JP4571709B1 - Vibration resistance electroencephalograph - Google Patents

Vibration resistance electroencephalograph Download PDF

Info

Publication number
JP4571709B1
JP4571709B1 JP2010027518A JP2010027518A JP4571709B1 JP 4571709 B1 JP4571709 B1 JP 4571709B1 JP 2010027518 A JP2010027518 A JP 2010027518A JP 2010027518 A JP2010027518 A JP 2010027518A JP 4571709 B1 JP4571709 B1 JP 4571709B1
Authority
JP
Japan
Prior art keywords
signal
vibration
unit
frequency band
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010027518A
Other languages
Japanese (ja)
Other versions
JP2011161021A (en
Inventor
晶朗 木村
Original Assignee
晶朗 木村
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶朗 木村 filed Critical 晶朗 木村
Priority to JP2010027518A priority Critical patent/JP4571709B1/en
Application granted granted Critical
Publication of JP4571709B1 publication Critical patent/JP4571709B1/en
Publication of JP2011161021A publication Critical patent/JP2011161021A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

【課題】使用者が動作状態にあっても振動ノイズが混入する事なく計測が可能であり、かつ簡易装着が可能な耐振動脳波計の実現
【解決手段】フレーム1と該フレーム1に配置された複数の電極2と前記フレーム1に配置された振動センサ3と前記電極2により検知された信号より電気ノイズ成分を除去するフィルタ部4と該フィルタ部4を通過した信号を増幅する増幅部5と該増幅部5により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部6と前記振動センサ3により検知された信号より電気ノイズ成分を除去するフィルタ部7と該フィルタ部7を通過した信号を増幅する増幅部8と該増幅部8により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部9と該デジタル変換部9および前記デジタル変換部6の出力値から振動ノイズ成分の除去演算を行う演算部10から成る耐振動脳波計により課題を解決した。
【選択図】 図1
An object of the present invention is to realize a vibration-resistant electroencephalograph capable of measuring without mixing vibration noise even when a user is in an operating state, and capable of being easily worn. A plurality of electrodes 2, a vibration sensor 3 disposed on the frame 1, a filter unit 4 for removing electrical noise components from signals detected by the electrodes 2, and an amplifying unit 5 for amplifying a signal that has passed through the filter unit 4. A digital converter 6 that converts the analog signal amplified by the amplifier 5 into a digital signal, a filter 7 that removes electrical noise components from the signal detected by the vibration sensor 3, and a signal that has passed through the filter 7 An amplifying unit 8 for amplifying the signal, a digital converting unit 9 for converting an analog signal amplified by the amplifying unit 8 into a digital signal, the digital converting unit 9 and the digital converting unit It solved the problem by anti-vibration electroencephalograph consisting calculating unit 10 for removing operation of the vibration noise component from the output value of.
[Selection] Figure 1

Description

この発明は、耐振動脳波計に関するものである。   The present invention relates to a vibration-resistant electroencephalograph.

50マイクロボルトほどの微弱な電気信号である脳波を正しく検知する為に、従来より様々なノイズ除去技術が用いられてきた。   In order to correctly detect an electroencephalogram, which is a weak electric signal of about 50 microvolts, various noise removal techniques have been conventionally used.

まず、蛍光灯など周辺の電気機器などから入る外部ノイズに対しては差動増幅という技術が用いられてきた。これは頭部のうち、脳波の発生する箇所と発生しない箇所を同時に計測し、両方の計測値を差し引く事により、両方に混入したノイズを除去する技術である。   First, a technique called differential amplification has been used for external noise that enters from surrounding electrical equipment such as fluorescent lamps. This is a technique for removing noise mixed in both of the head by simultaneously measuring a portion where a brain wave is generated and a portion where the brain wave is not generated and subtracting both measured values.

また、脳波計の電源として商用電源を利用している場合は、50Hzまたは60Hzのハムノイズが混入してしまう事から、このノイズを除去する為にアナログフィルタやデジタルフィルタが用いられてきた。   Further, when a commercial power source is used as a power source for an electroencephalograph, a hum noise of 50 Hz or 60 Hz is mixed. Therefore, an analog filter or a digital filter has been used to remove this noise.

また、頭部に装着させる電極は金属製である事から、電極自体が発電してしまう事により発生するノイズを抑えるべく、塩化銀と電解液を使用した不分極電極という技術が用いられてきた。   In addition, since the electrode to be mounted on the head is made of metal, a technique called an unpolarized electrode using silver chloride and an electrolytic solution has been used to suppress noise generated when the electrode itself generates power. .

しかし、上記の技術を組み合わせた脳波計であっても、電極が振動する事によって発生する振動ノイズを除去する事は難しく、計測する際に使用者は電極が振動しないように必ず静止状態を保たなければならなかった。   However, even with an electroencephalograph that combines the above technologies, it is difficult to remove vibration noise generated by the vibration of the electrode, and the user must always remain stationary so that the electrode does not vibrate during measurement. I had to beat.

この振動ノイズを除去する方法としてアクティブ電極を使用する方法がある。通常、生体信号の計測に用いられる電極は電極板から長い導線が延び、計測器本体の増幅器に接続できる構造になっているが、このアクティブ電極は電極板と増幅器を一体化させたものであり、これにより長い導線に混入するノイズを軽減させる事ができる。この技術は脈拍などを継続的に計測する目的で使われるパルスオキシメーターなどに使用され、運動中の使用者の計測も可能である。しかし、脳波信号は脈拍信号の数百分の一の電圧信号である為この方法では振動ノイズを除去する事はできない。   As a method for removing this vibration noise, there is a method using an active electrode. Normally, electrodes used for measuring biosignals have a structure in which a long conducting wire extends from the electrode plate and can be connected to the amplifier of the measuring instrument body. This active electrode is an integrated electrode plate and amplifier. As a result, it is possible to reduce noise mixed in a long conductor. This technology is used in pulse oximeters that are used for the purpose of continuously measuring the pulse and the like, and can also measure the user during exercise. However, since the electroencephalogram signal is a voltage signal that is one hundredth of the pulse signal, vibration noise cannot be removed by this method.

また、三本足等の特殊な形状の電極を導電性ペーストで頭皮に固定させる方法があり、これは脳波研究者が従来より使用してきた方法であり、特に運動している被験者の脳波を計測する為には大変有効である。しかし、この方法は自分自身がひとりで電極を装着する事は不可能であり、また専門家が装着を補助しても電極装着に非常に手間が掛かってしまう。   In addition, there is a method of fixing specially shaped electrodes such as three legs to the scalp with conductive paste, which is a method that EEG researchers have used in the past, especially for measuring the EEG of subjects who are moving It is very effective to do. However, with this method, it is impossible for the person himself to wear the electrode alone, and it takes much time to install the electrode even if the specialist assists the wearing.

特開2001-231767公報において、ノイズ量を統計的に演算処理し低減させる方法についての言及がなされているが、これはARB検査(聴性脳幹反応)における誘発波形を瞬時に計測する事を主目的としたものであり、通常の波形測定での使用を目的ではない。また、ノイズの原因を特定して対策を施す方法では無い為、演算が複雑である。   Japanese Patent Laid-Open No. 2001-231767 mentions a method for statistically calculating and reducing the amount of noise, which is mainly intended to instantaneously measure the evoked waveform in an ARB test (auditory brainstem response). It is not intended for use in normal waveform measurements. In addition, the calculation is complicated because it is not a method of identifying the cause of noise and taking measures.

特開2001-231767公報JP 2001-231767 A

本発明は上記の事情に鑑み為されたもので、その解決しようとする課題は、使用者が動作状態にあっても振動ノイズが混入する事なく計測が可能であり、かつ簡易装着が可能な耐振動脳波計の実現である。   The present invention has been made in view of the above circumstances, and the problem to be solved is that measurement is possible without mixing vibration noise even when the user is in an operating state, and simple mounting is possible. This is the realization of a vibration-resistant electroencephalograph.


本発明は、前記した課題を解決するためなされたもので、請求項1に記載の発明はフレーム1と該フレーム1に配置された複数の電極2と前記フレーム1に配置された振動センサ3と前記電極2により検知された信号より電気ノイズ成分を除去するフィルタ部4と該フィルタ部4を通過した信号を増幅する増幅部5と該増幅部5により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部6と前記振動センサ3により検知された信号より電気ノイズ成分を除去するフィルタ部7と該フィルタ部7を通過した信号を増幅する増幅部8と該増幅部8により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部9と該デジタル変換部9および前記デジタル変換部6の出力値から振動ノイズ成分の除去演算を行う演算部10から成る耐振動脳波計である。

The present invention has been made to solve the above-described problems, and the invention according to claim 1 includes a frame 1, a plurality of electrodes 2 disposed on the frame 1, and a vibration sensor 3 disposed on the frame 1. A filter unit 4 that removes an electrical noise component from a signal detected by the electrode 2, an amplifier unit 5 that amplifies a signal that has passed through the filter unit 4, and an analog signal that is amplified by the amplifier unit 5 is converted into a digital signal. A filter unit 7 that removes an electrical noise component from signals detected by the digital conversion unit 6 and the vibration sensor 3, an amplification unit 8 that amplifies the signal that has passed through the filter unit 7, and an analog signal that is amplified by the amplification unit 8 Is converted into a digital signal, and a calculation unit 10 that performs a removal calculation of vibration noise components from the output values of the digital conversion unit 9 and the digital conversion unit 6 A vibration-resistant electroencephalograph which al made.


請求項2に記載の発明は頭部に着脱自在な環状のフレーム1と少なくともひとつが該フレーム1の内壁に突出配置され少なくともひとつが前記フレーム1に折曲自在な導線を介して配置された複数の電極2と該電極2に近接配置あるいは前記フレーム1に固設された振動センサ3と前記電極2により検知された信号のうち略4ヘルツから略30ヘルツ以外の信号を除去するフィルタ部4と該フィルタ部4を通過した信号を増幅する増幅部5と該増幅部5により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部6と前記振動センサ3により検知された信号のうち略4ヘルツから略30ヘルツ以外の信号を除去するフィルタ部7と該フィルタ部7を通過した信号を増幅する増幅部8と該増幅部8により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部9と該デジタル変換部9および前記デジタル変換部6の出力値から振動ノイズ成分の除去演算を行う演算部10から成り、演算部10はデジタル変換部6およびデジタル変換部9の出力データからそれぞれの一定時間における最大値と最小値の差を求め両者の比率を算出する比率係数算出機能11とデジタル変換部6およびデジタル変換部9のデータの周波数帯域別の強度を算出する周波数帯域別強度算出機能12と該周波数帯域別強度算出機能12によって算出された周波数帯域別強度および前記係数算出機能11によって算出された比率係数によって振動ノイズ成分を除去した周波数帯域別強度を算出する周波数帯域別強度補正機能13と該周波数帯域別強度補正機能13によって補正された周波数帯域別強度を波形データに戻す逆変換演算機能14から成る事を特徴とする耐振動脳波計である。

According to the second aspect of the present invention, there is provided a plurality of annular frames 1 detachably attached to the head and at least one projectingly disposed on the inner wall of the frame 1 and at least one disposed on the frame 1 via a conductive wire that can be bent. An electrode 2, a vibration sensor 3 disposed close to the electrode 2 or fixed to the frame 1, and a filter unit 4 that removes signals other than approximately 4 Hz to approximately 30 Hz among signals detected by the electrode 2, An amplification unit 5 that amplifies the signal that has passed through the filter unit 4, a digital conversion unit 6 that converts an analog signal amplified by the amplification unit 5 into a digital signal, and approximately 4 Hz among signals detected by the vibration sensor 3. A filter unit 7 that removes signals other than approximately 30 Hz from the filter unit 7, an amplifier unit 8 that amplifies the signal that has passed through the filter unit 7, and an analog signal amplified by the amplifier unit 8 It comprises a digital conversion unit 9 for converting to a digital signal, and a calculation unit 10 for performing an operation for removing vibration noise components from the output values of the digital conversion unit 9 and the digital conversion unit 6, and the calculation unit 10 includes the digital conversion unit 6 and the digital conversion. The ratio coefficient calculating function 11 for calculating the difference between the maximum value and the minimum value for each fixed time from the output data of the unit 9 and calculating the ratio between them, and the intensity of the data of the digital conversion unit 6 and the digital conversion unit 9 for each frequency band Intensity calculation function 12 for each frequency band to be calculated, intensity for each frequency band calculated by the intensity calculation function 12 for each frequency band, and intensity for each frequency band from which vibration noise components are removed by the ratio coefficient calculated by the coefficient calculation function 11 The frequency band-specific intensity correction function 13 to be calculated and the frequency corrected by the frequency band-specific intensity correction function 13 It is vibration resistant electroencephalograph, characterized in consisting of inverse transform calculation function 14 for returning the band-by-band intensity on the waveform data.


請求項3に記載の発明はインピーダンスチェック機能を備えた請求項1の耐振動脳波計である。

The invention described in claim 3 is the vibration-resistant electroencephalograph according to claim 1 having an impedance check function.

脳波計測において、使用者が動作状態にあっても振動ノイズが混入する事なく計測が可能であり、かつ簡易装着が可能な耐振動脳波計が実現できた。   In the electroencephalogram measurement, a vibration-resistant electroencephalograph that can be measured without mixing vibration noise even when the user is in an operating state and can be easily worn has been realized.

本発明の実施の形態を図面を参照して以下に説明する。図1は、本発明の外観および構成を示す図である。まず使用者は環状のフレーム1を頭部に装着する。その際にフレーム1の内壁に突出配置された電極を後頭部に当て、フレーム1に折曲自在な導線を介して配置された2つの電極を両耳朶に装着する。本説明においては電極数を後頭部電極1つと耳朶電極2つの合計3つとし、耳朶電極のうちの1つは基準電極とするが、フレーム1の内壁に突出配置された電極、或いはフレーム1に折曲自在な導線を介して配置された電極がこれ以上の電極数でもかまわない。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram showing the appearance and configuration of the present invention. First, the user attaches the annular frame 1 to the head. At that time, an electrode projecting and arranged on the inner wall of the frame 1 is applied to the back of the head, and two electrodes arranged on the frame 1 via a bendable conductor are attached to both ears. In this description, the number of electrodes is three in total, one occipital electrode and two earlobe electrodes, and one of the earlobe electrodes is a reference electrode. However, the electrode protrudes from the inner wall of frame 1 or is folded into frame 1. The number of electrodes arranged via a bendable conductive wire may be larger than this.

本発明の脳波計は、まず後頭部電極と基準電極の電位差、および耳朶電極と基準電極の電位差を検知し両者を引き算する。これはノイズが両者に同量で混入している場合、両者を差し引く事によってこのノイズを除去する事を目的とした差動増幅という一般的な技術である。   The electroencephalograph of the present invention first detects the potential difference between the occipital electrode and the reference electrode and the potential difference between the earlobe electrode and the reference electrode, and subtracts them. This is a general technique called differential amplification for the purpose of removing noise by subtracting both when noise is mixed in the same amount.

次ぎに、本発明の脳波計は、差動増幅後の脳波信号をさらに略4ヘルツから略30ヘルツ以外の信号を除去すべくフィルタ部4を通す。これは脳波は4ヘルツから30ヘルツの交流波である為、それ以外の周波数帯域の信号をノイズとして除去する為である。   Next, the electroencephalograph of the present invention passes the filter unit 4 so as to further remove signals other than approximately 30 Hz from approximately 4 Hz of the electroencephalogram signal after differential amplification. This is because the electroencephalogram is an AC wave of 4 to 30 hertz, so that signals in other frequency bands are removed as noise.

次ぎに、本発明の脳波計は、フィルタ4を通過した脳波信号を増幅部5によって5千倍から1万倍程度に増幅させる。これは脳波が数マイクロボルトという微弱信号であり、そのままでは後の演算が不可能である為である。   Next, the electroencephalograph of the present invention amplifies the electroencephalogram signal that has passed through the filter 4 from about 5,000 times to about 10,000 times by the amplifying unit 5. This is because the electroencephalogram is a weak signal of several microvolts, and it is impossible to perform later calculations as it is.

次ぎに、本発明の脳波計は、増幅部5によって増幅されたアナログ信号をデジタル変換部6によりデジタル変換する。   Next, the electroencephalograph of the present invention digitally converts the analog signal amplified by the amplifier 5 by the digital converter 6.

一方、基準電極でない方の耳朶電極に近接配置されているか或いはフレーム1に固設されている振動センサ3によって検知された振動信号はフィルタ部7によって略4ヘルツから略30ヘルツ以外の部分が除去され、該フィルタ部7を通過した信号は増幅部8により増幅された後、デジタル変換部9によってデジタル信号に変換される。   On the other hand, the vibration signal detected by the vibration sensor 3 which is arranged close to the earlobe electrode which is not the reference electrode or which is fixed to the frame 1 is removed by the filter unit 7 from about 4 Hz to other than about 30 Hz. The signal that has passed through the filter unit 7 is amplified by the amplification unit 8 and then converted into a digital signal by the digital conversion unit 9.

デジタル変換部6より出力された脳波データとデジタル変換部9より出力された振動データは、比率係数算出機能11によりそれぞれ一定時間、例えば1秒間における最大値と最小値の差を求め両者の比率を算出する。これは検知された脳波信号の強度と振動信号の強度差を揃える為の比率係数として使用する為である。   The electroencephalogram data output from the digital conversion unit 6 and the vibration data output from the digital conversion unit 9 are respectively determined by a ratio coefficient calculation function 11 to obtain a difference between a maximum value and a minimum value for a predetermined time, for example, 1 second, and to determine a ratio between the two. calculate. This is because it is used as a ratio coefficient for aligning the intensity difference between the detected electroencephalogram signal and the vibration signal.

また、デジタル変換部6およびデジタル変換部9のデータは周波数帯域別強度算出機能12により周波数帯域別の強度に変換される。これは高速フーリエ変換演算でも高速ウェーブレット変換でもかまわない。   Further, the data of the digital conversion unit 6 and the digital conversion unit 9 are converted into the intensity for each frequency band by the intensity calculation function 12 for each frequency band. This may be a fast Fourier transform operation or a fast wavelet transform.

次に、周波数帯域別強度算出機能12によって周波数帯域別の強度に変換された脳波データと振動データは、前記係数算出機能11によって算出された比率係数と共に周波数帯域別強度補正機能13によって次の演算が成される。「(脳波データにおける周波数帯域別の強度−振動データにおける周波数帯域別の強度×比率係数)/脳波データにおける周波数帯域別の強度」 すなわち周波数帯域毎に、振動の強度に比例係数を乗算したものを脳波の強度から減算しその結果を脳波の強度で除算する。従ってその演算結果は周波数帯域毎に算出される。   Next, the electroencephalogram data and the vibration data converted into the intensity for each frequency band by the intensity calculation function 12 for each frequency band are subjected to the following calculation by the intensity correction function 13 for each frequency band together with the ratio coefficient calculated by the coefficient calculation function 11. Is made. “(Intensity by frequency band in brain wave data−Intensity by frequency band in vibration data × ratio coefficient) / Intensity by frequency band in brain wave data” That is, for each frequency band, the product of vibration intensity multiplied by a proportional coefficient Subtract from the EEG intensity and divide the result by EEG intensity. Therefore, the calculation result is calculated for each frequency band.

また周波数帯域別強度補正機能13は該0024にて算出された値を脳波データにおける周波数帯域別の強度計算の過程で算出された実数部と虚数部にそれぞれ対応する周波数帯域毎に乗算する。   The frequency band intensity correction function 13 multiplies the value calculated in 0024 for each frequency band corresponding to the real part and the imaginary part calculated in the process of intensity calculation for each frequency band in the electroencephalogram data.

次に、逆変換演算機能14は該0025にて算出された値を波形データに逆変換する。   Next, the inverse transformation calculation function 14 inversely transforms the value calculated in 0025 into waveform data.

図2は脳波信号と振動信号それぞれの伝達方向を表した図であり、図3は演算部の内部構成を表した図である。   FIG. 2 is a diagram illustrating the transmission directions of the electroencephalogram signal and the vibration signal, and FIG. 3 is a diagram illustrating the internal configuration of the calculation unit.

本発明の実施例を図面を参照して以下詳細に説明する。通常、脳波計測においては、直径1cmほどの塩化銀皮膜で覆われた皿型電極を導電性ペーストにて頭部に貼り付け、その電極にて検知された電気信号を差動増幅という手法により差分処理した後に数千から1万倍に増幅し、増幅された信号をノイズフィルタを通してノイズを除去する事により脳波信号を抽出するという方法が採られる。   Embodiments of the present invention will be described below in detail with reference to the drawings. Usually, in electroencephalogram measurement, a plate-shaped electrode covered with a silver chloride film with a diameter of about 1 cm is attached to the head with a conductive paste, and the electrical signal detected by the electrode is differentially amplified by a technique called differential amplification. After the processing, a method of amplifying the signal from several thousand to 10,000 times and extracting the electroencephalogram signal by removing the noise through the noise filter is adopted.

その際の電極の配置方法は次の通りである。まず耳朶などの脳波が発生しない身体の1箇所に基準電極として電極を貼り付ける。次に、もう一方の耳朶など同じく脳波が発生しない頭部の1箇所と、後頭部、頭頂部、側頭部、前頭部の脳波が発生する頭部の複数箇所に電極を貼り付け、それぞれの電極と基準電極との電位差を計測する。   The arrangement method of the electrode in that case is as follows. First, an electrode is affixed as a reference electrode to one part of the body where no brain waves such as earlobe are generated. Next, attach electrodes to one part of the head that does not generate brain waves, such as the other earlobe, and to multiple parts of the head that generate brain waves in the back of the head, the top of the head, the temporal region, and the front of the head. The potential difference between the electrode and the reference electrode is measured.

次のステップとして行われる差動増幅という差分処理方法について説明する。脳波計測における差分処理とは、基準電極と後頭部間あるいは基準電極と頭頂部間あるいは基準電極と側頭部間あるいは基準電極と前頭部間の電位差から両耳朶間の電位差を差し引く事によってノイズの除去を行う事である。なぜこの手法によりノイズ除去が可能かというと両耳朶間の電位差には略ノイズのみが含まれており、その他の電位差にはノイズと脳波が含まれている為、差引きするとノイズが消えて脳波のみが残るからである。差分処理された信号を増幅させるプロセスを含めて、これを差動増幅といい、略すべての脳波計測に用いられている方法である。(以下、一方の耳朶に基準電極を配置し、もう一方の耳朶と後頭部に電極を配置した例にて説明する)   A difference processing method called differential amplification performed as the next step will be described. Difference processing in electroencephalogram measurement refers to noise reduction by subtracting the potential difference between the earlobe from the potential difference between the reference electrode and the occipital region, between the reference electrode and the top of the head, between the reference electrode and the temporal region, or between the reference electrode and the frontal region. It is to remove. The reason why noise removal is possible with this method is that the potential difference between the earlobe includes only noise, and the other potential differences include noise and brain waves. Only remains. Including the process of amplifying the differentially processed signal, this is called differential amplification, which is a method used for almost all electroencephalogram measurements. (Hereinafter, an example in which a reference electrode is disposed on one earlobe and electrodes are disposed on the other earlobe and the back of the head)

この差動増幅を行ったあと、通常は脳波の周波数帯域である4Hzから30Hz以外の周波数成分を除去すべく、計測された信号をアナログフィルタあるいはデジタルフィルタにかけて測定対象である脳波を抽出する。   After this differential amplification is performed, the measured signal is applied to an analog filter or a digital filter to extract the brain wave to be measured in order to remove frequency components other than the frequency band of 4 Hz to 30 Hz, which is usually the brain wave frequency band.

しかし、前記の差動増幅手法においては、両耳朶間とその他の部位間のインピーダンスが同じである場合のみに効果があり、インピーダンス差があればノイズが残ってしまう。すなわち(差動増幅による計測値)=(基準電極と後頭部間インピーダンス×基準電極と後頭部間電位差)−(両耳朶間インピーダンス×両耳朶間電位差)という計算式が成立している。   However, the above-described differential amplification method is effective only when the impedance between the binaural ridges and the other parts is the same, and noise remains if there is an impedance difference. That is, a calculation formula is established: (measured value by differential amplification) = (impedance between reference electrode and occipital region × reference potential between reference electrode and occipital region) − (impedance between both ears × potential difference between both ears).

そこで、医療現場などでは、電極を貼り付ける前に頭皮や耳朶をガーゼなどで擦って角質を削る事により、両方のインピーダンスを下げる事を行う。この処理を行うとインピーダンスは5キロオーム程に低下するが、これを行わない場合は1メガオーム以上である事も珍しくない。但し、この処理には非常に手間がかかってしまう。   Therefore, in the medical field and the like, both impedances are lowered by rubbing the scalp by rubbing the scalp and the earlobe with gauze before attaching the electrodes. When this process is performed, the impedance drops to about 5 kilohms, but when this is not performed, it is not uncommon for the impedance to be 1 megaohm or more. However, this process is very time-consuming.

では、この角質を削る処理をしなかった場合どうなるかというと、例えば、基準電極と後頭部間のインピーダンスが1メガオームで両耳朶間のインピーダンスが5キロオームであった場合、両方が5キロオームである場合と比べてノイズの大きさが200倍になってしまう。しかし一般的な脳波計測においては通常ノイズフィルタを使用する為、使用者が静止状態の場合にはそれほど問題にはならない。なぜならば、静止状態の場合は脳波の周波数帯域である4Hzから30Hzにノイズが混入する事は希だからである。(商用電源から混入する50Hz〜60Hzのハムノイズ等は極大化するが、脳波の周波数帯域から外れている為フィルタによる除去は可能。)   Then, what happens if this keratin is not removed, for example, if the impedance between the reference electrode and the back of the head is 1 megaohm and the impedance between the earlobe is 5 kiloohms, both are 5 kiloohms? Compared with the noise, the noise is 200 times larger. However, in general electroencephalogram measurement, since a noise filter is usually used, there is not much problem when the user is stationary. This is because in the stationary state, it is rare that noise is mixed from 4 Hz to 30 Hz which is the frequency band of the electroencephalogram. (Although hum noise of 50 Hz to 60 Hz mixed from commercial power supply is maximized, it can be removed by a filter because it is out of the frequency band of brain waves.)

しかし、使用者が動作状態にあり、電極が振動している場合は、脳波の周波数帯域に振動ノイズが混入してしまう。図4は脳波計測時に被験者に頭部を振ってもらい振動ノイズを混入させた時の波形である。この振動ノイズの強度は、差動増幅におけるインピーダンス差と比例して大きくなる為、「脳波計電極は簡易装着できず、また動いている人は計測できない」というのが一般的な認識であった。。   However, when the user is in an operating state and the electrode is vibrating, vibration noise is mixed in the frequency band of the electroencephalogram. FIG. 4 shows a waveform when vibration noise is mixed by having the subject shake his / her head during EEG measurement. Since the intensity of this vibration noise increases in proportion to the impedance difference in differential amplification, it was a general perception that the electroencephalograph electrode cannot be easily worn and cannot be measured by a moving person. . .

この振動ノイズを除去する為に、まず前記の差動増幅回路を2つ作成し、各々を差し引く事によりノイズ除去が可能か否かの検証実験を行った。すなわち計算式は次の通りである。(基準電極と耳朶間電位差−両耳朶間電位差)−(基準電極と頭頂部間電位差−基準電極と側頭部間電位差) もし2つの差動増幅回路に同じ強度の振動ノイズが混入していれば、出力値における振動ノイズは低減するはずである。   In order to remove this vibration noise, first, two differential amplifier circuits were prepared, and a verification experiment was conducted to determine whether noise removal was possible by subtracting each of them. That is, the calculation formula is as follows. (Reference electrode and earlobe potential difference-Binaural potential difference)-(Reference electrode and parietal potential difference-Reference electrode and temporal potential difference) If two differential amplifiers contain vibration noise of the same strength For example, vibration noise in the output value should be reduced.

この検証実験の際、次の構成による脳波計を作成した。まず脳波のような微弱な信号を計測する為には差動増幅回路としてインスツルメンテーションアンプという回路を用いるのが最も好ましく、本実験ではこのインスツルメンテーションアンプがワンチップ化したICを使用した。またフィルタ部としてはオペアンプと抵抗器とコンデンサによって8次バタワース・ローパスフィルタとCRハイパスフィルタを作成し組み合わせて使用した。また増幅部としては、オペアンプと抵抗器と可変抵抗器から成る非反転増幅器を使用した。またデジタル変換部としてはマイコンが持つ複数のアナログ/デジタル変換器のひとつを使用した。   During this verification experiment, an electroencephalograph with the following configuration was created. First, in order to measure a weak signal such as an electroencephalogram, it is most preferable to use a circuit called an instrumentation amplifier as a differential amplifier circuit. In this experiment, an IC in which this instrumentation amplifier is made into one chip is used. did. In addition, an 8th-order Butterworth low-pass filter and a CR high-pass filter were created and combined using an operational amplifier, a resistor and a capacitor as the filter unit. As the amplifying unit, a non-inverting amplifier including an operational amplifier, a resistor, and a variable resistor was used. As the digital converter, one of a plurality of analog / digital converters of the microcomputer was used.

出力はシリアル通信によりRS232Cケーブルにてパソコンへデータ送信した。パソコンは受信したデータを専用ソフトウェアにより画像表示できるようにした。   For output, data was transmitted to a personal computer via an RS232C cable by serial communication. The personal computer can display the received data as an image with dedicated software.

信号が通る順番は差動増幅回路、増幅部、フィルタ部、デジタル変換部、パソコンの順とした。これは回路の電源として商用電源を使用するため50Hzから60Hzのハムノイズが混入する事が避けられず、増幅後にフィルタをかける事が有効だからである。   The order in which the signals pass was the order of the differential amplifier circuit, the amplifier unit, the filter unit, the digital conversion unit, and the personal computer. This is because a commercial power supply is used as a circuit power supply, so that it is inevitable that hum noise of 50 Hz to 60 Hz is mixed, and it is effective to apply a filter after amplification.

しかし、前記0036の検証実験の結果、振動ノイズは低減しなかった。これは頭部の部位によって振動の強度が違う為である事がわかった。すなわち、頭部を動かす場合、頭部が回転する軸に近ければ振動ノイズは小さく、軸から離れるほど振動ノイズが大きくなる事が推測された。   However, as a result of the verification experiment of 0036, vibration noise was not reduced. It was found that this was because the vibration intensity was different depending on the part of the head. That is, when moving the head, it is estimated that the vibration noise is small when the head is close to the axis of rotation, and the vibration noise increases as the head is moved away from the axis.

そこで、差動増幅回路を1つにして被験者7名に対して頭部の回転軸に近い後頭部と頭頂部に皿電極を貼付け、首の縦振りおよび横振りを行った時の脳波を計測した。すなわち計算式は次の通りである(基準電極と後頭部電位差−基準電極と頭頂部電位差)   Therefore, a single differential amplifier circuit was used, and a brain electrode was measured when vertical and horizontal swings of the neck were applied to 7 subjects, with a plate electrode attached to the back of the head and the top of the head near the rotation axis of the head. . That is, the calculation formula is as follows (reference electrode and occipital potential difference−reference electrode and parietal potential difference).

この実験の結果、被験者7名のいずれにも振動ノイズの低減効果が現れた。(しかし首の縦振りよりも横振りのノイズの方が大きかった。)この事から振動ノイズは頭部の回転軸からの距離に比例して大きくなる事が実証された。   As a result of this experiment, an effect of reducing vibration noise appeared in all seven subjects. (However, the lateral noise was larger than the vertical swing of the neck.) This proved that the vibration noise increased in proportion to the distance from the rotation axis of the head.

頭部の回転軸は頭部の動き(首の縦振り、横振り、ジャンプ運動など)により異なる為、前記のような単純な差動増幅法では振動ノイズキャンセルは不可能であり、動きに合わせて変動する係数を一方の電位差値に乗算した上で差分処理をする必要がある事が分かった。   Since the rotation axis of the head varies depending on the movement of the head (vertical swing of the neck, lateral swing, jump movement, etc.), vibration noise cancellation is impossible with the simple differential amplification method as described above, and it matches the movement. It was found that it is necessary to perform differential processing after multiplying one potential difference value by a coefficient that fluctuates.

しかし、例えば前記0036の2つの差動増幅値のうちの一方に係数を乗算してしまうと脳波信号が歪んでしまい、かと言って前記0041の1つの差動増幅回路における一方の値に係数を乗算してしまうとノイズをも乗算してしまう事となる。   However, for example, if one of the two differential amplification values of the 0036 is multiplied by a coefficient, the electroencephalogram signal is distorted, so that one coefficient in the one differential amplification circuit of the 0041 has a coefficient. If it is multiplied, noise will also be multiplied.

そこで、振動センサを電極に近接配置させ、この振動センサの信号に係数を乗じて脳波信号から減算する事を考えた。なぜならば、振動センサからの信号には脳波が含まれない為、この信号に係数を乗じて脳波信号から減算しても脳波信号は歪まないはずだからである。   Therefore, a vibration sensor was placed close to the electrode, and the vibration sensor signal was multiplied by a coefficient to subtract from the electroencephalogram signal. This is because since the signal from the vibration sensor does not include an electroencephalogram, the electroencephalogram signal should not be distorted even if this signal is multiplied by a coefficient and subtracted from the electroencephalogram signal.

該0045の検証実験をするために、先ず電極や振動センサを固定する為の環状フレーム1を作成し、後頭部の頭皮へ電極が当たるようにフック形状をした電極を図1のように環状フレームの内壁に突出配置した。これは脳波の重要な成分であるアルファー波が後頭部から最も大きく出現する為、頭髪をに遮られる事なく簡易に後頭部の頭皮に電極を接地させる為である。   In order to perform the verification experiment of 0045, first, an annular frame 1 for fixing electrodes and vibration sensors is created, and an electrode having a hook shape so that the electrode hits the scalp of the back of the head is formed as shown in FIG. Protrusively arranged on the inner wall. This is because the alpha wave, which is an important component of the electroencephalogram, appears the largest from the back of the head, so that the electrode is simply grounded to the scalp of the back of the head without being blocked by the hair.

次にクリップの挟み口に電極を取付けたものを2つ作成し、該電極2つにそれぞれ折曲自在な導線の片方の端部を接続し該導線のもう一方の端部を図1および図2のように環状フレーム1に配置した。この電極の1つを基準電極とし、もう一方の電極と後頭部電極を通常の電極として使用する事とした。   Next, two electrodes having electrodes attached to the clip opening are prepared, and one end of a bendable conductor is connected to each of the two electrodes, and the other end of the conductor is connected to FIGS. As shown in FIG. One of the electrodes was used as a reference electrode, and the other electrode and the occipital electrode were used as normal electrodes.

この実験に際して振動実験をしやすくする為に前記脳波計を携帯型に改良し、電源として電池を使用した。電子回路の構成は前記0037と同じであるが、信号が通る順番は増幅部とフィルタ部を入れ替えて 差動増幅回路、フィルタ部、増幅部、デジタル変換部、パソコンの順とした。これは電源として電池を使用した為に前記のハムノイズの混入が減少した事とフィルタ部を増幅部の前にもってきた方が計測信号の大きさに対する許容範囲が増えるからである。(増幅部、フィルタの順であればノイズが大きい場合にフィルタの許容範囲を超えてしまう場合がある。)   In order to facilitate the vibration experiment in this experiment, the electroencephalograph was improved to a portable type, and a battery was used as a power source. The configuration of the electronic circuit is the same as that of the above-mentioned 0037, but the order in which the signals pass is the order of the differential amplifier circuit, the filter unit, the amplification unit, the digital conversion unit, and the personal computer by replacing the amplification unit and the filter unit. This is because the use of a battery as a power source reduces the amount of hum noise, and the allowable range for the magnitude of the measurement signal increases when the filter unit is placed in front of the amplifier unit. (If the order is amplifying section and filter, the allowable range of the filter may be exceeded if the noise is large.)

また、出力は前記0038と同じくシリアル通信としたが、パソコンへのデータ送信は微弱無線器を使用した。これは本携帯型の脳波計を持ち運べるようにする為である。またパソコン側は微弱無線器によりデータが受信できるようし、前記と同じく専用ソフトウェアにより画像表示できるようにした。   The output was serial communication as in the case of 0038, but a weak radio was used for data transmission to the personal computer. This is in order to be able to carry this portable electroencephalograph. In addition, the personal computer side can receive data with a weak wireless device, and the image can be displayed with dedicated software as described above.

次に環状フレーム1の後頭部電極付近に3軸加速度センサを取付け3つの出力端子を結合し前記脳波計の入力端子に接続した。加速度センサからの信号は脳波よりもかなり大きい為、増幅器にてゲイン調整を行った結果、脳波計における振動ノイズ波形と同形状の信号を計測できた。   Next, a triaxial acceleration sensor was attached near the occipital electrode of the annular frame 1 and the three output terminals were combined and connected to the input terminal of the electroencephalograph. Since the signal from the acceleration sensor is much larger than the electroencephalogram, the gain was adjusted by the amplifier. As a result, a signal with the same shape as the vibration noise waveform in the electroencephalograph could be measured.

該0050の結果が確認できた為、次に脳波信号と振動信号の両方を同時計測できるように脳波計を改良した。すなわち脳波計の差動増幅回路とフィルタ部と増幅部を増設し、これらからの信号がマイコンが持つ複数のアナログ/デジタル変換器のもうひとつに入るようにして脳波信号と振動信号の両方を同時計測できるように改良した。また可変抵抗器を使って増幅部による増幅率を手動で変化させる事ができるようにした。   Since the result of 0050 was confirmed, the electroencephalograph was improved so that both an electroencephalogram signal and a vibration signal could be measured simultaneously. In other words, an electroencephalograph differential amplifier circuit, a filter unit, and an amplifier unit are added, and the signals from these signals enter another one of the multiple analog / digital converters of the microcomputer. Improved to be able to measure. In addition, the variable amplifier can be used to manually change the amplification factor by the amplifier.

これらの装置を使い、脳波信号と振動信号の両方を同時計測した。すなわち、前記の環状フレーム1を頭部に装着し後頭部電極を後頭部の頭皮に接触させ、2つの耳朶クリップを両耳に挟み、頭部を動かした時の脳波信号および振動信号を同時計測した。   Using these devices, both EEG signals and vibration signals were measured simultaneously. That is, the above-mentioned annular frame 1 was attached to the head, the occipital electrode was brought into contact with the scalp of the occipital region, two earlobe clips were sandwiched between both ears, and the electroencephalogram signal and vibration signal were measured simultaneously when the head was moved.

この実験の結果、脳波信号と振動信号において、頭部を動かした時の両者のノイズ信号の出力タイミングと形状が似ていた為、単純に両者を引き算するプログラムを作成し、ノイズが除去できるか否かを検証した。しかし、この検証の結果、単純に両者を引き算するだけではノイズ除去はできない事がわかった。これは両者の信号のタイミングと形状が微妙にずれている為だと判明した。   As a result of this experiment, since the output timing and shape of the noise signal of both the brain wave signal and the vibration signal were similar when moving the head, it is possible to create a program that simply subtracts the noise signal and remove the noise. I verified it. However, as a result of this verification, it was found that noise removal cannot be achieved by simply subtracting both. This proved to be due to a slight shift in the timing and shape of both signals.

そこで、脳波信号と振動信号の両方をそれぞれ高速フーリエ変換処理し、そえぞれの周波数帯域別強度を差し引いた結果を波形信号に戻す事を考え、これをプログラム化し、再び検証実験を行った。その結果、それぞれの周波数帯域別強度を差し引いてもリアルタイムの波形に戻す事が出来なかった。これは、高速フーリエ変換の演算結果には時間による波形の位相情報が欠落してしまう為である事が分かった。   Therefore, we considered that both the EEG signal and the vibration signal were subjected to fast Fourier transform processing, and the result obtained by subtracting the intensity for each frequency band was returned to the waveform signal. This was programmed, and a verification experiment was performed again. As a result, even if the intensity for each frequency band was subtracted, it was not possible to return to a real-time waveform. This is because the phase information of the waveform due to time is lost in the calculation result of the fast Fourier transform.

そこで次の演算結果を脳波データにおける高速フーリエ変換処理で算出される実数部と虚数部のそれぞれ対応する周波数帯域毎に乗算した。(脳波データにおける周波数帯域別の強度−振動データにおける周波数帯域別の強度×比率係数)/脳波データにおける周波数帯域別の強度   Therefore, the next calculation result was multiplied for each frequency band corresponding to the real part and the imaginary part calculated by the fast Fourier transform process in the electroencephalogram data. (Intensity by frequency band in EEG data-Intensity by frequency band in vibration data x Ratio coefficient) / Intensity by frequency band in EEG data

ところが、(脳波データにおける周波数帯域別の強度−振動データにおける周波数帯域別の強度×比率係数)の値が負となる場合があり、このデータを波形に逆変換してもうまくノイズ除去が出来なかった為、負の値をゼロに変換する事とした。   However, the value of (intensity by frequency band in brain wave data-intensity by frequency band in vibration data x ratio coefficient) may be negative, and noise cannot be removed successfully even if this data is converted back to a waveform. Therefore, we decided to convert negative values to zero.

また、今までの実験では、前記比率係数を変動させる代わりに振動センサ側の増幅器を手動で動かしゲイン調整をしていたが、計測データを解析した結果、一定時間における脳波信号と振動信号の最大値と最小値の差の比率から算出可能である事が分かった。すなわち脳波信号と振動信号の強度の差は、それらの信号の最大値と最小値の差と比例する事が分かった。そこで比率係数として「一定時間における(脳波信号の最大値−脳波信号の最小値)/(振動信号の最大値−振動信号の最小値)」を用いる事とした。   Also, in the experiments so far, instead of changing the ratio coefficient, the amplifier on the vibration sensor side was manually moved to adjust the gain. However, as a result of analyzing the measurement data, the maximum of the electroencephalogram signal and the vibration signal in a certain time was analyzed. It was found that it was possible to calculate from the ratio of the difference between the value and the minimum value. That is, it was found that the difference between the intensity of the electroencephalogram signal and the vibration signal is proportional to the difference between the maximum value and the minimum value of those signals. Therefore, “(maximum value of electroencephalogram signal−minimum value of electroencephalogram signal) / (maximum value of vibration signal−minimum value of vibration signal) at a fixed time” is used as the ratio coefficient.

これらの改善を行い波形に逆変換した結果、ほぼリアルタイムで振動ノイズが除去された信号を出力する事ができた。図5の(1)(2)は1秒間における脳波信号と振動信号のそれぞれの最大値と最小値の差から比率係数を算出している図であり、この場合の脳波信号の最大値は74、最小値は48、その差は26であり、振動信号の最大値は104、最小値は75、その差は29である事から比率係数は26を29で除した値0.897となる。(図5(1)(2)の縦軸の単位はボルトに比例した電圧値であるがボルトではない。)図5の(3)(4)は脳波信号と振動信号を高速フーリエ変換(FFT変換)し、振動信号の高速フーリエ変換結果に比率係数を乗算している図である。   As a result of these improvements and reverse conversion to waveforms, it was possible to output a signal from which vibration noise was removed in almost real time. (1) and (2) in FIG. 5 are diagrams in which the ratio coefficient is calculated from the difference between the maximum value and the minimum value of the electroencephalogram signal and the vibration signal in one second, and the maximum value of the electroencephalogram signal in this case is 74. The minimum value is 48 and the difference is 26. The maximum value of the vibration signal is 104, the minimum value is 75, and the difference is 29. Therefore, the ratio coefficient is 0.897 obtained by dividing 26 by 29. (The unit of the vertical axis in FIGS. 5 (1) and (2) is a voltage value proportional to volts, but not volts.) (3) and (4) in FIG. 5 are the fast Fourier transform (FFT) of the electroencephalogram signal and the vibration signal. FIG. 6 is a diagram in which a fast Fourier transform result of a vibration signal is multiplied by a ratio coefficient.

また図6の(5)は図5の(3)から(4)を差引き、結果が負の場合には零に変換した結果を表し、図6の(6)は図5の(3)を求める過程で算出された実数と虚数に(3)/(5)を乗算し、逆フーリエ変換により波形に戻した結果を表した図である。   (5) in FIG. 6 represents the result of subtracting (4) from (3) in FIG. 5 and converted to zero when the result is negative, and (6) in FIG. 6 represents (3) in FIG. FIG. 6 is a diagram illustrating a result obtained by multiplying a real number and an imaginary number calculated in the process of obtaining (3) / (5) and returning the waveform by inverse Fourier transform.

また図6の(7)は頭部を静止させて計測した脳波信号であり、図6の(8)は(7)の信号を高速フーリエ変換させた結果の図である。図6の(6)と(7)を比較すると、振動ノイズを除去した脳波波形と振動を与えない脳波波形とがほぼ同様の形状である事がわかり、の(5)と(8)を比較すると、周波数別の強度においても振動ノイズを除去した脳波の周波数別の強度と振動を与えないで計測した脳波の周波数別の強度はほぼ同等である事が分かる。   Further, (7) in FIG. 6 is an electroencephalogram signal measured with the head stationary, and (8) in FIG. 6 is a diagram showing a result of fast Fourier transform of the signal in (7). Comparing (6) and (7) in Fig. 6, it can be seen that the EEG waveform with the vibration noise removed and the EEG waveform without vibration are almost the same shape. Compare (5) and (8). Then, it can be seen that the intensity for each frequency of the electroencephalogram from which vibration noise has been removed and the intensity for each frequency of the electroencephalogram measured without applying vibration are substantially the same for the intensity for each frequency.

脳波計測においては、特にアルファー波の周波数帯域である8Hzから13Hzの強度のピーク値が重要な意味を持つが、図6の(6)と(7)を比較すると、アルファー波の強度のピーク値はほぼ同量である事がわかる。この事から、前記の演算方法により脳波の周波数帯域である4Hzから30Hzに混入していた振動ノイズを正確に除去できた事がわかる。   In the electroencephalogram measurement, the peak value of the intensity of 8 to 13 Hz, which is the frequency band of the alpha wave, is particularly important. When comparing (6) and (7) in Fig. 6, the peak value of the intensity of the alpha wave Can be seen to be almost the same amount. From this, it can be understood that the vibration noise mixed in from 4 Hz to 30 Hz, which is the frequency band of the electroencephalogram, can be accurately removed by the above calculation method.

図7は上段の波形が脳波計の電極が検知した振動ノイズを含む脳波信号であり、中段の波形が振動センサーが検知した振動信号であり、下段の波形本発明により振動ノイズを除去した後の脳波振動である。   In FIG. 7, the upper waveform is an electroencephalogram signal including vibration noise detected by an electroencephalograph electrode, the middle waveform is a vibration signal detected by the vibration sensor, and the lower waveform after the vibration noise is removed by the present invention. It is brain wave vibration.

尚、これらの振動に関する実験の際、頭部に装着したフレーム1が振動する事によって、後頭部電極が頭皮から外れる現象が度々起こった為、電極のインピーダンスを一定周期でチェックする機能を付加する事を考えた。すなわち、電極が頭皮に接地している状態ではインピーダンスは300キロオーム程度であるが、頭皮から外れてしまうと2メガオームを超えてしまう事から、このインピーダンスを計測する事によって電極が外れているか否かを使用者に警告するものである。   In the experiment related to these vibrations, the phenomenon that the occipital electrode is detached from the scalp frequently occurs due to the vibration of the frame 1 attached to the head. Therefore, a function of checking the impedance of the electrode at a constant cycle should be added. Thought. That is, when the electrode is grounded to the scalp, the impedance is about 300 kilohms, but when it is removed from the scalp, it exceeds 2 megohms, so whether or not the electrode is removed by measuring this impedance. This is a warning to the user.

そこで、まず10Hz程度の正弦波を10マイクロアンペア程度まで弱め、基準電極−後頭部間、および基準電極−耳朶電極間に流し、その反応をインピーダンス自動ブリッジ回路にて検出する事により基準電極−後頭部間、および基準電極−耳朶電極間のインピーダンスを計測できるようにした。   Therefore, first, a sine wave of about 10 Hz is weakened to about 10 microamperes, and is passed between the reference electrode and the back of the head and between the reference electrode and the earlobe electrode, and the reaction is detected by the automatic impedance bridge circuit, thereby causing the reference electrode to the back of the head. And the impedance between the reference electrode and the earlobe electrode can be measured.

インピーダンス自動ブリッジ回路にて検出された信号は増幅、フィルタ処理、整流されてマイコンのアナログ/デジタル変換器へ入力され、マイコンはこのデータを演算、出力処理するようにした。さらにマイコンはこれらのインピーダンス計測部の電源を制御する事により、一定周期毎にインピーダンスチェックを行うようにした。フィルタ処理としてデジタル変換後にデジタルフィルタを使用してもかまわず、また信号を整流ぜずに演算によってインピーダンスを計算してもかまわない。   The signal detected by the automatic impedance bridge circuit is amplified, filtered, rectified and inputted to the analog / digital converter of the microcomputer, and the microcomputer calculates and outputs this data. In addition, the microcomputer controls the power supply of these impedance measuring units to check the impedance at regular intervals. As the filter processing, a digital filter may be used after digital conversion, or the impedance may be calculated by calculation without rectifying the signal.

このような構成の耐振動脳波計を作成し計測実験を行った結果、頭部を振っても振動ノイズ混入が少なく安定した計測が行え、しかも簡易装着が可能な脳波計を実現できた。   As a result of creating a vibration-resistant electroencephalograph with such a configuration and conducting a measurement experiment, an electroencephalograph that can perform stable measurement with little vibration noise mixing even when the head is shaken and that can be easily worn has been realized.

本発明の実施形態に係る耐振動脳波計の外観および構成を示す図である。It is a figure which shows the external appearance and structure of the vibration-proof electroencephalograph which concerns on embodiment of this invention. 本発明の実施形態に係る耐振動脳波計の脳波信号と振動信号それぞれの伝達方向を示す図である。It is a figure which shows the transmission direction of each electroencephalogram signal and vibration signal of the vibration-proof electroencephalograph which concerns on embodiment of this invention. 本発明の実施形態に係る耐振動脳波計の演算部の内部構成を表した図である。It is a figure showing the internal structure of the calculating part of the vibration-resistant electroencephalograph which concerns on embodiment of this invention. 脳波計測時に振動ノイズが混入した時の波形を説明した図である。It is a figure explaining the waveform when vibration noise mixes at the time of electroencephalogram measurement. 本発明の実施形態に係る耐振動脳波計の振動ノイズを除去する為の演算式を説明した図である。It is a figure explaining the computing equation for removing the vibration noise of the vibration-resistant electroencephalograph which concerns on embodiment of this invention. 本発明の実施形態に係る耐振動脳波計の振動ノイズを除去する為の演算式、及びその効果を説明した図である。It is the figure explaining the computing equation for removing the vibration noise of the vibration-proof electroencephalograph which concerns on embodiment of this invention, and its effect. 本発明の実施形態に係る耐振動脳波計の効果を示す図である。It is a figure which shows the effect of the vibration-proof electroencephalograph which concerns on embodiment of this invention.

1 フレーム
2 電極
3 振動センサ
4 フィルタ部
5 増幅部
6 デジタル変換部
7 フィルタ部
8 増幅部
9 デジタル変換部
10 演算部
11 比率係数演算機能
12 周波数帯域別強度算出機能
13 周波数帯域別強度補正機能
14 逆変換演算機能
DESCRIPTION OF SYMBOLS 1 Frame 2 Electrode 3 Vibration sensor 4 Filter part 5 Amplification part 6 Digital conversion part 7 Filter part 8 Amplification part 9 Digital conversion part 10 Calculation part 11 Ratio coefficient calculation function 12 Strength calculation function according to frequency band 13 Strength correction function according to frequency band 14 Inverse transformation operation function

Claims (2)

フレーム1と該フレーム1に配置された複数の電極2と前記フレーム1に配置された振動センサ3と前記電極2により検知された信号より電気ノイズ成分を除去するフィルタ部4と該フィルタ部4を通過した信号を増幅する増幅部5と該増幅部5により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部6と前記振動センサ3により検知された信号より電気ノイズ成分を除去するフィルタ部7と該フィルタ部7を通過した信号を増幅する増幅部8と該増幅部8により増幅されたアナログ信号をデジタル信号に変換するデジタル変換部9と該デジタル変換部9および前記デジタル変換部6の出力値から振動ノイズ成分の除去演算を行う演算部10から成り、演算部10はデジタル変換部6およびデジタル変換部9の出力データにおける比較条件を算出する比率係数算出機能11とデジタル変換部6およびデジタル変換部9のデータの周波数帯域別の強度を算出する周波数帯域別強度算出機能12と該周波数帯域別強度算出機能12によって算出された周波数帯域別強度および前記係数算出機能11によって算出された比率係数によって振動ノイズ成分を除去した周波数帯域別強度を算出する周波数帯域別強度補正機能13と該周波数帯域別強度補正機能13によって補正された周波数帯域別強度を波形データに戻す逆変換演算機能14から成る事を特徴とする耐振動脳波計。 A filter unit 4 for removing an electrical noise component from a signal detected by a frame 1, a plurality of electrodes 2 arranged in the frame 1, a vibration sensor 3 arranged in the frame 1, a signal detected by the electrode 2, and the filter unit 4 An amplifying unit 5 for amplifying the passed signal, a digital converting unit 6 for converting the analog signal amplified by the amplifying unit 5 into a digital signal, and a filter unit 7 for removing an electrical noise component from the signal detected by the vibration sensor 3 And an amplifier 8 that amplifies the signal that has passed through the filter unit 7, a digital converter 9 that converts an analog signal amplified by the amplifier 8 into a digital signal, and outputs of the digital converter 9 and the digital converter 6 The calculation unit 10 performs an operation for removing the vibration noise component from the value. The calculation unit 10 outputs the output data of the digital conversion unit 6 and the digital conversion unit 9 to each other. Calculated by the ratio coefficient calculation function 11 for calculating the comparison condition, the frequency conversion intensity calculation function 12 for calculating the intensity of the data of the digital converter 6 and the digital conversion section 9 for each frequency band, and the intensity calculation function 12 for each frequency band. The frequency band strength correction function 13 for calculating the frequency band strength obtained by removing the vibration noise component by the frequency band strength and the ratio coefficient calculated by the coefficient calculation function 11 and the frequency band strength correction function 13 An anti-vibration electroencephalograph comprising an inverse transformation calculation function 14 for returning the intensity for each frequency band to waveform data. 比率係数算出機能11がデジタル変換部6およびデジタル変換部9の出力データからそれぞれの一定時間における最大値と最小値の差を求め両者の比率を算出する機能である事を特徴とする請求項1の耐振動脳波計。 The ratio coefficient calculating function (11) is a function for calculating the ratio between the maximum value and the minimum value at a predetermined time from the output data of the digital conversion unit (6) and the digital conversion unit (9). Vibration resistance electroencephalograph.
JP2010027518A 2010-02-10 2010-02-10 Vibration resistance electroencephalograph Expired - Fee Related JP4571709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010027518A JP4571709B1 (en) 2010-02-10 2010-02-10 Vibration resistance electroencephalograph

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010027518A JP4571709B1 (en) 2010-02-10 2010-02-10 Vibration resistance electroencephalograph

Publications (2)

Publication Number Publication Date
JP4571709B1 true JP4571709B1 (en) 2010-10-27
JP2011161021A JP2011161021A (en) 2011-08-25

Family

ID=43098875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010027518A Expired - Fee Related JP4571709B1 (en) 2010-02-10 2010-02-10 Vibration resistance electroencephalograph

Country Status (1)

Country Link
JP (1) JP4571709B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6785446B2 (en) * 2016-04-14 2020-11-18 パナソニックIpマネジメント株式会社 Biological signal measurement system
JP7039002B2 (en) * 2016-12-14 2022-03-22 国立大学法人 名古屋工業大学 Wearable biosensor and noise canceling circuit
JP6861380B2 (en) 2016-12-20 2021-04-21 パナソニックIpマネジメント株式会社 Electronics
KR102126002B1 (en) * 2019-12-13 2020-06-24 주식회사 파낙토스 Brain Wave Measuring Device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115451A (en) * 1991-10-28 1993-05-14 Isuzu Motors Ltd Helmet for measuring brain wave
JP2001231768A (en) * 2000-01-07 2001-08-28 Natus Medical Inc Hearing evaluation device provided with patient connection for evaluation capability
JP2003102695A (en) * 2001-09-28 2003-04-08 Fukuda Denshi Co Ltd Biological signal collecting device and its controlling method
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device
JP2006280421A (en) * 2005-03-31 2006-10-19 Shimadzu Corp Brain function information monitoring device
JP2008253310A (en) * 2007-03-31 2008-10-23 Saga Univ Electromyographic-mechanomyographic measurement sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05115451A (en) * 1991-10-28 1993-05-14 Isuzu Motors Ltd Helmet for measuring brain wave
JP2001231768A (en) * 2000-01-07 2001-08-28 Natus Medical Inc Hearing evaluation device provided with patient connection for evaluation capability
JP2003102695A (en) * 2001-09-28 2003-04-08 Fukuda Denshi Co Ltd Biological signal collecting device and its controlling method
JP2004321253A (en) * 2003-04-21 2004-11-18 Colin Medical Technology Corp Pulse wave propagation velocity information measuring device
JP2006280421A (en) * 2005-03-31 2006-10-19 Shimadzu Corp Brain function information monitoring device
JP2008253310A (en) * 2007-03-31 2008-10-23 Saga Univ Electromyographic-mechanomyographic measurement sensor

Also Published As

Publication number Publication date
JP2011161021A (en) 2011-08-25

Similar Documents

Publication Publication Date Title
EP3139819B1 (en) Automatic detection of teeth clenching and/or teeth grinding
KR100450758B1 (en) Apparatus and method for measuring electroencephalogram
JP6459241B2 (en) Sleep state estimation device, sleep state estimation method, and program
US9332919B2 (en) Heart monitoring apparatus
US20160338598A1 (en) Biological information measurement apparatus
JP5843005B2 (en) ECG signal measuring apparatus and ECG signal measuring method
US10213156B2 (en) Headset apparatus for detecting multi-biosignal
KR101238192B1 (en) Ear attachable sensor-set and operating method of the same
JP2016526972A5 (en)
de Tommaso et al. Combined EEG/EMG evaluation during a novel dual task paradigm for gait analysis
EP1535571B1 (en) Stress-at-work judging device, stress-at-work judging program, and stress-at-work judging method
KR101218203B1 (en) Wearable sensor-set and operating method of the smae
JP4571709B1 (en) Vibration resistance electroencephalograph
EP1658810A1 (en) Method and systems for modulating a steady state stimulus
US20140378859A1 (en) Method of Multichannel Galvanic Skin Response Detection for Improving Measurement Accuracy and Noise/Artifact Rejection
KR101246183B1 (en) Band type sensor-set and operating method of the same
Lovelace et al. Modular, bluetooth enabled, wireless electroencephalograph (EEG) platform
JP2001204714A (en) Mental stress judging device
KR20180119280A (en) auto brain training and remote controlling systems based on neurofeedback
KR20010045348A (en) Method and system of biofeedback based on the detection of electro-encephalogram
JP2019162278A (en) Measuring device and system
JP6810682B2 (en) Biological signal processing device, program and method for determining periodic biosignal generation based on representative values of acceleration components
WO2023106160A1 (en) Biological signal detection device
Rakhmatulin ironbci. Open source. Brain-computer interface with the embedded board to monitor the physiological subject's condition and environmental parameters
TWI471120B (en) Detecting apparatus for head physiological parameters and method for the same and application equipment for the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees