JP4568935B2 - Hydrogen gas production method - Google Patents

Hydrogen gas production method Download PDF

Info

Publication number
JP4568935B2
JP4568935B2 JP2000003558A JP2000003558A JP4568935B2 JP 4568935 B2 JP4568935 B2 JP 4568935B2 JP 2000003558 A JP2000003558 A JP 2000003558A JP 2000003558 A JP2000003558 A JP 2000003558A JP 4568935 B2 JP4568935 B2 JP 4568935B2
Authority
JP
Japan
Prior art keywords
hydrogen gas
stored
combustion
facility
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000003558A
Other languages
Japanese (ja)
Other versions
JP2001192877A (en
Inventor
謙治 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2000003558A priority Critical patent/JP4568935B2/en
Publication of JP2001192877A publication Critical patent/JP2001192877A/en
Application granted granted Critical
Publication of JP4568935B2 publication Critical patent/JP4568935B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素ガス製造方法に関するものである。
【0002】
【従来の技術】
今日、省エネルギー、CO2削減、環境保全等の点から、廃熱の有効利用、燃焼制御、リサイクル、エネルギーカスケード等に関し、種々の技術が盛んに開発されている。
【0003】
現在、超臨界圧ボイラ、コンバインドサイクル、コージェネレーション等種々の技術が実用化されてはいるものの、温暖化ガス(CO2等)の削減目標達成のためには今後、種々のエネルギーの転換を積極的に進めていく必要がある。
【0004】
このため、太陽光、風等の自然エネルギーの活用、廃熱回収等の新エネルギーの実用化が広く研究されている。
【0005】
【発明が解決しようとする課題】
しかし、上記したような太陽光、風等の自然エネルギーの活用、廃熱回収等の実用化を困難にしている主な障害は、エネルギー荷体の多様性、小規模熱源の分散、エネルギー密度、変換効率、安定性の低さ等のためにエネルギーの回収、利用が難しいこと、装置設備の経済性を発揮できないことによる高コスト性等である。
【0006】
本発明は、このような点に鑑みてなしたもので、廃熱を利用して水素ガスを効率的に製造し、得られた水素ガスを貯蔵しておき、必要なときに任意に使用できるようにした水素ガス製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
本発明は、ごみ焼却場、火力発電所のような燃焼設備において、燃焼設備の廃熱を利用してカスケード構成された熱電発電素子により直流電力を生成し、得られた直流電力を用いて水を電気分解することにより水素ガスを製造し、製造した水素ガスを貯蔵手段に貯蔵する一方、水の電気分解による水素ガスの製造時に発生する酸素ガスを前記貯蔵手段とは別の貯蔵手段に貯蔵し、該貯蔵手段に貯蔵した酸素ガスを前記燃焼設備における燃焼時の酸素富化剤として供給することを特徴とする水素ガス製造方法、に係るものである。
【0008】
上記手段において、水素ガスは液化貯蔵設備に液化して貯蔵してもよく、又、水素ガスは水素吸蔵合金が収容された吸蔵容器に吸蔵により貯蔵してもよい。
【0009】
又水素ガスは燃焼設備に燃料として供給してもよい。
【0011】
本発明によれば、以下のように作用する。
【0012】
燃焼設備の廃熱を利用して熱電発電素子による発電を行い、それによって得られた直流電力を用いて水の電気分解を行い、これによって得た水素ガスを貯蔵手段にて貯蔵するようにしているので、貯蔵手段に貯蔵された水素ガスは、前記燃焼設備における燃焼用の燃料として用いたり、或いは前記燃焼設備とは全く異なる水素自動車の燃料、或いは燃料電池の燃料等、種々の燃料として広範囲に用いることができる。これにより、需要と供給の時間的、地理的隔たりがあってもそれを解消して、エネルギーの効率的な利用が可能になる。
又、水電気分解槽における水の電気分解によって製造される酸素ガスを貯蔵手段に貯蔵しておくことにより、この酸素ガスを燃焼設備の燃焼に酸素富化剤として供給して燃焼温度を上昇させることによりダイオキシンの発生を防止したり、或いは他の種々の目的に使用できる。
【0013】
液化貯蔵設備及び吸蔵容器に貯蔵された水素ガスは、高い熱量を有しているので、この水素ガスを燃焼設備に供給して燃焼を行うと、燃焼設備の小型化、高効率化が図れ、更にCO2の低減、NOxの低減が図れる。
【0015】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0016】
廃熱等のエネルギーを有効に活用するためには、単純・直接的なエネルギー変換、或いは需要・供給の同時進行型のエネルギー変換ではなく、貯蔵・輸送が可能なエネルギーに変換し、これによって需要と供給の時間的、地理的な隔たりをなくすことができる方法を提供することである。
【0017】
そのために、本発明では、廃熱を利用して熱電発電素子による発電と、これによって得られた直流電力を用いて水の電気分解を行う水電気分解槽とを組み合わせることによって、高い熱量、低いNOx発生等、二次エネルギーとして望ましい水素ガスを製造し、この水素ガスを貯蔵することにより、エネルギーの貯蔵、輸送を可能にしたものである。
【0018】
図1は本発明における水素ガス製造方法を実施する装置の形態の一例を示すフローチャートである。図1では、ごみ焼却場1A及び火力発電所1Bのような燃焼を行う燃焼設備1が図示されており、ごみ焼却場1A及び火力発電所1Bに、燃焼時に大量に発生する廃熱を利用して発電を行う熱電発電素子2を設ける。
【0019】
熱電発電素子2は、鉄シリサイド、ゲルマニウムシリサイド、カルコゲナイド、スクッテルダイトや傾斜機能材等の材料からなっており、熱エネルギーを直接電気エネルギーに変換して直流電力3を生成できるものである。熱電発電素子2は、多数をカスケード構成に備えることによって、大きな直流電力3が得られるようになっている。
【0020】
図1中4は水電気分解槽であり、水電気分解槽4は、熱電発電素子2によって生成された直流電力3を用いて、水を電気分解して水素ガス5と酸素ガス6とを製造することができる。
【0021】
水電気分解槽4で生成した水素ガス5は、貯蔵手段7にて貯蔵するようにしている。貯蔵手段7には、水素ガス5を低温液化させて貯蔵するようにした液化貯蔵設備8を用いることができる。
【0022】
又、貯蔵手段7には、水素吸蔵合金が収容された吸蔵容器9を用いることができ、水素ガス5は吸蔵容器9の水素吸蔵合金に吸蔵させて貯蔵することができる。上記水素吸蔵合金には、ランタン・ニッケル系合金、鉄・チタン系合金等種々材料のものを用いることができる。
【0023】
液化貯蔵設備8に液化貯蔵された水素ガス5、及び吸蔵容器9水素吸蔵合金に吸蔵により貯蔵された水素ガス5は、前記燃焼設備1における燃焼用の燃料として用いることができる他、水素自動車10の燃料として用いたり、或いは燃料電池11の燃料等、種々の燃料として広範囲に用いることができる。又、上記した液化貯蔵設備8から水素ガス5を気化して取り出す際に発生する冷熱12は、冷却、冷凍等の装置の冷熱として利用することができる。
【0024】
一方、前記した水電気分解槽4で水を電気分解することによって製造された酸素ガス6も、貯蔵手段13に貯蔵することができる。酸素ガス6の貯蔵手段13としては、液化貯蔵設備14によって液化貯蔵したり、或いは酸素ボンベ15に充填して貯蔵することができる。
【0025】
前記液化貯蔵設備14或いは酸素ボンベ15に貯蔵された酸素ガス6は、前記燃焼設備1の燃焼時における酸素富化剤として用いたり、その他の種々の目的に使用することができる。又、上記した液化貯蔵設備14から酸素ガス6を気化して取り出す際に発生する冷熱16も、冷却、冷凍等の装置の冷熱として利用することができる。
【0026】
以下に、上記形態例の作用を説明する。
【0027】
図1において、ごみ焼却場1A及び火力発電所1Bのような燃焼設備1で燃焼を行う場合、廃熱が発生する。このような廃熱は、燃焼設備1の燃焼用空気の予熱に用いることが実施されており、更にこの他にも、廃熱によって蒸気を生成させて暖房に利用したり、或いは給湯に利用すること等が実施されている。しかし、上記した廃熱の利用方法は、何れも熱エネルギーをそのまま利用する方法であり単純・直接的なエネルギー変換であり、需要・供給の同時進行型のエネルギー変換である。
【0028】
これに対し、本発明では、燃焼設備1に、廃熱によって発電を行うようにした熱電発電素子2を備えているので、廃熱を利用して効率的な発電を行うことができる。熱電発電素子2は、熱エネルギーを直接電気エネルギーに変換して直流電力3を生成することができ、多数の熱電発電素子2をカスケード構成とすることによって大きな直流電力3を得ることができる。
【0029】
このような熱電発電素子2は、前記したごみ焼却場1A及び火力発電所1Bによる燃焼設備1以外にも廃熱の発生を伴う種々の設備に設置することによって、大きな直流電力を得ることができる。
【0030】
熱電発電素子2によって生成された直流電力3は、水電気分解槽4に供給される。水電気分解槽4では、供給された直流電力3によって、水を電気分解し、水素ガス5と酸素ガス6とを製造する。このとき、熱電発電素子2で得られる電力が直流であり、又水電気分解槽4で用いられる電力も直流であるので、熱電発電素子2で得られた直流電力3をそのまま水電気分解槽4に供給して用いることができるので、電力の直/交変換を要せず、エネルギーを効率良く利用することができる。
【0031】
水電気分解槽4で製造された水素ガス5は、貯蔵手段7における液化貯蔵設備8に液化貯蔵する、或いは吸蔵容器9に収容された水素吸蔵合金に吸蔵させて貯蔵する方法によって貯蔵する。このとき、水素ガス5を水素吸蔵合金に吸蔵させて貯蔵する方法は、水素ガス5を単に水素ガスボンベに充填する方法に比して、1/3〜1/5の容積で済むという利点がある。
【0032】
上記したように、燃焼設備1の廃熱を利用して熱電発電素子2により発電を行い、得られた直流電力3を用いて水電気分解槽4により水の電気分解を行い、水の電気分解にて得られた水素ガス5を貯蔵手段7にて貯蔵するようにしているので、貯蔵手段7に貯蔵された水素ガス5は、必要に応じて、前記燃焼設備1の燃焼用の燃料として用いたり、或いは燃焼設備1とは全く異なる水素自動車10の燃料として用いたり、更には燃料電池11の燃料等、種々の燃料として広範囲に用いることができる。これにより、需要と供給の時間的、地理的隔たりがあっても、これを解消してエネルギーの効率的な利用を可能にすることができる。
【0033】
又、上記した液化貯蔵設備8から水素ガス5を気化して取り出す際に発生する冷熱12は、冷却、冷凍等の装置の冷熱として有効に利用することができる。
【0034】
前記において、液化貯蔵設備8及び吸蔵容器9に貯蔵された水素ガス5は、高い熱量を有しているので、この水素ガス5を燃焼設備1に燃料として供給し燃焼を行うと、燃焼設備1の小型化、高効率化が図れ、更にCO2の低減、NOxの低減を図ることができる。
【0035】
一方、前記した水電気分解槽4で水を電気分解することによって製造された酸素ガス6も、液化貯蔵設備14或いは酸素ボンベ15からなる貯蔵手段13に貯蔵することができる。液化貯蔵設備14或いは酸素ボンベ15に貯蔵された酸素ガス6は、燃焼設備1の燃焼時の酸素富化剤として供給する等、種々の目的に使用することができる。
【0036】
貯蔵手段13に貯蔵された酸素ガス6を燃焼設備1の酸素富化剤として利用すると、燃焼設備1の燃焼温度を上昇させて、ダイオキシンの発生を低減できる効果がある。又、前記液化貯蔵設備14から酸素ガス6を気化して取り出す際に発生する冷熱16も、冷却、冷凍等の装置の冷熱として利用することができる。
【0037】
尚、本発明は上記形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。
【0038】
【発明の効果】
本発明によれば、燃焼設備の廃熱を利用して熱電発電素子による発電を行い、それによって得られた直流電力を用いて水の電気分解を行い、これによって得た水素ガスを貯蔵手段にて貯蔵するようにしているので、貯蔵手段に貯蔵された水素ガスは、前記燃焼設備における燃焼用の燃料として用いたり、或いは前記燃焼装置とは全く異なる水素自動車の燃料、或いは燃料電池の燃料等、種々の燃料として広範囲に用いることができる。これにより、需要と供給の時間的、地理的隔たりがあってもそれを解消して、エネルギーの効率的な利用が可能になるという優れた効果を奏する。
【0039】
液化貯蔵設備及び吸蔵容器に貯蔵された水素ガスは、高い熱量を有しているので、この水素ガスを燃焼装置に供給して燃焼を行うと、燃焼装置の小型化、高効率化が図れ、更にCO2の低減、NOxの低減が図れる効果がある。
【0040】
又、水電気分解槽における水の電気分解によって製造される酸素ガスを貯蔵手段に貯蔵しておくことにより、燃焼設備の燃焼に酸素富化剤として供給して燃焼温度を上昇させることによりダイオキシンの発生を防止したり、或いは他の種々の目的に使用できる効果がある。
【図面の簡単な説明】
【図1】本発明の水素ガス製造方法を実施する装置の形態の一例を示すフローチャートである。
【符号の説明】
1 燃焼設備
1A ごみ焼却場
1B 火力発電所
2 熱電発電素子
3 直流電力
4 水電気分解槽
5 水素ガス
6 酸素ガス
7 貯蔵手段
8 液化貯蔵設備
9 吸蔵容器
13 貯蔵手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing hydrogen gas.
[0002]
[Prior art]
Today, various technologies have been actively developed with respect to effective use of waste heat, combustion control, recycling, energy cascade, and the like from the viewpoints of energy saving, CO 2 reduction, environmental protection, and the like.
[0003]
Although various technologies such as supercritical pressure boilers, combined cycle, and cogeneration are currently being put into practical use, in order to achieve greenhouse gas (CO 2 etc.) reduction targets, various energy conversions will be actively promoted in the future. It is necessary to move forward.
[0004]
For this reason, utilization of natural energy such as sunlight and wind, and practical application of new energy such as waste heat recovery are widely studied.
[0005]
[Problems to be solved by the invention]
However, the main obstacles that make it difficult to put into practical use such as the utilization of natural energy such as sunlight and wind as described above and waste heat recovery are the diversity of energy packages, dispersion of small-scale heat sources, energy density, It is difficult to recover and use energy due to low conversion efficiency, low stability, etc., and high cost due to inefficiency of equipment and equipment.
[0006]
The present invention has been made in view of such points, and efficiently produces hydrogen gas using waste heat, stores the obtained hydrogen gas, and can be used arbitrarily when necessary. An object of the present invention is to provide a hydrogen gas production method.
[0007]
[Means for Solving the Problems]
The present invention relates to a combustion facility such as a waste incineration plant or a thermal power plant, in which direct current power is generated by thermoelectric power generation elements configured in cascade using waste heat of the combustion facility, and water is obtained using the obtained direct current power. Hydrogen gas is produced by electrolyzing, and the produced hydrogen gas is stored in the storage means, while oxygen gas generated during the production of hydrogen gas by water electrolysis is stored in a storage means different from the storage means. The oxygen gas stored in the storage means is supplied as an oxygen enrichment agent during combustion in the combustion facility .
[0008]
In the above means, the hydrogen gas may be liquefied and stored in a liquefied storage facility, or the hydrogen gas may be stored by occlusion in an occlusion container containing a hydrogen occlusion alloy.
[0009]
Hydrogen gas may be supplied as fuel to the combustion facility.
[0011]
The present invention operates as follows.
[0012]
Using the waste heat of the combustion equipment, power is generated by the thermoelectric power generation element, the water is electrolyzed using the DC power obtained thereby, and the resulting hydrogen gas is stored in the storage means. Therefore, the hydrogen gas stored in the storage means is used as a fuel for combustion in the combustion facility, or as a wide variety of fuels such as a fuel for a hydrogen vehicle completely different from the combustion facility or a fuel for a fuel cell. Can be used. As a result, even if there is a time and geographical gap between supply and demand, it can be resolved and energy can be used efficiently.
Also, by storing oxygen gas produced by electrolysis of water in the water electrolysis tank in the storage means, this oxygen gas is supplied to the combustion of the combustion facility as an oxygen enricher to raise the combustion temperature. Therefore, generation of dioxins can be prevented or used for various other purposes.
[0013]
Since the hydrogen gas stored in the liquefied storage facility and the storage container has a high calorific value, if this hydrogen gas is supplied to the combustion facility and burned, the combustion facility can be made smaller and more efficient, Further, CO 2 and NOx can be reduced.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0016]
In order to make effective use of energy such as waste heat, instead of simple and direct energy conversion, or simultaneous energy conversion of supply and demand, it is converted into energy that can be stored and transported, and this is It is to provide a method that can eliminate the time and geographical gap between supply and supply.
[0017]
Therefore, in the present invention, a combination of a power generation by a thermoelectric power generation element using waste heat and a water electrolysis tank that performs electrolysis of water using DC power obtained thereby, a high calorific value and low By producing hydrogen gas desirable as secondary energy, such as NOx generation, and storing this hydrogen gas, energy can be stored and transported.
[0018]
FIG. 1 is a flowchart showing an example of an apparatus for carrying out the hydrogen gas production method of the present invention. FIG. 1 shows a combustion facility 1 that performs combustion such as a waste incineration plant 1A and a thermal power plant 1B. The waste incineration plant 1A and thermal power plant 1B utilize waste heat generated in large quantities during combustion. A thermoelectric power generation element 2 for generating power is provided.
[0019]
The thermoelectric power generation element 2 is made of a material such as iron silicide, germanium silicide, chalcogenide, skutterudite, or a functionally gradient material, and can generate direct-current power 3 by directly converting thermal energy into electrical energy. A large number of thermoelectric power generation elements 2 are provided in a cascade configuration so that large DC power 3 can be obtained.
[0020]
In FIG. 1, reference numeral 4 denotes a water electrolysis tank, and the water electrolysis tank 4 produces hydrogen gas 5 and oxygen gas 6 by electrolyzing water using the DC power 3 generated by the thermoelectric power generation element 2. can do.
[0021]
The hydrogen gas 5 generated in the water electrolysis tank 4 is stored in the storage means 7. The storage means 7 can be a liquefied storage facility 8 in which the hydrogen gas 5 is liquefied and stored at a low temperature.
[0022]
The storage means 7 can be a storage container 9 in which a hydrogen storage alloy is accommodated, and the hydrogen gas 5 can be stored by being stored in the hydrogen storage alloy of the storage container 9. As the hydrogen storage alloy, various materials such as lanthanum / nickel alloy and iron / titanium alloy can be used.
[0023]
The hydrogen gas 5 liquefied and stored in the liquefied storage facility 8 and the hydrogen gas 5 stored in the storage container 9 by storage in the hydrogen storage alloy can be used as a fuel for combustion in the combustion facility 1, as well as the hydrogen automobile 10. It can be used as a fuel for various types of fuel such as a fuel for the fuel cell 11 or the like. In addition, the cold heat 12 generated when the hydrogen gas 5 is vaporized and taken out from the liquefied storage facility 8 can be used as cold heat for an apparatus such as cooling and freezing.
[0024]
On the other hand, the oxygen gas 6 produced by electrolyzing water in the water electrolysis tank 4 can also be stored in the storage means 13. As the storage means 13 for the oxygen gas 6, it can be liquefied and stored by the liquefied storage equipment 14, or can be filled and stored in the oxygen cylinder 15.
[0025]
The oxygen gas 6 stored in the liquefied storage facility 14 or the oxygen cylinder 15 can be used as an oxygen enricher during combustion of the combustion facility 1 or for various other purposes. Further, the cold heat 16 generated when the oxygen gas 6 is vaporized and taken out from the liquefied storage facility 14 can also be used as cold heat for an apparatus such as cooling and freezing.
[0026]
The operation of the above embodiment will be described below.
[0027]
In FIG. 1, when combustion is performed in a combustion facility 1 such as a waste incineration plant 1A and a thermal power plant 1B, waste heat is generated. Such waste heat is used for preheating the combustion air of the combustion facility 1, and in addition to this, steam is generated by waste heat and used for heating, or used for hot water supply. That is being implemented. However, any of the above-described methods of using waste heat is a method of using heat energy as it is, simple and direct energy conversion, and simultaneous supply and demand energy conversion.
[0028]
On the other hand, in the present invention, the combustion facility 1 includes the thermoelectric power generation element 2 that generates power by waste heat, so that efficient power generation can be performed using waste heat. The thermoelectric power generation element 2 can generate direct-current power 3 by directly converting thermal energy into electrical energy, and can obtain a large direct-current power 3 by forming a large number of thermoelectric power generation elements 2 in a cascade configuration.
[0029]
Such a thermoelectric power generation element 2 can obtain large direct current power by being installed in various facilities accompanied by the generation of waste heat in addition to the combustion facility 1 by the waste incineration plant 1A and the thermal power plant 1B. .
[0030]
The DC power 3 generated by the thermoelectric generator 2 is supplied to the water electrolysis tank 4. In the water electrolysis tank 4, water is electrolyzed with the supplied DC power 3 to produce hydrogen gas 5 and oxygen gas 6. At this time, since the electric power obtained by the thermoelectric power generation element 2 is DC, and the electric power used by the water electrolysis tank 4 is also direct current, the DC power 3 obtained by the thermoelectric power generation element 2 is used as it is. Therefore, it is possible to efficiently use energy without requiring direct / interchange conversion of electric power.
[0031]
The hydrogen gas 5 produced in the water electrolysis tank 4 is stored by liquefying and storing in the liquefied storage facility 8 in the storage means 7 or by storing it in the hydrogen storage alloy stored in the storage container 9. At this time, the method in which the hydrogen gas 5 is stored in the hydrogen storage alloy has an advantage that the volume of 1/3 to 1/5 is sufficient as compared with the method in which the hydrogen gas 5 is simply filled in the hydrogen gas cylinder. .
[0032]
As described above, the waste heat of the combustion facility 1 is used to generate power with the thermoelectric generator 2, and the obtained direct current power 3 is used to electrolyze water with the water electrolysis tank 4, thereby electrolyzing water. Since the hydrogen gas 5 obtained in step 1 is stored in the storage means 7, the hydrogen gas 5 stored in the storage means 7 is used as a fuel for combustion in the combustion facility 1 as necessary. It can be used as a fuel for a hydrogen vehicle 10 that is completely different from the combustion facility 1, and can be used in a wide range as a fuel for the fuel cell 11. As a result, even if there is a temporal and geographical gap between supply and demand, it is possible to eliminate this and enable efficient use of energy.
[0033]
Further, the cold heat 12 generated when the hydrogen gas 5 is vaporized and taken out from the liquefied storage facility 8 can be effectively used as cold heat for a device such as cooling or freezing.
[0034]
In the above, since the hydrogen gas 5 stored in the liquefied storage facility 8 and the storage container 9 has a high calorific value, when the hydrogen gas 5 is supplied to the combustion facility 1 as fuel and burned, the combustion facility 1 Can be reduced in size and efficiency, and CO 2 and NO x can be reduced.
[0035]
On the other hand, the oxygen gas 6 produced by electrolyzing water in the water electrolysis tank 4 can also be stored in the storage means 13 including the liquefied storage facility 14 or the oxygen cylinder 15. The oxygen gas 6 stored in the liquefied storage facility 14 or the oxygen cylinder 15 can be used for various purposes, such as being supplied as an oxygen enricher during combustion in the combustion facility 1.
[0036]
When the oxygen gas 6 stored in the storage means 13 is used as an oxygen enriching agent for the combustion facility 1, there is an effect that the combustion temperature of the combustion facility 1 is raised and the generation of dioxins can be reduced. Further, the cold heat 16 generated when the oxygen gas 6 is vaporized and taken out from the liquefied storage facility 14 can also be used as cold heat for devices such as cooling and freezing.
[0037]
In addition, this invention is not limited only to the said form example, A various change can be added in the range which does not deviate from the summary of this invention.
[0038]
【The invention's effect】
According to the present invention, the waste heat of the combustion facility is used to generate power by the thermoelectric power generation element, the direct current power obtained thereby is electrolyzed, and the hydrogen gas obtained thereby is stored in the storage means. The hydrogen gas stored in the storage means is used as a fuel for combustion in the combustion facility, or is a fuel for a hydrogen vehicle that is completely different from the combustion device, or a fuel for a fuel cell, etc. It can be used widely as various fuels. As a result, even if there is a time and geographical gap between supply and demand, the effect is solved, and energy can be efficiently used.
[0039]
Since the hydrogen gas stored in the liquefied storage facility and the storage container has a high calorific value, if this hydrogen gas is supplied to the combustion device and burned, the combustion device can be made smaller and more efficient, In addition, CO 2 and NOx can be reduced.
[0040]
In addition, by storing oxygen gas produced by electrolysis of water in a water electrolysis tank in a storage means, it is supplied as an oxygen-enriching agent to the combustion of combustion equipment, and the combustion temperature is increased to increase the combustion temperature. There is an effect that the generation can be prevented or used for various other purposes.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an example of an apparatus for carrying out a hydrogen gas production method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion equipment 1A Waste incineration plant 1B Thermal power plant 2 Thermoelectric power generation element 3 DC power 4 Water electrolysis tank 5 Hydrogen gas 6 Oxygen gas 7 Storage means 8 Liquefaction storage equipment 9 Occlusion container 13 Storage means

Claims (4)

ごみ焼却場、火力発電所のような燃焼設備において、燃焼設備の廃熱を利用してカスケード構成された熱電発電素子により直流電力を生成し、得られた直流電力を用いて水を電気分解することにより水素ガスを製造し、製造した水素ガスを貯蔵手段に貯蔵する一方、水の電気分解による水素ガスの製造時に発生する酸素ガスを前記貯蔵手段とは別の貯蔵手段に貯蔵し、該貯蔵手段に貯蔵した酸素ガスを前記燃焼設備における燃焼時の酸素富化剤として供給することを特徴とする水素ガス製造方法。In a combustion facility such as a garbage incineration plant or thermal power plant, DC power is generated by thermoelectric power generation elements configured in cascade using waste heat from the combustion facility, and water is electrolyzed using the obtained DC power. The hydrogen gas is produced and the produced hydrogen gas is stored in the storage means, while the oxygen gas generated during the production of hydrogen gas by electrolysis of water is stored in a storage means different from the storage means, and the storage A method for producing hydrogen gas, characterized in that oxygen gas stored in the means is supplied as an oxygen enriching agent during combustion in the combustion facility . 水素ガスを液化貯蔵設備に液化して貯蔵することを特徴とする請求項1記載の水素ガス製造方法。  2. The method for producing hydrogen gas according to claim 1, wherein the hydrogen gas is liquefied and stored in a liquefied storage facility. 水素ガスを水素吸蔵合金が収容された吸蔵容器に吸蔵により貯蔵することを特徴とする請求項1記載の水素ガス製造方法。  2. The method for producing hydrogen gas according to claim 1, wherein the hydrogen gas is stored by occlusion in an occlusion container containing a hydrogen occlusion alloy. 水素ガスを燃焼設備に燃料として供給することを特徴とする請求項1又は2又は3記載の水素ガス製造方法。  4. The method for producing hydrogen gas according to claim 1, wherein hydrogen gas is supplied as fuel to a combustion facility.
JP2000003558A 2000-01-12 2000-01-12 Hydrogen gas production method Expired - Fee Related JP4568935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000003558A JP4568935B2 (en) 2000-01-12 2000-01-12 Hydrogen gas production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003558A JP4568935B2 (en) 2000-01-12 2000-01-12 Hydrogen gas production method

Publications (2)

Publication Number Publication Date
JP2001192877A JP2001192877A (en) 2001-07-17
JP4568935B2 true JP4568935B2 (en) 2010-10-27

Family

ID=18532488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003558A Expired - Fee Related JP4568935B2 (en) 2000-01-12 2000-01-12 Hydrogen gas production method

Country Status (1)

Country Link
JP (1) JP4568935B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003056798A (en) * 2001-08-13 2003-02-26 Sony Corp Hydrogen storing vessel and hydrogen supplying method
GB201112299D0 (en) * 2011-07-18 2011-08-31 Elsarrag Esam Fuel protection apparatus
KR101523743B1 (en) * 2013-11-27 2015-05-28 한양대학교 에리카산학협력단 Hybrid type device
CN107164776A (en) * 2017-06-29 2017-09-15 赫普热力发展有限公司 A kind of fuel reaction system processed, power plant peak regulation system and power plant
JP7103876B2 (en) * 2018-07-04 2022-07-20 日本製鋼所M&E株式会社 Hydrogen shipping equipment and hydrogen shipping system
JP7424861B2 (en) * 2020-02-28 2024-01-30 荏原環境プラント株式会社 Raw material processing equipment
AU2021464174A1 (en) * 2021-09-13 2024-02-15 Carlos Alberto HERNÁNDEZ ABARCA System for the circular production of hydrogen and oxygen with feedback of thermal energy waste recovered in the stirling engine step and in the electrolysis step

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137377A (en) * 1988-11-18 1990-05-25 Komatsu Ltd Assembly of thermoelectric module
JPH0742355U (en) * 1991-03-27 1995-08-04 日本電池株式会社 Oxygen gas Hydrogen gas supply device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3018790U (en) * 1995-05-30 1995-11-28 ▲げん▼恭 江 Water engine
JPH08335722A (en) * 1995-06-08 1996-12-17 Ngk Insulators Ltd Thermoelectric conversion module
JPH0941178A (en) * 1995-08-03 1997-02-10 Nippon Soken Inc Hydrogen forming and storing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02137377A (en) * 1988-11-18 1990-05-25 Komatsu Ltd Assembly of thermoelectric module
JPH0742355U (en) * 1991-03-27 1995-08-04 日本電池株式会社 Oxygen gas Hydrogen gas supply device

Also Published As

Publication number Publication date
JP2001192877A (en) 2001-07-17

Similar Documents

Publication Publication Date Title
Peng et al. Energy and exergy analysis of a new combined concentrating solar collector, solid oxide fuel cell, and steam turbine CCHP system
Mohammadi et al. A comprehensive review on coupling different types of electrolyzer to renewable energy sources
Stern A new sustainable hydrogen clean energy paradigm
Ishaq et al. Development and assessment of a solar, wind and hydrogen hybrid trigeneration system
Gao et al. An integrated energy storage system based on hydrogen storage: Process configuration and case studies with wind power
Mehrpooya et al. Introducing and analysis of a hybrid molten carbonate fuel cell-supercritical carbon dioxide Brayton cycle system
Rajashekara Hybrid fuel-cell strategies for clean power generation
Delhomme et al. Coupling and thermal integration of a solid oxide fuel cell with a magnesium hydride tank
US11913434B2 (en) Energy storage with hydrogen
Xu et al. Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle
Mehrpooya et al. Introducing a hybrid multi-generation fuel cell system, hydrogen production and cryogenic CO2 capturing process
Li et al. Efficient and low-carbon heat and power cogeneration with photovoltaics and thermochemical storage
Wu et al. Dynamic modeling and operation strategy of natural gas fueled SOFC-Engine hybrid power system with hydrogen addition by metal hydride for vehicle applications
Erzen et al. Performance assessment of a biogas fuelled molten carbonate fuel cell-thermophotovoltaic cell-thermally regenerative electrochemical cycle-absorption refrigerator-alkaline electrolyzer for multigenerational applications
JP4568935B2 (en) Hydrogen gas production method
KR20070088992A (en) Cogeneration system using for fuel cell
Abbasi et al. Waste heat management of direct carbon fuel cell with advanced supercritical carbon dioxide power cycle–A thermodynamic-electrochemical modeling approach
JP2002348694A (en) Energy supply system
DinAli et al. Performance assessment of a new solar energy based cogeneration system for dimethyl-ether and electricity production
Coulibaly et al. A theoretical study of molten carbonate fuel cell combined with a solar power plant and Cu–Cl thermochemical cycle based on techno-economic analysis
Singh et al. Exergy analysis of reversible sofc coupled with organic Rankine cycle and hydrogen storage for renewable energy storage
Batgi et al. A solar driven hybrid sulfur cycle based integrated hydrogen production system for useful outputs
KR100965715B1 (en) Hybrid Power Plant System using Fuel Cell Generation and Thermoelectric Generation
Al-Hallaj et al. Conceptual design of a novel hybrid fuel cell/desalination system
Chamousis Hydrogen: Fuel of the future

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100726

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees