JP4563075B2 - Blood glucose level measuring device - Google Patents

Blood glucose level measuring device Download PDF

Info

Publication number
JP4563075B2
JP4563075B2 JP2004144472A JP2004144472A JP4563075B2 JP 4563075 B2 JP4563075 B2 JP 4563075B2 JP 2004144472 A JP2004144472 A JP 2004144472A JP 2004144472 A JP2004144472 A JP 2004144472A JP 4563075 B2 JP4563075 B2 JP 4563075B2
Authority
JP
Japan
Prior art keywords
blood glucose
glucose level
infrared light
level measuring
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004144472A
Other languages
Japanese (ja)
Other versions
JP2005323799A (en
Inventor
雅嗣 川崎
ちひろ 神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jasco Corp
Original Assignee
Jasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jasco Corp filed Critical Jasco Corp
Priority to JP2004144472A priority Critical patent/JP4563075B2/en
Publication of JP2005323799A publication Critical patent/JP2005323799A/en
Application granted granted Critical
Publication of JP4563075B2 publication Critical patent/JP4563075B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、非侵襲的な血糖値測定装置、特にその被験者の所定部位への赤外光の照射機構の改良に関する。   The present invention relates to a non-invasive blood sugar level measuring apparatus, and more particularly to an improvement of a mechanism for irradiating infrared light to a predetermined part of the subject.

糖尿病患者およびそのおそれのある人は食事療法に基き、毎回の食事前後にその血糖値を測定しなければならない。現在は針を指先に刺し、体外へ取り出した血液を用いて、その血糖値を定量することが一般的である(例えば、特許文献1参照)。この方法は、定量性があり、利便性もあって非常に普及している。
特開平10−028683号公報
Diabetics and those who are at risk must measure their blood glucose levels before and after each meal based on diet. At present, it is common to quantitate the blood glucose level using blood taken from outside the body by inserting a needle into a fingertip (see, for example, Patent Document 1). This method is very popular because it is quantitative and convenient.
Japanese Patent Laid-Open No. 10-028863

しかしながら、上記の方法では痛みを伴い、長期患者では指先が硬く腫れてしまい、患者にかなりの犠牲を強いている。また、患者が自分で指先に針を刺す処理を行わなければならないため、衛生的にも好ましくないという問題があった。
本発明は上記課題に鑑みなされたものであり、その目的は血液を体外に取り出す処理を行う必要のない非侵襲的な血糖値測定装置を提供することにある。
However, the above methods are painful, and the fingertips are hard and swollen in long-term patients, forcing a considerable sacrifice on the patients. In addition, since the patient has to perform a process of inserting a needle into his / her fingertip, there is a problem that it is not preferable in terms of hygiene.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a non-invasive blood sugar level measuring apparatus that does not need to perform a process of taking blood out of the body.

上記目的を達成するため、本発明の血糖値測定装置は、赤外光を射出する赤外光射出手段と、前記赤外光を被験者の所定部位に照射し、該部位からの拡散反射光を集光する照射部位位置決め手段と、該照射部位位置決め手段によって集光された拡散反射光を検出する検出手段と、を備え、該検出手段によって検出された拡散反射光のスペクトル情報に基いて、前記被験者の血糖値を推定することを特徴とする。
上記の血糖値測定装置において、前記照射部位位置決め手段は、赤外光射出手段からの赤外光を被験者の所定の部位へ照射する照射部と、赤外光の照射部位からの拡散反射光を集光する集光部と、照射部及び集光部を収納する筐体と、を含み、該筐体は、赤外光射出手段からの赤外光を筐体内へ入射する入射窓と、前記筐体の外にある照射部位へ照射部からの赤外光を照射する測定口と、集光部で集光された拡散反射光を前記筐体外の検出手段へと出射する出射窓と、を設けることが好適である。
上記の血糖値測定装置において、前記測定口に石英板を設けることが好適である。
上記の血糖値測定装置において、5498〜5240cm−1、6128〜5906cm−1、及び8318〜7976cm−1の波数範囲の拡散反射スペクトルを用いて血糖値を推定することが好適である。
In order to achieve the above object, the blood sugar level measuring apparatus of the present invention comprises an infrared light emitting means for emitting infrared light, and irradiating a predetermined part of the subject with the infrared light, and diffusing reflected light from the part. An irradiation part positioning means for condensing; and a detection means for detecting diffusely reflected light collected by the irradiation part positioning means, based on spectral information of the diffusely reflected light detected by the detection means, The blood glucose level of the subject is estimated.
In the blood glucose level measuring apparatus, the irradiation site positioning unit includes an irradiation unit that irradiates a predetermined region of the subject with infrared light from the infrared light emission unit, and diffuse reflection light from the irradiation site of the infrared light. A condensing unit that collects light, and a housing that houses the irradiating unit and the condensing unit, and the housing includes an incident window through which infrared light from an infrared light emitting unit enters the housing; A measurement port for irradiating infrared light from the irradiation unit to an irradiation site outside the housing, and an exit window for emitting the diffuse reflected light collected by the light collecting unit to the detection means outside the housing; It is preferable to provide it.
In the blood sugar level measuring apparatus, it is preferable that a quartz plate is provided at the measurement port.
In the above blood glucose level measuring apparatus, it is preferable to estimate the blood glucose level using diffuse reflection spectra in the wave number ranges of 5498-5240 cm −1 , 6128-5906 cm −1 , and 8318-7976 cm −1 .

本発明の血糖値測定方法によれば、赤外光を被験者の所定部位に照射し、その拡散反射スペクトル情報から血糖値を推定するため、非侵襲的に血糖値の測定を行うことができ、被験者に痛みを与えることなしに、手軽に血糖値測定を行うことができる。   According to the blood glucose level measurement method of the present invention, the blood glucose level can be measured non-invasively by irradiating a predetermined part of the subject with infrared light and estimating the blood glucose level from the diffuse reflection spectrum information. The blood glucose level can be easily measured without causing pain to the subject.

以下に図面を参照して本発明の好適な実施形態を説明する。図1に示された血糖値測定装置10は、赤外光射出手段12と、照射部位位置決め手段14と、検出手段16と、データ処理手段18とを備える。赤外光射出手段12からの赤外光は、照射部位位置決め手段14によって被験者の所定部位に照射される。さらに、照射部位位置決め手段14によって被験者の所定部位からの拡散反射光を集光して検出手段16へと送る。検出手段16からの検出信号は、データ処理手段18へと送られ、その拡散反射光のスペクトル情報に基いて、被験者の血糖値が推定される。   Preferred embodiments of the present invention will be described below with reference to the drawings. The blood glucose level measuring apparatus 10 shown in FIG. 1 includes an infrared light emitting means 12, an irradiation site positioning means 14, a detecting means 16, and a data processing means 18. The infrared light from the infrared light emitting means 12 is irradiated to a predetermined part of the subject by the irradiation part positioning means 14. Further, the diffused reflected light from the predetermined site of the subject is collected by the irradiation site positioning unit 14 and sent to the detection unit 16. The detection signal from the detection means 16 is sent to the data processing means 18, and the blood glucose level of the subject is estimated based on the spectrum information of the diffuse reflected light.

赤外光射出手段12は、赤外光源20と、干渉計22と、で構成されており、赤外光源20からの赤外光は干渉計22を通って赤外干渉光として射出される。
本実施形態では、照射部位位置決め手段14は、筐体24内部に、照射部(凹レンズ26、ミラー28)と、集光部(凹レンズ30、ミラー32)とを備えており、該筐体24側面には、入射窓34、出射窓36、測定口38を設けている。筐体の測定口38に被験者の腕、指先などの所定部位40を当てた状態で測定が行われる。赤外光射出手段12からの赤外干渉光は、入射窓34から筐体24内に導光され、照射部によって測定口38を通して被験者の測定部位40に赤外干渉光を照射し、該測定部位40からの拡散反射光を集光部によって集め、出射窓36から検出手段(検出器16)へと送る。
The infrared light emitting means 12 includes an infrared light source 20 and an interferometer 22, and the infrared light from the infrared light source 20 is emitted as infrared interference light through the interferometer 22.
In the present embodiment, the irradiation site positioning means 14 includes an irradiation unit (concave lens 26 and mirror 28) and a condensing unit (concave lens 30 and mirror 32) inside the housing 24, and the side surface of the housing 24. Are provided with an entrance window 34, an exit window 36, and a measurement port 38. Measurement is performed in a state where a predetermined portion 40 such as the arm or fingertip of the subject is applied to the measurement port 38 of the housing. The infrared interference light from the infrared light emitting means 12 is guided into the housing 24 from the incident window 34, and the measurement part 40 of the subject is irradiated with the infrared interference light through the measurement port 38 by the irradiation unit, and the measurement is performed. The diffuse reflection light from the part 40 is collected by the light collecting unit and sent from the emission window 36 to the detection means (detector 16).

拡散反射光は検出手段16で検出され、その検出信号は、データ処理手段18へと送られる。データ処理手段18は、コンピュータ等で構成されており、各種データの表示を行うデイスプレイ46や、キーボード、マウス等の入力デバイス48に接続されている。拡散反射光のインターフェログラムデータは、データ処理手段18の記憶部44に記憶される。このインターフェログラムデータは、データ処理手段18の演算部42で、フーリエ変換処理されてスペクトルデータとなる。そして、この拡散反射スペクトルデータを基にして、血糖値を推定する。
以上が本実施形態の概略構成であり、次にその作用を説明する。
The diffuse reflected light is detected by the detection means 16, and the detection signal is sent to the data processing means 18. The data processing means 18 is composed of a computer or the like, and is connected to a display 46 for displaying various data and an input device 48 such as a keyboard and a mouse. The interferogram data of the diffuse reflected light is stored in the storage unit 44 of the data processing unit 18. This interferogram data is subjected to Fourier transform processing by the arithmetic unit 42 of the data processing means 18 to become spectral data. Then, the blood glucose level is estimated based on the diffuse reflection spectrum data.
The above is the schematic configuration of the present embodiment, and the operation thereof will be described next.

赤外光射出手段12から射出された赤外干渉光は、照射部位位置決め手段14の筐体24内へ、入射窓34を通って入射する。この赤外干渉光は凹レンズ26、ミラー28を経て、筐体側面に設けられた測定口38へと向かう。被験者の所定部位40(例えば、腕、指先等)は測定口38の筐体外部側に密着させてあり、照射部からの赤外干渉光が測定口38を通して被験者の所定部位40に照射される。照射された赤外干渉光は、被験者の照射部位40表面の皮膚を透過し、内側の血管部分で拡散反射し、皮膚の外部へと出て来る。この拡散反射光は再び測定口38を通って筐体24内へ入り、集光部によって集められ、出射窓36を通して検出器16へと送られる。   The infrared interference light emitted from the infrared light emitting means 12 enters the housing 24 of the irradiation site positioning means 14 through the incident window 34. The infrared interference light travels through the concave lens 26 and the mirror 28 to a measurement port 38 provided on the side surface of the casing. A predetermined portion 40 (for example, an arm, a fingertip, etc.) of the subject is in close contact with the outside of the housing of the measurement port 38, and infrared interference light from the irradiation unit is irradiated to the predetermined portion 40 of the subject through the measurement port 38. . The irradiated infrared interference light passes through the skin on the surface of the irradiation site 40 of the subject, diffusely reflects on the inner blood vessel portion, and comes out of the skin. The diffusely reflected light again enters the housing 24 through the measurement port 38, is collected by the light collecting unit, and is sent to the detector 16 through the exit window 36.

検出器16からの検出信号はデジタル信号に変換されてデータ処理系18に送られ、そこで処理される。拡散反射光のインタフェログラムデータは、データ処理系18内の演算部44によってスペクトルデータに変換される。こうして得た拡散反射スペクトルは、被験者の血管部分での吸収に関するデータを持っており、吸収スペクトルと同様に考えてよい。これらのデータは記憶部42に記憶される。さらに、演算部44によって微分処理等の前処理が行われたスペクトルデータを基にして、血糖値の値を推定する。   The detection signal from the detector 16 is converted into a digital signal and sent to the data processing system 18 where it is processed. The interferogram data of the diffuse reflected light is converted into spectrum data by the calculation unit 44 in the data processing system 18. The diffuse reflection spectrum thus obtained has data relating to absorption in the blood vessel portion of the subject, and may be considered in the same manner as the absorption spectrum. These data are stored in the storage unit 42. Further, the blood glucose level is estimated based on the spectrum data that has been subjected to preprocessing such as differentiation processing by the calculation unit 44.

血糖値の推定のために、あらかじめ複数の被験者に対して、採血による血糖値測定と、拡散反射光のスペクトル測定を行い、検量モデルを作成しておく。つまり、血糖値を目的変数、所定波数領域のスペクトルデータを説明変数として、MLR(Multiple Liner Regression)、PCR(Principal Component Regression)、PLS(Partial Least Squares)等の多変量解析の手法を用いて検量モデルを作成する。こうして作成された検量モデル式は記憶部44に記憶される。この記憶された検量モデルを用いて、測定された拡散反射スペクトルから被験者の血糖値が算出される。
ここで、説明変数に使用する波数領域としては、(1)5498〜5240cm−1、(2)6128〜5906cm−1、(3)8318〜7976cm−1、の範囲が好適である。
In order to estimate the blood glucose level, blood glucose level measurement by blood sampling and spectrum measurement of diffuse reflected light are performed on a plurality of subjects in advance to create a calibration model. That is, calibration is performed using a multivariate analysis technique such as MLR (Multiple Liner Regression), PCR (Principal Component Regression), PLS (Partial Least Squares), etc., with blood glucose level as an objective variable and spectrum data in a predetermined wavenumber region as explanatory variables. Create a model. The calibration model formula created in this way is stored in the storage unit 44. Using this stored calibration model, the blood glucose level of the subject is calculated from the measured diffuse reflectance spectrum.
Here, as a wave number area | region used for an explanatory variable, the range of (1) 5498-5240cm < -1 >, (2) 6128-5906cm < -1 >, (3) 8318-7976cm < -1 > is suitable.

図2は、図1の実施形態の変形例である血糖値測定装置100の概略構成図である。図1と対応する構成要素には同一符号を付し、説明を省略する。図2では、筐体24の測定口38の部分に、平坦な石英板50を設けている。ただし、石英板50は、石英板50自体からの正反射光ができるだけ検出器16へと向かわないように水平面より約5度傾けて設置する。また、データ処理手段18で測定したデータを処理することによって、石英板50からの正反射光を取り除くようにする。
図2の装置で測定した拡散反射スペクトルを基にして作成した検量モデルによって推定した血糖値は、個人差の少ないものとなった。このように石英板50を測定口38に設けることによって、精度の高い血糖値測定を行うことができる。
FIG. 2 is a schematic configuration diagram of a blood sugar level measuring apparatus 100 which is a modification of the embodiment of FIG. Constituent elements corresponding to those in FIG. In FIG. 2, a flat quartz plate 50 is provided in the measurement port 38 of the housing 24. However, the quartz plate 50 is installed with an inclination of about 5 degrees from the horizontal plane so that the specularly reflected light from the quartz plate 50 itself is not directed to the detector 16 as much as possible. Further, by processing the data measured by the data processing means 18, the specularly reflected light from the quartz plate 50 is removed.
The blood glucose level estimated by the calibration model created on the basis of the diffuse reflectance spectrum measured with the apparatus of FIG. By providing the quartz plate 50 in the measurement port 38 in this way, it is possible to perform highly accurate blood glucose level measurement.

次に本実施形態の装置で測定した拡散反射スペクトルを用いて、PCR(Principal Component Regression)法による定量分析を行った結果について説明する。
図3は、図1の実施形態にかかる血糖値測定装置で測定した拡散反射スペクトルである。また、図4は図3のスペクトルデータに2次微分処理を施したものである。ここで、定量に使用した波数域は、(1)5498〜5240cm−1、(2)6128〜5906cm−1、(3)8318〜7976cm−1、である。この(1)〜(3)の波数範囲の2次微分スペクトルデータと、別途採血により測定した血糖値のデータとを用いて、PCR法により検量モデルを作成した。
Next, the result of quantitative analysis by the PCR (Principal Component Regression) method using the diffuse reflection spectrum measured by the apparatus of the present embodiment will be described.
FIG. 3 is a diffuse reflection spectrum measured by the blood sugar level measuring apparatus according to the embodiment of FIG. FIG. 4 shows a result obtained by subjecting the spectrum data of FIG. 3 to a secondary differentiation process. Here, the wave number ranges used for quantification are (1) 5498-5240 cm −1 , (2) 6128-5906 cm −1 , and (3) 8318-7976 cm −1 . A calibration model was created by the PCR method using the second derivative spectrum data in the wave number range of (1) to (3) and blood glucose level data measured separately.

試験例1
5人の被験者に対して、図1に示した実施形態の血糖値測定装置を用い、3回の食事の食前、食後に拡散反射スペクトルの測定を行った。そして、あらかじめ作成しておいた検量モデルを用いて合計30個の血糖値のデータを得た。また、拡散反射スペクトルの測定と同時に採血による方法でも血糖値を測定し、この採血による血糖値を真値として、血糖値測定装置によって測定した値(評価値)との相関を調べた。図5がその散布図である。
データ全体での相関係数は、0.75程度であるが、個人毎に検量モデルを作り、上記と同様にして求めた相関係数はそれぞれ、0.90、0.87、0.91、0.85、0.82とデータ全体での相関係数よりは良好であった。これは、個々の中では再現性は良いが個人差(個体差)が大きいと考えられる。
Test example 1
For the five subjects, the diffuse reflectance spectrum was measured before and after three meals using the blood glucose level measuring apparatus of the embodiment shown in FIG. A total of 30 blood glucose level data were obtained using a calibration model prepared in advance. In addition, the blood glucose level was also measured by a blood sampling method simultaneously with the measurement of the diffuse reflection spectrum, and the blood glucose level by this blood sampling was regarded as a true value, and the correlation with the value (evaluation value) measured by the blood glucose level measuring device was examined. FIG. 5 is a scatter diagram thereof.
The correlation coefficient of the entire data is about 0.75, but a calibration model is created for each individual, and the correlation coefficients obtained in the same manner as described above are 0.90, 0.87, 0.91, It was 0.85, 0.82, which was better than the correlation coefficient of the entire data. This is considered to have good reproducibility among individuals but large individual differences (individual differences).

試験例2
血糖値測定装置として図2のものを用い、試験例1と同様の試験を行った。図2の装置で測定した拡散スペクトルデータから2次微分データを算出し、この2次微分データの上記(1)〜(3)の波数領域のデータと、別途採血により測定した血糖値のデータとを用いて、PCR法によって検量モデルを作成した。この検量モデルを用いて、図2の装置によって測定される拡散スペクトルデータから血糖値の推定を行った。その図6がその散布図である。
サンプルデータ全体での相関係数は、0.87と向上した。また、個人毎のデータを用いて行った場合の相関係数は、それぞれ0.89、0.88、0.90、0.85、0.84となり、試験例1とほとんど変わらず、良好な結果を得た。つまり、図2の装置のように、石英板を測定口に設けた構成のものの方は、スペクトルデータのバックグラウンド位置が均一化され、データのバラツキも少なくなり個人差による違いが減少した。
Test example 2
The same test as in Test Example 1 was performed using the blood glucose level measuring apparatus shown in FIG. The second derivative data is calculated from the diffusion spectrum data measured by the apparatus of FIG. 2, and the data of the wave number region of the above-mentioned (1) to (3) of this second derivative data, the blood glucose level data separately measured by blood sampling, Was used to create a calibration model by the PCR method. Using this calibration model, the blood glucose level was estimated from the diffusion spectrum data measured by the apparatus of FIG. FIG. 6 is a scatter diagram thereof.
The correlation coefficient in the entire sample data was improved to 0.87. In addition, the correlation coefficients when using data for each individual are 0.89, 0.88, 0.90, 0.85, and 0.84, respectively, which are almost the same as in Test Example 1 and are good. The result was obtained. That is, as in the apparatus of FIG. 2, the configuration in which the quartz plate is provided at the measurement port has a uniform background position of spectrum data, less data variation, and a difference due to individual differences.

本発明の実施形態にかかる血糖値測定装置の概略構成図1 is a schematic configuration diagram of a blood sugar level measuring device according to an embodiment of the present invention. 本発明の実施形態にかかる血糖値測定装置の変形例の概略構成図The schematic block diagram of the modification of the blood glucose level measuring apparatus concerning embodiment of this invention. 図1の装置で測定した拡散反射スペクトルのグラフGraph of diffuse reflectance spectrum measured with the apparatus of FIG. 図1の装置で測定した拡散反射スペクトルの2次微分データのグラフGraph of second derivative data of diffuse reflectance spectrum measured with the apparatus of FIG. 検量モデルで算出した血糖値(評価値)と採取により測定した血糖値(真値)の散布図Scatter chart of blood glucose level (evaluation value) calculated by calibration model and blood glucose level (true value) measured by sampling 検量モデルで算出した血糖値(評価値)と採取により測定した血糖値(真値)の散布図Scatter chart of blood glucose level (evaluation value) calculated by calibration model and blood glucose level (true value) measured by sampling

符号の説明Explanation of symbols

10 血糖値測定装置
12 赤外光射出手段
14 照射部位位置決め手段
16 検出手段
18 データ処理手段
DESCRIPTION OF SYMBOLS 10 Blood glucose level measuring device 12 Infrared light emission means 14 Irradiation site | part positioning means 16 Detection means 18 Data processing means

Claims (3)

赤外光を射出する赤外光射出手段と、
前記赤外光を被験者の所定部位に照射し、該部位からの拡散反射光を集光する照射部位位置決め手段と、
該照射部位位置決め手段によって集光された拡散反射光を検出する検出手段と、
を備え、
前記照射部位位置決め手段は、
前記赤外光射出手段からの赤外光を前記被験者の所定の部位へ照射する照射部と、
前記赤外光の照射部位からの拡散反射光を集光する集光部と、
前記照射部及び前記集光部を収納する筐体と、を含み、
該筐体には、
前記赤外光射出手段からの赤外光を筐体内へ入射する入射窓と、
前記筐体の外にある照射部位へ前記照射部からの赤外光を照射する測定口と、
前記集光部で集光された拡散反射光を前記筐体外の検出手段へと出射する出射窓と、を設け、
前記検出手段によって検出された拡散反射光のスペクトル情報に基いて、前記被験者の血糖値を推定することを特徴とする血糖値測定装置。
Infrared light emitting means for emitting infrared light;
Irradiation part positioning means for irradiating a predetermined part of the subject with the infrared light and condensing diffuse reflection light from the part; and
Detecting means for detecting diffusely reflected light collected by the irradiation site positioning means;
With
The irradiation site positioning means is
An irradiating unit for irradiating the predetermined part of the subject with infrared light from the infrared light emitting means;
A condensing unit that condenses the diffuse reflected light from the infrared light irradiation site;
A housing for housing the irradiation unit and the light collecting unit,
In the case,
An incident window for injecting infrared light from the infrared light emitting means into the housing;
A measurement port for irradiating infrared light from the irradiation unit to an irradiation site outside the housing;
An exit window for emitting the diffusely reflected light collected by the light collecting unit to the detection means outside the housing; and
Wherein based on the spectral information of the detected diffused reflected light by the detecting means, blood glucose level measuring apparatus characterized by estimating the blood glucose level of the subject.
請求項に記載の血糖値測定装置において、
前記測定口に石英板を設けたことを特徴とする血糖値測定装置。
The blood sugar level measuring apparatus according to claim 1 ,
A blood glucose level measuring apparatus, wherein a quartz plate is provided in the measuring port.
請求項1または2記載の血糖値測定装置において、
5498〜5240cm−1、6128〜5906cm−1、及び8318〜7976cm−1の波数範囲の拡散反射スペクトルを用いて血糖値が推定されることを特徴とする血糖値測定装置。
The blood sugar level measuring apparatus according to claim 1 or 2 ,
A blood glucose level measuring apparatus, wherein a blood glucose level is estimated using a diffuse reflection spectrum in a wave number range of 5498-5240 cm −1 , 6128-5906 cm −1 , and 8318-7976 cm −1 .
JP2004144472A 2004-05-14 2004-05-14 Blood glucose level measuring device Expired - Fee Related JP4563075B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004144472A JP4563075B2 (en) 2004-05-14 2004-05-14 Blood glucose level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004144472A JP4563075B2 (en) 2004-05-14 2004-05-14 Blood glucose level measuring device

Publications (2)

Publication Number Publication Date
JP2005323799A JP2005323799A (en) 2005-11-24
JP4563075B2 true JP4563075B2 (en) 2010-10-13

Family

ID=35470610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004144472A Expired - Fee Related JP4563075B2 (en) 2004-05-14 2004-05-14 Blood glucose level measuring device

Country Status (1)

Country Link
JP (1) JP4563075B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008005988A (en) * 2006-06-28 2008-01-17 Jasco Corp Blood glucose level analysis method and blood glucose level analyzer
JP4872536B2 (en) * 2006-08-28 2012-02-08 パナソニック電工株式会社 Biological component concentration measurement method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003042948A (en) * 2001-08-03 2003-02-13 Univ Waseda Instrument for measuring glucose concentration
JP2003050200A (en) * 2001-06-01 2003-02-21 Nikkiso Co Ltd Method and apparatus for measuring optical component
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
JP2003240709A (en) * 2002-02-21 2003-08-27 Matsushita Electric Ind Co Ltd Concentration measuring method for specified component and contact for concentration measurement used in the method
JP2003270131A (en) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Concentration measurement method for specific component
WO2003079900A1 (en) * 2002-03-25 2003-10-02 Ken-Ichi Yamakoshi Noninvasive blood component value measuring instrument and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003050200A (en) * 2001-06-01 2003-02-21 Nikkiso Co Ltd Method and apparatus for measuring optical component
JP2003042948A (en) * 2001-08-03 2003-02-13 Univ Waseda Instrument for measuring glucose concentration
JP2003121347A (en) * 2001-10-18 2003-04-23 Fuji Photo Film Co Ltd Method and apparatus for measuring glucose concentration
JP2003240709A (en) * 2002-02-21 2003-08-27 Matsushita Electric Ind Co Ltd Concentration measuring method for specified component and contact for concentration measurement used in the method
JP2003270131A (en) * 2002-03-19 2003-09-25 Matsushita Electric Ind Co Ltd Concentration measurement method for specific component
WO2003079900A1 (en) * 2002-03-25 2003-10-02 Ken-Ichi Yamakoshi Noninvasive blood component value measuring instrument and method

Also Published As

Publication number Publication date
JP2005323799A (en) 2005-11-24

Similar Documents

Publication Publication Date Title
US7328052B2 (en) Near infrared risk assessment of diseases
EP0877925B1 (en) Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
JP3931638B2 (en) Biological component determination device
US7343185B2 (en) Measurement of body compounds
US6983176B2 (en) Optically similar reference samples and related methods for multivariate calibration models used in optical spectroscopy
US5222496A (en) Infrared glucose sensor
US6157041A (en) Methods and apparatus for tailoring spectroscopic calibration models
JP2002236097A (en) Method and apparatus for multi-spectral analysis in noninvasive near-infrared spectroscopy
EP0630203A1 (en) Non-invasive device and method for determining concentrations of various components of blood or tissue
WO1997028437A9 (en) Method and apparatus for multi-spectral analysis in noninvasive infrared spectroscopy
JPH02191434A (en) Method and apparatus for near infrared quantitative analysis of blood sugar level
US20080198361A1 (en) Method and Apparatus for Determining Blood Analytes
US6928311B1 (en) Compact device for measuring, tissue analytes
US6615151B1 (en) Method for creating spectral instrument variation tolerance in calibration algorithms
US20060211926A1 (en) Non-invasive Raman measurement apparatus with broadband spectral correction
US5246004A (en) Infrared cholesterol sensor
JP2008005988A (en) Blood glucose level analysis method and blood glucose level analyzer
JPWO2003042180A1 (en) Method and apparatus for measuring biological component concentration
CN109984725B (en) Contact pressure interference suppression method and device in diffuse reflection measurement and measurement method
JP4563075B2 (en) Blood glucose level measuring device
US20060063991A1 (en) Method and apparatus for non-invasive measurement of blood analytes with dynamic spectral calibration
JP2004321325A (en) Method of quantitating blood glucose level
WO1999043255A1 (en) Near infrared-transmission spectroscopy of tongue tissue
JPH10190A (en) Measuring device for properties of organism tissue
JP2004045096A (en) Apparatus for determining bio-component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100728

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4563075

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees