius is 2 (f = 1 as described above), and the number of reflective LED light sources is taken into consideration. Find the total luminous flux. In this case, the number N of the reflective LED light sources is obtained from the following equation using the following equation (3).

N=2×2×π/s … (数5)
以上のような条件のもとで、横軸にリフレクタ半径をとって、複数の反射型LEDから成る光源ユニットの総光束量、出射効率を算出して図示したのが図5である。また、図5では、横軸のリフレクタ半径値の下に、そのリフレクタ値に対応した数5で求めたLED光源数Nを示している。例えばリフレクタ半径が1の場合は、数5からLED光源数Nは4となる。
N = 2 × 2 × π / s (Equation 5)
FIG. 5 shows the total luminous flux and emission efficiency of the light source unit composed of a plurality of reflective LEDs, with the reflector radius on the horizontal axis under the above conditions. Further, in FIG. 5, the number N of LED light sources obtained by Expression 5 corresponding to the reflector value is shown below the reflector radius value on the horizontal axis. For example, when the reflector radius is 1, the number of LED light sources N is 4 from Equation 5.

前述の通り、リフレクタ面積あたりの出射効率は、リフレクタ半径を小さくしたほうが高く、その分LEDの総数を増やすことによって総光束量増加が可能であることを図5にて確認することができる。リフレクタ半径を小さくするほど総光束量が増加するので、本実施例ではリフレクタ半径を最大値の2ではなく、1とすることにより、2としたときよりも約2.5倍の総光束量が得られている。すなわち、
D < 4×f … (数6)
とすることにより、光源ユニットとしての出射光束量を増加することを可能にしている。
As described above, the emission efficiency per reflector area is higher when the reflector radius is smaller, and it can be confirmed in FIG. 5 that the total luminous flux can be increased by increasing the total number of LEDs. Since the total luminous flux increases as the reflector radius is reduced, in this embodiment, the reflector radius is set to 1 instead of the maximum value of 2, so that the total luminous flux is about 2.5 times that when 2 is set. Has been obtained. That is,
D <4 × f (Equation 6)
By doing so, it is possible to increase the amount of emitted light flux as the light source unit.

次に、第2の実施例について述べる。図5から明らかなように、例えばリフレクタ半径を1からさらに小さくすると、より総光束量の増加が見込まれるが、出射効率が極端に低下するために、放熱等の負担が大きくなり現実的な構成ではなくなってくる。そこで出射効率が50%(リフレクタ半径が約0.8程度)を下回らない範囲でリフレクタの半径を定めるのがよい。また、その上限については、光源ユニットの明るさを示す総光束量が1.3倍(リフレクタ半径が約1.75程度)以上であるのが望ましく、特に1.5倍(リフレクタ半径が約1.6程度)以上であるのが好ましい。   Next, a second embodiment will be described. As can be seen from FIG. 5, for example, if the reflector radius is further reduced from 1, an increase in the total luminous flux is expected, but since the emission efficiency is extremely reduced, the burden of heat dissipation and the like is increased, resulting in a realistic configuration. It ’s not. Therefore, it is preferable to determine the radius of the reflector within a range where the emission efficiency does not fall below 50% (the reflector radius is about 0.8). As for the upper limit, the total luminous flux indicating the brightness of the light source unit is desirably 1.3 times (reflector radius is about 1.75) or more, and particularly 1.5 times (reflector radius is about 1). About 6) or more.

以上の点から、本実施例においては、リフレクタ半径として、数7に示す範囲を用いる。   From the above points, in this embodiment, the range shown in Equation 7 is used as the reflector radius.

1.6×f < D < 3.2×f … (数7)
ところで、以上述べた実施例では、リフレクタ形状を回転放物面形状として説明してきたが、発光部21の大きさや形状に応じて、回転楕円面形状や回転放物面形状を多少変形させた非球面形状のリフレクタ5も考えられる。その場合も上記説明と同様の効果を提供することが可能であるが、その場合は上記の数6、数7の数式で形状規定ができないので、非球面形状に概略一致する回転楕円面形状や回転放物面形状の焦点距離を適用するか、これらの焦点距離におおよそ等しく設定される発光部21とリフレクタ中心部の頂点との距離Zを用いて下記のように規定してもよいことはいうまでもない。
1.6 × f <D <3.2 × f (Equation 7)
In the above-described embodiment, the reflector shape has been described as a rotating paraboloid shape. However, according to the size and shape of the light emitting unit 21, the non-rotating ellipsoid shape and the rotating paraboloid shape are slightly modified. A spherical reflector 5 is also conceivable. In that case as well, it is possible to provide the same effect as described above, but in that case, since the shape cannot be defined by the above mathematical formulas 6 and 7, the spheroidal surface shape that roughly matches the aspherical shape, Applying the focal length of the paraboloid shape or using the distance Z between the light emitting portion 21 and the apex of the reflector central portion set approximately equal to these focal lengths, it may be specified as follows: Needless to say.

D < 4×Z … (数6’)
あるいは
1.6×Z < D < 3.2×Z … (数7’)
以上述べた実施例によれば、各々のLED光源から出射する光束は最大の値にはなっていないが、その分、限られた面積内にLED光源を数多く配列することが可能になり、光源ユニットとしての出射光量を増加させることが可能になる。即ち、限られた面積内で効率を考慮しながら高輝度を図ることができ、反射鏡を有するLED等の光源を複数配列した光源ユニットおよびそれを備えた投射型映像表示装置を提供することができる。
D <4 × Z (Equation 6 ′)
Or 1.6 × Z <D <3.2 × Z (Equation 7 ′)
According to the embodiment described above, the luminous flux emitted from each LED light source does not reach the maximum value, but it becomes possible to arrange a large number of LED light sources within a limited area. It becomes possible to increase the amount of emitted light as a unit. In other words, it is possible to provide a light source unit in which a plurality of light sources such as LEDs having a reflecting mirror can be arranged and a projection type image display apparatus including the light source unit, which can achieve high brightness while considering efficiency within a limited area. it can.

なお、上記光源ユニットは、独立した各反射型LEDを配列したものであっても、一体にアレイ状に形成されたものであってもよいことはいうまでもない。   Needless to say, the light source unit may be an array of independent reflective LEDs or may be integrally formed in an array.

また、上記光源ユニットを構成する「LED光源」としては、順方向の電圧印加で光を放出する無機固体結晶(例えばGaP,GaAsP,GaAlAsなどの化合物半導体結晶)でつくられたLight Emitting Diode(LED)や、二つの電極の間に挟まれた有機分子の発光層を有する有機EL(Electroluminescence)所謂OLED(Organic Light Emitting Diode)を用いることができる。すなわち、「LED光源」はこれらの総称である。   The “LED light source” constituting the light source unit is a light emitting diode (LED) made of an inorganic solid crystal (for example, a compound semiconductor crystal such as GaP, GaAsP, GaAlAs, etc.) that emits light when a forward voltage is applied. Or an organic EL (Electroluminescence) so-called OLED (Organic Light Emitting Diode) having a light emitting layer of organic molecules sandwiched between two electrodes. That is, “LED light source” is a general term for these.

また、上記実施例では、光源ユニットからは白色光束が出射されるとしたが、本発明はこれに限定されるものではなく、前記特許文献3の図6に記載されているような特定色光を出射する光源ユニットにも適用できることはいうまでもない。   In the above embodiment, the white light beam is emitted from the light source unit. However, the present invention is not limited to this, and specific color light as described in FIG. Needless to say, the present invention can also be applied to an emitted light source unit.

本発明の実施の形態の一例を示す投射型映像表示装置の構成図である。It is a block diagram of the projection type video display apparatus which shows an example of embodiment of this invention. 光源ユニットの1部を示す詳細図である。It is detail drawing which shows a part of light source unit. 単一LEDを用いた場合のリフレクタ半径に対する開口効率及びリフレクタ面積の関係を示す図である。It is a figure which shows the relationship between the aperture efficiency with respect to a reflector radius at the time of using single LED, and a reflector area. 光源ユニットでのリフレクタ面積に対する開口効率を示す図である。It is a figure which shows the aperture efficiency with respect to the reflector area in a light source unit. リフレクタ半径に対する光源ユニット全体の出射効率、総光測量の変化を示す図である。It is a figure which shows the output efficiency of the whole light source unit with respect to a reflector radius, and the change of total photogrammetry.

符号の説明Explanation of symbols

1…光源、2R…液晶パネル、2G…液晶パネル、2B…液晶パネル、3…投射レンズ、4…ミラー、5…リフレクタ、6…第1レンズアレイ、7…第2レンズアレイ、8…偏光変換素子、9…集光レンズ、10R…コンデンサレンズ、10G…コンデンサレンズ、11…合成プリズム、12…ダイクロイックミラー、13…ダイクロイックミラー、14…ミラー、15…第1リレーレンズ、16…第2リレーレンズ、17…第3リレーレンズ、18…スクリーン、19…ミラー、20…ミラー、21…発光部。
DESCRIPTION OF SYMBOLS 1 ... Light source, 2R ... Liquid crystal panel, 2G ... Liquid crystal panel, 2B ... Liquid crystal panel, 3 ... Projection lens, 4 ... Mirror, 5 ... Reflector, 6 ... 1st lens array, 7 ... 2nd lens array, 8 ... Polarization conversion Element 9 ... Condensing lens 10R ... Condenser lens 10G ... Condenser lens 11 ... Synthetic prism 12 ... Dichroic mirror 13 ... Dichroic mirror 14 ... Mirror 15 ... First relay lens 16 ... Second relay lens 17 ... 3rd relay lens, 18 ... Screen, 19 ... Mirror, 20 ... Mirror, 21 ... Light emission part.

Claims (6)

光を映像信号に基づいて変調する映像表示素子と、該映像表示素子からの出射光をスクリーン上に投射する投射レンズとを有する投射型映像表示装置に用いられる光源ユニットであって、
少なくとも2個以上の光源を並べてマトリックス状に配置し、各々の光源に対応した放物面形状、或いは放物面に近い非球面形状の集光リフレクタを備えており、
Dをリフレクタの有効径、fをリフレクタの焦点距離、Zを光源の発光部とリフレクタ中央部の頂点との距離としたとき、
D < 4×f 或いは D < 4×Z
を満足するように構成したことを特徴とする光源ユニット。
A light source unit used in a projection-type video display device having a video display element that modulates light based on a video signal, and a projection lens that projects light emitted from the video display element onto a screen,
At least two or more light sources are arranged in a matrix and provided with a parabolic shape corresponding to each light source, or an aspherical condensing reflector close to a parabolic surface,
When D is the effective diameter of the reflector , f is the focal length of the reflector , and Z is the distance between the light emitting portion of the light source and the vertex of the central portion of the reflector ,
D <4 × f or D <4 × Z
A light source unit configured to satisfy the above.
光を映像信号に基づいて変調する映像表示素子と、該映像表示素子からの出射光をスクリーン上に投射する投射レンズとを有する投射型映像表示装置に用いられる光源ユニットであって、
少なくとも2個以上の光源を並べてマトリックス状に配置し、各々の光源に対応した放物面形状、或いは放物面に近い非球面形状の集光リフレクタを備えており、
Dをリフレクタの有効径、fをリフレクタの焦点距離、Zを光源の発光部とリフレクタ中央部の頂点との距離としたとき、
1.6×f < D < 3.2×f 或いは 1.6×Z < D < 3.2×Z
を満足するように構成したことを特徴とする光源ユニット。
A light source unit used in a projection-type video display device having a video display element that modulates light based on a video signal, and a projection lens that projects light emitted from the video display element onto a screen,
At least two or more light sources are arranged in a matrix and provided with a parabolic shape corresponding to each light source, or an aspherical condensing reflector close to a parabolic surface,
When D is the effective diameter of the reflector , f is the focal length of the reflector , and Z is the distance between the light emitting portion of the light source and the vertex of the central portion of the reflector ,
1.6 × f <D <3.2 × f or 1.6 × Z <D <3.2 × Z
A light source unit configured to satisfy the above.
前記光源は、LEDにより構成することを特徴とする請求項1乃至請求項2の何れか一項に記載の光源ユニット。   The light source unit according to claim 1, wherein the light source includes an LED. 光源ユニットと該光源ユニットからの光束を映像信号に基づいて変調する映像表示素子と、該映像表示素子からの出射光をスクリーン上に投射する投射レンズとを有する投射型映像表示装置であって、
前記光源ユニットは、少なくとも2個以上の光源を並べてマトリックス状に配置し、各々の光源に対応した放物面形状、或いは放物面に近い非球面形状の集光リフレクタを備えており、
Dをリフレクタの有効径、fをリフレクタの焦点距離、Zを光源の発光部とリフレクタ中央部の頂点との距離としたとき、
D < 4×f 或いは D < 4×Z
を満足するように構成したことを特徴とする投射型映像表示装置。
A projection-type video display device comprising: a light source unit; a video display element that modulates a light beam from the light source unit based on a video signal; and a projection lens that projects light emitted from the video display element on a screen,
The light source unit includes at least two or more light sources arranged in a matrix, and includes a parabolic shape corresponding to each light source, or an aspherical shape condensing reflector close to a parabolic surface,
When D is the effective diameter of the reflector , f is the focal length of the reflector , and Z is the distance between the light emitting portion of the light source and the vertex of the central portion of the reflector ,
D <4 × f or D <4 × Z
A projection-type image display device configured to satisfy the above.
光源ユニットと該光源ユニットからの光束を映像信号に基づいて変調する映像表示素子と、該映像表示素子からの出射光をスクリーン上に投射する投射レンズとを有する投射型映像表示装置であって、
前記光源ユニットは、少なくとも2個以上の光源を並べてマトリックス状に配置し、各々の光源に対応した放物面形状、或いは放物面に近い非球面形状の集光リフレクタを備えており、
Dをリフレクタの有効径、fをリフレクタの焦点距離、Zを光源の発光部とリフレクタ中央部の頂点との距離としたとき、
1.6×f < D < 3.2×f 或いは 1.6×Z < D < 3.2×Z
を満足するように構成したことを特徴とする投射型映像表示装置。
A projection-type video display device comprising: a light source unit; a video display element that modulates a light beam from the light source unit based on a video signal; and a projection lens that projects light emitted from the video display element on a screen,
The light source unit includes at least two or more light sources arranged in a matrix, and includes a parabolic shape corresponding to each light source, or an aspherical shape condensing reflector close to a parabolic surface,
When D is the effective diameter of the reflector , f is the focal length of the reflector , and Z is the distance between the light emitting portion of the light source and the vertex of the central portion of the reflector ,
1.6 × f <D <3.2 × f or 1.6 × Z <D <3.2 × Z
A projection-type image display device configured to satisfy the above.
前記光源は、LEDにより構成することを特徴とする請求項4乃至請求項5の何れか一項に記載の投射型映像表示装置。   The projection type image display device according to claim 4, wherein the light source is configured by an LED.
JP2004008620A 2004-01-16 2004-01-16 Light source unit and projection-type image display device using the same Expired - Fee Related JP4581407B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004008620A JP4581407B2 (en) 2004-01-16 2004-01-16 Light source unit and projection-type image display device using the same
US11/035,709 US7806566B2 (en) 2004-01-16 2005-01-13 Light source unit and projection type video display apparatus using the same
CNB200510002194XA CN1328612C (en) 2004-01-16 2005-01-14 Light source unit and projection type image display device using said unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004008620A JP4581407B2 (en) 2004-01-16 2004-01-16 Light source unit and projection-type image display device using the same

Publications (2)

Publication Number Publication Date
JP2005202167A JP2005202167A (en) 2005-07-28
JP4581407B2 true JP4581407B2 (en) 2010-11-17

Family

ID=34821888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004008620A Expired - Fee Related JP4581407B2 (en) 2004-01-16 2004-01-16 Light source unit and projection-type image display device using the same

Country Status (3)

Country Link
US (1) US7806566B2 (en)
JP (1) JP4581407B2 (en)
CN (1) CN1328612C (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI287686B (en) * 2005-12-30 2007-10-01 Ind Tech Res Inst Light-beam generator and projecting system having the same
CN101482250B (en) * 2009-02-27 2010-06-09 北京星光影视设备科技股份有限公司 High-power LED concentration system
JP2012014045A (en) * 2010-07-02 2012-01-19 Seiko Epson Corp Projector
KR102368883B1 (en) * 2015-01-14 2022-03-04 엘지이노텍 주식회사 Light emitting apparatus

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230229A (en) * 1989-03-03 1990-09-12 Seiko Epson Corp Lighting system
JPH04174422A (en) * 1990-11-07 1992-06-22 Sharp Corp Light source
JPH0481447U (en) * 1990-11-27 1992-07-15
JPH04324435A (en) * 1991-04-24 1992-11-13 Koudo Eizou Gijutsu Kenkyusho:Kk Projection type liquid crystal display device
JPH05241005A (en) * 1992-03-02 1993-09-21 Hamamatsu Photonics Kk Reflecting mirror
JPH09106705A (en) * 1995-10-11 1997-04-22 Mitsubishi Electric Corp Light source device and projection display device using it
JPH1195320A (en) * 1997-09-25 1999-04-09 Matsushita Electric Ind Co Ltd Projection system
JP2000194275A (en) * 1998-12-28 2000-07-14 Toshiba Corp Image display device
JP2000277812A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Line light source device and its manufacture
WO2003033959A1 (en) * 2001-10-17 2003-04-24 Koninklijke Philips Electronics N.V. Illumination unit
JP2003329978A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Illuminator and projection display device
JP2004004401A (en) * 2002-06-03 2004-01-08 Mitsubishi Electric Corp Light source device, lighting system, and projection type display arrangement

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5924785A (en) * 1997-05-21 1999-07-20 Zhang; Lu Xin Light source arrangement
JPH10335706A (en) * 1997-05-30 1998-12-18 Toyoda Gosei Co Ltd Light emitting diode lamp
JP3639428B2 (en) 1998-03-17 2005-04-20 三洋電機株式会社 Light source device
JP2000121997A (en) 1998-10-15 2000-04-28 Seiko Epson Corp Projection type display device
JP4296644B2 (en) * 1999-01-29 2009-07-15 豊田合成株式会社 Light emitting diode
JP2002151746A (en) 2000-11-14 2002-05-24 Toyoda Gosei Co Ltd Reflection type light emitting diode
US6729746B2 (en) * 2000-03-14 2004-05-04 Toyoda Gosei Co., Ltd. Light source device
JP3753011B2 (en) * 2001-04-11 2006-03-08 豊田合成株式会社 Reflective light emitting diode
JP2002374004A (en) 2001-06-14 2002-12-26 Nitto Kogaku Kk Led array panel and lighting device
EP2397875A3 (en) * 2001-12-14 2012-05-02 QUALCOMM MEMS Technologies, Inc. Uniform illumination system
US7112916B2 (en) * 2002-10-09 2006-09-26 Kee Siang Goh Light emitting diode based light source emitting collimated light
CN2591780Y (en) * 2002-10-22 2003-12-10 夏志清 LED Lattice module of arc drum shape reflective hole
US20040114778A1 (en) * 2002-12-11 2004-06-17 Gobeli Garth W. Miniature directional microphone
CN1729412A (en) * 2002-12-20 2006-02-01 皇家飞利浦电子股份有限公司 Apparatus and method for illuminating a rod
US7008079B2 (en) * 2003-11-21 2006-03-07 Whelen Engineering Company, Inc. Composite reflecting surface for linear LED array
US7204630B2 (en) * 2004-06-30 2007-04-17 3M Innovative Properties Company Phosphor based illumination system having a plurality of light guides and an interference reflector
US7182498B2 (en) * 2004-06-30 2007-02-27 3M Innovative Properties Company Phosphor based illumination system having a plurality of light guides and an interference reflector
US7508590B2 (en) * 2005-12-09 2009-03-24 Scram Technologies, Inc. Optical system for a digital light projection system including 3-channel and 4-channel LED array light engines

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230229A (en) * 1989-03-03 1990-09-12 Seiko Epson Corp Lighting system
JPH04174422A (en) * 1990-11-07 1992-06-22 Sharp Corp Light source
JPH0481447U (en) * 1990-11-27 1992-07-15
JPH04324435A (en) * 1991-04-24 1992-11-13 Koudo Eizou Gijutsu Kenkyusho:Kk Projection type liquid crystal display device
JPH05241005A (en) * 1992-03-02 1993-09-21 Hamamatsu Photonics Kk Reflecting mirror
JPH09106705A (en) * 1995-10-11 1997-04-22 Mitsubishi Electric Corp Light source device and projection display device using it
JPH1195320A (en) * 1997-09-25 1999-04-09 Matsushita Electric Ind Co Ltd Projection system
JP2000194275A (en) * 1998-12-28 2000-07-14 Toshiba Corp Image display device
JP2000277812A (en) * 1999-03-24 2000-10-06 Sanyo Electric Co Ltd Line light source device and its manufacture
WO2003033959A1 (en) * 2001-10-17 2003-04-24 Koninklijke Philips Electronics N.V. Illumination unit
JP2003329978A (en) * 2002-05-10 2003-11-19 Seiko Epson Corp Illuminator and projection display device
JP2004004401A (en) * 2002-06-03 2004-01-08 Mitsubishi Electric Corp Light source device, lighting system, and projection type display arrangement

Also Published As

Publication number Publication date
JP2005202167A (en) 2005-07-28
US7806566B2 (en) 2010-10-05
CN1328612C (en) 2007-07-25
US20050190307A1 (en) 2005-09-01
CN1641410A (en) 2005-07-20

Similar Documents

Publication Publication Date Title
US9081268B2 (en) Lighting device and projection-type display apparatus including lighting device
JP5914878B2 (en) Light source device and projection display device
JP5874058B2 (en) Light source device and projection display device
JP4823898B2 (en) Compact light source module and projection type image display apparatus using the same
US9423680B2 (en) Light source apparatus that irradiates a phosphor layer with excitation light and projector
US20070127240A1 (en) Light source device and projector
JP2006189825A (en) Led package, illumination system and projection system employing the same
JP4733691B2 (en) Projection-type image display device
US8491125B2 (en) Lighting device and projection type display apparatus including the same
JP2018084757A (en) Illumination apparatus and projector
JP2012078537A (en) Light source device and projection type video display device
WO2020054397A1 (en) Light source device and projection-type video display device
US10634981B2 (en) Light source device and projection type display apparatus
JP2007114603A (en) Illumination device and projection-type image display device
US20060098451A1 (en) Illuminator for video display apparatus
JP4725456B2 (en) Solid state light source and projector
JP2006285043A (en) Light source device
US7806566B2 (en) Light source unit and projection type video display apparatus using the same
JP2006039338A (en) Lighting system and projection type video display device
JP2010186754A (en) Lighting system, and display
JP2008090016A (en) Lighting system and projection image display device
WO2013118272A1 (en) Illumination optical system and projection-type display device
JP4166261B2 (en) Illumination device and projection display device
JP2007127955A (en) Illuminator and projection type image display device
JP2006337428A (en) Illuminating optical system, optical engine and projection image display apparatus

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees